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1 Introduction

Conjugacy classes of finite Coxeter groups have long been of interest, the correspondence be-
tween partitions and conjugacy classes of the symmetric groups having been observed by Cauchy
[4] in the early days of group theory. For Coxeter groups of type Bn and Dn, descriptions of
their conjugacy classes, by Specht [14] and Young [15], have also been known for a long time.
In 1972, Carter [2] gave a uniform and systematic treatment of the conjugacy classes of Weyl
groups. More recently, Geck and Pfeiffer [6] reworked Carter’s description from more of an algo-
rithmic standpoint. Motivation for investigating the conjugacy classes of finite Coxeter groups,
and principally those of the irreducible finite Coxeter groups, has come from many directions,
for example in the representation theory of these groups and the classification of maximal tori
in groups of Lie type (see [3]). The behaviour of length in a conjugacy class is frequently
important. Of particular interest are those elements of minimal and maximal lengths in their
class. Instrumental to Carter’s work was establishing the fact that in a finite Coxeter group
every element is either an involution or a product of two involutions. Given the importance of
the length function, it is natural to ask whether for an element w it is possible to choose two
involutions σ and τ with w = στ in such a way that combining a reduced expression for σ with
one for τ produces a reduced expression for w. That is, can we ensure that the length `(w)
is given by `(w) = `(σ) + `(τ)? Not surprisingly, the answer to this is, in general, no. This
naturally leads to introducing the concept of excess of w, denoted by e(w), and defined by

e(w) = min{`(σ) + `(τ)− `(w) : στ = w, σ2 = τ 2 = 1}.

In [7], [9] and [10], various properties of excess were investigated. It was shown, among other
things, that in every conjugacy class of a finite Coxeter group W there is an element w of
minimal length in the conjugacy class, such that the excess of w is zero [9, Theorem 1.1]. This
raises the question as to whether there is also an element of maximal length and excess zero.

In this paper we address this question and show that elements of maximal length and excess
zero do indeed exist.

Theorem 1.1. Let W be a finite Coxeter group and C a conjugacy class of W . Then there
exists an element w of maximal length in C such that e(w) = 0.

∗The authors wish to acknowledge support for this work from a London Mathematical Society Research in
Pairs Grant.
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In the course of proving this result we need a workable description of representatives of max-
imal length in conjugacy classes of Coxeter groups of types An, Bn and Dn. Minimal length
elements in conjugacy classes of Coxeter groups have received considerable attention – see [6].
Now every finite Coxeter group W possesses a (unique) element w0 of maximal length in W .
For C a conjugacy class of W , set C0 = Cw0 = {ww0 : w ∈ C}. If, as happens in many cases,
w0 ∈ Z(W ), then C0 is also a conjugacy class of W . Moreover, w ∈ C has minimal length in C
if and only if ww0 has maximal length in C0. Thus information about maximal length elements
in a conjugacy class may be obtained from that known about minimal length elements. Among
the finite irreducible Coxeter groups, only those of type Im (m odd), An, Dn (n odd) and E6

have w0 /∈ Z(W ). The first of these, being just dihedral groups, are quickly dealt with. A
description of certain maximal length elements in conjugacy classes of type An were given by
Kim [12] and for E6 see Table III of [5]. In Section 3 of this paper we deal with type Dn (and
in doing so give a result for type Bn at the same time). Representatives of maximal length for
type Dn could be extracted from Section 4 of [5], but here we give a more direct treatment that
deals with both type Bn and type Dn and gives more information about the number of long
and short roots taken negative by elements of maximal length. Theorem 3.1 gives an expression
for the maximal length of elements in a given conjugacy class for type Dn while Theorem 1.2
below gives a list of maximal length class representatives in types Bn and Dn. This is what we
require for our work on elements of excess zero.

Theorems 1.2 and 3.1 are consequences of a more general result, Theorem 3.6, concerning D-
lengths and B-lengths of elements in a Coxeter group W of type Bn (D-length and B-length
will be defined in Section 3). Suppose Ŵ is of type Dn. Then we may regard Ŵ as a canonical
index 2 subgroup of W where W is a Coxeter group of type Bn. Let C be a conjugacy class
of W that is contained in Ŵ . In the case when n is odd, w0 6= ŵ0 (the longest element of
Ŵ ) and consequently C0 = Cw0 is not even a subset of Ŵ , much less a conjugacy class of
Ŵ . However, working in the wider context of W , we are able to obtain elements of maximal
D-length in C from suitable elements of minimal B-length in C0. Therefore, in the course of
establishing Theorem 3.1, we also produce representative elements of maximal length in their
conjugacy class. To describe these elements, recall that conjugacy classes in types Bn and Dn

are parameterized by signed cycle type (this will be described fully in Section 3), with some
classes splitting in type Dn.

Let λ = (λ1, . . . , λm) be a partition of n, and let ρ ≥ 0. For ease of notation set µi =
∑i−1

j=1 λj
(and by convention µ1 = 0). We then define the corresponding signed element wλ,ρ to be
wλ,ρ = w1 · · ·wm where

wi =

 (
−

µi + 1,
−

µi + 2, . . . ,
−

µi+1 − 1,
−
µi+1) if 1 ≤ i ≤ ρ;

(
−

µi + 1,
−

µi + 2, . . . ,
−

µi+1 − 1,
+
µi+1) if ρ < i ≤ m.

We call λ a maximal split partition (with respect to ρ) if λ1 ≥ · · · ≥ λρ and λρ+1 ≥ · · · ≥ λm.
For example, if λ = (5, 2, 4, 3) and ρ = 2, then

wλ,ρ = (
−
1,
−
2,
−
3,
−
4,
−
5)(
−
6,
−
7)(
−
8,
−
9,
−
10,

+

11)(
−
12,

−
13,

+

14).

Our second main result in this paper is the following.
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Theorem 1.2. Let W be of type Bn and Ŵ its canonical subgroup of type Dn. Every conjugacy
class of W contains an element wλ,ρ, where λ is a maximal split partition with respect to ρ.
Furthermore each element wλ,ρ has maximal B-length and maximal D-length in its conjugacy
class of W .

