
MARAM: Tool Support for Mobile App Review Management

Claudia Iacob
School of Computing

University of Portsmouth
Portsmouth, UK

claudia.iacob@port.ac.uk

Shamal Faily
Department of Computing &

Informatics
Bournemouth University

Poole, UK
sfaily@bournemouth.ac.uk

Rachel Harrison
Department of Computing &

Communication Technologies
Oxford Brookes University

Oxford, UK
rachel.harrison@brookes.ac.uk

ABSTRACT
Mobile apps today have millions of user reviews available
online. Such reviews cover a large broad of themes and
are usually expressed in an informal language. They pro-
vide valuable information to developers, such as feature re-
quests, bug reports, and detailed descriptions of one’s in-
teraction with the app. Due to the overwhelmingly large
number of reviews apps usually get associated with, manag-
ing and making sense of reviews is difficult. In this paper,
we address this problem by introducing MARAM, a tool de-
signed to provide support for managing and integrating on-
line reviews with other software management tools available,
such as GitHub, JIRA and Bugzilla. The tool is designed
to a) automatically extract app development relevant infor-
mation from online reviews, b) support developers’ queries
on (subsets of) the user generated content available on app
stores, namely online reviews, feature requests, and bugs,
and c) support the management of online reviews and their
integration with other software management tools available,
namely GitHub, JIRA or Bugzilla.

CCS Concepts
•Software and its engineering → Software mainte-
nance tools;

Keywords
Online reviews; mobile applications; querying

1. INTRODUCTION
Mobile app development today is interlinked with user

generated online content associated to apps, namely online
reviews. App users use mobile app reviews for a large num-
ber of purposes, from reporting bugs in a specific version
of an app to asking for new features in future versions of
the app [12]. This results in valuable design and develop-
ment information (such as bugs or user requirements) being
available in between the lines of such reviews. Based on

[13], a quarter of the feedback provided by users through
reviews is represented by feature requests, direct requests
coming from users for changes in the app’s functionality or
additions of features or customizations. In addition to that,
10% of the feedback reported by users is used to provide
details related to bugs, brief descriptions of malfunctioning
of the app or of particular features of the app. In [12], au-
thors introduce an approach for integrating user reviews in
the overall mobile app development processes, by feeding a)
the feature requests reported through reviews in the design
phase of the development, and b) the bugs in the testing
phase of the app development. Such an approach is defined
to bypass traditional software engineering methods requir-
ing direct access to users for both requirements elicitation
and usability evaluation and to make use of the overwhelm-
ingly large amount of feedback coming from direct users of
apps and made available on app stores.

However, currently, two main challenges make it difficult
for this approach to be used on a large scale. First, the
user interaction available on app stores provides little in the
way of means for making sense of reviews. Currently, the
reviews of an app can only be visualized in blocks of four
or five (Figure 1). The only tool available on app stores for
making sense of these reviews is sorting them using one of
three criteria: 1) the date they were posted on (allow the
recently posted reviews to be displayed first), 2) the rating
they are associated with (allow the reviews associated with
a higher rate to appear first), and 3) the level of helpful-
ness they are associated with (allow the reviews rated more
helpful to appear first). This, however, does not address the
problem as the visualization of reviews in limited blocks is
maintained. An app such as SwiftKey [7], for example, has
1,976,396 reviews, so visualizing these reviews in blocks of
four is not feasible.

SwiftKey is not an exceptional case as apps usually have
millions of online reviews; even with better visualizations of
the reviews, manual inspection of all of them is impractical.
This second challenge has been partially addressed in [11],
where MARA, a tool able to automatically extract feature
requests from online reviews, was introduced. However, for
an app like SwiftKey for example, the tool identified almost
half a million genuine feature requests. The effort of making
sense of such data is still considerable, if not impossible to
achieve.

Through this work, we aim to address both of these chal-
lenges by introducing MARAM (Mobile App Review Analy-
sis and Management), a tool designed to support mobile app
developers interacting with online reviews in making sense of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/46572162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the overwhelmingly large number of reviews available on app
stores by querying and integrating them with other software
management tools available, namely GitHub [6], JIRA [1] or
Bugzilla [2]. MARAM preserves the functionality of MARA
by automatically extracting feature requests and bugs, and
it extends it by a) allowing the developer to run queries on
the set of reviews, feature requests, or bugs, and b) allowing
the developer to select items returned by a query and export
them to GitHub or JIRA as issues, or to Bugzilla as bugs.

This paper introduces the tool and it is structured as fol-
lows: Section 2 presents the requirements, design, archi-
tecture and details of the tool’s implementation; Section 3
evaluates the design of MARAM by illustrating three possi-
ble scenarios of use of the tool’s use in mobile app develop-
ment; Section 4 is an overview of previous work done in the
area. The paper concludes with ideas of future work and
the broader implications of MARAM in mobile app devel-
opment.

2. MARAM
This section introduces MARAM, a tool designed to sup-

port app developers in managing the online reviews of the
mobile applications of interest to them. We describe the re-
quirements of the tool, its overall design and architecture,
and details of its implementation.

