
GODA: A Goal-Oriented Requirements Engineering Framework
for Runtime Dependability Analysis

Danilo Filgueira Mendonçaa,c,∗, Genaína Nunes Rodriguesa,∗, Vander Alvesa, Raian Alib, Luciano Baresic

aDepartment of Computer Science, University of Brasilia, Brazil
bFaculty of Science and Technology, Bournemouth University, United Kingdom

cDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

Abstract

Context: Many modern software systems must deal with changes and uncertainty. Traditional dependability re-
quirements engineering is not equipped for this since it assumes that the context in which a system operates be stable
and deterministic, which often leads to failures and recurrent corrective maintenance. The Contextual Goal Model
(CGM), a requirements model that proposes the idea of context-dependent goal fulfillment, mitigates the problem by
relating alternative strategies for achieving goals to the space of context changes. Additionally, the Runtime Goal
Model (RGM) adds behavioral constraints to the fulfillment of goals that may be checked against system execution
traces.

Objective: This paper proposes GODA (Goal-Oriented Dependability Analysis) and its supporting framework as
concrete means for reasoning about the dependability requirements of systems that operate in dynamic contexts.

Method: GODA blends the power of CGM, RGM and probabilistic model checking to provide a formal require-
ments specification and verification solution. At design time, it can help with design and implementation decisions;
at runtime it helps the system self-adapt by analyzing the different alternatives and selecting the one with the high-
est probability for the system to be dependable. GODA is integrated into TAO4ME, a state-of-the-art tool for goal
modeling and analysis.

Results: GODA has been evaluated against feasibility and scalability on Mobee: a real-life software system that
allows people to share live and updated information about public transportation via mobile devices, and on larger goal
models. GODA can verify, at runtime, up to two thousand leaf-tasks in less than 35ms, and requires less than 240
kbytes of memory.

Conclusion: Presented results show GODA’s design-time and runtime verification capabilities, even under limited
computational resources, and the scalability of the proposed solution.

Keywords: Goal modeling, Dependability, Probabilistic Model Checking, Runtime Analysis

1. Introduction

Many failures in software systems stem from poor
requirements elicitation [14] and thus a proper under-
standing of what the system is supposed to do is key for
its dependability. To this end, GORE (Goal-Oriented
Requirements Engineering, [45]) offers proved means
to decompose technical and non-technical requirements

∗Corresponding authors
Email addresses: danilo.filgueira@polimi.it (Danilo

Filgueira Mendonça), genaina@unb.br (Genaína Nunes
Rodrigues), valves@unb.br (Vander Alves),
rali@bournemouth.ac.uk (Raian Ali),
luciano.baresi@polimi.it (Luciano Baresi)

into well-defined entities (goals) and reason about the
alternatives to meet them.

More recently, GORE has been used as means to
model and reason about the systems’ ability to adapt to
changes in dynamic environments [1, 33]. Goals have
been used as both design and runtime artifacts. Goal
modeling has been used to customize software systems
with respect to the characteristics of the organization
they are deployed in [3], to derive high-variability de-
signs, and to maximize the resilience and adaptivity
of deployed systems [49, 44]. It has also been used
as runtime model to respond to dynamic changes —
while maintaining dependability. For example, goals
become live entities that can self-adapt according to

Preprint submitted to Information and Software Technology September 2, 2016

https://www.researchgate.net/publication/3913915_Goal-Oriented_Requirements_Engineering_A_Guided_Tour?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220130828_Goal-Directed_Requirements_Acquisition?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

the context [7, 8], or are complemented with meta-
requirements that refer to their success or failure and
can recover from errors [42]. The Runtime Goal Model
(RGM) [13] augments goals and tasks with runtime
specifications to verify whether their instances behave
correctly, that is, they are dependable.

