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ABSTRACT: Human pluripotent stem cells (hPSCs; both
embryonic and induced pluripotent) rapidly proliferate in
adherent culture to maintain their undifferentiated state.
However, for mammals exhibiting delayed gestation (dia-
pause), mucin-coated embryos can remain dormant for days or
months in utero, with their constituent PSCs remaining
pluripotent under these conditions. Here we report cellular
stasis for both hPSC colonies and preimplantation embryos
immersed in a wholly synthetic thermoresponsive gel
comprising poly(glycerol monomethacrylate)-poly(2-hydrox-
ypropyl methacrylate) [PGMA55-PHPMA135] diblock copolymer worms. This hydroxyl-rich mucin-mimicking nonadherent 3D
gel maintained PSC viability and pluripotency in the quiescent G0 state without passaging for at least 14 days. Similarly, gel-
coated human embryos remain in a state of suspended animation (diapause) for up to 8 days. The discovery of a cryptic cell
arrest mechanism for both hPSCs and embryos suggests an important connection between the cellular mechanisms that evoke
embryonic diapause and pluripotency. Moreover, such synthetic worm gels offer considerable utility for the short-term (weeks)
storage of either pluripotent stem cells or human embryos without cryopreservation.

■ INTRODUCTION

Mucins are a family of glycoproteins that are known to play
central roles in biology.1,2 Transmembrane mucins mediate
important cell−cell interactions, as well as signaling events with
other biomolecules such as lectins.3,4 Misregulation during
mucin synthesis has been linked to inflammation and tumor
development.5 Indeed, mucin-like tumor antigens have been
developed for circulating cancer cells with the aim of triggering
a humoral response and so inducing active immunity at a stage
of disease progression for which there are few alternative
therapies.6−8 More recently, synthetic mucin mimics have also
been designed as microarrays9 and mucin chimeras have been
assembled on living cells10 to examine the complex biological
roles played by cell surface mucins.
Secreted mucins possess unusual viscoelastic properties and

can provide a passive protective barrier against pathogens and
other environmental toxins.11 However, there is growing
evidence that secreted mucins forming the apical extracellular
matrix (ECM) can influence both cell morphology and junction
dynamics during embryonic development.12 These observations
suggest that synthetic mucin mimics may be promising active
biomaterials for regenerative medicine.
Recently, considerable attention has focused on wholly

synthetic hydrogels, with the successful 2D13−16 and 3D17

culture of pluripotent stem cells (PSCs) being reported. This

approach to PSC culture is appealing, because precise control
over the chemical composition and purity of synthetic
hydrogels addresses a number of important problems
associated with biologically-derived hydrogels, such as ill-
defined compositions and components, batch-to-batch varia-
bility, and the undesirable presence of xenobiotic compo-
nents.18

Human PSCs (hPSCs; both embryonic and induced
pluripotent) display an abbreviated cell cycle, with their
pluripotency being associated with rapid proliferation in
adherent cell culture.19 In contrast, preimplantation blastocysts
for certain other mammals such as rats, mice, and kangaroos
can exhibit an obligate (every gestation) or facultative (due to
lactation/metabolic stress) diapause or developmental arrest.20

In particular, viable embryos can remain in a state of suspended
animation within a mucin coating for days or even months,
prior to their subsequent reactivation and gestation.20 Indeed, it
has been postulated that the conditions required to induce
diapause might also be relevant for the derivation and
maintenance of PSCs in vitro.21,22 Although it is not known
whether embryonic diapause occurs in women, the cell-arrest
mechanism(s) involved are evolutionarily conserved.23 Thus,
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such behavior may be characteristic of hPSCs, yet remain
cryptic under standard cell culture conditions.
As well as chemical cues, cells also sense physical stimuli

through complex feedback interactions involving mechano-
stimuli such as rigidity and contractility, which are ultimately
transduced into biochemical signals.24,25 In particular, Engler
and co-workers employed collagen-I/polyacrylamide hydrogels
with gel moduli ranging from 0.1 to 100 kPa to show that
MSCs commit to lineages specified by gel elasticity when this
mimics that of natural tissues. For example, very soft gels favor
brain cells, stiffer gels produce muscle, and harder gels lead to
the formation of cartilage and bone.26 However, these authors
did not investigate gel elasticities below 0.1 kPa. This
rheological regime includes mucins, which are an important
class of natural matrices.27 Depending on their composition and
function, mammalian mucins can exhibit a range of elasticities
(0.01−0.1 kPa).27 Of particular relevance to the present work,
mucins associated with healthy female reproductive tracts are
found at the lower end of this range.27

We have previously reported the design of a fully synthetic
poly(glycerol monomethacrylate)-poly(2-hydroxypropyl meth-
acrylate) (PGMA-PHPMA) diblock copolymer worm gel that
undergoes reversible degelation via a worm-to-sphere order−
order transition on cooling from 37 to 5 °C.28 PGMA is a
hydroxyl-rich biocompatible polymer28 that is known to
minimize cell adhesion.29−31 PGMA55-PHPMA135 diblock
copolymer worm gels can be conveniently synthesized directly

either in pure water or in physiological buffers such as
phosphate-buffered saline, PBS.28 Moreover, such synthetic
worm gels exhibit comparable gel moduli to natural mucins.27

Recognizing that worm gels and mucins both exhibit high
degrees of hydration32 and are rich in hydroxyl functionality,33

we decided to examine the extent to which PGMA-PHPMA
worm gels can mimic soft mucins (Figure 1a). In particular, we
explore herein whether immersing PSC colonies within worm
gels can induce long-term stasis while maintaining both
pluripotency and viability. Moreover, we hypothesized that
encapsulation of viable human embryos within such worm gels
might lead to diapause (arrested development).