2.1 Requirements
MARAM is an extension of MARA, a tool introduced in

[11] and designed to automatically extract feature requests
from online reviews of mobile applications. In its current
form, MARAM, is designed as a broader scope IDE able
to support app developers in managing the user generated
content (i.e. user reviews) associated with mobile apps and
available on app stores. The requirements of the tool in-
clude:

a. Automatically extract app development relevant infor-
mation from online reviews. In this respect, MARAM
preserves the functionality of MARA [11] and auto-
matically extracts feature requests and bugs from on-
line reviews.

b. Support developers’ queries on (subsets of) the user
generated content available on app stores, namely on-
line reviews, feature requests, and bugs. This feature
allows the developer to use the tool as a search engine
on the corpus of reviews, returned feature requests, or
bugs. For example, if interested in all the comments
users provided with respect to security, a developer can
formulate a query containing the word ‘security’ and
get a list of all feedback relevant to the query, ranked
by the level of relevance.

c. Support the management of online reviews and their
integration with other software management tools avail-
able, namely GitHub, JIRA or Bugzilla. It is rare that
a piece of software, be it a mobile app, is developed by
one individual in isolation. More often than not, it is a
team of developers working together that contribute to
the development of an app. In this context, software
management platforms that support collaboration be-
come crucial to the success of the app. MARAM pro-
vides a link between the app store (as a proxy of the
users) and such software management platforms.

Through this work, we aim to address both of these challenges by
introducing MARAM (Mobile App Review Analysis and
Management), a tool designed to support mobile app developers
interacting with online reviews in making sense of the
overwhelmingly large number of reviews available on app stores
by querying and integrating them with other software
management tools available, namely GitHub [16], JIRA [17] and

Bugzilla [18]. MARAM preserves the functionality of MARA by
automatically extracting feature requests and bugs, and it extends
it by a) allowing the developer to run queries on the set of
reviews, feature requests, or bugs, and b) allowing the developer
to select items returned by a query and export them to GitHub or
JIRA as issues, or to Bugzilla as bugs.

Figure 1 – Online reviews user interface on Google App Store
This paper introduces the tool and it is structured as follows:
Section 2 presents the requirements, design, architecture and
elements of implementation of the tool; Section 3 illustrates three
possible scenarios of use of MARAM in mobile app development;
Section 4 is an overview of previous work done in the area. The
paper concludes with ideas of future work and the larger
implications of MARAM in mobile app development.

2. MARAM
This section introduces MARAM, a tool designed to support app
developers in managing the online reviews of the mobile
applications of interest to them. We describe the requirements of
the tool, its overall design and architecture, and details of its
implementation.

2.1 Requirements
MARAM is an extension of MARA, a tool introduced in [2] and
designed to automatically extract feature requests from online
reviews of mobile applications. In its current version, MARAM, is
designed as a broader scope IDE able to support app developers in

managing the user generated content (i.e. user reviews) associated
with mobile apps and available on app stores. The requirements of
the tool include:
a. Automatically extract app development relevant information

from online reviews. In this respect, MARAM preserves the
functionality of MARA [2] and automatically extracts
feature requests and bugs from online reviews.

b. Support developers’ queries on (subsets of) the user
generated content available on app stores, namely online
reviews, feature requests, and bugs. This feature allows the
developer to use the tool as a search engine on the corpus of
reviews, returned feature requests, or bugs. For example, if
interested in all the comments users provided with respect to
security, a developer can formulate a query containing the
word ‘security’ and get a list of all feedback relevant to the
query, ranked by the level of relevance.

c. Support the management of online reviews and their
integration with other software management tools available,
namely GitHub, JIRA or Bugzilla. It is rare that a piece of
software, be it a mobile app, is developed by one individual

Figure 1: Online reviews user interface on Google
App Store

In the case of GitHub, for example, the community
of contributors to the development of an app uses is-
sues to communicate contributions, report bugs, ask
for clarification, or simply coordinate efforts. Report-
ing a bug or asking for a feature to get implemented
are examples of issues often seen on GitHub. However,
the exact same information is reported on app stores
through reviews, so automatically translating reviews
(or subparts of reviews) into issues brings all develop-
ment data together in one place, making it available
to the larger community.

2.2 Design and Architecture
MARAM is designed around four main parts: 1) Review

collection engine (RCE), 2) Review analysis engine (RAE),
3) Review query engine (RQE), and 4) Review export engine
(REE) (Figure 2). The RCE acts as the interface with an
app store. The RAE manages the analysis of the retrieved
reviews by a) automatically extracting the feature requests
users ask for through reviews, and b) automatically extract-
ing the bugs that users report on through reviews. The
RQE manages the interaction between the app developer
and the corpus of reviews, allowing the developer to for-
mulate and run queries on the reviews. The REE supports
relating the online reviews available for an app with simi-
lar software management tools available, including GitHub,
JIRA and Bugzilla.

As a whole, MARAM works as follows:

1. The RCE communicates with the app store, retrieving
the online reviews available for an app at a given time.
All such reviews and their metadata are extracted from
the app store.

2. The RCE stores all the data scrapped from the app
store in a database (Raw Reviews Database), with-
out running any pre-processing on the reviews at this
point.

3. The RAE takes as input the reviews in the format they
were retrieved from the app store.

4. The RAE uses the content of the Raw Reviews Database
to: a) format the content of reviews to facilitate further
processing (i.e. identify the content of each review and
the meta-data associated to it), and b) extract feature
requests and bugs from reviews’ content.

5. The formatted reviews and the extracted data are in-
putted into the RQE.

6. The RQE generates corresponding maps for the re-
views, feature requests, and bugs. The maps index the
content of the reviews and the extracted data in order
to facilitate querying.

7. The RQE takes as input a developer’s query. This
query is a set of words. Although no restrictions are
imposed on the query the developers can submit, the
quality of the results of the querying process will differ
depending on the number of words used in the query.