In previous work [33], we proposed the Dependabil-
ity Contextual Goal Model, which exploits fuzzy logic
to reason about the effects the actual context of oper-
ation has on both dependability requirements and de-
pendability attributes. However, after studying some
further real-life case studies, we have understood that
the approach could become prohibitively heavy and
time-consuming due to the effort required in providing
declarative rules for each different goal, attribute, and
context. Defined rules could also be corrupted by im-
precise domain knowledge.

In addition, most of the solutions for eliciting depend-
ability requirements do not take into account the his-
tory of failures. This is mandatory to be able to fore-
see probabilities of success and failing trends, and thus
to support decision making procedures that can iden-
tify appropriate strategies to keep the system depend-
able. As a consequence, we advocate that dependabil-
ity requirements models must be probabilistic, and that
sound approaches and new tools be developed to guide
self-adaptive capabilities and guarantee the fulfillment
of goals.

In this context, probabilistic model checking (PMC)
is suitable for reasoning about dependability require-
ments since it helps compute the probabilities with
which these properties are satisfied [6]. PMC has been
largely supported by tools such as PRISM [29] and
PARAM [22]. The challenge is thus the conceptualiza-
tion and formulation of dependability requirements in a
way suitable for PMC.

This paper proposes the Goal-Oriented Dependabil-
ity Analysis framework (GODA) to model goals and
analyze their fulfillment in different contexts. GODA
takes into account runtime aspects and accommodates
the implications that contextual information may have
on goal satisfaction. Since the overall goal satisfaction
may be impacted by context restrictions, GODA pro-
vides a means to specify the interplay between them
and to estimate the dependability of the strategies to ful-
fill goals in different contexts. At runtime, the outcome
provided by GODA can be used to analyse whether the
system is fulfilling its dependability goals. If it turns
out that the obtained dependability is under a certain
threshold, the system should consider the strategy (or
strategies) that provide the most suitable dependability
measure.

The proposed analysis solution relies on discrete-
time PMC, where required specifications are obtained
automatically from contextual runtime goal models.
These goal models borrow concepts from contextual
goal models [1] and runtime goal models [13]. Ob-
tained models are verified through parametric PMC to
take into account the possible variability of the proba-
bilities in the model. However, since parametric PMC
solutions are not fast enough and do not scale as needed,
we propose an innovative solution for computing the
parametric formulae. Our solution uses model checking
to precompute the formulae that define the dependabil-
ity of any node of the goal tree and takes into account
the type of decomposition and runtime and context an-
notations. It then composes the different probabilities
through suitable rewriting by mimicking the tree struc-
ture of the goal model. GODA is implemented as an
extension to TAOM4E [36]: a TROPOS-based require-
ments elicitation and modeling tool implemented on top
of the Eclipse framework.

In this paper, we also report on the empirical eval-
uation we carried out. First, we evaluate GODA on
Mobee: a real-life software system that allows people to
share live and updated information about public trans-
portation via mobile devices. Mobee has been running
for over a year and has already more than three thousand
users. Our results in Mobee show that GODA is capable
of performing dependability analysis efficiently, allow-
ing it to be used under limited computational resources.
The second part of the empirical study presents a time-
space scalability analysis of the parametric verification.
We artificially created goal models up to two thousand
leaf-tasks, simulation results show a verification time
below 35ms, and a use of less than 240 kbytes of mem-
ory in the worst-case.

The rest of the paper is organized as follows. Sec-
tion 2 recalls the necessary background. Section 3
presents the conceptual model behind GODA, the pro-
posed dependability analysis, and sketches our imple-
mentation as extension to TAOM4E. Section 4 describes
the evaluation we carried out. Section 5 surveys related
approaches and Section 6 concludes the paper.

