
This is a repository copy of Thermodynamic Network Analysis with Quantum Spin 
Statistics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/105836/

Proceedings Paper:
Wang, Jianjia, Wilson, Richard C. orcid.org/0000-0001-7265-3033 and Hancock, Edwin R. 
orcid.org/0000-0003-4496-2028 (2016) Thermodynamic Network Analysis with Quantum 
Spin Statistics. In: Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR 
International Workshop, S+SSPR 2016, Mérida, Mexico, November 29 - December 2, 
2016, Proceedings. Lecture Notes in Computer Science . Springer International Publishing
, pp. 153-162. 

https://doi.org/10.1007/978-3-319-49055-7_14

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Thermodynamic Network Analysis with

Quantum Spin Statistics

Jianjia Wang, Richard C. Wilson, and Edwin R. Hancock

Department of Computer Science,
University of York, York, YO10 5DD, UK

Abstract. In this paper, we explore the thermodynamic analysis of net-
works using a heat-bath analogy and different choices of quantum spin
statistics for the occupation of energy levels defined by the network. We
commence from the set of energy states given by the eigenvalues of the
normalized Laplacian matrix, which plays the role of the Hamiltonian
operator of the network. We explore a heat bath analogy in which the
network is in thermodynamic equilibrium with a heat-bath and its en-
ergy levels are occupied by either indistinguishable bosons or fermions
obeying the Pauli exclusion principle. To compute thermodynamic char-
acterization of this system, i.e. the entropy and energy, we analyse the
partition functions relevant to Bose-Einstein and Fermi-Dirac statistics.
At high temperatures, the effects of quantum spin statistics are disrupted
by thermalisation and correspond to the classical Maxwell-Boltzmann
case. However, at low temperatures the Bose-Einstein system condenses
into a state where the particles occupy the lowest energy state, while
in the Fermi-Dirac system there is only one particle per energy state.
These two models produce quite different entropic characterizations of
network structure, which are appropriate to different types of structure.
We experiment with the two different models on both synthetic and real
world imagery, and compare and contrast their performance.

Keywords: Quantum spin statistics, Network entropy.

1 Introduction

Physics-based analogies have found widespread use in the analysis and under-
standing of network structure. Examples include the use of ideas from statisti-
cal mechanics [1, 2], thermodynamics [3, 4] and quantum information [5, 6]. For
instance, statistical mechanics has been used to characterize the degree distri-
bution of different types of complex networks [1]. Using a thermodynamic heat-
bath analogy, the concepts of network communicability and balance have been
defined [3]. By using quantum walks the process of preferential attachment has
been shown to lead to the intriguing phenomenon of super-cluster condensation
in growing networks [7]. Both Bose-Einstein and Fermi-Dirac statistics have been
used to describe quantum geometries in networks [5].

One particularly interesting and widely studied approach is to use thermo-
dynamic analogies as a means of characterizing networks [4]. Here the Laplacian
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matrix plays the role of network Hamiltonian, and the energy states of a network
are the eigenvalues of the Laplacian. By modeling the network as a set of energy
states occupied by a system of particles, thermodynamic properties such as to-
tal energy and entropy can be computed, and used as network characterizations.
The energy states are populated by particles in thermal equilibrium with a heat
bath. A key element in this thermalisation approach is to model how the energy
states are occupied at a particular temperature. Normally this is assumed to
be follow the classical Maxwell-Boltzmann distribution, where the particles are
distinguishable and weakly interacting.

In this paper, on the other hand, we explore the case where the particles are
quantum mechanical in nature and obey spin statistics. In other words, they are
indistinguishable, and are either fermions (half integer spin) or bosons (integer
spin). Particles with integer spin are subject to Bose-Einstein statistics and do
not obey the Pauli exclusion principle. They can aggregate in the same energy
state. At low temperature this leads to the phenomenon of Bose-Einstein con-
densation. There has been work aimed at extending this model to networks. For
instance, by mapping the network model to a Bose gas, phase transitions have
been studied in network evolution associated with Bose-Einstein condensation
[7]. This model has also been extended to understand processes such as super-
symmetry in networks [3]. In the meanwhile, particles with half integer spin are
subject to Fermi-Dirac statistics and obey the Pauli exclusion principle. They
give rise to models of network structures constrained by the occupancy of the
nodes and edges. Examples include traffic flow and also the modelling of certain
types of geometric networks such as the Cayley tree [8]. Formally, these physi-
cal systems can be described by partition functions with the microscopic energy
states, which are represented by a suitable chosen Hamiltonian. In the network
theory, the Hamiltonian is computed from the adjacency or Laplacian matrix,
but recently, Ye et al. [4], have shown how the partition function can be derived
from a characteristic polynomial instead.