8. The RQE generates the results to the developer’s query.

9. The developer can select a subset of the results or the
results as a whole and his/her selection becomes the
input of the REE.

10. The REE uses the items selected by the developer and
automatically exports them to the software manage-
ment platform selected by the developer.

2.2.1 Review Collection Engine (RCE)
The role of the RCE is to retrieve all the online reviews

available for a given app in an app store. A developer is able
to login to the RCE and retrieve all the reviews available on
the app store for the app(s) s/he manages. The reviews are
stored in a local database and, at this stage, no preprocess-
ing is required. Every review is associated with meta-data
including the date it was posted, the device it is associated
with, the version of the app the reviews is for, the rating, a
title, and the content of the actual review.

2.2.2 Review Analysis Engine (RAE)
The role of the RAE is to automatically extract from re-

views information relevant to the app development process,
namely feature requests and bugs. The RAE takes as input
the reviews database storing all the reviews and the meta-
data associated to them in their raw version and outputs the
corpus of feature requests and the corpus of bugs automat-
ically extracted from the reviews. Although in its current
version the RAE only extracts feature requests and bugs,
for future versions of this tool we will explore the possibility
of automatically extracting other types of information, such
as security related comments, usability related comments,
comparisons to other similar apps, or recommendations of
similar apps.

2.2.3 Review Query Engine (RQE)
The role of the RQE is to support app developers in run-

ning queries on the corpus of reviews, the feature requests,
or/and the bugs. In the context of MARAM, we use the
word ‘artifact types’ when referring to either reviews, fea-
ture requests, or bugs. Also, when referring to a review, a

in isolation. More often than not, it is a team of developers
working together that contribute to the development of an
app. In this context, software management platforms that
support collaboration become crucial to the success of the
app. MARAM provides a link between the app store (as a
proxy of the users) and such software management
platforms.
In the case of GitHub, for example, the community of
contributors to the development of an app uses issues to
communicate contributions, report bugs, ask for
clarification, or simply coordinate efforts. Reporting a bug
or asking for a feature to get implemented are examples of
issues often seen on GitHub. However, the exact same
information is reported on app stores through reviews, so
automatically translating reviews (or subparts of reviews)
into issues brings all development data together in one
place, making it available to the larger community.

2.2 Design and Architecture
MARAM is designed around four main parts: 1) Review
collection engine (RCE), 2) Review analysis engine (RAE), 3)
Review query engine (RQE), and 4) Review export engine (REE)
(Figure 1). The RCE acts as the interface with an app store. The
RAE manages the analysis of the retrieved reviews by a)
automatically extracting the feature requests users ask for through
reviews, and b) automatically extracting the bugs that users report
on through reviews. The RQE manages the interaction between
the app developer and the corpus of reviews, allowing the
developer to formulate and run queries on the reviews. The REE
supports relating the online reviews available for an app with
similar software management tools available, including GitHub,
JIRA and Bugzilla.

As a whole, MARAM works as follows:

(1) The RCE communicates with the app store, retrieving
the online reviews available for an app at a given time.
All such reviews and their metadata are extracted from
the app store.

(2) The RCE stores all the data scrapped from the app store
in a database (Raw Reviews Database), without running
any pre-processing on the reviews at this point.

(3) The RAE takes as input the reviews in the format they
were retrieved from the app store.

(4) The RAE uses the content of the Raw Reviews
Database to: a) format the content of reviews to
facilitate further processing (i.e. identify the content of
each review and the meta-data associated to it), and b)
extract feature requests and bugs from reviews’ content.

(5) The formatted reviews and the extracted data are
inputted into the RQE.

(6) The RQE generates corresponding maps for the reviews,
feature requests, and bugs. The maps index the content
of the reviews and extracted data in order to facilitate
querying.

(7) The RQE takes as input a developer’s query. This query
is a set of words. Although no restrictions are imposed
on the query the developers can submit, the quality of
the results of the querying process will differ depending
on the number of words used in the query.

(8) The RQE generates the results to the developer’s query.
(9) The developer can select a subset of the results or the

results as a whole and his/her selection becomes the
input of the REE.

(10) The REE uses the items selected by the developer and
automatically exports them to the software management
platform selected by the developer.

2.2.1 Review Collection Engine (RCE)
The role of the RCE is to retrieve all the online reviews available
for a given app in an app store. A developer is able to login to the
RCE and retrieve all the reviews available on the app store for the
app(s) s/he manages. The reviews are stored in a local database
and, at this stage, no preprocessing is required. Every review is
associated with meta-data including the date it was posted, the
device it is associated with, the version of the app the reviews is
for, the rating, a title, and the content of the actual review.

2.2.2 Review Analysis Engine (RAE)
The role of the RAE is to automatically extract from reviews
information relevant to the app development process, namely
feature requests and bugs. The RAE takes as input the reviews
database storing all the reviews and the meta-data associated to
them in their raw version and outputs the corpus of feature
requests and the corpus of bugs automatically extracted from the
reviews. Although in its current version the RAE only extracts
feature requests and bugs, for future versions of this tool we will
explore the possibility of automatically extracting other types of
information, such as security related comments, usability related
comments, comparisons to other similar apps, or
recommendations of similar apps.