■ RESULTS AND DISCUSSION

Initially, PGMA55-PHPMA135 worm gels were synthesized at
20% w/v solids in PBS followed by dialysis at 4 °C for 2 days
against PBS (to remove low molecular weight impurities), and
diluted to produce a 6% w/v worm gel with cell culture
medium. A viability assay using human dermal fibroblasts
indicated that this simple approach (protocol 1) produced cell
survival rates of 75−80% (Figure 1b). Dialysis against PBS for 7
days (protocol 2) further improved cell viability. However,
optimal results were achieved by preparing copolymer worms in
PBS at 20% w/v, dialyzing against pure water for 7 days,
followed by freeze-drying overnight to obtain a dry powder
(protocol 3). This powder was reconstituted with culture
medium to produce a free-standing worm gel, which retained

Figure 1. Physicochemical and biological characterization of mucin-mimicking PGMA55-PHPMA135 worm gels. (a) Schematic representation of the
similar physical and chemical (hydroxyl-rich brush) structures of mucin gels and PGMA-PHPMA worm gels. (b) Temperature dependence of the
storage and loss moduli (G′, G″) observed on cooling a 6% w/v worm gel reconstituted in various aqueous media from 37 to 2 °C at an applied
strain of 1.0% and a fixed angular frequency of 1.0 rad s−1. (c) Three protocols were evaluated with human dermal fibroblasts: protocol 1 (20% w/v
copolymer gel prepared in PBS, diluted two-fold and dialyzed for 2 days against PBS), protocol 2 (same as protocol 1, followed by dialysis against
PBS for 7 days), and protocol 3 (20% w/v copolymer gel prepared in PBS, dialyzed against deionized water for 7 days, followed by freeze-drying
overnight and redispersion in DMEM cell culture medium). Cell viability was evaluated by direct-contact cell monolayers and also via an indirect
assay using ThinCert inserts. Experiments were conducted in triplicate; **p < 0.01, *p < 0.05. (d) Five-day-old human blastocysts immersed in either
6% w/v worm gel or Matrigel incubated at 37 °C, 5% CO2 and 5% O2. After 4 days, embryos in Matrigel undergo fragmentation, whereas embryos
immersed in worm gel remained intact but became compacted. Five-day-old embryos immersed within worm gel for 8 days (i.e., up to 13 days of
development) stained positive for nuclear envelope statin (NES). Localization (red, nuclear envelope statin; blue, Hoechst 33342-nuclei; scale bar =
50 μm). n = 2 embryos per condition.
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its thermoreversible gelation behavior (Figure 1c). Varying the
culture medium had only a modest effect on the worm gel
rheology, with no significant differences being observed in
either the gel strength (G′ ∼ 101 Pa) or critical gelation
temperature (CGT ∼ 18 °C) when using EB (Millipore), ES
(Nutristem, Stemgent), or 3i naive medium.34 A slightly lower
CGT of 17 °C was determined in PBS (control), but the
thermoreversible behavior was otherwise broadly comparable.
Thus strain sweeps produced similar G′ values (9 to 13 Pa),
with deviation from the linear viscoelastic region occurring at
around 60% applied strain in all cases. Angular frequency
sweeps were also similar (see Figure S1). We investigated
human embryos cultured to zona-free blastocyst (day 5) and
immersed in a 6% w/v PGMA55-PHPMA135 worm gel
containing Nutristem medium or, for comparison, placed in
Matrigel under similar conditions. After 4 days (day 9) embryos
within the worm gel remained intact, whereas the embryos
immersed in Matrigel showed clear signs of dissociation and
fragmentation (Figure 1d). Two embryos remained for up to 8
days in PGMA55-PHPMA135 gel (day 13) without any signs of
development or primitive streak formation. Embryos were then
degelled and fixed for immunolocalization using the well-
known cell stasis marker nuclear envelope statin (NES)35

(Figure 1d). This nuclear envelope protein enables rapid
identification of cells that either enter or leave the cell cycle.35,36

Compacted embryos that had been immersed within the worm
gel clearly expressed NES, indicating cell stasis under these
conditions (Figure 1d). Given the limited availability of human
embryos and the strict 14-day limit on their in vitro culture in

the UK, we next investigated human ESCs (hESCs) immersed
as colonies within the worm gel. No discernible change in
colony size was observed over time regardless of the cell
medium, suggesting little or no cell proliferation (Figure S2).
Similar results were obtained for dissociated single-cell
suspensions immersed in a worm gel prepared using 3i
medium (Figure S3). However, in this case, some proliferative
cells were recovered 24 h after degelation, but no cells
remained viable after 7 days (Figure S3). Usually 3i medium
supports adherent culture of single cells,34 thus this lack of
success suggested that cell−cell contact was required for hESCs
to retain viability. After immersion of hESC colonies within a
Nutristem-prepared worm gel for 7 days, more than 90% of the
cells remained viable as determined by Syto9/PI (live/dead) in
situ staining (Figure 2b). After 14 days, some colonies
contained dead cells (estimated to be <10% of the total area
examined) but most colonies retained a majority of viable cells;
some hPSC colonies still contained viable cells after 21 days
(Figure 2b and Figure S4). As the passage of PSC colonies is
known to compromise their viability,37 control colonies were
immersed in worm gel for 10 min and recovered immediately
via thermally-triggered degelation (Figure 2a, week 0).
Approximately 70 ± 3% of harvested cell colonies attached to
Cellstart matrix and underwent subsequent proliferation. After 7
and 14 days, 57 ± 10% and 59 ± 5% viable colonies were
recovered respectively; even after 21 days, around 10% of
colonies remained proliferative (Figure 2a). The pluripotency
of hPSCs was assessed after their initial recovery from worm gel
followed by proliferative culture of up to 14 days in standard