Despite this interest in alternative models of the thermalised distribution
of energy states under different spin statistics, there has been little systematic
study of the resulting thermodynamic characterizations of network structure.
Here we consider the effects of occupation statistics on the populations of the
energy states where the Hamiltonian operator is the normalized Laplacian ma-
trix and the energy states are given by the network spectrum. We characterize
the thermalised system of energy states using partition functions relevant to
Bose-Einstein and Fermi-Dirac occupation statistics. From the partition func-
tions we compute average energy and entropy of the system of particles. Because
Bose-Einstein particles coalescence in low energy states, and Fermi-Dirac parti-
cles have a greater tendency to occupy high energy states because of the Puli
exclusion principle, these types of spin statistics lead to very different distri-
butions of energy and entropy for a network with a given structure (i.e. set of
normalised Laplacian eigenvalues). Moreover, at low temperature the distribu-
tions are also different from the classical Maxwell-Boltzmann case. It is these
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low-temperature differences in energy and entropy that we wish to investigate
as a means of characterizing differences in network structure.

This paper is organised as follows. Section 2 briefly reviews the basic concepts
in network representation, especially with density matrix and Hamiltonian oper-
ator on graphs. Section 3 reviews the thermodynamic quantities i.e. entropy and
energy, and also illustrates Bose-Einstein and Fermi-Dirac statistics. Section 4
provides our experimental evaluation. Finally, Section 5 provides the conclusion
and direction for future work.

2 Graph Representation

In this section, we provide details of graph representation in quantum theory.
We briefly introduce the concept of density matrix for a graph and then give the
definition of Hamiltonian operator with the normalized Laplacian matrix.

2.1 Density Matrix

In quantum mechanics the density matrix is used to describe a system whose
state is an ensemble of pure quantum states |ψi〉, each with probability pi . The
density matrix is defined as

ρ =

|V |
∑

i=1

pi|ψi〉〈ψi| (1)

In the graph domain, the normalised Laplacian matrix has been used to
model the density of states for a network [6, 9]. Let G(V,E) be an undirected
graph with node set V and edge set E ⊆ V × V , and let |V | represent the total
number of nodes on graph G(V,E). The adjacency matrix A of a graph is defined
as

A =

{

0 if (u, v) ∈ E

1 otherwise.
(2)

Then the degree of node u is du =
∑

v∈V Auv.

The normalized Laplacian matrix L̃ of the graphG is defined as L̃ = D− 1

2LD
1

2 ,
where L = D − A is the Laplacian matrix and D denotes the degree diagonal
matrix whose elements are given by D(u, u) = du and zeros elsewhere. The
element-wise expression of L̃ is

L̃uv =











1 if u = v and du 6= 0

− 1√
dudv

if u 6= v and (u, v) ∈ E

0 otherwise.

(3)

With this notation, Severini et al. [6, 9] specify the density matrix to be

ρ = L̃
|V | . When defined in this was way the density matrix is Hermitian i.e. ρ = ρ

†

and ρ ≥ 0,Trρ = 1. It plays an important role in the quantum observation
process, which can be used to calculate the expectation value of measurable
quantity.
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2.2 Hamiltonian Operator of a Graph

In quantum mechanics, the Hamiltonian operator is the sum of the kinetic energy
and potential energy of all the particles in the system. It is the energy operator
of the system and the standard formulation on a manifold is Ĥ = −∇2+U(r, t).