2. Background

2.1. Goal Modeling and Context

Goal modeling provides a means to analyze the many
requirements of the different stakeholders of a software
system [14, 48, 10]. As defined by TROPOS [10], goals
are owned by actors and actors may inter-depend on
each other to reach their goals. Goals are ultimately

2

https://www.researchgate.net/publication/221419149_Tool-Supported_Development_with_Tropos_The_Conference_Management_System_Case_Study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/266657638_Modelling_and_analysing_contextual_failures_for_dependability_requirements?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224168787_Adaptive_Goals_for_Self-Adaptive_Service_Compositions?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/225198353_Tropos_An_Agent-Oriented_Software_Development_Methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/225198353_Tropos_An_Agent-Oriented_Software_Development_Methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41693738_A_Goal-based_Framework_for_Contextual_Requirements_Modeling_and_Analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/239535527_Modelling_strategic_relationships_for_process_reengineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224195439_Fuzzy_Goals_for_Requirements-Driven_Adaptation?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234825825_Principles_of_Model_Checking_Representation_and_Mind_Series?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221553551_Awareness_Requirements_for_Adaptive_Systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220130828_Goal-Directed_Requirements_Acquisition?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

fulfilled by leaf-tasks, which denote processes to be
executed by actors. Goals and tasks are decomposed
and organized in a tree-structured model. A goal can
be decomposed in subgoals or refined by a means-end
task. Means-end relationships link a goal to a (means-
end) task whose fulfillment is a sufficient and neces-
sary condition to the fulfillment of the goal. A non-leaf
task can be decomposed into other subtasks. An AND-
decomposition requires that all sub-nodes to be fulfilled,
while an OR-decomposition requires that at least one
sub-node be fulfilled. Accordingly to TROPOS, only
one type of decomposition per node is allowed. The al-
ternative paths (OR-decompositions) in the goal tree can
be evaluated with respect to qualitative objectives called
soft-goals. Soft-goals are goals without a clear-cut cri-
teria for their fulfillment. Contribution links identify the
positive or negative impact of alternatives on soft-goals.

Figure 1 presents the different concepts related to
goal modelling used by GODA. A single system actor
(Mobee Mobile) has a root goal G1, which is AND-
decomposed into G3 and G4, meaning both subgoals
must be achieved to fulfill G1. Goal G3 is AND-
decomposed into G8 and G9, which are linked to tasks
T1 through means-end decomposition links. Other goals
in the model are refined in a similar way. Tasks are also
refined through AND/OR-decompositions, except leaf-
tasks such as T1.21 and T1.22. Despite the support for
multiple actors in TROPOS, in this work we consider
a single system actor, i.e., all goals, tasks and relation-
ships belonging to a system actor model.

An OR-decomposition represents alternative ways of
fulfilling actor’s goals [49]. For instance, task T1.1 :
Fetch geolocation (a sub-tree of means-end task T1:
Track line location) has two alternative tasks to track
geo-location: Fetch GPS and Fetch triangulation. Each
task contributes to the soft-goal Geolocation accuracy
through positive or negative contribution links. Addi-
tionally, the fulfillment of a goal, the alternatives to do
it, and the quality of each alternative can all be context-
dependent [1]. In a Contextual Goal Model (CGM),
context is defined as a formula of world predicates,
henceforth defined as context facts. For example, if the
context formed by fact GPS Available does not hold, the
only way of fetching the geo-location would be through
triangulation. Or, if Battery ≤ 15 holds, only manual in-
formation should be collected and goal G4 is disabled,
meaning that G3 alone satisfies G1 in that context.

2.2. Probabilistic Model Checking
Our proposal advocates that dependability require-

ments models be probabilistic, and that sound ap-
proaches and new tools be developed to guide self-

adaptive capabilities and guarantee the fulfillment of
goals. This is because goals are ultimately fulfilled by
executable processes, which can fail due to different
reasons. As a result, the dependability of a goal ex-
ecution relies ultimately on the reliability of its leaf-
tasks. For example, in order to realize goal G1 :
Transportin f oisshared of Figure 1, if any of the leaf-
tasks fails (e.g., T1.22Postdata), the realization of G1
can be sensibly compromised.