Representatives of minimal length in conjugacy classes of types Bn and Dn appear in
Theorems 3.4.7 and 3.4.12 of [6]. However we need additional information about elements
of minimal length in W -conjugacy classes, which gives as a byproduct (in Corollaries 3.4 and
3.5) an alternative proof that the representatives given in [6] are indeed of minimal length.

In the rest of this section we briefly discuss the proof of Theorem 1.1. Given a root system Φ
for a Coxeter group W , we have that Φ is the disjoint union of the set of positive roots Φ+ and
the set of negative roots Φ− = −Φ+. For details on root systems, including these observations,
see for example Chapter 5 of [11]. It is well known (for example Proposition 5.6 of [11]) that
for any w in W , the length `(w) is given by

`(w) = |N(w)| = |{α ∈ Φ+ : w(α) ∈ Φ−}|.

That is, `(w) is the number of positive roots taken negative by w. We emphasise here that, in
line with other work on Coxeter groups, elements of the group will act on the left. It is easy to
show that if w = gh for some g, h ∈ W , then

`(w) = `(g) + `(h)− 2|N(g) ∩N(h−1)|. (1)

(Equation (1) is well known but is stated and proved as part of Lemma 2.1 in [9].) Our method
of proving Theorem 1.1 for the classical Weyl groups will be as follows. First we will establish
a collection of elements w constituting a representative of maximal length for each conjugacy
class of the group under consideration. For each such w, we will obtain involutions σ and τ
such that N(σ) ∩ N(τ) = ∅ and στ = w. It follows from Equation (1) that the excess of w is
zero. We conclude this section with two lemmas which will be useful later.

Lemma 1.3. Let W be a Coxeter group. Let g, h ∈ W and suppose N(g)∩N(h−1) = ∅. Then
N(gh) = N(h)∪̇h−1(N(g)).

Proof. Note that |N(h) ∩ h−1N(g)| = |hN(h) ∩ N(g)| ≤ |Φ− ∩ N(g)| = 0. So N(h) and
h−1(N(g)) are indeed disjoint. Suppose α ∈ N(h). Then gh(α) ∈ Φ+ would imply that
h(α) ∈ −N(g), which implies −h(α) ∈ N(h−1) ∩ N(g), a contradiction. Hence gh(α) ∈ Φ−,
meaning N(h) ⊆ N(gh). Now suppose α ∈ N(gh) \ N(h). Then h(α) ∈ Φ+ but gh(α) ∈ Φ−.
Therefore α ∈ h−1(N(g)). Conversely, since N(h−1)∩N(g) = ∅, we have h−1(N(g)) ⊆ Φ+ and
so h−1(N(g)) ⊆ N(gh). Therefore N(gh) = N(h)∪̇h−1(N(g)).

Lemma 1.4. Let W be a Coxeter group. Suppose t1, t2, . . . , tm are involutions with the property
that whenever i 6= j we have ti(N(tj)) = N(tj). Then N(t1 · · · tm) = ∪̇mi=1N(ti).

Proof. The result clearly holds when m = 1. Assume the result holds for m = k. Set uk =
t1t2 · · · tk. Then inductively N(uk) = ∪̇ki=1N(ti). If α ∈ N(uk), then α ∈ N(ti) for some
i ≤ k and so tk+1(α) ∈ N(ti) ⊆ Φ+. Thus N(uk) ∩ N(tk+1) = ∅. Lemma 1.3 now gives

N(uk+1) = N(tk+1)∪̇tk+1 (N(uk)) = ∪̇k+1
i=1N(ti). The result follows by induction.
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Finally for σ ∈ Sym(n), the support of σ, denoted supp(σ) is simply the set of points not fixed
by σ. That is,

supp(σ) = {i ∈ {1, . . . , n} : σ(i) 6= i}.

2 Type An−1

The permutation group Sym(n) is a Coxeter group of type An−1. So throughout this section
we will set W = Sym(n). In this context then, the length of an element w is the number of
inversions, that is the number of pairs (i, j) with 1 ≤ i < j ≤ n such that w(i) > w(j). We
can also think of this in terms of the root system (which we can consider as a warm up for the
type Bn and Dn cases). For the root system Φ we can take

Φ+ = {ei − ej : 1 ≤ i < j ≤ n}

and Φ− = −Φ+. Hence
N(w) = {ei − ej : i < j, w(i) > w(j)}.

For what follows it will sometimes be helpful to consider intervals [a, b] for 1 ≤ a < b ≤ n. The
group Sym([a, b]) is a standard parabolic subgroup of W , and by Φ+

[a,b] we mean {ei − ej : a ≤
i < j ≤ b}. We note that if w ∈ Sym([a, b]) then N(w) ⊆ Φ+

[a,b]. The conjugacy classes of W

are parameterized by partitions of n. Kim [12] has described a set of representative elements of
maximal length in conjugacy classes of Sym(n), using the ‘stair form’. Following [12] we give
the following definition.

Definition 2.1. Let n be a positive integer.

(i) Define the sequence a1, a2, . . . , an by a2i−1 = i and a2i = n− (i− 1). (So a1 = 1, a2 = n,
a3 = 2, a4 = n− 1 and so on.)

(ii) Given a partition λ = (λ1, . . . , λm) of n, its corresponding element is the element of
Sym(n) defined by

wλ = w1w2 · · ·wm
where wi = (aλ1+···+λi−1+1, aλ1+···+λi−1+2, . . . , aλ1+···+λi−1+λi).

(iii) Let λ = (λ1, . . . , λm) be a partition of n. Then λ is a maximal partition of n if there exists
`, with 0 ≤ ` ≤ m such that λ1, . . . , λ` are even numbers in any order, and λ`+1, . . . , λm are
odd numbers in decreasing order. (In [12] this is referred to as a maximal composition.)

For example, given the maximal partition (4,5) of 9, the corresponding element of Sym(9) is
(1, 9, 2, 8)(3, 7, 4, 6, 5). Any partition of n can be reordered so as to produce a maximal partition.
Therefore each conjugacy class can be represented by a maximal partition. We can now state
the main result of [12].