Figure 2. hESCs in PGMA55-PHPMA135 worm gel maintain viability and stem cell markers. (a) Proportion (%) of proliferative (hESC colonies
recovered from reconstituted 6% w/v worm gels prepared using Nutristem medium for up to 21 days. (b) Syto 9 (live)/PI (dead) staining for typical
cell colonies immersed in worm gel at 37 °C. Hoechst 33342 counter-stain. (c) FACS analysis of pluripotent (Tra-1-60, SSEA-4) and differentiation
(SSEA-1) stem cell markers for hESCs recovered from worm gel after 21 days and then subjected to standard adherent cell culture for up to 14 days
compared to control hESCs cultured in the absence of gel. Expression of pluripotent markers is equivalent or greater in cells stored in worm gel for
21 days prior to adherent culture and declines more slowly. (d) Immunofluorescent localization of Oct-4 and Nanog in hESCs after recovery from
worm gel compared to a control. All experiments were performed in triplicate wells, with n = 3 independent experiments.
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adherent culture (Figure 2c). The majority of cells from
recovered colonies expressed markers for pluripotency markers
(SSEA-4, Tra-1-60), rather than markers for differentiation
(SSEA-1). Significantly, even after 7 or 14 days of adherent
culture, colonies recovered from worm gel (after 21 days)
displayed greater levels of pluripotency markers than control
cell colonies, which suggests a markedly slower resumption of
differentiation (Figure 2c). Furthermore, colonies recovered
from worm gels remained distinctly rounded and domed in
appearance for up to 48 h after degelation, which is in marked
contrast to the relatively flat morphology that is characteristic of
adherent hPSC cells (Figure S5). Interestingly, hPSC colonies
immersed in worm gel remained pluripotent for longer than
those cultured for the same length of time under normal culture
conditions. Nevertheless, optical microscopy studies indicate
that hPSC colonies initially immersed in worm gel and
subsequently transferred to normal culture exhibited the
expected characteristic morphological differentiation into
various cell types upon prolonged culture (see Figure S6).
It was noted that colony size affected hPSC recovery after

worm gel immersion; few colonies smaller than 100 μm
diameter adhered to Cellstart, and those that did rapidly
differentiated (Figure S7a,b). However, much higher recovery
was observed for colonies of 100−200 μm diameter, many of
which exhibited the characteristic PSC morphology (Figure
S7c,d). A correlation between PSC colony size and in vitro cell
viability has been reported previously.38 Relatively large (≫200
μm) colonies immersed in worm gels (Figure S7e) were also
compromised, since they tended to be more susceptible to
differentiation once removed from the gel. Moreover, rather
than spreading laterally, they became significantly denser
normal to the substrate, and peripheral cells exhibited neuronal

differentiation. Similar observations have been reported for
high-density colonies dispersed in a liquid medium.38

To examine the extent of cell proliferation of hPSCs
immersed within worm gel, colonies were recovered after 7,
14, and 21 days, and the normalized amount of DNA (relative
to day 0) was determined (see Table 1). In addition to little or
no change in the colony morphology, the total amount of DNA
remained constant within experimental error, suggesting
negligible proliferation of viable PSC colonies. This finding
was confirmed by immunofluorescent localization of Ki-67
antigen (Figure S8), which is normally present for each stage of
the cell cycle but is absent in G0.

39 Essentially no Ki-67
expression was observed for viable colonies immersed in worm
gels, suggesting that the hESCs exit the cell cycle at G0 to
become dormant (Figure S8). In contrast, hESCs recovered
from worm gels and immediately placed in adherent culture
displayed a characteristic Ki-67 fluorescent signature after their
subsequent proliferation (Figure S8).
Under standard adherent culture conditions, proliferative

PSCs did not express the cell stasis marker NES (Figure 3b).
PSCs also remained negative for this marker after immersion in
worm gel for less than 2 h, followed by degelling and immediate
fixation (see Figure 3b). However, after 2 h incubation in worm
gel, a few cells at the periphery of colonies were found to be
NES+ (Figure 3b). This expression became more evident after 6
h, and NES+ cells were observed distributed throughout the
colonies after worm gel immersion for 16−24 h (Figure 3b).
This time scale is comparable to that of a single cell cycle.
After thermally-triggered degelation, the recovered hESC

colonies were allowed to attach to Cellstart matrix and cultured
in six-well plates for 16 h, 24 h, or 5 days. Cells remained NES+

for 16−24 h but lacked this marker after 5 days (Figure 3c).

Figure 3. Changes in nuclear envelope statin (NES) and Ki-67 expression for hESCs immersed within a 6% w/v worm gel: (a) Overview of
gelation/degelation process and associated changes in cell stasis markers. (b) Immunofluorescent localization of NES in hESC colonies. Control
hESCs (no worm gel) did not display NES. After 2−6 h immersion, NES+ cells were only observed at the periphery of hESC colonies, but NES+ cells
were distributed throughout the colony after 16−24 h. (c) Effect of degelation on NES expression. Cytosolic expression of NES after 16 h.
Expression of NES+ was significantly reduced both 24 h after degelation and also after 5 days. (d) Immunofluorescent localization of Ki-67 in hESC
colonies in gel. Control hESC (no gel) displayed Ki-67 expression, but this was considerably reduced after 16−24 h within the worm gel. All
experiments were performed in triplicate, n = 3 independent experiments.
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Immediately after degelling, NES staining was not restricted to
the nuclear envelope ring but was also distributed within the
cytosol (Figure 3c). Similar cytosolic staining of other nuclear
envelope components has been reported.40 This suggests
reprocessing of nuclear envelope proteins, which would require
membrane redistribution via cytosolic endoplasmic reticulum
during degradation.40 Therefore, it seems likely that reinitializa-
tion of the cell cycle upon degelation of hESCs also triggers
degradation of the NES. This would account for redistribution
to the cytosol within 16−24 h, with full degradation occurring
only after 5 days.
The onset of stasis was highly dependent on the genetic

