
Citation:  Rupasinghe,  Vasantha,  Sekhhon-Loodu,  Satvir,  Mantso,  Theodora  and 
Panagiotidis,  Mihalis  (2016) Phytochemicals in regulating fatty acid β-oxidation:  Potential 
underlying mechanisms and their involvement in obesity and weight loss. Pharmacology & 
Therapeutics, 165. pp. 153-163. ISSN 0163-7258 

Published by: Elsevier

URL:  http://dx.doi.org/10.1016/j.pharmthera.2016.06.005 
<http://dx.doi.org/10.1016/j.pharmthera.2016.06.005>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/28085/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to 
access the University’s research output. Copyright © and moral rights for items on NRL are 
retained by the individual author(s) and/or other copyright owners.  Single copies of full items 
can be reproduced,  displayed or  performed,  and given to third parties in  any format  or 
medium for personal research or study, educational, or not-for-profit purposes without prior 
permission or charge, provided the authors, title and full bibliographic details are given, as 
well  as a hyperlink and/or URL to the original metadata page.  The content must  not  be 
changed in any way. Full  items must not be sold commercially in any format or medium 
without  formal  permission  of  the  copyright  holder.   The  full  policy  is  available  online: 
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been 
made available online in accordance with publisher policies. To read and/or cite from the 
published version of the research, please visit the publisher’s website (a subscription may be 
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/46580906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html


1 
 

A review: 

Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and 

their involvement in obesity and weight loss 

 

H.P. Vasantha Rupasinghe1,2*, Satvir Sekhon-Loodu1, Theodora Mantso3, Mihalis I. Panayiotidis3 

 

1Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, P.O. Box 

550, Truro, Nova Scotia B2N 5E3, Canada;  

2Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 

4R2, Canada; 

3Heriot-Watt University, School of Life Sciences John Muir Building, Riccarton Campus, 

Edinburgh, EH14 4AS, Scotland, UK.  

 

*To whom correspondence should be addressed:  

H.P. Vasantha Rupasinghe 

Department of Environmental Sciences 

Faculty of Agriculture, Dalhousie University 

Truro, NS B2N 5E3, Canada 

Tel: +1 902 893 6623 

Fax: +1 902 893 1404 

E-mail: vrupasinghe@dal.ca. 

 

  

mailto:vrupasinghe@dal.ca


2 
 

Abstract 

Excessive accumulation of fat as the result of more energy intake and less energy expenditure is 

known as obesity. Lipids are essential components in the human body and are vital for maintaining 

homeostasis, physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by 

fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded 

in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments 

are produced in each cycle. The increase in fatty acid oxidation is positively correlated with body 

mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are 

commonly used methods to lose weight, they are not considered a permanent solution in addition 

to risk attenuation of in basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight 

loss by altering the satiety and lowering absorption of fat from the food; however, its side effects 

may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health 

products offer great potential as an efficient weight loss strategy by modulating lipid metabolism 

and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, 

green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to 

increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive 

lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated 

receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in 

relation to their integrated functionalities and specific mechanisms for weight loss. 

 

Key words: Lipid metabolism, obesity, weight loss, beta-oxidation, phytochemicals, epigenetics 
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Abbreviations 

Acetyl-CoA Carboxylase, ACC 

Acyl CoA Synthetase, ACS 

5' Adenosine Monophosphate-Activated Protein Kinase, AMPK 

Activated or phosphorylated AMPK, AMPK-P  

Body Mass Index, BMI 

Carnitine Palmitoyl Transferase, CPT 

Carnitine Palmitoyl Transferase-1, CPT-1 

Carnitine Palmitoyl Transferase-1B, CPT-1B 

Citrate Lyase, CL 

Cyclic Adenosine Monophosphate, cAMP 

DNA Methyltransferases, DNMTs 

Fatty Acid, FA 

Fatty Acid Oxidation, FAO 

Fatty Acid Synthase, FAS 

Glycerol-3-Phosphate Acyl Transferase-1, GPAT-1 

Histone Acetyltransferases, HATs 

Histone Deacetylases, HDACs 

Hormone Sensitive Lipase, HSL 

Hydroxycitric Acid, HCA 

Lipoprotein Lipase, LPL 

Mitochondrial Electron Transport Chain, ETC 

Mitochondrial Uncoupling Protein-2, UCP-2 
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Peroxisome Proliferator-Activated Receptor-Gamma, PPAR- 

Peroxisome Proliferator-Activated Receptor δ, PPARδ 

Raspberry Ketone, RK 

Respiratory Quotient, RQ 

Small Non-Coding RNAs, miRNAs 

Triacylglycerol, TAG 

Tricarboxylic Acid, TCA 
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1. Introduction 1 

The prevalence of obesity has progressively increased over the past 30 years worldwide 2 

especially in the Western countries. Obesity is a condition characterized by accumulation of 3 

excessive body fat. It is classified by body mass index (BMI) [a ratio of body weight (in kg) to 4 

height (in meter squared)] in a way where individuals with a value over 30 are considered obese 5 

(Witkamp, 2011; Bessesen, 2008). Obesity is an alarming indicator of onset of metabolic disorder 6 

which is a cluster of health complications including hypertension, type 2 diabetes and 7 

cardiovascular disease (Faulds et al., 2012; Salas-Salvado et al., 2011). Therefore, apart from 8 

personal interest, the treatment of obesity is of clinical significance.  9 

Weight management is a commonly recommended approach which is based on lifestyle 10 

modifications including dieting, increased physical activity, exercise, etc. However, physical 11 

exercise and dieting is often a difficult routine to maintain for lifetime and the results can be 12 

disappointing in long term. At present, the combination therapy of reducing calorie intake, 13 

increased energy expenditure and pharmacotherapy is becoming more popular. To this end, several 14 

drugs such as Fenfluramine, R-Fenfluramine, Temin, Sibutramine, Orlistat, Qsymia, and Belviq 15 

have been approved, by FDA, towards weight management aid. However, four of these were 16 

removed later on due to their adverse health effects (WHO, 2000). In addition, all current weight 17 

management drugs in the market have high cost as well as potential side effects thus causing 18 

dissatisfaction to the consumers. Finally, gastric surgery has had the most effective approach in 19 

severely obese to show long term effects.  20 

Despite the progress in weight management strategy in recent years, obesity still poses a 21 

serious challenge for the scientific community (WHO, 2000; González-Castejón and Rodriguez-22 