Figure 1 – MARAM Architecture

2.2.3 Review Query Engine (RQE)
The role of the RQE is to support app developers in running
queries on the corpus of reviews, the feature requests, or/and the
bugs. In the context of MARAM, we use the word ‘artifact types’
when referring to either reviews, feature requests, or bugs. Also,
when referring to a review, a feature request, or a bug, we use the
word ‘artifact’. For allowing queries on the data, the RQE builds a
map for each artifact type by following the steps detailed below:

a. Each artifact, R, is split into words (spaces and punctuation
marks are used as separators): w1, w2, … , wn.

b. Each artifact is associated with the stemmed root [3] of each
of the words it is formed of: R -> {w’1, w’2, … , w’n}

c. All stop words are excluded from all associations.

The RQE is designed to run parameterized queries, defined as:

Q = {app, version, device, artifact_type, max, summary, text}
, where:

a. app is the name of the app whose reviews are queried.

Figure 2: MARAM Architecture

feature request, or a bug, we use the word ‘artifact’. For al-
lowing queries on the data, the RQE builds a map for each
artifact type by following the steps detailed below:

a. Each artifact, R, is split into words (spaces and punc-
tuation marks are used as separators): w1, w2, ... ,
wn.

b. Each artifact is associated with the stemmed root [14]
of each of the words it is formed of: R → { w′1, w′2,
... , w′n}

c. All stop words are excluded from all associations.

The RQE is designed to run parameterized queries, de-
fined as:

Q = {app, version, device, artifact type, max, summary,
text} ,

where:

a. app is the name of the app whose reviews are queried.

b. version is the version number of the app considered
for the query (for example, a developer can query only
the reviews of the latest version of his/her app)

c. device is the name of the device considered for the
query (for example, a developer can query only those
reviews written for a particular type of phone)

d. artifact type is one of the three: reviews, feature re-
quests, or bugs (for example, a developer can choose
to run a query only on the corpus of bugs)

e. max represents the maximum number of results dis-
played at once

f. summary indicates whether the query results should be
summarized (i.e. similar results displayed once with a
higher weight)

g. text is the text of the query.

Feature
requests

add, allow, complaint, could, hope, if only,
improvement, instead of, lacks, look forward
to, maybe, missing, must, needs, please, pre-
fer, request, should, suggest, waiting for,
want, will, wish, would

Bugs closes, can’t/cannot/couldn’t,
don’t/doesn’t/does not/didn’t, not, fail,
crashes, lag, error, stopped, freeze,
won’t/will not, not able to, locks, un-
able to, erased, eliminated, impossible to,
impossible to, glitches, reboot, annoying,
problems with, bugs, causes, lost, restart,
horrible, slows down, reloads, switches off,
timeout, wouldn’t, malfunction

Table 1: Keywords for expressing feature requests
and bugs

2.2.4 Review Export Engine (REE)
The role of the REE is to allow the export of selected query

results to formats supported by other software management
tools, such as GitHub, JIRA or Bugzilla. The developer is
able to select one or more results returned for his/her query
and represent the selected results as issues recognized by
GitHub and JIRA, or bugs recognized by Bugzilla. For ex-
ample, MARAM uses the GitHub API to post a new issue to
a repository that has been predefined within MARAM. The
issue contains information about the app’s name, version,
and device it has been used on together with information
about the actual issue, namely a title (generated based on
the text of the query) and a short description (generated
based on the results returned by the query). The current
version of the tool supports GitHub integration only.

2.3 Implementation
MARAM is a prototype developed as a desktop based

application; this is currently implemented in Java. This
section provides implementation details for the components
of MARAM.

2.3.1 Review Analysis Engine
The implementation of the RAE is based on the identifica-

tion of a set of linguistic rules that encapsulate, syntactically
and semantically, the users’ expressions of feature requests
and bugs. For example, feature requests are more prone
to be expressed in sentences such as ‘Adding an exit button
would be great’. Similarly, major bugs are often expressed
as “forced shutdown many times”, “crashes at the end of the
race”, “fails and loses entire workout”, “app is not working”,
or “it won’t open”. Medium bugs are less intense and more
specific, focusing on a particular aspect of an app - “does
not show any tracks of previous workouts”, “the Slovenian
dictionary is missing even the basic words”, “miles do not
add right”, “I did not create a password. Yet it asks me for
my password”. Minor bugs are merely observations related
to a feature of an app - “slight issue with GPS data”, “a
little bug on the Persian keyboard”, “text overlaps for lower
percentages”.

We defined the two sets of linguistic rules (i.e. one for
feature requests and one for major and medium bugs) based
on the analysis of the manually identified feature requests
and bugs in the random sample of reviews described in [11].

Feature
Requests

<request>would make it
<COMPARATIVE-ADJ>
(<SB>) (<ADV>) wish there was
<request>
please include <request>
could use (more) <request>
add the ability to <request>
(the only thing) missing <request>
needs the ability to <request>

Bugs

stopped {downloading, running, syncing}
{don’t, doesn’t, none, didn’t} work (since
the update)
impossible to <action>
will not (even) {open, start, execute,
activate, install, show up}

Table 2: Examples of linguistic rules for defining
feature requests and bug

The analysis comprised of the following steps:

a. Associate each sentence labeled as a feature request
or a bug with a keyword, which denotes the sentence
as a feature request or a bug. In the case of feature
requests, we identified 24 keywords. In the case of
bugs, we identified 33 keywords (Table 1).

b. Filter all those sentences containing at least one key-
word and define the contexts (i.e. fragments of sen-
tences) in which these keywords point to actual feature
requests or bugs. Examples of such contexts are: “an
exit button would be fantastic”, “adding more icons
would be great”, “tips and math support would also be
nice”.

c. Abstract contexts into linguistic rules such as: “(adding)
<request> would (<ADV>) be <POSITIVE- ADJEC-
TIVE>”. The word “adding” is optional, while ADV
and POSITIVE-ADJECTIVE can be replaced by any
adverb or positive adjective, respectively. We defined
237 linguistic rules for capturing feature requests, and
74 linguistic rules to capture bugs. Examples of such
linguistic rules are presented in Table 2.