Theorem 2.2 (Kim, [12]). Let λ = (λ1, . . . , λm) be a maximal partition of n. The corresponding
element wλ of λ has maximal length in its conjugacy class.
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Given a sequence b1, b2, . . . bk, of distinct elements in {1, . . . , n}, we define gb1,··· ,bk to be the
permutation that reverses the sequence and fixes all other c ∈ {1, . . . , n}, so that g(bi) = bk+1−i.
That is,

g = (b1, bk)(b2, bk−1) · · · (bbk/2c, bdk/2e+1).

In particular, gb1,··· ,bk is an involution.

Let w = (b1, b2, · · · , bk). Define

σ(w) =

{
gb1,...,bk if k even
gb2,...,bk if k odd

(2)

τ(w) =

{
gb1,...,bk−1

if k even
gb1,...,bk if k odd

(3)

Lemma 2.3. Let w be a cycle of Sym(n). Then writing σ = σ(w) and τ = τ(w) we have that
w = στ , where σ and τ are both involutions.

Proof. It is clear that σ and τ are involutions. Let w = (b1, · · · , bk). If k is even, then by
(2) and (3) we see that for i ≤ k − 1 we have στ(bi) = σ(bk−i) = b(k+1)−(k−i) = bi+1, and
στ(bk) = σ(bk) = b1. Therefore w = στ . If k is odd then σ(bj) = bk+2−j when 2 ≤ j ≤ k, and
σ(b1) = b1. Therefore, when i ≤ k − 1 we have στ(bi) = σ(bk+1−i) = bk+2−(k+1−i) = bi+1 and
στ(bk) = σ(b1) = b1. Again we get w = στ .

Before we go further we introduce some additional notation. Any partition λ (via its corre-
sponding element wλ) induces a partition X = (X1, . . . , Xm) of {1, . . . , dn

2
e} and a partition

Y = (Y1, . . . , Ym) of {dn
2
e+ 1, . . . , n} by setting

Xk = {1, . . . , dn
2
e} ∩ supp(wk);

Yk = {dn
2
e+ 1, . . . , n} ∩ supp(wk).

By definition of wk we see that Xk is an interval [xk, xk] where xk and xk are, respectively, the
minimal and maximal elements of Xk appearing in supp(wk). Similarly we may write Yk =
[y
k
, yk] for appropriate y

k
and yk. For example, if λ = (8, 5), then wλ is (1, 13, 2, 12, 3, 11, 4, 10)(5, 9, 6, 8, 7)

and we have X1 = {1, 2, 3, 4} = [1, 4], X2 = {5, 6, 7}, Y1 = {10, 11, 12, 13}, Y2 = {8, 9}. Note
also that σ(w1) = (1, 10)(2, 11)(3, 12)(4, 13), σ(w2) = (6, 8)(7, 9), τ(w1) = (1, 4)(2, 3)(11, 13)
and τ(w2) = (5, 7)(8, 9). We will see that τ(wk) leaves the sets Xk and Yk invariant, and σ(wk)
interchanges, in an order-preserving way, nearly all, if not all, elements of Xk and Yk.

Proposition 2.4. Let λ be a maximal partition of n and let C be the corresponding conjugacy
class of Sym(n). The corresponding element wλ has maximal length in C, and e(wλ) = 0.

Proof. Write λ = (λ1, . . . , λm). Set w = wλ = w1 · · ·wm where wi is as given in Definition 2.1.
By Theorem 2.2 w has maximal length in C. For each i set σi = σ(wi) and τi = τ(wi). Since
the supports (in other words the sets of non-fixed points) of σ and τ are subsets of the support
of wi, it is clear that both σi and τi commute with both σj and τj whenever i 6= j. Hence
σ = σ1 · · ·σm and τ = τ1 · · · τm are involutions with the property that, by Lemma 2.3, στ = w.
We must show that N(σ) ∩N(τ) = ∅. This will imply by Equation (1) that e(w) = 0.
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Consider the cycle wk of w. Then wk = (aL+1, aL+2, . . . , aL+λk) (setting L =
∑k−1

j=1 λj). This
means, depending on the parity of L, that wk = (i, n+ 1− i, i+ 1, n− i, . . .) or (n+ 2− i, i, n+
1− i, . . .) for some i ≥ 1. The support of wk is Xk ∪ Yk.

Let us consider τk = τ(wk). Now if λk is even, we have τk =
∏(λk/2−1)

i=1 (aL+i, aL+λk−i). If λk is

odd then τk =
∏bλk/2c

i=1 (aL+i, aL+λk+1−i). In both cases τk is mapping odd terms of the sequence
(ai) to odd terms and even terms to even terms. In particular, τk ∈ Sym(Xk) × Sym(Yk).
Therefore

N(τk) ⊆ {ei − ej : xk ≤ i < j ≤ xk} ∪ {ei − ej : y
k
≤ i < j ≤ yk}. (4)

(If λk is odd then we have equality here and τk = gxk,...,xkgyk,...,yk .)

Next we look at σk. If λk is even, then setting µ = bλk
2
c we have

σk =

µ∏
i=1

(aL+i, aL+λk+1−i).

If λk is odd then σk =
∏µ+1

i=2 (aL+i, aL+λk+2−i). What happens this time is that σk is the order
preserving bijection between the highest µ elements of Xk and the lowest µ elements of Yk.
Therefore

N(σk) = {ei − ej : xk ≤ xk + 1− µ ≤ i ≤ xk < j < y
k
}

∪ {ei − ej : xk < i < y
k
≤ j ≤ y

k
+ µ− 1 ≤ yk}. (5)

Now for ` 6= k, we have that σ` fixes all i for i /∈ X` ∪ Y` and interchanges various elements
of X` and Y`. Therefore σ`(N(σk)) = N(σk). So we may apply Lemma 1.4 to conclude
that N(σ) = ∪̇mk=1N(σk). Similarly since τ` fixes all i for i /∈ X` ∪ Y`, we can deduce that
N(τ) = ∪̇mk=1N(τk). Looking at Equations (4) and (5) it is clear that N(τ) ∩ N(σ) = ∅.
Therefore by Equation (1) we see that `(w) = `(σ) + `(τ) and hence e(w) = 0, as required.

