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Abstract 

In this paper a new viscosity model is proposed in order to predict the viscosity of the nanofluids in order to bridge the gap on 
this issue. The effective viscosity expression proposed in this paper is based on the regression analysis of a number of carefully 
selected published papers which covers theoretical, experimental and numerical results. Compared with the other theoretical 
models that are available in literature, the presented model has a good accuracy and reliability. The proposed model has been 
tested in 3D horizontal pipe and the results with Nusselt number show good agreement with available data. The model was tested 
for a wide range of volume concentration and temperature and shows wider applicability.  
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Nomenclature 

A Area 
  Thermal conductivity 
 Heat flux 

Cp Specific heat at constant pressure 
D Diameter 
μ Viscosity 
ρ Density 
ɸ Volume fraction 
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T Temperature 
H Heat Transfer Coefficient 
L Length 
Subscript 
f base fluid 
nf nanofluid 
s solid 
eff effective  

1. Introduction 

In the last two decades the nanofluids have been investigated in many practical applications due to their superior 
thermophysical properties compared to the conventional fluids mainly due to limited thermal conductivity. Since 
Choi [1] first introduced the nanofluid concept, many researchers proposed models to predict thermophysical 
properties for nanofluids. Many efforts have been devoted for modelling the thermal conductivity. However, only 
limited works were focused on the effective viscosity models. Viscosity is an important flow property of fluids. 
Pumping power, pressure drop in laminar flow and convective heat transfer directly affected by the viscosity of 
fluids. The understanding of viscosity change is vital for predicting the heat transfer performance of nanofluids. 

Einstein [2] developed the first  viscosity formula for micro colloids in 1906. The model was based on the 
assumption of viscous fluid containing spherical particles. The model was found to be valid for volume 
concentrations up to 2%. Brinkman [3] introduced a formula to predict the viscosity of the particles at a very low 
volume fraction. The model was based on assumption of spherical particles. 

Batchelor [4] developed Einstein’s model and proposed a new model for rigid and spherical particles with 
Brownian motion. The model was investigated by many researchers and found working well with low 
concentrations. Boungiorno [5] developed a mathematical model for colloids made of a base fluid and nanoparticles 
and showed that the nanofluid properties may vary significantly within the boundary layer because of the effect of 
the temperature gradient and thermophoresis. He attributed the convective heat transfer enhancement to the 
reduction of viscosity within and consequent thinning of the laminar sublayer. Tseng [6] conducted an experimental 
investigation for TiO2, The number of data used in his experiment was only four volume concentrations. He derived 
a curve fit model for effective viscosity. Maiga [7] proposed a model for effective viscosity in forced convection 
using Al2O3 water nanofluid. Saito[8] implemented a theoretical model for very small particles with spherical rigid 
particles. 

Nguyen [9] conducted an experimental study for Al2O3 and CuO particles nanofluid, he derived a curve fit 
equation for predicting the effective viscosity for nanofluids. 

Grag et al [10] measured the viscosity of copper nanoparticles in Ethylene glycol. They found that the viscosity 
increase was almost four times of that predicted by the Einstein law of viscosity. The number of data used for 
introducing their model is only 5. 

Wang and Xu [11] measured the viscosity for Al2O3 water, they highlighted that the enhancement of viscosity 
was between 20-30% for 3% volume fraction. Three volume fractions were used to measure the thermal conductivity 
and viscosity 

From the literature it is found that there is no unified accurate model to predict the effective viscosity for 
nanofluids. The present work is aimed to propose a new model to predict the viscosity with a wide range for volume 
fraction. 

2. Problem Description 

The geometry considered in this work is shown in Fig 1, a pipe with length 1 meter and a dimeter 10 mm with 
constant external heat flux. The fluid enters the pipe with temperature To=293 K inlet temperature and uniform axial 
inlet velocity. At the pipe exit a fully developed flow condition is considered. The fluid considered in this study is 
Al 2O3 water nanofluid. The properties of the nanoparticles are shown in Table 1. 
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        Table 1 Nanoparticle properties 

Nanoparticle ρ k Cp 
Al 2O3 3950 35 765 

 

Figure 1 Problem geometry 

The mesh for this problem is shown in Fig 2 

Figure 2  The domain mesh 

3. Governing equations and thermophysical properties of nanofluid 

The governing equations are continuity, momentum equation and energy equation and can be written as follows: 
 
Continuity equation: 

0v
t    (1) 

Momentum equation 

v
v v p g F

t    (2) 

Energy equation 
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eff j j

E
v E P K T h J ( v

t   (3) 

The density of Nanofluid is expressed as: 

1nf f s( )
   (4) 

The specific heat is expressed as: 

1 p pf s
pnf

nf

C C
C

   (5) 

The effective thermal conductivity is written as: 

2 2

2

s f f s
eff f

s f f s

K K K k
K K

K K K k
  (6) 

The heat transfer coefficient is calculated as: 

H C

q
h

T T
   (7) 

Nu number is calculated from the equation: 

h.L
Nu

k    (8) 

4. The Effective viscosity model: 

The proposed model was built based on a regression function from a range from available data from literature. 
Ten different experimental and theoretical models were used to develop the present equation for predicting the 
effective viscosity. The new model is expressed as: 

2 31 5 80 160
e ff f ( )

   (9) 

The equation derived above is based on the models available from literature and are shown in Table 1. The 
Nanofluid is modelled as single phase, nonNewtonian and there is no slip between the particles and the base fluid.  
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        Table 2 models used for regression analysis 