profile of the cells and also on the chemical composition of the
synthetic hydrogel. Thus normal hPSCs underwent stasis when
immersed in PGMA-PHPMA worm gels, whereas they grew to
form typical embryoid bodies when immersed in a commercial
thermoresponsive nonhydroxylated synthetic hydrogel (i.e.,
Mebiol), see Figure S9. This suggests that the mucin-like
hydroxyl functionality of PGMA-PHPMA worm gels most
likely plays a critical role in inducing stasis. Normal hPSCs
immersed in Mebiol gel remained Ki-67+/NES− even after 14
days immersion (Figure S9). Moreover, genetically modified
hPSCs adapted to feeder cells (similar to those found in
teratoma41) also underwent proliferation when immersed
within PGMA-PHPMA worm gels (Figure S10).
Quiescence and reactivation of stem or blast cells is a

common theme across phyla for cellular regeneration and tissue
homeostasis.42−44 However, as far as we are aware, this is the
first report of hPSCs entering stasis or human blastocysts
entering diapause during culture. Recent literature suggests that,
even when not manifest, mammalian embryonic diapause is
evolutionarily conserved. Thus sheep blastocysts do not
naturally undergo diapause, but Ptak and co-workers23

demonstrated that this quiescent state can be temporarily
induced for at least 7 days via transfer to the mouse uterus, with
full developmental capacity being retained on subsequent
return to primed ovine recipients. hPSCs immersed in a
synthetic PGMA55-PHPMA135 worm gel in vitro revealed a
similar cryptic ability: they exit the cell cycle at the G0 stage to
enter dormancy or stasis, as judged by the absence of DNA
synthesis and a Ki-67/NES assay. After immersion within worm
gel for at least 14 days, recovered hPSC colonies maintained
pluripotency markers and were able to exit stasis and resume
proliferation, retaining their capacity for differentiation.
Soft synthetic substrates decorated with adhesion motifs

induce quiescence in somatic stem cells.45 However, PGMA55-
PHPMA135 worm gels contain no specific binding motifs to
promote cell adhesion. Indeed, the multiple hydroxyl
functionality on the copolymer worms most likely minimizes
cell adhesion.29,30 This is confirmed by a direct contact assay
(see Figure S11). Moreover, in the absence of adherence to a
matrix (whether biological or synthetic), hPSCs usually
undergo cell death via various anoikis/apoptosis mechanisms.46

Furthermore, individual hPSCs did not survive immersion in
worm gel. Significantly, mammalian embryos that exhibit
diapause are typically encapsulated within a glycoprotein/
mucin coat (zona pellucida/mucin), which is both relatively
benign and nonadhesive.20,47 It is emphasized that both mucin
and the PGMA55-PHPMA135 worm gel comprise relatively soft,
highly hydrated hydroxyl-rich polymeric gels. This suggests that
both deprivation of suitable cell adhesion motifs and the lack of
appropriate mechanical cues may be required to induce cellular
stasis. In the Ptak study, ovine embryos collapsed their

blastocoel cavity and became compacted when induced into
diapause within the mouse reproductive tract, with no
discernible contact with the ECM of the zona pellucida.23 In
a remarkably similar fashion, human embryos immersed in
worm gels also became more compact and displayed no
obvious interaction with the gel matrix, in striking contrast to
the fragmentation of control embryos immersed withinMatrigel
over the same time scale.
There is a general consensus that cellular stasis occurs in

stem cells as a response to metabolic and/or environmental
stress in order to preserve key functional features and therefore
guarantee homeostasis and regeneration of the niche.42

Absence of Ki-67 staining revealed that hESC colonies
displayed little cell division 16−24 h after gelation (Figure
3d). Moreover, expression of NES35,36 indicates a relatively
rapid response to encapsulation within worm gel. Interestingly,
not all cells were NES+/Ki-67− after immersion within worm
gel for 24 h. Since live/dead assays indicate that the vast
majority of cells remain viable, this suggests that a small
proportion of cells may still proliferate, but not at a rate that is
detectable by total DNA analysis.
Cell viability studies indicate that worm gels are non-toxic to

PSC cells and allow proliferation of adapted PSCs.
Furthermore, the culture media used in this study promoted
PSC proliferation in adherent culture both prior to and after
their worm gel encapsulation. Since freeze-dried worm gel was
rehydrated using culture medium, it seems unlikely that
induction of PSC stasis was merely due to the absence of
specific growth factor(s). Thus the present work indicates that
diapause (or stasis for stem cells) can be simply induced by a
hydroxyl-rich environment within a very soft matrix. This sheds
new light on the likely role played by mucins in triggering diapause.
In principle, the cell nuclear architecture senses the stiffness

of the external environment and this information in turn directs
cell differentiation and proliferation. Swift and co-workers
elegantly demonstrated that matrix stiffness in tissue culture
increased mesenchymal stem cell cytoskeletal tension and
stabilized the nuclear envelope protein lamin-A, regulating both
its own transcription and that of stress fiber genes.48 Such
lamin-A expression has been linked to the maintenance of adult
stem cell quiescence.49 Nuclear envelope statin may well
function similarly in PSCs, leading to cell division arrest and
hence stabilization of their pluripotent state. In this context, it is
perhaps noteworthy that PSCs recovered from worm gel after
21 days underwent spontaneous differentiation significantly
more slowly compared to control cells when placed on Cellstart
for 2, 7, or 14 days. As implicated for murine-diapaused
embryos,21,22 this may reflect a more naive stem cell state and
clearly warrants further investigation.