3 Maximal lengths in types Bn and Dn

Throughout this section, W is assumed to be a Coxeter group of type Bn containing Ŵ , the
canonical index 2 subgroup of type Dn. We will view elements of W as signed cycles. A cycle is
called negative if it has an odd number of minus signs above its entries, and positive otherwise.
The conjugacy classes of W are parameterized by signed cycle type. So for X a subset of a
conjugacy class of W , this data may be encoded by

λ(X) = (λ1, . . . , λνX ;λνX+1, . . . , λzX )

where in this expression νX is the number of negative cycles, zX is the total number of cycles,
and λ1 ≤ . . . ≤ λνX , respectively λνX+1 ≤ · · · ≤ λzX , are the lengths of the negative, respectively
positive, cycles of X. So any element of X has λ(X) as its signed cycle type. Our main aim in
this section is to prove Theorem 1.2 and the following.
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Theorem 3.1. Suppose Ŵ is a Coxeter group of type Dn, and let Ĉ be a conjugacy class of Ŵ .
Set C = Ĉ0 = Ĉw0, where w0 is the longest element of W , and assume that
λ(C) = (λ1, . . . , λνC ;λν+1, . . . , λzC ). Then the maximal length in Ĉ is

n2 + zC − 2

νC−1∑
i=1

(νC − i)λi.

Let Φ be the root system of W . We employ the usual description of Φ (as given, for example in
[11]). So the positive long roots are Φ+

long = {ei ± ej : 1 ≤ i < j ≤ n}, the negative long roots

are Φ−long = −Φ+
long and Φlong = Φ+

long ∪ Φ−long. The short roots are Φ+
short = {ei : 1 ≤ i ≤ n},

Φ−short = −Φ+
short and Φshort = Φ+

short ∪ Φ−short. Finally the positive roots are Φ+ = Φ+
long ∪ Φ+

short,

the negative roots are Φ− = Φ−long ∪ Φ−short and Φ = Φ+ ∪ Φ−. We note that the set of positive

roots for Ŵ is Φ+
long. We recall our convention will be that the action of a group element is on

the left of the root, so that for example (
−
1

+

3
+

8)(e1) = (
+

1
+

3
+

8)(
−
1)(e1) = −e3.

For w ∈ W , we define the following two sets.

Λ(w) = {α ∈ Φ+
long : w(α) ∈ Φ−};

Σ(w) = {α ∈ Φ+
short : w(α) ∈ Φ−}.

Set lB(w) = |Λ(w)|+ |Σ(w)| and lD(w) = |Λ(w)|. By [11] lB(w) is the length of w and, should
w ∈ Ŵ , then lD(w) is the length of w viewed as an element of Ŵ . We call lB(w) the B-length of
w and lD(w) the D-length of w. Given w ∈ W , let w be the corresponding element of Sym(n).

So, for example, if w = (
−
1

+

3
+

8), then w = (138). Observe that for w ∈ W , by a slight abuse of
notation, we can write

w = w

(∏
ei∈Σ(w)(

−
i)

)
.

Hence, in our above example, (
−
1

+

3
+

8) = (138)(
−
1).

Later when we talk about excess in these groups, to avoid ambiguity we will use the notation
eB(w) to mean the excess e(w) when w is viewed as an element of W , and eD(w) to mean the
excess e(w) when w is viewed (where appropriate) as an element of Ŵ . That is, for all w in W
we define

eB(w) = min{`B(σ) + `B(τ)− `B(w) : σ, τ ∈ W,w = στ, σ2 = τ 2 = 1};
eD(w) = min{`D(σ) + `D(τ)− `D(w) : σ, τ ∈ Ŵ , w = στ, σ2 = τ 2 = 1}.

As noted earlier, conjugacy classes of W are parameterized by signed cycle type. So, for

example, if W is of type B9 and C is the W -conjugacy class of w = (
+

1
+

2)(
+

3
−
4

+

5)(
−
6

+

7
+

8)(
+

9),
then the signed cycle type λ(C) of C is λ(C) = (3, 3; 1, 2). In Ŵ , conjugacy classes are also
parameterized by signed cycle type, with the exception that there are two classes for each signed
cycle type consisting only of even length, positive cycles. (The length profiles in each pair of
split classes are identical, because the classes are interchanged by the length-preserving graph
automorphism.)
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Lemma 3.2. Let C be a conjugacy class of W , and w ∈ C. Then

|Λ(w)| ≥ n− zC + 2

νC−1∑
i=1

(νC − i)λi.

Moreover |Σ(w)| ≥ νC.

Proof. Set ν = νC and z = zC . Write w as a product of disjoint cycles, w = σ1σ2 · · ·σz, where
σ1, . . . , σν are negative cycles and the remaining cycles are positive. Also, order the negative
cycles such that i < j if and only if the minimal element in supp(σi) is smaller than the minimal
element in supp(σj). Our approach is to consider certain 〈w〉-orbits of roots.

Firstly, let σ be a positive k-cycle of w and consider the orbits consisting of roots of the form
ea− eb, for a, b ∈ supp(σ) and a 6= b. Each such orbit has length k. There are 2

(
k
2

)
roots of this

form, and hence k − 1 such orbits. Let c be the maximal element in supp(σ). Then each orbit
contains both ea − ec and ec − eb for some a, b ∈ supp(σ). Now ea − ac ∈ Φ+ and ec − eb ∈ Φ−.
Therefore each orbit includes a transition from positive to negative (that is, a positive root α
for which w(α) is negative). Hence each orbit contributes at least one root to Λ(w). Therefore
each positive k-cycle contributes at least k − 1 roots to Λ(w).

Next suppose σ is a negative k-cycle of w. This time we consider orbits consisting of roots of
the form ±ea± eb, for a, b ∈ supp(σ) and a 6= b. Each such orbit has length 2k. There are 4

(
k
2

)
roots of this form, and hence k − 1 such orbits. Moreover if α lies in one of these orbits, then
−α lies in the same orbit. Thus again each orbit includes a transition from positive to negative
and hence contributes at least one root to Λ(w). Therefore each negative k-cycle contributes
at least k − 1 roots to Λ(w).