In our case, we assume the graph to be in contact with a heat reservoir. The
eigenvalues of the Laplacian matrix can be viewed as the energy eigenstates, and
these determine the Hamiltonian and hence the relevant Schrödinger equation
which govern the particles in the system. The particles occupy the energy states
of the Hamiltonian subject to thermal agitation by the heat bath. The number
of particles in each energy state is determined by the temperature, the assumed
model of occupation statistics and the relevant chemical potential.

If we take the kinetic energy operator −∇2 to be the negative of the adja-
cency matrix, i.e. −A, and the potential energy U(r, t) to be the degree matrix
D, then the Hamiltonian operator is the Laplacian matrix on graph. Similarly,
the normalized form of the graph Laplacian can be viewed as the Hamiltonian
operator Ĥ = L̃.

In this case, the energy states of the network {εi} are then the eigenvalues
of the Hamiltonian Ĥ|ψi〉 = L̃|ψi〉 = Ei|ψi〉.

The eigenvalues are all greater than or equal to zero, and the multiplicity of
the zero eigenvalue is the number of connected components in the network. Fur-
thermore, the density matrix commutes with the Hamiltonian, i.e. the associated
Poisson bracket is zero,

[Ĥ, ρ] = [L̃,
L̃

|V |
] = 0 (4)

which means that the network is in equilibrium when there are no changes in
the density matrix which describes the system.

3 Quantum Statistics in Networks

Quantum statistics can be combined with network theory to characterize net-
work properties. The network can be viewed as a grand canonical ensemble,
and the thermal quantities, such as energy and entropy, depend on the assump-
tions concerning the Hamiltonian for the system and the corresponding partition
function.

3.1 Thermodynamic Quantities

We consider the network as a thermodynamic system specified by N particles
with energy states given by the Hamiltonian operator, and it is immersed in
a heat bath with temperature T . The ensemble is represented by a partition
function Z(β,N), where β is inverse of temperature. When specified in this way
the various thermodynamic characterizations can be computed for the networks.
For instance, the average energy is given by

U =

[

−
∂

∂β
logZ(β,N)

]

N

= Tr (ρH) = kBT
2

[

∂

∂T
logZ

]

N

(5)
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the thermodynamic entropy by

S = kB

[

∂

∂T
T logZ

]

N

(6)

and the chemical potential by

µ = −kBT

[

∂

∂N
logZ

]

β

(7)

For each distribution we capture the statistical mechanical properties of par-
ticles in the system using the partition function associated with the different
occupation statistics. The network can then be characterized using thermody-
namic quantities computed from the partition function, and these include the
entropy, energy and temperature.

3.2 Bose-Einstein Statistics

The Bose-Einstein distribution applies to indistinguishable bosons. Each energy
state specified by the network Hamiltonian can accommodate an unlimited num-
ber of particles. Without obeying the Pauli exclusion principle, Bosons subject
to Bose-Einstein statistics can aggregate in the same energy state.

For a system of the network, as the grand-canonical ensemble with a varying
number of particles N and a chemical potential µ, the Bose-Einstein partition
function is

Z
BE

= det
(

I − eβµ exp[−βL̃]
)−1

=

|V |
∏

i=1

(

1

1− eβ(µ−εi)

)

(8)

From Eq.(5) and Eq.(6), the average energy is

〈U〉
BE

= −
∂ logZ

∂β
= −

|V |
∑

i=1

(µ− εi)e
β(µ−εi)

1− eβ(µ−εi)
(9)

while the corresponding entropy is

S
BE

= logZ + β〈U〉 = −

|V |
∑

i=1

log
(

1− eβ(µ−εi)
)

− β

|V |
∑

i=1

(µ− εi)e
β(µ−εi)

1− eβ(µ−εi)
(10)

Both the average energy and entropy depend on the chemical potential for
the partition function and hence they are determined by the number of particles
in the system. At the temperature β, the corresponding number of particles in
the level i with energy εi is

ni =
1

exp[β(εi − µ)]− 1
(11)
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As a result, the total number of particles in the system is

N =

|V |
∑

i=1

ni =

|V |
∑

i=1

1

exp[β(εi − µ)]− 1
= Tr

[

1

exp(−βµ) exp[βL̃]− I

]

(12)

In order for the number of particles in each energy state to be non-negative,
the chemical potential must be less than the minimum energy level, i.e. µ <

min εi.
The equivalent function of density matrix in this case is given by

ρ
BE

=
1

Tr(ρ1) + Tr(ρ2)

(

ρ1 0
0 ρ2

)

(13)

where ρ1 = −
(

exp[β(L̃− µI)]− I
)−1

and ρ2 =
(

I − exp[−β(L̃− µI)]
)−1

.