■ CONCLUSIONS
In summary, we demonstrate that a biocompatible PGMA-
PHPMA diblock copolymer worm gel is a remarkably good
synthetic mimic for at least some types of natural mammalian
mucins. Furthermore, these worm gels can also function as a
suitable bioinert 3D matrix for PSCs. Immunolabeling assays
confirm that PSC colonies immersed in such worm gels enter
stasis (the quiescent G0 state in the cell cycle) within 24 h at 37
°C. This state of suspended animation is reversible upon
degelation and enables survival of pluripotent human stem cells
for up to 2 weeks without any passaging, with little or no
differentiation. The mucin-like nature of such soft hydroxyl-
functional worm gels is also apparent in preliminary experi-
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ments conducted using human embryos, for which diapause is
observed for up to 4 days after worm gel immersion. The
design of such new biomimetic stem cell niches suggests novel
therapeutic avenues for arresting disease processes and/or
promoting cell regeneration.

■ MATERIALS AND METHODS
Consent and Donation of Embryos. Embryo manipu-

lation was carried out under license from the Human
Fertilization and Embryology Authority, HFEA, following
independent ethical review. Patients donated embryos follow-
ing fully informed consent. All embryos were coded to protect
patient anonymity.
Embryo Culture and Gelation. Cryopreserved embryos

were thawed using an embryo thawing pack (Origio, DK).
Viable four-cell embryos were cultured in a 50 μL microdrop
system until the late morula−early blastocyst stage (typically
day 5 of development) with BlastAssist medium (Origio, DK).
Embryos were monitored regularly until they naturally hatched
(typically at day 6), or were aided to hatch by laser dissection
with Integra 3 micromanipulator with a Saturn 5 laser (RI life
sciences, UK). Blastocysts were gelled using either Matrigel (50
μL) or 6% w/v PGMA55-PHPMA135 worm gel reconstituted in
Nutristem medium (50 μL). Preparations were coated with
mineral oil and cultured in an incubator at 37 °C in 5% O2, 5%
CO2 in N2 and were monitored daily under the microscope.
After various time intervals in gel (up to day 13 of
development), embryos were recovered and fixed in 4%
formaldehyde in preparation for immunolabeling of the nuclear
envelope statin. In the UK, the legal limit for the development
of human embryos is 14 days (or before appearance of the
primitive streak).
Cells. Pluripotent Stem Cell Lines Maintenance and

Preparation. Human embryonic stem cell (hESC) lines,
MasterShef (clinical grade) 14 and 11, were used. These were
derived under license from the HFEA and deposited with the
UK Stem Cell Bank. hESCs were maintained in feeder-free
adherent culture using Nutristem medium (Stemgent, UK) and
extracellular matrix Cellstart (Life Technologies, UK) with
nonenzymatic mechanical passage every 5 days.
Human Dermal Fibroblasts. Primary human dermal

fibroblasts (HDF) were obtained in batches from the ATCC,
LGC standards (UK). Fibroblasts were routinely cultured in
T75 flasks using standard culture medium (DMEM supple-
mented with 10% FCS, 2.0 mmol dm−3

L-glutamine, 0.625 mg
dm−3 amphotericin B, 100 IU/mL penicillin, and 100 mg dm−3

streptomycin). HDFs were used for testing between passages 4
and 9.
Preparation of PGMA55-PHMPA135 Worm Gels for Cell

Culture Experiments. Materials. Glycerol monomethacrylate
(GMA; 99.8%) was donated by GEO Specialty Chemicals
(Hythe, UK) and used without further purification. 2-
Hydroxypropyl methacrylate (HPMA) and 4,4′-azobis(4-
cyanopentanoic acid) (ACVA; V-501; 99%) were purchased
from Alfa Aesar (Heysham, UK). 2-Cyano-2-propyl dithioben-
zoate (CPDB, 80% as judged by 1H NMR spectroscopy) was
purchased from Strem Chemicals (Newton, UK). CD3OD
(99.8%) was purchased from Goss Scientific (Nantwich, UK)
and used as received. All solvents were of HPLC quality; they
were purchased from Fisher Scientific (Loughborough, UK)
and used as received.
Synthesis of PGMA55 Macro-CTA Using 2-Cyanopropyl

Dithiobenzoate (CPDB). CPDB (0.80 g, 3.6 mmol) and

glycerol monomethacrylate (GMA, 40.59 g, 0.25 mol) were
weighed into a 250 mL round-bottom flask and purged with N2
for 20 min. ACVA (202.9 mg, 0.72 mmol) was added, and the
solution was degassed for a further 5 min. Degassed anhydrous
ethanol (61 mL, 1.04 mol) was added, and the solution was
again degassed for a further 5 min prior to immersion in an oil
bath set at 70 °C. After 2 h, a 1H NMR spectrum recorded in
CD3OD indicated approximately 80% GMA monomer
conversion. The crude polymer was purified by precipitating
twice into excess dichloromethane from methanol to remove
unreacted monomer. After the second precipitation, the
polymer was isolated via filtration and the resulting solid was
dissolved in water (200 mL). Residual dichloromethane was
evaporated at 30 °C using a rotary evaporator. Once all traces
of solvent were removed, the aqueous solution was freeze-dried
overnight to afford a pink powder. 1H NMR spectroscopy
studies of the purified polymer dissolved in CD3OD indicated a
mean degree of polymerization of 55. DMF GPC analysis
indicated an Mn of 14,100 g mol−1 and an Mw/Mn of 1.09
(obtained using refractive index detection calibrated with series
of near-monodisperse poly(methyl methacrylate) standards for
calibration).