Now suppose σi and σj are negative cycles, with i < j, and consider the union of all orbits
consisting of roots of the form ±ea ± eb, where a ∈ supp(σi) and b ∈ supp(σj). Suppose
|supp(σi)| = k and |supp(σj)| = `. Let c be minimal in supp(σi). Then every orbit con-
tains some ±ec ± eb for some b ∈ supp(σj). For every root of the form ec ± eb, we have
wk(ec± eb) = −ec± eb′ and w2k(ec± eb′) = ec± eb′′ for some b′, b′′ ∈ supp(σj). Now ec± eb and
ec ± eb′′ are positive roots, but −ec ± eb′ is negative. Therefore in this orbit or part of orbit
there is at least one transition from positive to negative. There are 2` roots of the form ec± eb,
and hence each pair σi, σj of negative cycles with i < j contributes at least 2|supp(σj)| roots
to Λ(w). For example, letting i range from 1 to ν − 1, we get a total of (ν − 1)× 2|supp(σν)|
roots from pairs σi and σν .

Combining these three observations and writing ki for |supp(σi)|, we see that

Λ(w) ≥
z∑
i=1

(ki − 1) + 2
ν∑
i=2

(i− 1)ki.

Since {k1, . . . , kν} = {λ1, . . . , λν}, and λ1 ≤ λ2 ≤ · · · ≤ λν , it is clear that
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ν∑
i=2

(i− 1)ki = k2 + 2k3 + · · ·+ (ν − 1)kν

≥ λν−1 + 2λν−2 + · · ·+ (ν − 1)λ1

=
ν−1∑
i=1

(ν − i)λi.

Therefore

|Λ(w)| ≥ n− z + 2
ν−1∑
i=1

(ν − i)λi.

It only remains to show that |Σ(w)| ≥ ν. This trivially follows from the fact that there are ν
negative cycles and each negative cycle must contain at least one minus sign. Therefore there
are at least ν roots ea for which w(ea) ∈ Φ−. Thus |Σ(w)| ≥ ν and the proof of the lemma is
complete.

Next, given a conjugacy class C of W we define a particular element uC of C (which will turn
out to have minimal B-length). Recall that the signed cycle type of C is

λ(C) = (λ1, λ2, . . . , λνC ;λνC+1, . . . , λzC ),

and write µi = n−
∑i

j=1 λj for 1 ≤ i < zC . Set ν = νC and z = zC . Then define uC to be the
following element of C.

uC =(
+

1,
+

2, . . . ,
+

λz)(
+

µz−1 + 1, . . . ,
+

µz−2) · · · (
+

µν+1 + 1,
+

µν+1 + 2, . . . ,
+
µν)·

· (
+

µν + 1,
+

µν + 2, . . . ,
+

µν−1 − 1,
−

µν−1) · · · (
+

µ1 + 1, . . . ,
+

n− 1,
−
n)

As an example, let w = (
−
1

+

7
−
2
−
9)(
−
3

+

4
−
6)(

+

5
−
8) and let C be the conjugacy class of w in type B9.

Then λC = (2, 4; 3), νC = 2, zC = 3, µ1 = 7 and µ2 = 3. This gives uC = (
+

1
+

2
+

3)(
+

4
+

5
+

6
−
7)(

+

8
−
9).

Lemma 3.3. Suppose w = uC for some conjugacy class C of W . Then |Σ(w)| = νC and
|Λ(w)| = n− zC + 2

∑νC−1
i=1 (νC − i)λi

Proof. Again set z = zC and ν = νC . The size of Σ(w) is simply the number of minus signs
appearing in the expression for w. Here, Σ(w) = {en, eµ1 , . . . , eµν−1} and |Σ(w)| = ν.

To find Λ(w), consider pairs (i, j) with 1 ≤ i < j ≤ n. Suppose first that i and j are in the
same cycle of w. Then ei /∈ Σ(w) because only the maximal element of each negative cycle has
a minus sign above it. If j = µk for some k, or if j = n, then exactly one of ei + ej ∈ Λ(w) or
ei−ej ∈ Λ(w) occurs (depending whether k < ν). Otherwise, ei−ej /∈ Λ(w) and ei+ej /∈ Λ(w).

Hence a cycle (
+

µk+1 + 1, · · · ,
+

µk − 1,
±
µk) contributes exactly λk+1 − 1 roots to Λ(w).

Now suppose that i and j are in different cycles. Hence w(i) < w(j). It is a simple matter to
check that if ei ∈ Σ(w), then {ei + ej, ei − ej} ⊆ Λ(w), whereas if ei /∈ Σ(w), then ei − ej and
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ei + ej are not in Λ(w). Therefore each i with ei ∈ Σ(w) contributes exactly 2(n− i) additional
roots to Λ(w), and no roots are contributed when ei /∈ Σ(w).

Therefore

|Λ(w)| =
z∑

k=1

(λk+1 − 1) +
∑

k:ek∈Σ(w)

2(n− k)

= (n− z) + 2 ((n− n) + (n− µ1) + (n− µ2) + · · ·+ (n− µν−1))

= (n− z) + 2
ν−1∑
i=1

i∑
j=1

λj

= n− z + 2
ν−1∑
i=1

(ν − i)λi.

Therefore |Λ(w)| = n− zC + 2
∑νC−1

i=1 (νC − i)λi and |Σ(w)| = νC .

Corollary 3.4. Let C be a conjugacy class of W . Then the minimal B-length in C is

n+ νC − zC + 2

νC−1∑
i=1

(νC − i)λi.

If w ∈ C has minimal B-length, then |Λ(w)| = n − zC + 2
∑νC−1

i=1 (νC − i)λi and |Σ(w)| = νC.
Moreover, uC is a representative of minimal B-length in C.