In contrast to model checking techniques for which
the absolute correctness of a system is verified, proba-
bilistic model checking (PMC) is about computing the
probabilities with which the properties of interest are
verified on the system. To this end, conventional transi-
tion systems are enriched with probabilities [6]. In our
work, such probabilities represent estimates of success-
ful task executions, i.e. the reliability of the different
tasks. Accordingly, probabilistic model checking allows
for quantitative statements about the behavior of a sys-
tem, expressed as probabilities or expectations, in addi-
tion to the qualitative statements made by conventional
model checking [26].

Transition systems are often augmented with
Discrete-Time Markov Chains (DTMC) and Markov
Decision Processes (MDP) [26]. In addition to
specifying the probability and/or timing of transition
occurrences, one can also set rewards (or equivalently,
costs) to specify additional properties of interest [25]
(e.g., expected power consumption or number of lost
messages).

The PMC technique used in this paper is supported
by the PRISM probabilistic model checker [29], which
supports discrete- and continous-time markov chains
as well as MDP. This choice comes from the richness
of its environment —and of the probabilistic models
it supports— and from its maturity, witnessed by the
many different successful uses and case studies [27].
Both qualitative and quantitative analysis are supported.
As we further explain in Section 3.2, this work adopts
DTMCs as our modeling structures. As already said,
goals are ultimately realized by leaf-tasks, and the over-
all system behavior is the realization of these tasks.
Since the behavior of a leaf-task is modeled as a finite
transition system, a DTMC is a natural modeling choice
since it inherits the structures of such transition systems.

Modules are the main structures in a PRISM
model [28]: local variables describe its (finite) states,
while commands its behavior, that is, state transitions
constrained by guards. These guards can predicate on
any variable in the module. Finally, actions are used for
naming commands and for synchronization. For exam-
ple, a PRISM DTMC module takes the syntax in List-

3

https://www.researchgate.net/publication/41459789_PRISM_Probabilistic_model_checking_for_performance_and_reliability_analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41693738_A_Goal-based_Framework_for_Contextual_Requirements_Modeling_and_Analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234825825_Principles_of_Model_Checking_Representation_and_Mind_Series?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

Figure 1: Excerpt of the Contextual Goal Model for the Mobee Mobile System

ing 1.
1 const double <probability >; //model constant
2 module <module_name >
3 state : [0..n] init 0; //local module

variable
4

5 [<action >] <state guard > ->
6 <probability >:(< state update >);// command
7 endmodule

Listing 1: PRISM DTMC syntax.

Once predicate guard is satisfied, the module makes
a transition with a certain probability, where 0 ≤

probability ≤ 1, to state update. The probability may
be omitted, in which case it is assumed to be 1. Label
action is used to tag a command that has to be synchro-
nized with other commands in the same or in different
modules following a process algebra style, as long as
guard conditions are enabled. When there is no action
label, the command is run asynchronously1.

To reason about the properties of a system modeled as
a DTMC, one can use Probabilistic Computation Tree
Logic (PCTL) [24], which extends the original time-
bounded or unbounded temporal logics for property

1We refer the careful reader to [28] for further details on the
PRISM language.

specification in Computation Tree Logic (CTL) [12].
The specification of dependability properties in PCTL
has been extensively explored in previous works [25,
41, 26]. In particular, the work by Grunske [18] shows
that the reachability property expressed by the Proba-
bilistic Existence PCTL formula P =? [F(ϕ)] has been
widely used to specify dependability attributes. Such a
Probabilistic Existence property computes the probabil-
ity with which a system will eventually reach a state that
satisfies ϕ. The satisfaction of this formula also guaran-
tees that a final and successful system state is reached
regardless of the time needed to reach it. If a time bound
is a concern, the Probabilistic Existence formula is ex-
pressed as P =? [F[t1,t2] (ϕ)], and it computes the prob-
ability with which ϕ will eventually become true within
the time interval [t1, t2]. In our proposal, we verify the
dependability properties that pertain the successful ful-
fillment of system goals, irrespective of the time. There-
fore, the temporal logic property of our interest is the
unbounded Probabilistic Existence.