Synthesis of PGMA55−PHPMA135 Diblock Copolymer
Worms in 0.15 M PBS at 20% w/v Solids. PGMA55 (3.023
g, 0.33 mmol) and HPMA (6.240 g, 41.62 mmol) were
weighed in turn into a 100 mL round-bottom flask and purged
with N2 for 20 min. ACVA (31.0 mg, 0.11 mmol) was added,
and the flask was degassed for a further 5 min. Phosphate-
buffered saline (PBS) solution (Dulbecco A, Oxoid, Basing-
stoke, 37 mL, 150 mM, previously purged with N2 for 30 min)
was then added, and the solution was degassed for a further 5
min prior to immersion of the reaction flask in an oil bath set at
70 °C for 2 h, after which 1H NMR spectra recorded in
CD3OD indicated almost 100% HPMA conversion (as judged
by integration of the attenuated vinyl signals at 5.6 and 6.2
ppm). DMF GPC analysis using the same experimental setup as
described above gave an Mn of 35,900 g mol

−1 and an Mw/Mn =
1.10.
For cell biology studies, three protocols were evaluated for

purification and preparation of PGMA55-PHPMA135 worm gels,
as described below.

Protocol 1. The as-synthesized 20% w/v aqueous PGMA55-
PHPMA135 worm gel was dialyzed against PBS for 2 days at 4
°C with dialysate (PBS) changes every 12 h (MWCO = 1,000).
The resulting cold free-flowing copolymer dispersion was
diluted in the appropriate cell medium (DMEM, or Nutristem;
precooled to 4 °C prior to mixing) to the desired concentration
(typically either 6% w/v or 10% w/v copolymer) and filter-
sterilized at this temperature prior to use, as described below.

Protocol 2. The as-synthesized 20% w/v PGMA55-
PHPMA135 gel was dialyzed against PBS for 7 days at 4 °C
with dialysate changes every 12 h (MWCO = 1,000). The
resulting cold free-flowing dispersion was diluted in the
appropriate cell medium (DMEM, or Nutristem; precooled
to 4 °C prior to mixing) to the desired concentration (typically
either 6% w/v or 10% w/v copolymer) and filter-sterilized at
this temperature prior to use, as described below.

Protocol 3. The as-synthesized 20% w/v PGMA55-
PHPMA135 gel was dialyzed against pure water for 7 days at
4 °C with dialysate changes every 12 h (MWCO = 1,000). The
resulting gel was freeze-dried to yield a fine pink powder, which
was redispersed in the appropriate cell culture medium
(DMEM, EB (Embryoid body medium), or Nutristem;
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precooled to 4 °C prior to mixing) to afford either a 6% w/v or
10% w/v copolymer dispersion. The temperature was
maintained at approximately 4 °C using an ice bath, and
magnetic stirring was continued for at least 20 min until full
dispersion was achieved. The resulting liquid was filter-sterilized
prior to use, as described below.
Sterilization Protocol. A 6% w/v PGMA55-PHPMA135

worm gel dispersed in the desired cell culture medium was
cooled to 4 °C to induce the worm-to-sphere transition, and
hence underwent degelation to afford a free-flowing dispersion
of copolymer spheres. This cold low-viscosity fluid was then
ultrafiltered using a sterile 0.20 μm syringe filter into a sterile
vessel within a laminar flow cabinet. Syringes and filters were
stored at −20 °C for at least 1 h prior to ultrafiltration to
prevent gelation on contact. The resulting sterilized copolymer
dispersion was then used immediately for cell colony
encapsulation experiments, or stored at either 4 °C or −20
°C for future use (depending on the specifications of the cell
medium).
Cell Viability in Direct Contact with PGMA55-

PHPMA135 Worm Gels. Cell Viability Assays on Human
Dermal Fibroblasts (HDFs) Using MTT Assay. HDFs were
seeded in 24-well plates at a density of 3 × 104 cells per well
and grown until 80% confluence (typically 48 h). Gels were
evaluated both in direct contact with the cells and also in
nondirect contact (basket method). A noncontact ThinCert
(Greiner Bio-One, UK) setup was used to identify any toxic
low molecular weight compounds that might be present in the
worm gels (e.g., unreacted HPMA monomer). ThinCert
comprises small basket-like structures of tissue culture plastic
with a polycarbonate membrane bottom that fits over a 24-well
plate. Thus, cells are exposed to the gel through the cell
medium in the 24-well plates, but not by direct contact. This
setup discriminates between the effect of direct contact of the
worm gel on the cells and the effect of residual small molecule
impurities.
For the indirect contact setup, 250 μL of the 10% w/v

copolymer gel was added to each ThinCert basket. Cells were
placed below each basket and immersed in the appropriate cell
culture medium (500 μL). For the direct contact setup, the cell
medium was removed from the wells and the gel (typically 500
μL) was applied directly onto the cell monolayers. Gel batches
were tested on 80% confluent HDF cells over 24 h. Cell
viabilities were then assessed via an MTT assay (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)
(Sigma-Aldrich, St Louis, MO). Briefly, cells were washed at
4 °C with cold PBS, then incubated with MTT solution (0.50
g/L MTT in PBS at 20 °C, 1 mL per well of a 24-well plate) for
1 h at 37 °C in a humidified incubator (5% CO2/95% air). In
healthy viable cells, MTT is reduced to a purple formazan salt
by the mitochondrial enzyme, succinyl dehydrogenase, which
allows spectrophotometric quantification of cell viability. After
1 h, the solution was aspirated and the insoluble intracellular
formazan product was solubilized and removed from cells by
adding acidified isopropanol (0.30 mL per well of a 24-well
plate), followed by incubation for 10 min. The absorbance at
540 nm was then determined using a plate reading visible
absorption spectrophotometer, with the absorbance at 630 nm
being used as a reference. Mean viability data and SEM were
normalized using a negative control (no treatment, 100%
viability) and expressed as a percentage viability ± SEM.
Experiments were performed in duplicate well samples with n =
3 independent experiments. For statistical analysis, the

Student’s paired t test was used in the raw data to assess the
significance of differences between the samples and the control
group.