In the next corollary the element utC is the element obtained from uC by taking its shortest pos-

itive cycle (which in this context will be the cycle (
+
n

+

n− 1 . . .
+
m) for some odd m), and putting

minus signs over n and n− 1. In other words it is the conjugate of uC by t = (
−
n). Conjugation

by (
−
n) is the length preserving automorphism of Ŵ induced by the graph automorphism of the

Coxeter graph Dn.

Corollary 3.5. Let C be a conjugacy class of W . If C is also a conjugacy class, or a union
of conjugacy classes, of Ŵ , then the minimal D-length of elements in the class(es) is n −
zC + 2

∑νC−1
i=1 (νC − i)λi. Moreover uC and utC are representatives of minimal D-length in the

class(es), with one in each Ŵ -class if the class C splits.

Theorem 3.6. Let C be a conjugacy class of W and w ∈ C. Let C0 be the conjugacy class
of ww0 where w0 is the longest element of W . Then the maximal B-length of elements of
C is n2 − |Λ(uC0)| − |Σ(uC0)|, with uC0w0 being an element of maximal B-length. If C is a
conjugacy class or union of conjugacy classes of Ŵ , the maximal D-length of elements of C is
n2 − n− |Λ(uC0)|. Moreover uC0w0 and utC0

w0 are representatives of maximal D-length in the

class(es), with one in each Ŵ -class if C is a split class.

Proof. Let C be a conjugacy class of W . Since w0 is central, the W -conjugacy class C0 of
ww0 is just Cw0. Moreover, for any root α we have w0(α) = −α. Therefore for all x ∈ W ,
|Λ(xw0)| = (n2 − n) − |Λ(x)| and |Σ(xw0)| = n − |Σ(x)|. (Note that there are n2 − n long
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positive roots and n short positive roots.) Let u = uC0 . Then by Lemmas 3.2 and 3.3, we have
that for all v ∈ C0, |Λ(v)| ≥ |Λ(u)| and |Σ(v)| ≥ |Σ(u)|. Now every x ∈ C is of the form vw0

for some v ∈ C0. Hence for every x ∈ C, we have

|Λ(x)| ≤ n2 − n− |Λ(u)| and

|Σ(v)| ≤ n− |Σ(u)|.

Also |Λ(uw0)| = n2−n−|Λ(u)| and |Σ(uw0)| = n−|Σ(u)|. Therefore the maximal B-length in
C is n2−n−|Λ(u)|+n−|Σ(u)| = n2−|Λ(u)|− |Σ(u)| and this is attained by the element uw0.
Moreover, if C is a conjugacy class (or union of conjugacy classes) of Ŵ , then the maximal
D-length is n2 − n− |Λ(u)| and this is attained by uw0 (or (uw0)t if the class splits).

Theorem 3.1 now follows immediately from Theorem 3.6 and Lemma 3.3. All that remains in
this section is to prove Theorem 1.2.

Proof of Theorem 1.2 Note that each element wλ,ρ, where λ = (λ1, . . . , λm) is a maximal
split partition with respect to ρ, is of the form w0uC for some uC . In particular we have zC = m
and νC = m− ρ. Thus each element wλ,ρ has maximal B-length and maximal D-length in the
class Cw0. Moreover given a class C ′ of W , setting C = C ′w0 we see that w0uC is wλ,ρ for some
suitable λ, ρ, and so wλ,ρ is of maximal B-length and D-length in C ′.

It is the task of the next section to show that these elements wλ,ρ have excess zero.

4 Excess zero in types Bn and Dn

The aim of this section is to prove Theorem 1.1 for W and Ŵ . In order to do this we will
show that the elements wλ,ρ described in Theorem 1.2 have excess zero both in W and (if

applicable) in Ŵ . To obtain the required involutions σ and τ such that N(σ) ∩N(τ) = ∅ and
στ = w, we modify the definition of gb1,...,bk given in Section 2. We will only need to consider
sequences of consecutive integers here though. Let {a + 1, a + 2, . . . , a + k} be a sequence
of consecutive positive integers in {1, . . . , n}. Define g[a,k] to be the permutation of W that
reverses the sequence and fixes all other c ∈ {1, . . . , n}. (Essentially this is just gb1,··· ,bk where
b1 = a + 1, b2 = a + 2, . . ., bk = a + k, but viewed as an element of W rather than Sym(n).)
Thus g[a,k](a+ i) = a+ k + 1− i for 1 ≤ i ≤ k. That is,

g = (
+

a+ 1,
+

a+ k)(
+

a+ 2,
+

a+ k − 1) · · · (
+

a+ bk/2c,
+

a+ dk/2e+ 1).

In particular, g[a,k] is an involution.

We also define h[a,k] to be g[a,k] with the plus signs replaced by minus signs. Thus h[a,k](a+ i) =
−(a+ k + 1) + i for 1 ≤ i ≤ k. So

h[a,k] =

 (
−

a+ 1,
−

a+ k)(
−

a+ 2,
−

a+ k − 1) · · · (
−

a+ k
2
,

−
a+ k

2
+ 1) if k even;

(
−

a+ 1,
−

a+ k)(
−

a+ 2,
−

a+ k − 1) · · · (
−

a+ bk
2
c,

−
a+ dk

2
e+ 1), (

−
a+ dk

2
e) if k odd.
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In particular, h[a,k] is an involution. Moreover h[a,k] is order preserving on the intervals [1, a],
[a+ 1, a+ k] and [a+ k + 1, n].

As an example g[1,6] = (
+

2
+

7)(
+

3
+

6)(
+

4
+

5) and h[3,5] = (
−
4
−
8)(
−
5
−
7)(
−
6).

Next we define two kinds of cycle and some involutions which are relevant to our analysis of
the elements wλ,ρ. Define

w−[a,k] = (
−

a+ 1,
−

a+ 2, . . . ,
−

a+ k − 1,
−

a+ k)

σ(w−[a,k]) = h[a,k]

τ(w−[a,k]) = g[a,k−1]

w+
[a,k] = (

−
a+ 1,

−
a+ 2, . . . ,

−
a+ k − 1,

+

a+ k)

σ(w+
[a,k]) = h[a+1,k−1]

τ(w+
[a,k]) = g[a,k]

Lemma 4.1. Let w be either w−[a,k] or w+
[a,k]. Then writing σ = σ(w) and τ = τ(w) we have

that w = στ , where σ and τ are both involutions.