Conventional PMC associates single values to the
probabilities with which state transitions can be taken.
This means that every time one of these values changes,
the model must be recreated and reanalyzed —maybe,

4

https://www.researchgate.net/publication/41459789_PRISM_Probabilistic_model_checking_for_performance_and_reliability_analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/2258189_A_Logic_for_Reasoning_about_Time_and_Reliability?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234807189_Automatic_Verification_of_Finite_State_Concurrent_Systems_Using_Temporal_Logic_Specifications?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220376411_Dependability_analysis_in_the_Ambient_Assisted_Living_Domain_An_exploratory_case_study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221554456_Specification_patterns_for_probabilistic_quality_properties?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

partially [15]. In contrast, parametric model checking
calls for transition probabilities specified as functions
over a set of parameters. Such a model checking tech-
nique enables a more flexible analysis, where verifica-
tion produces parametric formulas and not single val-
ues: the probabilistic satisfiability of a PCTL property is
an algebraic formula that relates the probability of sat-
isfying the formula to used parameters. For example,
these formulas can be computed off-line, while values
(obtained by runtime system monitoring) are assigned
to parameters at runtime.

To this end, PARAM [22] is a parametric model
checking tool that extends the PRISM2 modeling lan-
guage with the possibility of specifying parameters as
either float or integer values [23] via

param int| f loat < parameter >;

These parameters can then be used to specify the prob-
ability distributions in the model.

For example, PARAM would only require to change
line 1 of Listing 1 into param double < probability >.
The parametric formula is then built automatically by
PARAM3. This way one can also solve the formula for
a particular configuration of the parameters, or iden-
tify the optimal values of the parameters for satisfying
it [22].

3. GODA

Figure 2 illustrates the analysis process behind
GODA (Goal-Oriented Dependability Analysis): a first
Goal Model is produced through conventional goal
modeling, then it is augmented with contextual and run-
time information and becomes a Contextual and Run-
time Goal Model (CRGM). Once the CRGM of the sys-
tem is complete, it is automatically translated into a
DTMC. Dependability properties are then rendered as
PCTL formulas, and the verification of the system can
be carried out.

The whole process is intrinsically iterative, and the
different activities can be repeated multiple times be-
fore obtaining a complete and coherent specification of
the system. For example, context restrictions may end
up in no alternatives to fulfill a certain goal, and this
may require changes to the goal model. It could also

2Currently, PRISM model checker also supports parametric model
checking [29], which is an implementation of the same foundation
over which PARAM is implemented [21, 20].

3We refer the careful reader to [23] for further explanation on
PARAM.

be that the design-time analysis reveals violations in the
dependability constraints, and then a new iteration must
be carried out.

3.1. Contextual and Runtime Goal Models

A Contextual and Runtime Goal Model (CRGM) re-
fines the concept of Contextual Goal Model and of Run-
time Goal Model. In this case, goals are to be fulfilled by
the system by taking into account (1) contextual speci-
fications of the CGM [1] and (2) the cooperation of in-
stantiated goals and tasks at runtime, following RGM
runtime rules, extended from Dalpiaz et al. [13]. Table 1
synthesizes a textual description of each RGM rule we
apply in GODA and its corresponding semantics.

Expression Meaning
AND (n1;n2) Sequential fulfillment of n1 and n2.
AND (n1#n2) Parallel fulfillment of n1 and n2.
OR (n1;n2) Sequential fulfillment of either n1 or n2 or both.
OR (n1#n2) Parallel fulfillment of either n1 or n2 or both.
n+k n must be fulfilled k times, with k > 0.
n#k Parallel fulfillment of k instances of n, with k > 0.
n@k Maximum k − 1 fulfillment retries of k, with k > 0.
opt(n) Optional fulfillment of n.
try(n)?n1:n2 If n is fulfilled, n1 must be fulfilled; otherwise, n2.
n1|n2 Alternative fulfillment of either n1 or n2, not both.
skip No action. Useful for conditional ternary expressions.