Casado, 2011). Therefore, there is considerable demand to explore natural therapies in developing 23 
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an alternative, safer and effective strategy. For this reason, a variety of natural phytochemicals 24 

have been explored for their ability to increase fatty acid oxidation, fat absorption and suppress 25 

appetite control. This review article will focus on most recent evidence on those phytochemicals 26 

that potentially increase fatty acid β-oxidation in relation to weight loss. 27 

 28 

2. Fatty acid β-oxidation and its regulation 29 

Fats are stored in our body as triacylglycerols (TAG) which are hydrolyzed into free fatty 30 

acids and glycerol by lipases as the first step of lipid catabolism. The fatty acid β-oxidation 31 

pathway consists of multistep reactions which oxidizes fatty acids by degrading two carbons at a 32 

time (Fig. 1). It takes place in mitochondria and peroxisomes, in eukaryotes, and it is a major 33 

source of energy supply by providing more energy as compared to equivalent amount of glucose. 34 

In the peroxisomes, long-chain fatty acids are converted to acyl CoA which cannot diffuse across 35 

the inner mitochondrial membrane to be utilized for the fatty acid β-oxidation pathway. Therefore, 36 

a transport system is required, called the carnitine shuttle system, catalyzed by carnitine 37 

acyltransferase-1 or carnitine palmitoyltransferase-1 (CPT-1). While in cytosol, fatty acyl CoA is 38 

converted into acylcarnitine (by carnitine acyltransferase I) which enters the mitochondrial matrix 39 

and fatty acyl CoA is regenerated by a reaction catalyzed by carnitine acyltransferase II (Horton 40 

et al., 2006). Beta-oxidation is catalyzed by the sequential action of four enzyme families: acyl 41 

CoA dehydrogenase (E1), enoyl CoA hydratase (E2), 3-hydroxy acyl CoA dehydrogenase (E3), 42 

and 3-ketoacyl CoA thiolase (E4) (Fig. 1).  43 

Acetyl-CoA carboxylase (ACC) plays as central element both in fatty acid β-oxidation and 44 

fatty acid biosynthesis. ACC catalyzes the carboxylation of acetyl-CoA producing malonyl-CoA, 45 

which can be used by fatty acid synthase for fatty acid biosynthesis. As malonyl-CoA is the 46 
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substrate for fatty acid biosynthesis, malonyl-CoA is also a direct inhibitor of mitochondrial fatty 47 

acid uptake as well as inhibition of CPT-1. 5' Adenosine monophosphate-activated protein kinase 48 

(AMPK) regulates fatty acid metabolism by phosphorylation-induced inhibition of ACC activity 49 

and eventually stimulate fatty acid β-oxidation and down-regulate fatty acid biosynthesis (Fig. 1) 50 

(Lopaschuk et al., 2010). 51 

 52 

3. Metabolic understanding of obesity 53 

Cellular energy is produced from energy sources in the mitochondria. The major two 54 

sources of energy in a human body are carbohydrates and fatty acids. The body produces energy 55 

in the form of ATP by oxidation of carbohydrates, fats and proteins through tricarboxylic acid 56 

(TCA) cycle; and by fatty acid oxidation through β-oxidation. The body derives energy for its 57 

cellular processes by breaking down ATP to ADP and AMP. Under normal conditions, more ATP 58 

is produced through β-oxidation of fatty acids in the mitochondria as compared to carbohydrates. 59 

The first requirement in fatty acid β-oxidation is the presence of fatty acyl-CoA and its transport 60 

into the mitochondria facilitated by CPT-1 (a rate-limiting step for β-oxidation) (McGarry et al., 61 

1983; Eaton et al., 2001). Malonyl-CoA (a precursor of fatty acid synthesis) is a competitive 62 

inhibitor of CPT-1 meaning that when an energy level is high, it prevents fatty acid oxidation 63 

whereas when energy level is low, malonyl and acetyl CoA levels fall and consequently β-64 

oxidation is induced by the activation of CPT-1 (Zammit et al., 1999). Therefore, the enzymes 65 

CPT-1 and fatty acid synthase (FAS) directly regulate catabolism and anabolism of fatty acids 66 

(Ronnett et al., 2005). In addition, glucose oxidation directly inhibits fatty acid oxidation in a 67 

manner characterized by an insulin dependent response where a high glucose level (after a meal) 68 

is regulated by insulin thus facilitating glucose uptake in the cells and consequently inhibiting 69 
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lipolysis and β-oxidation. Furthermore, low circulating levels of glucose and increased energy 70 

demand can both stimulate cellular fatty acid β-oxidation pathway (Smith, 1994).  71 

Obesity can lead to impaired cellular metabolism including dependence on glucose 72 

oxidation (for ATP production) and decrease in fatty acid oxidation, thus leading to more fat 73 

deposition in skeletal muscles, hepatocytes and other cells (Rogge, 2009). The reduced fatty acid 74 

oxidation can be marked relative to the respiratory quotient (RQ). This way, when energy is 75 

produced from fats (by β-oxidation) more oxygen is consumed and the RQ is low (e.g. 0.7) and 76 

alternatively, when carbohydrates are the main source of ATP generation in the body, less oxygen 77 

is consumed and the RQ is high (e.g. 1.0). Obese individuals have been reported to have high RQ 78 

values, indicating low fat oxidation and thus more dependence on glucose than lean individuals 79 

(Filozof et al., 2000; Simoneau et al., 1999). Therefore, reduced fatty acid oxidation is considered 80 

as a risk factor for the development of obesity. Other studies indicate that obese individuals have 81 

reduced CPT-1 activity, which impairs the flow of fatty acid transfer to mitochondria and hereby 82 

reduce β-oxidation, suggesting that fatty acids cannot be oxidized even after lipolysis if CPT-1 is 83 

not activated (Simoneau et al., 1999; Rogge 2009).  84 

 85 

4. Possible mechanisms of weight loss 86 

i. One of the popular approach of weight loss is through appetite control. The food urge and 87 

satiety is controlled by serotonin, histamine, dopamine and their receptors. Sibutramine is 88 

an anti-obesity drug which functions as appetite suppressant; however, coupled with 89 

various side effects such as dry mouth, constipation and insomnia (Tziomalos et al., 2009). 90 

ii. Stimulated energy expenditure can be used to reduce body weight by induction of non-91 

shivering thermogenesis. Thermogenesis is mainly regulated by leakage of protons 92 
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generated in oxidative phosphorylation, bypassing ATP generation and activating UCP-1 93 

which thereby, dissipates energy as heat (Kumar et al., 1999). UCP-1 is expressed in 94 

mitochondria-rich brown adipose tissue. Likewise, UCP-3 also mediates thermogenesis 95 

regulated by the thyroid hormone, β-adrenergic receptor agonist and leptin (Gong et al., 96 