Identifying a feature request or a bug translates into iden-
tifying contexts, which match at least one linguistic rule
corresponding to either feature requests or bugs.

In the context of evaluating feature request and bug min-
ing, we consider the following elements for the definition
of the performance metrics: a) true positives (TP) as the
correctly returned feature requests/bugs, b) false positives
(FP) as the returned results which are not actual feature
requests/bugs, c) true negatives (TN) as the non-feature re-
quests/bugs not returned as results, d) false negatives (FN)
as actual feature requests/bugs not returned as results. Pre-
cision is the ratio between the returned results, which are ac-
tual feature requests/bugs and the total number of returned
results. Recall is the ratio between the returned results,
which are actual feature requests/bugs and the total num-
ber of feature requests/bugs in the input. Lastly, Matthews
Correlation Coefficient (MCC) is a value between -1 and
1, with MCC = 1 for a perfect predictor, MCC = 0 for
a random predictor, and MCC = -1 for a perfect inverted
predictor.

Definition
Feature

Requests
Bugs

P TPs
(TPs+FPs)

0.85 0.91

R TPs
(TPs+FNs)

0.87 0.89

MCC TPXTN−FPXFN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

0.90 0.91

Table 3: Precision, recall, and MCC in RAE’s eval-
uation

We evaluated the performance of the RAE on the sam-
ple of 136,998 reviews defined in [11], using precision (P),
recall (R), and MCC as performance metrics (Table 3). In
the case of feature requests, we randomly selected 3000 fea-
ture requests returned by the algorithm, and a human coder
analysed the sample to check which were FPs. The task of
the coder was to identify, for each result analysed, the actual
request the user expressed. Overall, the P calculated for the
sample was 0.85. In terms of recall and MCC, we used the
reviews of a random chosen app as a sample for measuring
the two metrics. For the 480 reviews sampled, the value of
R was 0.87, and the value of MCC was 0.90. We used a
similar approach in the case of bugs, with a P value of 0.91,
R value of 0.89, and MCC of 0.91.

2.3.2 Review Query Engine
The implementation of the RQE is based on:

a. Generating an artifact map for a set of artifacts (i.e.
reviews, feature requests, and bugs),

b. Computing the similarity score between a given query
and each artifact in a given set, and

c. Ranking the artifacts in a given set based on their sim-
ilarity score with the query.

Algorithm 1: GenerateArtifactMap

input : Artifacts[] items: reviews, feature requests, or bugs
output: ArtifactMap map: AM = {(Artifact,Keywords[])}

1 for ItemA ∈ items do
2 String[] wordsA = tokenize(ItemA);
3 RemoveStopWords(wordsA);
4 StemEachWord(wordsA);
5 map.add((ItemA,wordsA));

6 return map

Algorithm 1 describes the process of generating an artifact
map for a given set of artifacts. The aim of the map is to
associate each artifact with a set of representative keywords
for the item. The process includes: tokenizing the text of an
artifact (line 2), removing the stop words (line 3), stemming
each word to its root (line 4), and associating the artifact
with the obtained set of words (line 5).

When faced with a query Q = {app, version, device, arti-
fact type, max, summary, text}, the RQE performs the fol-
lowing steps (Algorithm 2):

1. Identify the list of artifacts, artis, the query refers to
(i.e. all the artifacts of type artifact type for the ap-
plication app, in its version version, and for the device
device). The corpus the query will be run on becomes
artis (line 1).

Algorithm 2: RunQuery

input : Q={app,version,device,artifact type,max,
summary,text}

output: Artifact[] topResults: top results returned by the
query

1 artis = returnArtifactFor(app, version, device, artifact);
2 AM = GenerateArtifactMap(artis);
3 AQ = new Artifact(text);
4 QM = GenerateArtifactMap(AQ);
5 SimilarityScores[] scores = new SimilarityScores[];
6 for A ∈ artis do
7 sim = computeSimilarity(A,AQ);
8 scores.add(new SimilarityScore(A,AQ,sim));

9 Sort scores based on similarity;
10 if summary == true then
11 return summary of top max artifacts in

scores.ArtifactA;

12 else
13 return top max artifacts in scores.ArtifactA;

2. Generates an artifact map, AM, for artis (line 2).

3. Represents the query Q as an artifact (AQ), using the
text of the query as a parameter (line 3).

4. Generates the artifact map, QM, for the artifact rep-
resenting the query Q (line 4).

5. Calculates the similarity score between the artifact
represented by the query (AQ) and each artifact in
AM (lines 5-8). A similarity score is represented as
SimilarityScore = {ArtifactA, ArtifactB, sim}, and is
calculated based on the Jaccard Similarity coefficient:

JS(A, B) = |A ∩ B|/|A ∪ B| (1)

, where |A ∩ B| represents the cardinal of the inter-
section of the set of words associated to A and the set
of words associated to B, and |A U B| represents the
cardinal of the union of the set of words associated to
A and the set of words associated to B.