Model Theo/ Exp. 
Enstien        1906 Theoretical 
Brinkman   1952 Theoretical 
Maiga          2005 Numerical 
Buongiorno 2006 Mathematical 
Tseng           2003 Experimental 
Nguyen         2007 Experimental 
Batchelor     1977 Theoretical 
Saito             1950 Theoretical 
Grag             2008 Experimental 

 

5. Numerical procedure 

The governing equations were solved numerically with the boundary conditions using ANSYS 15.0. The 
geometry was created in ANSYS design modeler, the computational domain was discretised in ANSYS meshing and 
solving the governing equations together with the boundary conditions in ANSYS FLUENT. The CFD code is based 
on the finite volume method and SIMPLE algorithm that solves the governing equations. Second-order upwind 
schemes were used for the convective fluxes. Convergence was obtained with residuals less than 10-6 for the 
continuity equation, the momentum equations and the energy equation. To ensure a mesh independent solution, the 
maximum Nu number at the outer surface was used. The solution was taken to be mesh independent when the 
percentage change in maximum Nu remained less than 1% to give a mesh-independent solution for all simulations in 
this study.  Table 3 shows the mesh dependency test for maximum Nu and it is clearly seen that for the mesh with 
281000 elements the maximum Nu becomes insensitive to further refinement and hence mesh was selected for the 
solution. 

        Table 3 Mesh dependence test 

Mesh No. of Elements Numax 

1 39500 3258 

2 152000 4761 

3 281000 4821 

4 319500 4823 

6. Validation of Results 

The present simulations were validated and the results are shown in Fig 2. The Figure illustrates the change of the 
surface heat transfer coefficient at the wall. As there is an external heat flux applied on the wall and the flow enters 
the pipe with constant temperature so it is expected the heat transfer coefficient is expected to decrease from a peak 
value at the inlet of the pipe and decreases until a point where becomes almost unchanged constant  wall The results 
as seen from the graph show there is a good agreement with Bianco et al [12] results. 
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Figure 3 Results validation 

7. Results and discussion 

The results for the simulation are introduced in this section. 
In Fig 4 the variation of viscosity from different models for a range of temperature is shown. It is evident that the 

viscosity decreases with the increase of temperature. The viscosity predicted by the present model in a good 
agreement with Nguyen where theoretical models underestimate the viscosity. The temperature range used in this 
investigation was between 0oC- 100oC. The volume fractions used between 2% and 10%. 

 

Figure 4 Effect of Temperature on the viscosity for different models 

The relative viscosity prediction for different models is illustrated in Fig 5. The base nanofluid considered in this 
paper is water where the relative viscosity is the ratio of nanofluid to the viscosity of the base fluid.  The present 
equation for the viscosity lies in the middle of the various models for relative viscosity, it is evident that the 
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theoretical models predict  the viscosity in the very small concentration while the viscosity underestimate the 
viscosity when the volume fraction is greater than 2%. Nguyen model for dimeter 47 nm is seemed to over predict 
the viscosity compared to other experimental models. 

Figure 5 Effect of the Volume Fraction on the Relative Viscosity for Different Models 

The results of the simulation of the viscosity in the three dimensional pipe in the present work is investigated. 
Fig 6 depicts the viscosity at a vertical line from the center of the pipe. The results show that the viscosity decreases 
with the increase of the temperature as the temperature increases from the center to the wall. The proposed model 
predicted the viscosity along the pipe with a reliable accuracy compared to the other four models.  

While Nguyen 47 nm showed the highest value for viscosity, Brinkman model prediction value for viscosity was 
the lowest among the models 

Figure 6 Viscosity from different models along a vertical line 
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The viscosity change along the surface was also investigated for different models. The results are shown in Fig. 7. 
The viscosity decreases along the surface of the pipe, this decrease is attributed to the decrease of the viscosity of the 
base fluid which is water in this case. The model that predicted the higher viscosity was Nguyen with 47 nm 
diameter, while the model predicted the lower viscosity was Brinkman model which prove that the theoretical 
models under predict the viscosity of the nanofluids. Moreover some of the existing models are based on a few 
experimental data. 

Figure 7 Viscosity change on the wall line for different models 

The effect of volume fraction of the heat transfer performance is also investigated. The Fig 8 shows the surface 
heat transfer coefficient on the wall for different volume fractions. It was observed that increasing the volume 
fraction leads to an increase of the heat transfer coefficient along the wall, water was found to have the lowest heat 
transfer coefficient  

Figure 8 Effect of volume fraction on the heat transfer coefficient 
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The simulations were also extended for a range of Re numbers to study the effect of any change on the heat 
transfer rate. In Fig 9 the effect of Re number on Nu is plotted on the surface of the cylinder. It was found that 
increase of Re number promotes the Nu number. The simulation was carried out for different Re 100, 200, 300 and 
400. 

Figure 9 Effect of Re on Nu 

8. Conclusion 

A new equation for predicting the effective viscosity is proposed in this work. The proposed model demonstrated 
a reliable accuracy for a range of temperature and volume fractions compared to the theoretical models where these 
models underestimate the viscosity at higher volume fractions. A numerical simulation is carried out for the effective 
viscosity for nanofluids. The simulations also show that the effective viscosity model increases with the increase of 
the volume fraction. 

The effect of Re number on the heat transfer performance was also studied and the results showed that the 
increase in Re lead to an increase in Nu. 

The volume fraction effect on the heat transfer coefficient at the surface was also investigated. The heat transfer 
was promoted with the increase in volume fraction. Water was found to have the poorest heat transfer performance. 
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