2000). The function of UCP family was demonstrated in a mice study, where the mice 97 

over-expressing UCP-1, UCP-2 and UCP-3 were resistant to diet-induced obesity; 98 

however, they were susceptible to cold due to the lack of thermogenesis (Arsenijevic et al., 99 

2000, Gong et al., 2000).  100 

iii. Adipocytes increase in size and differentiate when fat storage increases under obesity. 101 

Thus, the compounds that inhibit adipocyte differentiation and induce apoptosis in mature 102 

adipocytes can be considered as potentially promising anti-obesity agents (Kim et al., 2006; 103 

Yun, 2010).  104 

iv. Many pharmaceutical drugs stimulate triacylglycerol hydrolysis and release fatty acids. 105 

Lipolysis diminishes storage fat (leading to dyslipidemia) thus, intervening the β-106 

adrenergic receptor agonist is required to oxidize the released fatty acids (Langin, 2006). 107 

v. In lipid metabolism, peroxisome proliferator-activated receptor gamma (PPAR-γ) and 5' 108 

adenosine monophosphate-activated protein kinase (AMPK) play crucial roles. PPAR-γ is 109 

a transcriptional factor (mediating gene expression) predominately expressed in adipose 110 

tissue that stimulates adipose differentiation. Therefore, PPAR-γ agonists can ameliorate 111 

dyslipidemia, as well as improve adiposity and insulin resistance (Cornalius et al., 1994). 112 

vi. AMPK is an enzyme which regulates the target proteins controlling metabolism. AMPK 113 

activation regulates glucose transport and fatty acid oxidation. Increase in AMPK in muscle 114 

stimulates CPT-1 production and eventually increases fatty acid oxidation (Lee et al.,  115 
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2005). Activation of AMPK by exercise and fuel deprivation (AMP:ATP ratio) have led to 116 

studies of the effects of AMPK on lipid metabolism, obesity and metabolic syndrome–117 

related diseases (O’Neill, 2013). 118 

vii. One of the most promising approaches to weight management is the decrease in fat 119 

absorption. In gastrointestinal tract, before fat gets absorbed, it is subjected to the action of 120 

pancreatic lipase with its inhibition being a clinically approved strategy for controlling 121 

obesity. One such drug compound is Orlistat; however, also associated with certain side 122 

effects like oily spotting, liquid stools, abdominal cramps, etc. (Chaput et al., 2007). 123 

viii. SIRT1 and SIRT3 belong to the sitrulin family of the silent information regulator 2 124 

enzymes which have been found to regulate insulin secretion as well as lipid metabolism. 125 

SIRT1 plays an important role in regulation of obesity during fasting and feeding 126 

(Chalkiadaki and Guarente, 2012; Guarente, 2006). Its major role is played in hepatic fatty 127 

acid metabolism, at various steps such as activation of the AMPK/LKB1 pathway thus 128 

facilitating fatty acid oxidation (Hou et al., 2008). The specific action of SIRT1 in 129 

regulating PPAR-α was demonstrated in mice studies when hepatocyte specific deletion of 130 

the SIRT1 gene led to decreased rate of fatty acid oxidation (Purushotham et al., 2009). On 131 

the other hand, SIRT3 directly regulates hydroxyacyl-CoA dehydrogenase, acyl-CoA 132 

dehydrogenases and deacetylates as well as activates acyl-CoA synthetase short-chain 133 

hereby, modulating β-oxidation (Hallows et al., 2011, Hirschey et al., 2010, Hallows et al., 134 

2006).  135 

5. Phytochemicals stimulating fatty acid β-oxidation 136 

Nutritional supplements have been claimed to increase energy metabolism, reduce fat 137 

absorption, increase fat oxidation all of which thereby increase weight loss and consequently 138 
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described popularly as fat burners (Jeukendrup and Randall, 2011). The majority of the ingredients 139 

used in these nutritional supplements are from plant origin and commonly referred as 140 

phytochemicals. These phytonutrients are secondary metabolites produced by plants and play a 141 

central role in defensive mechanism against stress, pathogens, herbivores and disease conditions. 142 

Phytochemicals are divided into polyphenols, alkaloids and isoprenoids on the basis of their basic 143 

structure and biosynthesis (Table 1). The list of phytochemicals capable of facilitating weight loss 144 

by reducing appetite suppressants and/or fat absorption is still on-growing; however, not all of 145 

them regulate fatty acid β-oxidation. Thus, it is within the scope of this review article to focus on 146 

those phytochemicals capable of influencing the β-oxidation pathway (Table 2). 147 

 148 

5.1 Epigenetic properties of phytochemicals 149 

Over the past few decades, there is a growing interest in investigating and understanding 150 

the beneficial properties of phytochemicals. A number of studies have revealed that the presence 151 

of phytochemicals is responsible for exerting a plethora of different biological effects such as 152 

antioxidant, anti-inflammatory, anti-aging, anti-proliferative, etc. To this end, after their isolation 153 

and characterisation, there is a continuously increasing trend towards promoting their utilization 154 

in various fields of biology and medicine such as drug design, disease therapy, cosmeceuticals, 155 

nutrition/dietetics, etc. (Su et al., 2013, Szarc del Szic et al., 2015). In recent years, emerging 156 

reports have provided evidence that phytochemicals can exert their advantageous effects by 157 

targeting epigenetic mechanisms via regulation of specific epigenetic components such as DNA 158 

methyltransferases (DNMTs), histone deacetylases (HDACs), histone acetyltransferases (HATs) 159 

and small non-coding RNAs (miRNAs) (Guo et al., 2015, Shankar et al., 2013). Epigenetic 160 

modifications are defined as reversible and heritable alterations in gene expression without 161 
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changes in the DNA sequence. The most common types are DNA methylation as well as histone 162 

acetylation, deacetylation and methylation all of which are capable for modulating gene 163 

expression. In addition, miRNAs have been implicated in several cellular processes while at the 164 

same time they have been shown to regulate gene expression (Sharma et al., 2010).  165 

Current research reports have outlined that there is a relation between epigenetic 166 

modifications and metabolic disorders like obesity. More specifically, evidence from a recent 167 

report showed that there are different methylation patterns of genes implicated in fatty acid β-168 

oxidation (FAO) in samples obtained from lean and severely obese women in response to lipid 169 

exposure. According to the results, there was an immediate induction of genes participating in 170 

FAO in response to lipid exposure among lean women whereas this was not observed in the case 171 

of the severely obese ones. The mRNA levels of peroxisome proliferator-activated receptor δ 172 