6. Sorts the similarity scores and returns the top max
results as either a summary or as a full list of results
(line 9-13).

In the current version of the tool, the implementation of
the summary generation for a query result is unavailable.
However, the summarization process includes the following
steps:

1. For each artifact, A, in the results returned by the
query, identify the set of all the artifacts similar in
meaning with A, i.e. synA. Two artifacts are similar
if their similarity score is higher than a set threshold.

2. Associate each set synA with a weight calculated based
on the number of the artifacts included in synA, and
their respective similarity scores.

3. Generate a description for the set, synA, based on the
keywords common to all the artifacts in synA and their
order of appearance.

4. Add the description generated for synA together with
its weight to the summary.

5. Sort the summary based on the weights of the sets
synA with the sets weighting higher appearing the first
in the summary.

6. Return the sorted summary as the summary of the
query results.

2.3.3 Review Export Engine
The design and implementation of REE is based on the

Abstract Factory pattern [5], where ExportEngineFactory
objects are created based on the export target. For example,
we implemented the class GitHubIssueEngineExportFactory
to generate GitHub Issues from artifacts. This factory class
is constructed with the URL of the export target, and the
authentication credentials necessary to both access the tar-
get and import artifacts.

When faced with an Artifact A = app, version, device,
artifact type, text , the RQE performs the following steps
(Algorithm 3):

1. Authenticates with the export target corresponding
the URL using the credentials provided during the fac-
tory class’ construction.

2. Constructs a name for the artifact EAName, based
on the app, artifact type, and device. For example,
where app=“App A”, artifact type=“crashes”, and de-
vice=“Galaxy 1.1”, the name would be “App A crashes
on Galaxy 1.1”.

3. Constructs the body of the artifact EABody based on
the provided text. The body will be the form recog-
nizable to the export target, e.g. JSON in the case of
GitHub

4. Pushes the artifact to the export target using facil-
ities provided by the target. For example, GitHubIs-
sueEngineExportFactory uses the GitHub web services
API to post new issues.

5. Returns the identifier ArtifactId for artifact created
on the export target; this identifier is meaningful to
the export target. For example, a GitHub Issue Id is
returned by the algorithm implemented by GitHubIs-
sueEngineExportFactory.

Algorithm 3: ExportArtifact

input : A={app,version,device,artifact type,text}
output: ArtifactId: identifier of the export artifact

1 Authenticate();
2 EAName =

ConstructArtifactName(app,artifact type,device);
3 EABody = ConstructArtifactBody(text);
4 ArtifactId = PushArtifact(EAName,EABody);
5 return ArtifactId;

3. USAGE SCENARIOS
The target audience for MARAM is the community of

app developers maintaining apps, or developing them from
scratch. The tool is as a mediating layer between an app
store and software management tools, also allowing the de-
velopers to query the corpus of user generated content (namely

online reviews) associated for the app they maintain or de-
velop. An app developer logs into MARAM and selects one
of the apps she is maintaining from a dropdown list, say
SwiftKey Keyboard (Figure 3). For the app selected, she can
also select a version number and a device in case she wants to
restrict the query only to the artifacts associated with a spe-
cific version of the app and/or a specific type of device. Any
query can be run on either the entire corpus of reviews, the
corpus of feature requests, or the corpus of bugs. Some pos-
sible examples of queries include: “all reviews for SwiftKey
Keyboard app, version 3.1 on Galaxy phone that speak about
‘performance’ ”, “all bugs of SwiftKey Keyboard where the
user reports a crash”, “all feature requests for SwiftKey Key-
board users asked for in the previous version of the app” .
Such queries are needed in various contexts and at various
phases of the app development cycle; we will focus below on
three possible scenarios.

3.1 Scenario 1 - Design
During the design phase of an app, an app developer con-

sults the reviews for feedback on the feature requests users
ask for or comment on. In the context of MARAM, an app
developer is able to:

a. Generate a report of all the feature requests reported
for an app or for a specific version of the app.

b. Generate a report of all the feature requests related to
a query reported for an app or for a specific version of
the app. For example, the app developer can identify
all the requests coming from users for a particular fea-
ture, settings preference, or aesthetic parameter (the
shape or location of a control, for example).

c. Generate a report with the N most relevant feature
requests to a query. For example, the developer can
identify what are the top 10 requests for a particular
control, or feature (i.e. registration).

Based on these basic actions supported by MARAM more
complex scenarios can be defined:

Jack, the lead developer for AppT, checks the features re-
quests left unimplemented from the previous version of the
app (i.e. version 3.2). For that, he will run a query for
AppT, choosing version 3.2 and returning all the feature re-
quests available for that version (i.e. the text of the query is
blank). Similarly, he will run a query for the same app only
choosing the latest version of the app, i.e. version 4.1. For
identifying those feature requests left unimplemented, Jack
will identify those requests returned for both queries. We
assume that once a feature has been implemented in a given
version of an app, users will no longer ask for it through
online reviews.

3.2 Scenario 2 - Testing
During the testing phase of an app, an app developer

consults the reviews for feedback on the malfunctioning the
users report on with respect to the app or to specific features
of the app. In the context of MARAM, an app developer is
able to:

a. Generate a report of all the bugs reported for an app
or for a specific version of the app.

one with a higher weight). She can opt to go through the bugs
screen by screen, showing a maximum number of bugs at once or
simply read the bugs related to a set of words or topic. Once
presented with a list of bugs, the developer can choose one or
more of them and generate Bugzilla reports for them. These
reports can further be imported into Bugzilla and be made
publicly available.