Since Bose-Einstein statistics allow particles to coalesce in the lower energy
levels, the corresponding energy and entropy reflect the smaller Laplacian eigen-
values most strongly. As a result the number of connected components (the
multiplicity of the zero eigenvalue), and spectral gap (the degree of bi-partiality
in a graph) are most strongly reflected.

3.3 Fermi-Dirac Statistics

The Fermi-Dirac distribution applies to indistinguishable fermions with a maxi-
mum occupancy of one particle in each energy state. Particles cannot be added
to states that are already occupied, and hence obey the Pauli exclusion principle.

These particles behave like a set of free fermions in the complex network with
energy states given by the network Hamiltonian. The statistical properties of the
networks are thus given by the Fermi-Dirac statistics of the equivalent quantum
system, and the corresponding partition function is

Z
FD

= det
(

I + eβµ exp[−βL̃]
)

=

|V |
∏

i=1

(

1 + eβ(µ−εi)
)

(14)

From Eq.(5) the average energy of the Fermi-Dirac system is

〈U〉
FD

= −
∂ logZ

∂β
= −

|V |
∑

i=1

(µ− εi)e
β(µ−εi)

1 + eβ(µ−εi)
(15)

And the associated entropy is given by

S
FD

= logZ + β〈U〉 =

|V |
∑

i=1

log
(

1 + eβ(µ−εi)
)

− β

|V |
∑

i=1

(µ− εi)e
β(µ−εi)

1 + eβ(µ−εi)
(16)



Thermodynamic Network Analysis with Quantum Spin Statistics 7

Under Fermi-Dirac statistics, on the other hand, the number of particles
occupying the ith energy state is

ni =
1

exp[β(εi − µ)] + 1
(17)

and the total number of particles in the network system is

N =

|V |
∑

i=1

ni =

|V |
∑

i=1

1

exp[β(εi − µ)] + 1
= Tr

[

1

exp(−βµ) exp[βL̃] + I

]

(18)

With a single particle per energy state, the chemical potential is hence just the
nth energy level, and so µ = εn.

Similarly, we find that the equivalent density matrix function

ρ
FD

=
1

Tr(ρ3) + Tr(ρ4)

(

ρ3 0
0 ρ4

)

(19)

where ρ3 =
(

I + e−βµ exp[βL̃]
)−1

and ρ4 =
(

I + eβµ exp[−βL̃]
)−1

.

Since Fermi-Dirac statistics exclude multiple particles from the same energy
level, the corresponding energy and entropy do not just reflect the lower part of
the Laplacian spectrum, and are sensitive to a greater portion of the distribution
of Laplacian eigenvalues. As a result, we might expect them to be more sensitive
to subtle differences in network structure.

4 Experiments and Evaluations

In this section, we provide experiments to evaluate the proposed spin statistical
models. We commence by assessing the performance on synthetic data using the
entropy for network classification problems. We then apply on the real-world
financial networks to distinguish significant structural variance.

4.1 Numerical Results

At first, we investigate how well the different spin statistic models can be used to
distinguish synthetic networks generated from the Erdős-Rényi random graphs,
Watts-Strogatz small-world networks [10] and Barabási-Albert scale-free net-
work models [11]. We conduct numerical experiments to evaluate whether the
thermodynamic quantity, i.e. entropy, can represent differences in the networks.