(PPAR-δ; a molecule participating in FAO) were found to be differentially regulated in the case 173 

of severe obesity, a fact that was attributed to different methylation patterns of the gene (Maples 174 

et al., 2015a). Moreover, data from a similar study demonstrated that the expression of carnitine 175 

palmitoyltransferase 1B (CPT-1B; a protein responsible for transferring the long-chain fatty acids 176 

across the outer mitochondrial membrane) was reduced in skeletal muscle cells isolated from 177 

severely obese women in contrast to lean women following lipid exposure. The observed 178 

differential expression of CPT-1B, in obese women, was due to alterations in DNA methylation, 179 

histone acetylation and transcription factor binding (Maples et al., 2015b). As a consequence, it is 180 

logical that the link between epigenetic modifications and obesity could be influenced by 181 

phytochemicals (given their ability to modulate key epigenetic processes); however, such link is 182 

purely speculative and yet to be established.  183 

 184 
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5.2 Classes of phytochemicals 185 

5.2.1 Green tea catechins 186 

Health benefits of regular consumption of green tea are mostly attributed to the large 187 

amount of catechins, polyphenols of flava-3-ol sub-family of flavonoids. Unlike black tea, green 188 

tea manufacturing preserves high amount of epicatechin, epigallocatechine, epicatechin-3-gallate 189 

and epigallocatechine-3-gallate (EGCG) as it is prepared from non-oxidized and non-fermented 190 

leaves. Catechins are considered to inhibit catechol-O-methyltransferase which is responsible for 191 

breaking down norepinephrine and thereby stimulate fat oxidation (Borchardt, 1975). The hepatic 192 

fatty acid oxidation and ATP production directly influence appetite by influencing appetite 193 

regulating centers of the brain. Green tea catechins can control appetite as a result of up-regulation 194 

of hepatic fat oxidation and ATP generation (Friedman 2007; Kamphuis et al., 2003).  195 

Green tea catechins have been supported as fat burning phytochemicals in various animal 196 

studies; however, the clinical evidence is still lacking behind in confirming these findings. For 197 

instance, results from a study using obese C57BL/6J mice showed that green tea-EGCG had the 198 

ability to induce body mass reduction while it also caused changes in the mRNA expression levels 199 

of PPAR-γ, C/EBP-α, SREBP-1c, aP2, LPL and FAS all of which decreased in white adipose 200 

tissue. On the other hand, the mRNA levels of CPT-1, UCP2, HSL and ATGL increased (Lee et 201 

al., 2009). Additionally, another study associated the supplementation of green tea catechins in the 202 

diet of lactating maternal rats with the increase of mRNA expression levels of DNMT1, DNMT3a, 203 

SIRT1 and SIRT2 in the kidneys of their three week old offspring. This, in turn, supports the 204 

correlation between maternal levels of catechins and increased levels of enzymes (in newborn 205 

female offspring) capable of influencing epigenetic marks capable of potentially regulating energy 206 

metabolism (Sun et al., 2013). In a recent study, addition of 1% green tea to high-fat diet of mice 207 
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has reduced mass of adipose tissue and TAG, glucose, insulin, and leptin levels of blood (Lee et 208 

al., 2015). It was postulated that green tea has the ability of modulation of abnormal fatty acid –209 

oxidation caused by high-fat diet.  210 

Beneficial effects of combined flavonoids on diet-induced obesity have been demonstrated. 211 

Recently, supplementation of flavonoids from green tea combined with cocoa, coffee and Garcinia 212 

has shown to stimulate lipid metabolism in high-energy diet-induced obese rats, which is 213 

attributable to fat mobilization from adipose tissue (Huang et al., 2016). A recent review on dietary 214 

polyphenols and obesity also confirmed that green tea catechins (especially EGCG), resveratrol 215 

and curcumin all exert anti-obesity properties (Wang et al., 2014). 216 

 217 

5.2.2 Resveratrol 218 

Resveratrol (3,4,5-trihydroxystilbene) is a naturally occurring stilbene sub-group of 219 

polyphenol in grapes, red wine and some berries (Freemont, 2000). It has been studied for its 220 

involvement in regulating fatty acid β-oxidation in relation to preventing degradation of 221 

intracellular cyclic adenosine monophosphate (cAMP) through inhibition of cAMP 222 

phosphodiesterase enzymes which in turn activate the AMPK enzyme (Park et al., 2012a, Chung, 223 

2012a,b), which consequently activates mitochondrial biogenesis and function by activating PGC-224 

1α (Wu et al., 1999). A recent review has also revealed that anti-obesity activity of resveratrol 225 

could also be through down-regulation of PPAR-, CCAAT-enhancer-binding protein (C/EBPα), 226 

and sterol regulatory element binding protein 1c (SREBP-1c) (Aguirre eta l., 2014). In an another 227 

resveratrol supplementation (0.02% of diet) study conducted using ApoE-deficient mice, 228 

resveratrol exerts not only anti-obesity and hypolipidemic effects, but also protective effects for 229 

the liver and aorta through the modulation of lipid metabolism in liver and white adipose tissue 230 
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(Jeon et al., 2014). In addition, resveratrol has been proposed as a natural SIRT-1 activator which 231 

can also further activate PGC-1α (Lagouge et al., 2006). Moreover, in several animal studies, the 232 

supplementation of resveratrol resulted in a remarkable increase of AMPK activity (Baur et al., 233 

2006; Shang et al., 2008b; Rivera et al., 2009). Exposure to resveratrol has reported to increase 234 

fatty acid β-oxidation in CPT-II and very long chain acyl CoA dehydrogenase deficient cultured 235 

patient fibroblast model (Aires et al., 2014). In another study, resveratrol increased fatty acid β-236 

oxidation by inhibiting the production of malonyl-CoA (Szkudelska and Szkudelski, 2010). 237 

Animal studies have demonstrated the role of resveratrol in energy expenditure in a way 238 

where animals were capable of surviving cold longer with supplementation of high doses of 239 

resveratrol than untreated ones (Lagouge et al., 2006). Similar observations were recorded after 240 

one year of treatment with resveratrol (200 mg/kg/day) where such treatment was found to increase 241 

basal metabolic rate and total daily energy expenditure in the non-human primate Microcebus 242 

murinus (Dal-Pan et al., 2010; Dal-Pan et al., 2011). These studies further strengthen the capacity 243 

of resveratrol to enhance energy expenditure and potentially promote weight loss. Only recently, 244 

resveratrol has become the subject of intense research as being a phytochemical associated with a 245 

great range of health promoting properties. For this reason, it has attracted the attention of the 246 

nutraceutical industry as it is consumed by two-thirds of consumers taken dietary nutritional 247 

supplements (Block et al., 2007). 248 

Finally, according to the findings from a recent report, the combined administration of 249 

resveratrol and pterostilbene (in rats) resulted in preventing the up-regulation of the FAS gene 250 