4.3 Scenario 3 - Maintenance
Maintenance runs throughout the life of an app. In the current app
ecosystem, maintenance goes hand in hand with development and
both highly depend on user feedback. It is usual for an app to be
deployed on an app store in its beta version and than extended and
maintained at the same time based on feedback reported by users
through reviews. Such feedback is not limited to feature requests
and bugs and can include critical comments on specific features,
comparisons with other similar tools, comments on the level of
usability of the app, or on its value-for-money. MARAM supports
queries on all types of comments and identifies those fragments of
reviews most relevant to a given query. Some examples of such
queries include;

• ‘set up’, which will identify all comments reported by
users on the set up process of the app. Such comments
may include positive or negative remarks, or they may
describe glitches users faced during the set up process.

• ‘the name of a different tool’ , which will identify all
users’ comments related to the tool, such as ‘tool X does
<feature> better’, or ‘why doesn’t this tool do what tool
X does when….’. This would give developers ideas for
improvement and it would help them make better sense
of what the user want in the context of an app’s market.

Based on the basic feature developed for MARAM more complex
scenarios of use can be defined in the context of app maintenance:

John, the lead developer for AppA, is interested in getting all user
comments available for AppA that are related to a specific topic
or theme, say ‘performance standards’ or ‘usability’. For that, s/he
will run a query on an app using topic-related words as the text of
the query and the corpus of reviews as the selected artifact. The
returned results might include positive or negative comments on
the topic, comparative comments with other available apps, details
of specific usage experiences user had with the app, and
recommendations for other users. After reviewing the results of
the query, John can decide to select one or more results and export
them as issues recognizable in GitHub, thereby making them
available to the larger community of developers.

Figure 2 – MARAM screenshot: GitHub integration

Figure 3: MARAM Screenshot: GitHub integration

b. Generate a report of all the bugs related to a query
reported for an app or for a specific version of the app.
For example, the app developer can identify all the
comments coming from users that are related to the
crash of a specific feature (eg. storing data, remem-
bering password, etc).

c. Generate a report with the N most relevant bug reports
to a query. For example, the developer can identify
what are the top 10 bug reports related to a specific
task (eg. registration). This is designed to help prior-
itizing the developers’ work.

Based on these basic actions supported by MARAM more
complex scenarios can be defined in the context of testing
an app:

Jane, the lead developer for AppM, is interested in identify-
ing all bugs reported for a beta version of AppM. For that,
she will run a query for an app, choosing the beta version of
the app as a parameter, and returning all the bugs available
for that version. Jane is presented with either a list of bugs,
or a summary of those bugs (similar bug reports are grouped
together and presented as one with a higher weight). She
can opt to go through the bugs screen by screen, showing a
maximum number of bugs at once, or simply read the bugs
related to a set of words or topics. Once presented with a
list of bugs, the developer can choose one or more of them
and generate BugZilla reports for them. These can further
be imported into BugZilla and made publicly available.

3.3 Scenario 2 - Maintenance
Maintenance runs throughout the life of an app. In the

current app ecosystem, maintenance goes hand in hand with

development and both highly depend on user feedback. It is
usual for an app to be deployed on an app store in its beta
version and than extended and maintained at the same time
based on feedback reported by users through reviews. Such
feedback is not limited to feature requests and bugs and can
include critical comments on specific features, comparisons
with other similar tools, comments on the level of usabil-
ity of the app, or on its value-for-money. MARAM sup-
ports queries on all types of comments and identifies those
fragments of reviews most relevant to a given query. Some
examples of such queries include:

• ‘set up’, which will identify all comments reported by
users on the set up process of the app. Such comments
may include positive or negative remarks, or they may
describe glitches users faced during the set up process.

• ‘the name of a different tool’, which will identify all
users’ comments related to the tool, such as ‘tool X
does <feature> better’, or ‘why doesn’t this tool do
what tool X does when....’. This would give developers
ideas for improvement and it would help them make
better sense of what the user want in the context of an
app’s market.

Based on the basic feature developed for MARAM more
complex scenarios of use can be defined in the context of
app maintenance:

John, the lead developer for AppA, is interested in getting
all user comments available for AppA that are related to
a specific topic or theme, say ‘performance standards’ or
‘usability’. For that, he will run a query on an app using
topic-sensitive words as the text of the query and the cor-
pus of reviews as the selected artifact. The returned results
might include positive or negative comments on the topic,
comparative comments with other available apps, details of
specific usage experiences users had with that app, and rec-
ommendations for other users. After reviewing the results
of the query, John can decide to select one or more results
and export them as issue recognisable in GitHub, thereby
making them available to the larger community of develop-
ers.

4. RELATED WORK
App stores today are becoming increasingly powerful tools

for app developers. A survey of app stores analysis for soft-
ware engineering [15] identifies several uses of app stores in
mobile app development, including API analysis on the An-
droid platform [19, 17] app feature analysis [10], online re-
view analysis [11, 8, 9], and the role online reviews can play
in the broader mobile app development cycle [12]. Although
all the studies on app reviews point out the usefulness and
potential [16, 4] these artifacts can bring to mobile app de-
velopment processes, little work has been done in providing
developers with support in interacting with reviews, making
sense of them, and incorporating them in their day-to-day
job.