Quantification of Survival of hES Cells after Pro-
longed Immersion in PGMA55-PHMPA135 Worm Gels: %
Colony Recovery and Live/Dead Assay. % Colony
Recovery Experiments. The hES cells were typically grown
under xeno-free conditions using Nutristem medium (Stem-
gent, UK) and t25 vessels coated with CELLstart (Life
Technologies, UK), unless otherwise stated. Cell cultures
were maintained at 37 °C in a humidified incubator (5% CO2/
95% air), and the medium was renewed daily. When cultures
achieved optimal cell density (typically 60−70% surface
coverage), the cell medium was replenished and colonies
were mechanically harvested. Colonies were placed onto 35
mm Petri dishes in preparation for gel seeding. Ibidi eight-well
slides were placed on ice, and 500 μL of a cold 6% PGMA55-
PHMPA135 copolymer dispersion (which is a free-flowing liquid
at ∼4 °C) was added to each of the wells. Using a sterile plastic
Pasteur pipet equipped with a “superfine” tip, individual
colonies were placed on the center of each ibidi well and
gently stirred to allow mixing. Gelation (Figure 3a) was
immediately triggered by placing the ibidi wells in a humidified
incubator (5% CO2/95% air) set at 37 °C for the desired time
period (i.e., 7, 14, or 21 days) prior to harvesting. The number
of colonies (typically 3−15) in each gelled well was counted
microscopically. Degelation (Figure 3a) was triggered by
placing each ibidi slide on ice for approximately 5 min. The
resulting free-flowing copolymer containing the cell colonies
was diluted 10-fold with Nutristem (5.0 mL) into a CELLstart-
treated six-well plate releasing the cell colonies. Wells were
inspected microscopically, and the number of colonies was
recorded. The six-well plates were stored for approximately 3 h
in a humidified incubator (5% CO2/95% air) to allow viable
cell colonies to adhere to the matrix. Subsequently, medium
was replenished daily. The % colony recovery was calculated as
the average colony recovery per time point ± SEM normalized
to the initial number of colonies prior to degelation. The %
colony loss was similarly estimated. Controls consisted of cell
colonies immersed in a worm gel for just 10 min and
immediately harvested. This enabled the efficiency of the
colony isolation and colony transfer protocols to be assessed.
Experiments were performed in triplicate wells with n = 3
independent experiments.

Live/Dead Assay. The viabilities of hES cell colonies
immersed within PGMA55-PHMPA135 worm gels were assessed
using a commercial live/dead assay (Life Technologies, UK).
This assay utilizes a binary mixture of a cell-permeable SYTO 9
green fluorescent nucleic acid stain (ex 480 nm, em 500 nm)
and an impermeable red fluorescent nucleic acid stain,
propidium iodide (PI, ex 490 nm, em 635 nm). Cells with
compromised (i.e., leaky) membranes are designated as dead or
dying and are stained red (PI), whereas cells with intact
membranes are stained green (SYTO 9). When used alone, the
latter stain generally labels all cells, but when both dyes are
present the PI penetrates damaged membranes and quenches
the green fluorescence due to SYTO 9, so that this signal is not
detected. Briefly, the gelled colonies were cooled to around 4
°C for 5 min to trigger degelation and allowed to sediment
under gravity. The free-flowing aqueous copolymer dispersion
supernatant was partially removed, and colonies were washed
once with cell culture medium precooled to 4 °C. The aqueous
fluid was then removed, and warm (37 °C) cell culture medium
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was added to each well containing SYTO 9 (15 μM) and PI (60
μM). Cells were incubated in a humidified incubator (5% CO2/
95% air) for 25 min in order to allow dye uptake to occur. Then
cell nuclei were counterstained for a further 5 min with
Hoechst 33342 (Life Technologies, UK). Finally, colonies were
washed with PBS (precooled to 4 °C), and further culture
medium (depending on the vessel, typically 3 mL for a six-well
plate and 500 μL for ibidi imaging plates) was added prior to
inspection using a Nikon A1 confocal microscope equipped
with an Okolab environmental control chamber for live cell
studies.
Evidence for Preservation of Stem Cell Markers on

hESCs after Prolonged Immersion in PGMA55-PHPMA135
Worm Gels: Flow Cytometry (Tra-1-60, SSEA4, SSEA1)
and Oct-4/Nanog Immunolabeling. Flow Cytometry (Tra-
1-60, SSEA4, SSEA1). Harvested cells were resuspended in PBS
supplemented with 10% fetal calf serum. Cells (5 × 105) were
incubated for 1 h with primary antibody to SSEA1, SSEA4,
TRA-1-60. After washing three times in PBS, cells were labeled
with FITC-conjugated secondary antibody for 1 h. This was
followed by washing the cells three times with wash buffer and
analyzing cell fluorescence using a CyAnADP flow cytometer
equipped with O2 optics (Beckman Coulter, Brea, USA). The
gate for FITC-positive cells was set using control cells
incubated with a negative control immunoglobulin obtained
from the parent myeloma cell line, P3X63Ag8.
Oct-4/Nanog Immunolabeling Experiments. Gel recovered