(induced in response to a high fat and sucrose contained diet) while pterostilbene was also 251 

demonstrated to be responsible for the differential methylation pattern of the gene as well (Gracia 252 

et al., 2014). 253 
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 254 

5.2.3 Capsaicinoids 255 

Red hot chillies or peppers are a commonly used spice in food worldwide. Capsaicinoid is 256 

the class of pungent polyphenol derivative compound in red chillies. The genus capsicum includes 257 

more than 200 varieties and concentration of capsaicin also varies (0 - 13,000 mg/kg) (Kozukue et 258 

al., 2005). Capsaicin (N-[(4-hydroxy-3-methoxyphenyl)-methyl]-8-methyl-6-nonamide) is the 259 

pungent compound which has been reported to increase thermogenesis and secretion of 260 

catecholamines from adrenal medulla (Watanbe et al., 1987) which stimulate adrenergic receptors 261 

in liver and adipose tissue resulting in lipolysis and energy expenditure (Diepvens and Westerterp, 262 

2007). A meal containing red pepper instantaneously increases energy expenditure in humans 263 

(Yoshioka et al., 1995). Although supplementation with capsaicinoids has been reported to 264 

increase BMR in human subjects by increasing fat oxidation (Lejeune et al., 2003) they cannot be 265 

generally consumed in high dosages due to their strong pungency and nociceptive stimulus. 266 

However, capsiate (a non-pungent capsaicinoid analogue derived from Capsicum annuum L.; CH-267 

19 Sweet) has been reported to increase body temperature and increase mRNA and protein levels 268 

of uncoupling proteins (UCPs) of brown adipose tissues in a two-week mice study (Masuda et al., 269 

2003). The thermogenic effects of capsaicin are attributed to its structure and not its pungency 270 

(Ohnuki et al., 2001a). Similarly, there was an increase in catecholamine and free fatty acid levels 271 

together with a decrease in triacylglycerol levels resulting in elevated levels of fat oxidation in 272 

mice after supplementation with a single oral dosage of capsiate (Ohnuki et al., 2001b; Haramizu 273 

et al., 2006).  274 

CPT-1α is the rate-limiting enzyme in mitochondrial β-oxidation and a target for reducing 275 

body fat (McGarry and Brown, 1997). On the other hand, UCP-2 is a mitochondrial proton 276 
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transporter and has been suggested to influence body temperature, energy expenditure and fat mass 277 

(Rousset et al., 2004). Capsaicin is reported to stimulate lipolysis by mediating CPT-1α and UCP-278 

2 in adipocytes (Lee et al., 2011). Capsaicin-induced thermogenesis is proposed to function 279 

through stimulation of β-adrenergic receptors as various studies have demonstrated decreased 280 

thermogenesis after administration of β-adrenergic blockers (Kawada, 1986). In a combination 281 

study of capsaicin with green tea, a decrease in fat mass was observed (Tsi et al., 2003); however, 282 

long term supplementation of capsaicin is found to be more effective in weight loss (Lejeune et 283 

al., 2003). CH-13 Sweet has similar capsaicin structure and is more suitable for long term use by 284 

maintaining effectiveness and without pungency (Reinbach et al., 2009). Furthermore, only 285 

recently, another study has demonstrated a different approach to minimize the pungency of 286 

capsaicin (and thus increase the possibility of its long term use) by preparing chitosan 287 

microspheres (Tan et al., 2014). Chitosan is a polysaccharide extracted from crab shells and it aids 288 

to overcome strong pungent taste and smell of capsaicin. Finally, the findings of a study using rats 289 

demonstrated that the administration of capsiate resulted in a reduced abdominal fat volume and 290 

body weight gain, which were associated with the differential gene expression levels of UCP3 and 291 

more specifically a reduction in its mRNA levels (Faraut et al., 2009). 292 

 293 

5.2.4 Citrus flavonoids 294 

These are a class of polyphenols found in citrus. Naringin and hesperidin belong to 295 

flavanone sub-group and nobiletin and tangeretin to O-polymethoxylated flavones. In animal 296 

studies, supplementation of naringin (3%) and nobiletin (0.3%) with high fat diet has demonstrated 297 

increase in fatty acid oxidation by up-regulating CPT-1α production (Mulvihill et al., 2009; 298 

Mulvihill et al., 2011; Jung et al., 2006). Interestingly, dietary supplementation of citrus peel 299 
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flavonoid extract (rich in nobiletin, tangeretin, rutin and hesperidin) to high-fat diet-induced obese 300 

C57BL/6 mice revered the suppressed activities of AMPK and ACC (Kang et al., 2012). In mature 301 

3T3-L1 adipocytes, the citrus peel flavonoid extract increased AMPK and ACC phosphorylation 302 

and also enhanced lipolysis by phosphorylation of cAMP-dependent protein kinase (PKA) and 303 

hormones-sensitive lipase (HSL) (Kang et al., 2012). 304 

Apart from the citrus flavonoids, the alkaloid synephrine is also a bioactive component of 305 

bitter orange (Citrus aurantium). The fruit is also often used for herbal medicine as appetite 306 

suppressant. Bitter orange alkaloids act as adrenergic agonists with octapamine and synephrine 307 

being similar to epinephrine and norepinephrine, respectively. Para-synephrine has properties of 308 

both α-adrenergic and β-adrenergic agonists and is also known as oxedrine. Its anti-obesity effects 309 

are proposed to be due to its action on β3-receptors and increased thermogenesis leading to β-310 

oxidation (Arbo et al., 2008). On the other hand, in a rat study, bitter orange extracts with 4-6% 311 

synephrine decreased body weight after 7 days (Calapai et al., 1999). However, there is a little 312 

evidence reported the ability of synephrine for weight loss in human. 313 

Finally, according to a research report, naringenin (a grapefruit flavonoid) is capable of 314 

regulating the activation of PPARα and PPARγ, while it is also responsible for the induction of 315 

several genes in fatty acid oxidation including CYP4A11, ACOX, UCP1 and ApoAI in 316 

hepatocytes (Goldwasser et al., 2010). Data from a similar study showed that the administration 317 

of naringenin, in rats, led to a differential regulation of the expression levels of PPARα, CPT1 and 318 