App stores provide very little in the way of navigating and
making sense of reviews, forcing developers to browse mil-
lions of reviews manually, and a few at a time. The filters
available for making sense of reviews are very limited. For
example, Google app store allows its users to filter reviews
by helpfulness, rating, or date, while the iTunes app store
only shows three random reviews for any app. However,
such interaction means are far too simplistic and they do
not match the ways app developers design, test, or maintain
their apps. App-store external tools to support develop-
ers in using online reviews include AR-Miner [3] and CLAP
[18]. AR-Miner is designed to i) extract informative infor-
mation from user reviews, ii) groups such information using
topic modeling, iii) prioritize informative reviews based on
a predefined scheme, and iv) visualize the groups of most
informative reviews. CLAP is a similar tool designed to: i)
categorize user reviews as bugs, requests or others, ii) cluster
related reviews, and iii) prioritize the clusters of reviews to
be implemented in a next release of the app. None of these
tools supports querying the corpus of reviews and the only
interaction available for the app developer includes deleting
a review or changing its cluster.

5. CONCLUSIONS AND FUTURE WORK
This paper introduced MARAM, a tool dedicated to app

developers and designed to support querying online reviews
and their derived artifacts; the tool facilitates the integra-
tion of these artifacts with other software management tools.
The tool is designed around four main parts, all supporting
further extensions.

The RCE can act as a browser add-on, allowing a smoother
interaction with a particular app store.

The RAE can be extended to automatically extract other
types of information from reviews. Such information can

include comments around usability, security, or comparative
feedback between various apps.

The RQE can be extended to support alternative metrics
for computing similarity scores, such as cosine similarity. It
can also be extended to allow additional query parameters,
including:

• Rating associated with artifact - e.g. running queries
on all feature request extracted from reviews associ-
ated with 3 stars or more.

• Date - e.g. running queries on all reviews posted after
a certain date or within a time interval.

• Length - e.g. running query on all reviews longer than
2 sentences.

The REE can be extended to support integration with
additional software management tools and environments.

6. REFERENCES
[1] Atlassian. JIRA website.

https://www.atlassian.com/software/jira, October
2016.

[2] Bugzilla project. Bugzilla website.
https://www.bugzilla.org, October 2016.

[3] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang.
AR-miner: Mining Informative Reviews for Developers
from Mobile App Marketplace. In Proceedings of the
36th International Conference on Software
Engineering, ICSE 2014, pages 767–778, New York,
NY, USA, 2014. ACM.

[4] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and
N. Sadeh. Why people hate your app: Making sense of
user feedback in a mobile app store. In Proceedings of
the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’13,
pages 1276–1284, New York, NY, USA, 2013. ACM.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1995.

[6] GitHub, Inc. GitHub web site. http://github.com,
October 2016.

[7] Google Play. Swiftkey reviews. https://play.google.
com/store/apps/details?id=com.touchtype.swiftkey,
August 2016.

[8] X. Gu and S. Kim. What parts of your apps are loved
by users? In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on,
pages 760–770, Nov 2015.

[9] E. Guzman, M. El-Haliby, and B. Bruegge. Ensemble
methods for app review classification: An approach for
software evolution. In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International
Conference on, pages 771–776, Nov 2015.

[10] M. Harman, Y. Jia, and Y. Zhang. App store mining
and analysis: Msr for app stores. In Proceedings of the
9th IEEE Working Conference on Mining Software
Repositories, MSR ’12, pages 108–111, Piscataway,
NJ, USA, 2012. IEEE Press.

[11] C. Iacob and R. Harrison. Retrieving and analyzing
mobile apps feature requests from online reviews. In
Proceedings of the 10th Working Conference on

Mining Software Repositories, MSR ’13, pages 41–44.
IEEE Press, 2013.

[12] C. Iacob, R. Harrison, and S. Faily. Online Reviews as
First Class Artifacts in Mobile App Development. In
Proceedings of the 5th International Conference on
Mobile Computing, Applications, and Services
(MobiCASE), pages 47–53. Springer, 2013.

[13] C. Iacob, V. Veerappa, and R. Harrison. What are you
complaining about?: A study of online reviews of
mobile applications. In Proceedings of the 27th
International BCS Human Computer Interaction
Conference, BCS-HCI ’13, pages 29:1–29:6, Swindon,
UK, UK, 2013. British Computer Society.

[14] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel,
S. J. Bethard, and D. McClosky. The Stanford
CoreNLP natural language processing toolkit. In
Association for Computational Linguistics (ACL)
System Demonstrations, pages 55–60, 2014.

[15] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and
M. Harman. A Survey of App Store Analysis for
Software Engineering. Technical Report RN/16/02,
University College London, January 2016.

[16] F. Palomba, M. Linares-Vásquez, G. Bavota,

R. Oliveto, M. D. Penta, D. Poshyvanyk, and A. D.
Lucia. User reviews matter! tracking crowdsourced
reviews to support evolution of successful apps. In
Software Maintenance and Evolution (ICSME), 2015
IEEE International Conference on, pages 291–300,
Sept 2015.

[17] S. Seneviratne, H. Kolamunna, and A. Seneviratne. A
measurement study of tracking in paid mobile
applications. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and
Mobile Networks, WiSec ’15, pages 7:1–7:6, New York,
NY, USA, 2015. ACM.

[18] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and
M. Di Penta. Release planning of mobile apps based on
user reviews. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages
14–24, New York, NY, USA, 2016. ACM.

[19] H. Wang, J. Hong, and Y. Guo. Using text mining to
infer the purpose of permission use in mobile apps. In
Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, pages 1107–1118, New York, NY, USA,
2015. ACM.