colonies were allowed to attach to CELLstart coated six-well
plates for up to 48 h. Colonies were then washed with PBS and
fixed for 30 min using an aqueous solution of 4% formaldehyde
in PBS (100 μL). All samples were then washed three times in
PBS and permeabilized using a 0.1% Triton X100 PBS solution
for 20 min. Colonies were then washed three times in PBS and
blocked in 5% BSA−PBS for 2 h at 20 °C, prior to incubation
with a primary antibody solution (1:100 rabbit anti-human Oct-
4 antibody (Abcam, UK) + 1% BSA in PBS; 1:100 rabbit anti-
human Nanog (Cell Signaling Technology, USA) 1% BSA in
PBS) overnight at 4 °C with gentle rocking. These antibody-
labeled colonies were then washed three times in PBS and then
incubated with a secondary antibody solution (1:1000 goat
anti-rabbit Alexa Fluor 488 IgG (Abcam) + 1% BSA in PBS;
1:1000 mouse anti-rabbit Cy3 IgG (Abcam) + 1% BSA in PBS)
for 1 h at 20 °C with gentle rocking. Colonies were washed
three times with PBS, and cell nuclei were counterstained for 5
min using Hoechst 33342 (Life Technologies, UK). Finally,
each sample was washed three times in PBS prior to inspection
using an EVOS epifluorescence imaging system.
Evidence for Stasis (Suspended Animation): DNA

Extraction and Ki-67 Immunolabeling. DNA Extraction.
Cell colonies were mechanically recovered from t25 flasks and
placed on 35 mm Petri dishes prior to use. Each ibidi well was
seeded with a fixed volume (500 μL) of cell colonies. This
suspension was allowed to sediment for 5 min, and then the
liquid medium was carefully removed. Then 6% PGMA55-
PHPMA135 copolymer dispersion (500 μL; precooled to 4 °C)
was added to each of the wells and gently stirred to allow
mixing. Gelation was immediately triggered by placing the ibidi
wells at 37 °C in a humidified incubator (5% CO2/95% air).
Cell colonies were incubated for 7, 14, or 21 days. When
required, degelation was triggered by placing each ibidi slide on
ice for approximately 5 min. The contents of each well were
then placed in labeled 1.5 mL Eppendorf tubes containing ice-
cold PBS (1.0 mL). Samples were centrifuged twice at 4 °C for

5 min (1000 rcf). Cell pellets were incubated using 100 μL of
digestion buffer (comprising TE buffer (10 mM Tris pH 8 and
1 mM EDTA) plus 0.2% SDS) for 4 h at 37 °C. Following this,
a solvent mixture comprising 25:24:1 phenol:chloroform:i-
soamyl alcohol (100 μL) saturated with TE buffer was added to
each Eppendorf tube and thoroughly mixed by vortex. The
samples were centrifuged at 20 °C for 5 min (14,000 rcf).
Aqueous supernatants were then decanted and mixed with ice-
cold ethanol (450 μL) and 3 M sodium acetate (50 μL). DNA
was sedimented via centrifugation for 5 min at 20 °C (14,000
rcf). Supernatants were carefully decanted, and DNA pellets
were dried in a 37 °C oven. Dried pellets were resuspended in
TE buffer (20 μL). The DNA concentration was calculated by
determining the absorbance at 260 nm using a Nanodrop
spectrophotometer. Data were normalized with respect to an
internal control group, whereby cell colonies were gelled for
approximately 10 min and then immediately harvested (day 0).
Experiments were performed in duplicate wells with n = 3
independent experiments.

Ki-67/Nuclear Envelope Statin Immunolabeling Experi-
ments. Colonies were isolated from the worm gels by
incubation on ice for approximately 5 min to induce degelation.
Each well was then collected into 1.5 mL Eppendorf tubes
containing ice-cold PBS (1 mL). Colonies were washed twice at
4 °C for 5 min (1000 rcf) and then fixed for 30 min using an
aqueous solution of 4% formaldehyde in PBS (100 μL).
Control colonies (not gelled) and gel-recovered colonies
growing in six-well plates were also washed in cold PBS and
fixed with 4% formaldehyde in PBS. All samples were then
washed three times in PBS and permeabilized using a 0.1%
Triton X100 PBS solution for 20 min (1 mL per well in a six-
well plate and 100 μL per Eppendorf tube). Colonies were then
washed three times in PBS and blocked in 5% BSA−PBS for 2
h at 20 °C, prior to incubation with a primary antibody solution
(1:100 rabbit anti-human Ki-67 monoclonal antibody (Abcam)
+ 1% BSA in PBS; 1:20 mouse anti-human S-44 nuclear statin
antibody 1% BSA in PBS) overnight at 4 °C with gentle
rocking. These antibody-labeled colonies were then washed
three times in PBS and then incubated with a secondary
antibody solution (1:1000 goat anti-rabbit Cy3 IgG (Abcam) +
1% BSA in PBS; 1:1000 goat anti-mouse Chromeo 546
(Abcam) + 1% BSA in PBS) for 1 h at 20 °C with gentle
rocking. Colonies were washed three times with PBS, and cell
nuclei were counterstained for 5 min using Hoechst 33342
(Life Technologies, UK). Finally, each sample was washed
three times in PBS prior to inspection using an EVOS
epifluorescence imaging system or confocal microscopy using a
Nikon A1R-A1 confocal microscope with dual line TIRF.
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