UCP2, with the up-regulation of PPARα consequently resulting in the increase of CPT1 and UCP2 319 

expression levels (Cho et al., 2011). As well, Huong et al. (2006) has also demonstrated that 320 

naringenin (1% of the diet) increases hepatic fatty acid oxidation through up-regulation of gene 321 

expression of enzymes involved in peroxisomal -oxidation in mice. 322 



20 
 

 323 

5.2.5 Piperine 324 

This is a pungent lipophilic alkaloid found in black pepper which is prepared from ground 325 

unripe berries from the plant Piper nigrum Linn. Piperine has been found to increase 326 

catecholamine secretion (particularly epinephrine) from the adrenal medulla in rats. These effects 327 

are similar to capsaicin but not as much potent. This effect can be described as a sympathetic 328 

nervous system (SNS)-mediated thermogenesis given that it is diminished after administration of 329 

cholinergic blockers (Kawada et al., 1984). Finally, piperine was shown to inhibit the 330 

differentiation of 3T3-L1 cells to adipocytes as it induced the down-regulation of PPARγ, SREPB-331 

1c and C/EBPβ and thus implying its potentially beneficial use in the treatment of metabolic 332 

disorders (Park et al., 2012b). 333 

 334 

5.2.6 Anthocyanins 335 

These are well-known phytochemicals for their antioxidant effects. Apart from dietary 336 

antioxidants, they also have several biological activities including anti-convulsant, anti-337 

carcinogenic, anti-atherosclerotic, anti-diabetic and anti-inflammatory thus reducing the risk of 338 

disease and in particular coronary heart disease (Drenska et al., 1989; Satue-Gracia et al., 1997; 339 

Wang et al., 1999; Koide et al., 1997; Sancho et al., 2012). Recently, studies have documented the 340 

role of anthocyanins as anti-obesity agents (Tsuda et al., 2003; Jayaprakasam et al., 2006; Matsui 341 

et al., 2001; Kwon et al., 2007). Anthocyanins are water-soluble compounds widely found in fruits 342 

and vegetables and responsible for most of the red, purple, and blue colors exhibited by flowers, 343 

fruits, and other plant tissues (Castañeda et al., 2009). In the last decade, anthocyanins from purple 344 

corn (Zea mays L.), blood orange (Citrus sinensis L.Osbeck), strawberries (Fragaria ananassa), 345 
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blueberries (Vaccinium angustifolium), blackberries (Rubus species) and mulberry (Morus 346 

australis P.) have been reported to exhibit anti-obesity effects in various in vivo studies (Tsuda et 347 

al., 2003; Titta et al., 2010; Prior et al., 2008; Prior et al., 2012; Kaume et al., 2012; Wu et al., 348 

2013a).  349 

In addition, other studies have suggested that treatment with anthocyanin induced ACC 350 

phosphorylation and increased mitochondrial fatty acid oxidation via the allosteric regulation of 351 

CPT-1, which catalyses the entry of long-chain fatty acyl-CoA into mitochondria in HepG2 cells. 352 

Therefore, a decrease in malonyl CoA levels is directly responsible for increase in CPT-1 353 

expression, leading to fatty acid oxidation (Hurley et al., 2005). On the other hand, AMPK 354 

regulates the enzymes of lipid metabolism and also directs fatty acid both in oxidative and 355 

biosynthetic pathways in the liver (Kahn et al., 2005). AMPK knockdown failed to stimulate 356 

AMPK and reduce hepatocellular lipid accumulation. Thus, the possible mechanism of 357 

anthocyanin-induced fatty acid oxidation is via AMPK directed inhibition of ACC and FAS which 358 

are two key downstream regulators of AMPK in the control of lipid metabolism. A recent study, 359 

in mice, has demonstrated down-regulation of CPT-1 gene expression after supplementation with 360 

anthocyanin-rich blueberry and mulberry juices, indicating an anthocyanin-induced stimulation of 361 

fatty acid oxidation while inhibiting fatty acid synthesis (Wu et al., 2013b). In addition, evidence 362 

from a current report further supports the ability of anthocyanins to differentially regulate various 363 

genes participating in fatty acid oxidation (e.g. PPAR-α, PPAR-δ, UCP-2, UCP-3, mitochondrial 364 

transcription factor A) as their mRNA levels were considerably increased when C57BL/6J mice 365 

were fed a high in fat and cholesterol diet with a polyphenol-rich blackcurrant extract (Benn et al., 366 

2014).  367 

 368 
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5.2.7 Curcumin 369 

This is the main bioactive polyphenol (hydroxycinnamic acid derivative) present in the 370 

rhizome of turmeric (Curcuma longa) which is commonly used as dietary spice and food color in 371 

Asian countries. In addition, it has been found to regulate signal transduction and gene expression 372 

apart of its anti-inflammatory and antioxidant properties and thus of potential benefit in disease 373 

prevention and therapy (Ohara et al., 2009; Zingg et al., 2013). Furthermore, an animal study has 374 

demonstrated that curcumin reduced the body weight gain in high fat fed mice without altering 375 

food intake in addition of influencing energy metabolism and fatty acid β-oxidation in adipocytes, 376 

through AMPK (Ejaz et al., 2009). Likewise, curcumin facilitated β-oxidation in in vitro 377 

experiments (by up-regulation of CPT-1) and reduced lipid biosynthesis (by down-regulation of 378 

glycerol-3-phosphate acyl transferase-1; GPAT-1 and acyl-CoA carboxylase) (Ejaz et al., 2009). 379 

Finally, another suggested mechanism of fatty acid oxidation, by curcumin, can be explained in 380 

terms of an increase in mitochondrial biogenesis by activation of PGC-1 (Chung et al., 2012a,b; 381 

Zingg et al., 2013).  382 

On another note, curcumin i) inhibits lipogenic enzymes in liver, ii) stimulates lipid 383 

mobilization from adipose tissue by activating HSL, iii) inhibits fatty acid synthase (FAS) activity 384 

and iv) activates fatty acid β-oxidation (Prakash and Srinivasan, 2012; Zhao et al., 2011; Jang et 385 

al., 2008). In particular, curcumin has been shown to specifically down-regulate FAS leading to 386 

an effective decrease in fat storage. Thus, there is substantial evidence to suggest that curcumin is 387 

effective in inhibiting lipid synthesis and storage as well as stimulating fatty acid degradation 388 

(Smith, 1994). To this end, data from a recent in vitro study demonstrated that curcumin was able 389 

to reduce the mRNA levels of DNMT3B suggesting its ability to affect epigenetic mechanisms 390 
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thus leading to altered gene expression (Jiang et al., 2015), a fact that might account for curcumin's 391 

observed beneficial effects in weight loss and activation of fatty acid degradation.  392 

 393 

5.2.8 Raspberry ketons 394 

Raspberry ketones [4-(4-hydroxyphenyl) butan-2-one; RK] are major phenolic acid 395 

derivative compounds present in red raspberry (Rubus idaeus) and are responsible for the sweet 396 

aroma of raspberries. Like other berries, raspberry has also been reported to have significant 397 

biological effects (Ravai, 1996). RKs have similar structures with capsaicin and synephrine, which 398 

are known for their active role in obesity and lipid metabolism (Harada et al., 2008).  399 