These synthetic graphs are created using a variety of model parameters with
the number of nodes varying between 100 to 1,000. For small world networks,
the rewiring probability is p = 0.2 and average node degree is n = 20. The
scale free networks are derived from Barabási-Albert model [11] with preferential
attachment m = 10 at each growing step. To simplify the calculation, we set
the Boltzmann constant to unity and particle number to one throughout the
experiments.
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Fig. 1. Histogram of entropy for three classes of synthetic networks in Bose-Einstein
statistics and Fermi-Dirac statistics. Temperature β = 10 and particle number N = 1.

We compare the entropy resulting from the twos spin statistics models. Fig.1
shows the resulting histogram of entropy derived from Bose-Einstein and Fermi-
Dirac statistics respectively. In each case the different networks are well separated
by the thermodynamic entropy. In the case of Fermi-Dirac statistics, the three
clusters of networks are a slightly better clustered than those obtained with
Bose-Einstein statistics.

4.2 Experimental Results

The real-world data is extracted from the daily prices of 3,799 stocks traded
on the New York Stock Exchange (NYSE). These data provided an empirical
investigation in studying the role of communities in the structure of the stock
market. We use the correlations of the times-serial stock price to establish net-
works for the trading days. For each day of trading the correlation is computed
between each pair of stock being traded using a time window of 28 days. Edges
are created between those pairs of stock whose cross correlation coefficients are
in the highest 5%. In this way we obtain a sequence of networks representing
the topological structure of the New York stock market from January 1986 to
February 2011. This yields a sequence of time-varying networks with a fixed
number of 347 nodes and varying edge structure for 5,976 trading days.

We plot the entropy and energy for both Bose-Einstein (blue) and Fermi-
Dirac (red) statistics. In order to avoid the thermal disruption in quantum statis-
tics at high temperature, we investigate the spin statistical differences in entropy
and energy at low temperature region. Here, to compare the performance, we
set the same temperature β = 10 and particle number N = 1 for both two cases.

Fig.2 shows both entropies with various financial events annotated, includ-
ing Black Monday, Friday the 13th mini-crash, Early 1990s Recession, 1997
Asian Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crisis, the
Bankruptcy of Lehman Brothers and the European Debt Crisis. In each case the
entropy undergoes sharp increase corresponding to the financial crises, which
are associated with dramatic structural changes in the networks. Similarly in
Fig.3, the energy is also effective in indicating the critical events. The different
feature is that energy undergoes a sharp decrease during the financial crises.
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Fig. 2. Entropy in NYSE (1987-2011) derived from Bose-Einstein and Fermi-Dirac
statistics. Critical financial events, i.e., Black Monday, Friday the 13th mini-crash,
Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007
Financial Crisis, the Bankruptcy of Lehman Brothers and the European Debt Crisis,
can be represented in thermodynamic entropy with Maxwell-Boltzmann statistic. It is
efficient to use partition function associating with entropy to identify events in NYSE.

Moreover, the Bose-Einstein quantities show the greatest variation during the
crises, suggesting that changes in cluster-structure (modularity) are important
during these episodes.

Fig. 3. Thermodynamic energy from Bose-Einstein and Fermi-Dirac statistics occu-
pation statistics for NYSE (1987-2011). Critical financial events, i.e., Black Monday,
Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks,
Downturn of 2002-2003, 2007 Financial Crisis, the Bankruptcy of Lehman Brothers
and the European Debt Crisis, all appear as distinct events.

5 Conclusion

In this paper, we explore the thermodynamic characterizations resulting from
different choices of quantum spin statistics, i.e. Bose-Einstein statistics and
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Fermi-Dirac statistics, in a heat-bath analogy. The method is based on uses
the normalized Laplacian matrix as the Hamiltonian operator of the network.
The thermodynamic entropy and energy are then computed from the partition
functions for Bose-Einstein and Fermi-Dirac energy level occupation statistics.

We have undertaken experiments on both synthetic and real-world network
data to evaluate these two spin statistical methods and have analyzed their
properties. The results reveal that both entropies are effective in characterizing
dynamic network structure, and distinguish different types of network models
(random graphs, small world networks, and scale free networks).

Finally, future work will explore the use of the thermodynamic variables in
detecting network anomalies and disturbances. Additionally, we will explore the
role of the framework for characterizing phase transitions in network structure.
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