Proof. It is clear from the definitions that σ and τ are involutions. First consider w = w−[a,k].

Then if 1 ≤ i ≤ k− 1 we have στ(a+ i) = σ(a+ k− i) = −(a+ k+ 1) + (k− i) = −(a+ i+ 1),
whereas στ(a+k) = σ(a+k) = −(a+k+1)+k = −(a+1). Therefore w = στ in this case. Now
consider w = w+

[a,k]. If 1 ≤ i ≤ k−1 we have στ(a+ i) = σ(a+k+1− i) = σ((a+1)+(k− i)) =

−((a+ 1) + (k− 1) + 1) + (k− i) = −(a+ i+ 1), whereas στ(a+ k) = σ(a+ 1) = a+ 1. Thus
again w = στ and the proof is complete.

Proposition 4.2. Let w = wλ,ρ be the corresponding signed element of the maximal split
partition λ = (λ1, . . . , λm) (with respect to ρ). Then eB(w) = eD(w) = 0.

Proof. By definition, and recalling that µi =
∑i−1

j=1 λj we have w = w1 · · ·wm where

wi =

 (
−

µi + 1,
−

µi + 2, . . . ,
−

µi+1 − 1,
−
µi+1) if 1 ≤ i ≤ ρ;

(
−

µi + 1,
−

µi + 2, . . . ,
−

µi+1 − 1,
+
µi+1) if ρ < i ≤ m.

Therefore

wi =

{
w−[µi,λi] if 1 ≤ i ≤ ρ;

w+
[µi,λi]

if ρ < i ≤ m.

For each i set σi = σ(wi) and τi = τ(wi). Since the supports of σi and τi are subsets of the
support of wi, it is clear that both σi and τi commute with both σj and τj whenever i 6= j.
Hence σ = σ1 · · ·σm and τ = τ1 · · · τm are involutions with the property that στ = w. We must
show that N(σ) ∩N(τ) = ∅.
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Consider a cycle wk of w. Then τ(wk) is either g[µk,λk−1] or g[µk,λk]. The action of g is to reverse
the order of the sequence µk+1, . . . , µk+λk, reverse the order of the sequence −µk, . . . ,−µk−λk
and fix all other integers. Hence

N(τ(wk)) ⊆ {ei − ej : µk < i < j ≤ µk+1}. (6)

On the other hand σ(wk) is either h[µk,λk] or h[µk+1,λk−1], so is of the form h[a,b] where a ≥ µk
and a+ b = µk+1. We observe that

Σ(h[a,b]) = {ea+1, . . . , ea+b} ⊆ {eµk+1, . . . , eµk+1
}. (7)

Recall that h[a,b] fixes ei for all i /∈ {a+ 1, . . . , a+ b} and h[a,b](ei) = −e2a+b+1−i. From this we
see that

Λ(h[a,b]) = {ei + ej : a < i < j ≤ a+ b} ∪ {ei ± ej : a < i < a+ b < j ≤ n}. (8)

Therefore

Λ(σ(wk)) ⊆ {ei + ej : µk < i < j ≤ µk+1} ∪ {ei ± ej : µk < i < µk+1 < j ≤ n}. (9)

For ` 6= k, we note that σ` and τ` fix all i for i /∈ {µ` + 1, . . . , µ`+1}. In particular they
stabilize (setwise) the sets {1, . . . , µk}, {µk + 1, . . . , µk+1} and {µk+1 + 1, . . . , n}. Therefore
σ`(N(σk)) = N(σk). So we may apply Lemma 1.4 to conclude that N(σ) = ∪̇mi=1N(σk) and
that N(τ) = ∪̇mi=1N(τk).

Equations (6), (7) and (9) now imply that N(τ)∩N(σ) = ∅. Therefore by Equation (1) we see
that `B(w) = `B(σ) + `B(τ) and therefore eB(w) = 0. But also N(τ) ∩N(σ) = ∅ implies that
Λ(τ)∩Λ(σ) = ∅, and so we also have `D(w) = `D(σ)+ `D(τ), giving eD(w) = 0 as required.

Corollary 4.3. Theorem 1.1 holds for Coxeter groups of type Bn and Dn.

Proof. If W is of type Bn, then by Theorem 1.2 every conjugacy class C of W contains an
element of the form wλ,ρ for suitable λ and ρ, and this element has maximal B-length in C. By

Proposition 4.2 wλ,ρ has excess zero. Now consider Ŵ of type Dn, and let C be a conjugacy class

of Ŵ . If C is also a conjugacy class of W , then again C contains some wλ,ρ, which has maximal

D-length and excess zero. If C is not a conjugacy class of W then C ∪C(
−
n) is a conjugacy class

of W (as conjugation by (
−
n) is a length preserving map corresponding to the non-trivial graph

automorphism of Dn), so for some w = wλ,ρ we have either w or w(
−
n) ∈ C. Now e(w) = 0, which

means there are σ, τ involutions such that w = στ and `(w) = `(σ)+`(τ). Hence w(
−
n) = σ(

−
n)τ (

−
n)

and, since conjugation by (
−
n) is a length-preserving map, we have `(w(

−
n)) = `(σ(

−
n)) + `(τ (

−
n)).

Hence Corollary 4.3 holds.

5 Conclusion

Proof of Theorem 1.1 Observe that every finite Coxeter group W is a direct product of
irreducible Coxeter groups. If W = W1 × · · · ×Wn for some Wi, then it is easy to see that for
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w = (w1, . . . , wn) ∈ W , we have `(w) = `(w1) + · · · + `(wn) and e(w) = e(w1) + · · · + e(wn).
Moreover w is of maximal length in some conjugacy class C of W if and only if each wi is of
maximal length in a conjugacy class of Wi. Therefore Theorem 1.1 holds if and only if it holds
for all finite irreducible Coxeter groups. Theorem 1.1 has already been proved for types An,
Bn and Dn (Proposition 2.4 and Corollary 4.3). The exceptional groups E6, E7, E8, F4, H3

and H4 were checked using the computer algebra package Magma[1]. In each case there is at
least one (usually many) elements of maximal length and excess zero in every conjugacy class.
Finally it is easy to check that every element of the dihedral group has excess zero, so the result
is trivially true. Thus Theorem 1.1 holds for every finite irreducible Coxeter group, and hence
for all finite Coxeter groups.