RKs’ supplementation inhibits body weight gain in high fat-fed rats as they are unable to 400 

bind beta-adrenergic receptors and do not trigger lipolysis in the absence of norepinephrines. 401 

Therefore, RKs can stimulate norepinephrine-induced lipolysis by facilitating the translocation of 402 

HSL from the cytosol to the lipid droplets in the fat cells in addition to increasing fat oxidation 403 

and energy expenditure by stimulating thermogenesis (Morimoto et al., 2005). In another study, 404 

treatment with 10 μM of RK induced lipolysis, fat oxidation and increased the adiponectin levels 405 

in cultured 3T3-L1 pre-adipocytes all of which led to decreased fat mass in adipocytes and 406 

potentially have a key role in body weight regulation (Park, 2010). According to the literature, 407 

administration of adiponectin increases fat oxidation in obese mice circulating free fatty acid levels 408 

by enhancing skeletal muscle fat oxidation (Wolf, 2003; Mullen et al., 2007). The other suggested 409 

mechanism of RK regulated fat loss can be through reversing leptin resistance and elevating 410 

PPAR-α (Meng et al., 2008; Wang et al., 2012). Leptin is a hormone secreted by adipocytes which 411 

stimulate fatty acid oxidation by induction of AMPK (Monokoshi et al., 2002).  412 

 413 
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5.2.9 Cocoa polyphenols 414 

Cocoa is a major ingredient of chocolate and it is derived from the beans of the Theobroma 415 

cacao (Baba et al., 2000). The cocoa beans consist of approximately 6-8% polyphenols (by weight) 416 

with their presence contributing to dark chocolate being a rich source of antioxidants. These are 417 

predominantly flavonoids and mainly epicatechin, catechin and proanthocyanidins with a small 418 

amount of quercetin also present (Manach et al., 2004; Andres-Lacueva et al., 2008). Polyphenol-419 

rich cocoa extracts possess many bioactivities including anti-hyperlipidemic (Hamed et al., 2008), 420 

anti-diabetic (Grassi et al., 2005), antioxidant (Galleanoet al., 2009), in addition to improving 421 

cognitive and visual performance (Field et al., 2011) and boosting the immune system (Katz et al., 422 

2011). 423 

Genistein, which is the main isoflavone in cocoa extract, directly interacts with PPAR-α 424 

and PPAR-γ and functions as an activator for stimulating fatty acid catabolism (Kim et al., 2004a; 425 

Kim et al., 2004b). Furthermore, activation of PPAR-α is reported to stimulate the expression of 426 

β-oxidation genes, including CPT-1, ACO and UCP3. Adiponectin expression also increases with 427 

the activation of PPAR-γ (Maeda et al., 2001) in addition to activating the AMPK pathway which 428 

regulates glucose and lipid metabolism (Arts and Hollman, 2005; Kurlandsky and Stote, 2006). 429 

Finally, cocoa polyphenols have been reported to increase plasma adiponectin levels and also 430 

increase thermogenesis through activation of the AMPK pathway and specifically via up-431 

regulation of UCPs which are involved in facilitating thermogenesis and energy expenditure 432 

(Yamashita et al., 2012; Corti et al., 2009). 433 

Even though various studies have mentioned different types of cocoa flavonoids, it is not 434 

evident yet which phytochemicals are efficacious for exerting their anti-obesity (Farhat et al., 435 

2014). Nogueira et al., (2011) reported that the supplementation of 2 mg/kg/day of cocoa-derived 436 
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epicatechin stimulated fat oxidation whereas in another study, supplementation with a dose of 437 

cocoa (containing 18.4 mg epicatchin and 380 mg of polyphenols and equivalent to 40 g/day in 438 

humans) exhibited anti-obesity effects in mice (Gu et al., 2014). Moreover, the weight reducing 439 

effects of dark chocolate can be partially attributed to caffeine which is present in significant 440 

amount (Stark et al., 2006; Zheng et al., 2004). Findings from a very recent study demonstrates 441 

that cocoa polyphenol administration in the diet of Sprague-Dawley rats resulted in the 442 

differentially regulated expression of genes implicated in lipid metabolism in mesenteric white 443 

adipose tissue, as the mRNA levels of several lipolysis enzymes were found to be increased (Ali 444 

et al., 2015). Finally, further studies support the ability of cocoa polyphenols to affect DNA 445 

methylation patterns of peripheral leukocytes in subjects with cardiovascular risk factors including 446 

obesity (Crescenti et al., 2013).  447 

 448 

5.2.10 Soybean phytochemicals 449 

Soybeans (Glycine max) are consumed mainly as a source of protein, besides being also rich 450 

in micronutrients such as isoflavones, phytate, soyasaponins, phytosterol, vitamins and minerals 451 

(Rupasinghe et al., 2003). They are known to be the richest source of isoflavones in food (Cederroth 452 

and Nef, 2009) whereas soya-derived phytoestrogens (non-steroidal plant-derived compounds 453 

which can bind estrogen receptors and thus mimic estrogen) have been shown to exert beneficial 454 

effects in cardiovascular disease, diabetes, osteoporosis and prostate cancer (Setchell, 1998; Tham 455 

et al., 1998; Sacks et al., 2006; Kuiper et al., 1997). Soybean isoflavones have been the subject of 456 

intense research and thus shown to exert estrogenic effects hence influencing glucose and lipid 457 

metabolism (Velasquez and Bhathena, 2007). Various animal studies have demonstrated that a soya-458 

rich diet significantly reduces fat accumulation (Bu et al., 2005; Lephart et al., 2004) and increases 459 
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energy expenditure and locomotor activity by utilizing lipid resources (Cederroth et al., 2007; 460 

Cederroth et al., 2008). In a study of high-fat diet-induced obesity in C57BL/6 mice, 461 

supplementation of fermented black soybean has significantly lowered the body and liver weight 462 

and the levels of blood glucose, total cholesterol and leptin (Oh et al., 2014). Similarly, when high 463 

fat-diet is supplemented with 0.15% of kaempferol glycosides isolated from soybean leaves, body 464 

and adipose tissue weight and blood TAG of C57BL/6J mice were reduced significantly. 465 

Furthermore, expression of genes of PPAR- and SREBP-1c was also reduced by the diet 466 

supplementation of soybean flavonoids (Zang et al., 2015). 467 

Although the anti-obesity effect of soya isoflavones is well-evident, the exact mechanism 468 

remains unclear. To this end, suggested mechanisms include correlation of decrease of adiposity 469 

with increase in AMPK and ACC activation (Hwang et al., 2005) along with increased lipolysis 470 

through inhibition of cAMP phosphodiesterases (Szkudelska et al., 2000). The up-regulation of 471 

AMPK, PPAR-γ co-activator-1α (PGC-1α) and PPAR-α resulted in increased β-oxidation and 472 

energy expenditure (Cederroth et al., 2007; Cederroth et al., 2008). Although speculative, it may be 473 

that such gene up-regulation is the result of the induction of epigenetic mechanisms as recently, a 474 

study utilizing monkeys showed the presence of epigenetic alterations (by means of altered DNA 475 

methylation patterns) induced when a high in fat content of a soy-based diet was changed to one 476 

without soy (Howard et al., 2011).  477 

 478 

5.2.11 Hydroxycitric acid 479 

Hydroxycitric acid (HCA), an organic acid, is one of widely known supplements for anti-480 

obesity and weight management. G. cambogia extract is a commercially available and richest source 481 

of HCA that contributes to anti-obesity mainly by suppressing appetite (Leonhardt et al., 2002), 482 
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inhibiting de novo lipogenesis (Kovacs et al., 2006) and increasing fat oxidation (Preuss et al. 2004). 483 

In addition, another suggested mechanism is reduction of the acetyl-CoA by HCA and thus, 484 

eventually inhibiting lipogenesis by regulating the availability of precursors for fatty acid and 485 

cholesterol biosynthesis (Chuah et al., 2013). In addition, a study by Ishihara et al., (2000) conducted 486 

in mice suggested that chronic HCA administration increased fatty acid oxidation during a 3-week 487 

experimental period. Moreover, another study determined increase in HCA-induced fatty acid 488 

oxidation by means of measuring urinary concentration of fatty acid oxidation by-products (Preuss 489 

et al., 2004).  490 

Although, currently there are no reports supporting the contribution of HCA in regulating 491 

the expression of genes involved in FAO, a recent study showed that cambogin (a compound from 492 

the Garcinia genus) was responsible for inducing epigenetic changes (via an increase in the 493 

trimethylation of histone H3K9) in a different experimental setting and in order to exhibit its anti-494 

proliferative effects in various human breast cancer cell lines (Shen et al., 2015). Nevertheless, to 495 

this end, other compounds of G. cambogia, like HCA, might also exhibit an ability to induce 496 

epigenetic alterations in the context of anti-obesity and consequently management of weight control.  497 

 498 

6. Conclusions 499 

There is a vast majority of numerous phytochemicals being the subject of intense research 500 

as potentially efficient dietary agents for the management of weight control. However, only some 501 

of them are directly involved in weight reduction by stimulation of fatty acid β-oxidation. To this 502 

end, the phytochemicals enlisted in this review have demonstrated the capacity for weight loss in 503 

both cell-based assays and pre-clinical studies. Even though the clinical evidence is very limited, 504 

these plant-based compounds have been traditionally used for their anti-obesity benefits without any 505 
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toxicity or health hazard concerns. Most of these phytochemicals, apart from their weight loss 506 

properties, also have other additional health benefits including anti-inflammatory, antioxidant and 507 

other biological functions. Overall, the benefit of weight loss leads to reduction in fat mass, decrease 508 

in inflammation and further reduction of the risk of developing metabolic disease. In addition, it 509 

should be noted that there is also evidence to support a role of phytochemicals in regulating the 510 

differential expression of various genes, implicated in various cellular pathways through epigenetic 511 

mechanisms. Although the current evidence is substantially speculative, the fatty acid β-oxidation 512 

pathway can be one such target pathway the significance of which is of extreme importance given 513 

its relevance to weight loss and the overall management of weight control. 514 

 515 
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Table 1: Classification of major phytochemicals 

Phytochemicals Examples 

Polyphenols Anthocyanins, flavonols, catechins, isoflavonoids, flavones, flavanones, 

stilbenes, phenolic acids, capsaicinoids, curcuminoids 

Alkaloids Caffeine, nicotine, piperine 

Isoprenoids Beta-carotene, lycopene, essential oils 
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Table 2: Structure of phytochemicals and their sources 

Phytochemicals 

 

Structure Source Effect on β-

oxidation 

Catechin 

Epicatechin 

Epigallocatechin 
 

Green tea, 

Cocoa 

catechol-O-

methyltransferase 

Resveratrol (3,4,5-

trihydroxystilbene) 

 

Grapes, Red 

wine 

SIRT1,                          

AMPK 

Malonyl CoA 

 

Capsaicin (N-[(4-

hydroxy-3-

methoxyphenyl)-

methyl]-8-methyl-6-

nonamide) 

 

Red chillies β-adrenergic 

receptors 

CPT-1, UCP-2 

 

Naringin 

 

Citrus CPT-1α  

Nobiletin 

 

Citrus CPT-1α 

Octapamine  

 

Bitter orange β-adrenergic 

agonist 

Synephrine 

 

Bitter orange β-adrenergic 

agonist 

Piperine 

 

Black pepper SNS-mediated 

thermogenesis 

Anthocyanins 

 

Purple corn, 

Blueberry, 

Strawberry, 

Bitter orange 

Pomegrant 

CPT-1, 

AMPK 

Raspberry ketones 

(4-(4-hydroxyphenyl) 

butan-2-one)  

Raspberry PPAR-α, 

AMPK 

HSL 
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Genistein isoflavones 

 

 

Soyabeans, 

Cocoa 

AMPK,  

adiponectin,  

PPAR-α, 

CPT 

Curcumin 

 

Turmeric  CPT-1 

FAS 

 

(-)Hydroxycitric Acid 

 

Garcinia 

cambogia 

Acetyl-CoA 
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Figure Legends 

 

Figure 1: Key elements involved in the regulation of fatty acid β-oxidation at various steps.  

ACC, acetyl CoA carboxylase; ACS, acyl CoA synthetase; AMPK-P, phosphorylated AMP-

activated protein kinase; CL, citrate lyase; CPT, carnitine palmitoyl transferase; ETC, 

mitochondrial electron transport chain; E1, acyl CoA dehydrogenase; E2, enoyl CoA hydratase; 

E3, 3-hydroxy acyl CoA dehydrogenase; E4, 3-ketoacyl CoA thiolase; FA, fatty acid; FAS, fatty 

acid synthase; HSL, hormone-sensitive lipase; PPAR-δ, peroxisome proliferator-activated 

receptor δ; TAG, triacylglycerol; TCA, tricarboxylic acid; UCP-2, mitochondrial uncoupling 

protein-2. 
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