It is not the case that every element of maximal length in a conjugacy class always has excess
zero. If W is of type E6, then in 23 of the 25 conjugacy classes every element of maximal
length has excess zero. For the remaining two classes the situation is as follows. In the first
class the elements have order 3. The maximal length of elements is 22, and there are 146
elements of maximal length. Of these, 134 have excess zero and the remaining 12 have excess
2. Using the standard generators w1, w2, w3, w4, w5, w6 for E6, a representative of this class is
w2w3w1w4w2w3w5w4w2w3w6w5w4w3. In the second class elements have order 6. The maximal
length of elements is 20; there are 180 elements of maximal length of which 136 have excess
zero and 44 have excess 2. A representative of this class is w5w4w2w3w1w4w3w5w6w5w4w2w3w1.
If W is of type E7, then every element of maximal length in 59 of the 60 conjugacy classes has
excess zero. In the remaining class, elements have order 3. The maximal length is 54, and there
are 708 elements of maximal length, all but 50 of which have excess zero. A representative of
this class is w1w3w1w6w5w4w2w3w1w4w3w5w4w2w6w5w7w6w5w4w2w3w1w4w3w5.

For the classical Weyl groups, we have checked all conjugacy classes of these groups with rank
up to 10, and in each case every element of maximal length in a conjugacy class has excess
zero. However there are examples of elements w of maximal length with an arbitrarily large
number of pairs of involutions xy with w = xy, such that only one such pair has the property
that `(w) = `(x) + `(y). Elements like these ‘only just’ have zero excess. Because of this, and
the examples in the exceptional groups, we are not sufficiently confident that the pattern of
maximal length elements having zero excess will continue, and so we do not make a conjecture
here.

Lemma 5.1. Let W be of type Bn, for n ≥ 2. There are at least 2n pairs of involutions (x, y)

such that xy = (
−
1

+

2), but only one of these pairs has the property that `(x) + `(y) = `((
−
1

+

2)).

Proof. The element w = (
−
1

+

2) is certainly of maximal length in its conjugacy class, by Theorem
1.2. If x is an involution such that xy = w for some involution y, then wx = w−1. Thus

x = x1x2 where x1 and x2 are commuting involutions, x2 fixes 1 and 2, and x1 is either (
−
1), (

−
2),

(
−
1
−
2) or (

+

1
+

2). We can then determine y, and the upshot is that we get the following possibilities,
where here z is any involution fixing 1 and 2.
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x y

(
−
1)z (

−
1
−
2)z

(
−
2)z (

+

1
+

2)z

(
−
1
−
2)z (

−
2)z

(
+

1
+

2)z (
−
1)z

If N(x) ∩ N(y) = ∅ then clearly we must have z = 1. It is now a quick check to show that

the only possibility is x = (
−
2), y = (

+

1
+

2). The number of possible pairs (x, y) is four times the
number of involutions in a Coxeter group of type Bn−2, which is at least 2n−2, because for all

subsets {a1, . . . , ak} of size k of {3, 4, . . . , n} the element (
−
a1) · · · (−ak) is an involution.

References

[1] Cannon, J.J. and Playoust, C. An Introduction to Algebraic Programming with Magma
[draft], Springer-Verlag (1997).

[2] Carter, R.W. Conjugacy Classes in the Weyl Group, Compositio. Math. 25, Facs. 1 (1972),
1–59.

[3] Carter, R. W. Finite groups of Lie type. Conjugacy classes and complex characters, Wiley
Classics Library. John Wiley and Sons, Ltd., Chichester, 1993. 544 pp.

[4] Cauchy, A. Exercises d’analyse et de physique mathematique, 1844.

[5] Geck, M., Kim, S. and Pfeiffer, G. Minimal length elements in twisted conjugacy classes
of finite Coxeter groups, J. Algebra 229 (2000), no. 2, 570–600.

[6] Geck, M. and Pfeiffer, G. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras,
LMS Monographs, New Series 21, (2000).

[7] Hart, S.B. and Rowley, P.J. Involution products in Coxeter groups, J. Group Theory 14
(2011), no.2, 251–259.

[8] Hart, S.B. and Rowley, P.J. Corrigendum to Involution products in Coxeter groups [J.
Group Theory 14 (2011), no. 2, 251–259] J. Group Theory 17 (2014), no. 2, 379–380.

[9] Hart, S.B. and Rowley, P.J. Zero excess and minimal length in finite coxeter groups, J.
Group Theory, 15 (2012), no.4, 497–512.

[10] Hart, S.B. and Rowley, P.J. On excess in finite Coxeter groups, Journal of Pure and Applied
Algebra 219 (2015), no.5, 1657–1669.

[11] Humphreys, J.E. Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced
Mathematics, 29 (1990).

15



[12] Kim, S. Mots de longueur maximale dans une classe de conjugaison d’un groupe symétrique,
vu comme groupe de Coxeter (French) [Words of maximal length in a conjugacy class of
a symmetric group, viewed as a Coxeter group], C. R. Acad. Sci. Paris Sér. I Math. 327
(1998), 617–622. 69–71.

[13] Shi, Jian-Yi. The enumeration of Coxeter elements, J. Algebraic Combin. 6 (1997), no. 2,
161–171.

[14] Specht, W. Darstellungstheorie der Hyperoktaedergruppe, Math. Z. 42 (1937), 629 – 640.

[15] Young, A. The collected papers of Alfred Young, 1873 – 1940. With a foreword by G. de B.
Robinson and a biography by H. W. Turnbull, Mathematical Expositions, 21, University of
Toronto Press, Toronto, 1977.

16