Table 1: RGM rules, where n, n1 and n2 represent goals or tasks in a
goal model (extended from Dalpiaz et al. [13]).

Suppose a node n, which could be either a goal or
a task in a CRGM, is decomposed into n1 and n2.
The AND/OR-decomposition in our CRGM is fulfilled
in accordance with the sequential and parallel runtime
rules associated with the parent node n: AND (n1; n2)
requires the fulfillment of n1 prior to n2, while an AND
(n1#n2) does not impose any order on the fulfillment of
n1 and n2.

An OR-decomposition introduces a variation
point [49]. As a result, goals/tasks in an OR-
decomposition are mutually independent in their
fulfillment. That is, the OR-decomposition of n into n1
and n2 requires that: (1) either n1 or n2 be fulfilled and
(2) the fulfillment of n2 is independent of the fulfillment
of n1. As such, an OR (n1; n2) means the sequential
fulfillment of either n1 or n2 or both, while an OR
(n1#n2) does not impose any order on the fulfillment of
either n1 or n2 or both.

The other rules work as follows. If n (either a goal or
a task) must be repeated k times (n + k rule), k instances
of n must be fulfilled. If a node is opt-annotated, it is

5

https://www.researchgate.net/publication/41693738_A_Goal-based_Framework_for_Contextual_Requirements_Modeling_and_Analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221555426_Run-time_efficient_probabilistic_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

Figure 2: GODA process.

optionally fulfilled, otherwise skipped. The ternary try
(try(n)? n1 : n2) is interpreted as the fulfillment of n fol-
lowed by n1 (if n succeeds) or n2 (should n fail). Finally,
alternative rule (n1|n2) is interpreted as an exclusive or
execution of n1 or n2.

Definition 3.1. A CRGM is a tuple (M, rt_annot,
ctx_annot, ID) where:

• M is a design-time goal model [13] defined as a tu-
ple (N,R), where N is a set of goals and tasks in the
model, and R the corresponding set of relationship
links between the elements in N.

• rt_annot is a runtime annotation function that re-
turns the runtime annotation associated with a
node n ∈ N such that rt_annot(n) can be a single
runtime rule or a composition of such rules.

• ctx_annot is a context annotation function that re-
turns the context formulae associated with a node
n ∈ N.

• ID is an index function that maps all n ∈ N to an
identifier ID(n) = pre f ix(n) + counter(n), where
pre f ix(n) returns ‘G’ or ‘T’ for goals and tasks,
respectively, + operator is a simple concatenation
function and counter(n) returns:

– an integer to uniquely identify goals in as-
cending order;

– a constant 1 for means-end tasks;

– an integer vector corresponding to the
branch and depth level of the task, incre-
mented in ascending order;

Figure 3 presents the CRGM that corresponds to the
goal model of Figure 1, where each decomposed node
is augmented with runtime annotations placed under-
neath the name of the node in square brackets. Root
goal G1 is achieved by the parallel fulfillment (denoted
as [G3#G4]) of subgoals G3 and G4, while subgoal
G3 is the realization of sub-goals G8 and G9, which
are fulfilled by the realization of their corresponding
means-end tasks. Taking the realization of task T1 Pro-
cess modification, the sequential successful execution of
leaf-tasks T1.1, T1.2 and T1.3 fulfills T1, while T1.2 is re-
alized by the sequential realization of T1.21 and T1.22.
Note that subtask T1.22 can be executed at most twice
(denoted as [T1.22@2]) if the first execution fails (and
thus the task is not realized). On the right-hand side
branch, subgoal G4 is realized by subgoal G10, but only
if context condition C1 holds. Otherwise, G4 is disabled
and G1 depends on G3 only. Task T1 is realized by the
sequential and successful execution of T1.1 and T1.2. In
particular, T1 is fulfilled if at least one execution —out
of maximum three attempts— of task T1.1 is success-
ful and then also task T1.2 is realized, since the activa-
tion of T1.2 depends on the success of T1.1 (denoted as
[try(T1.1@3)? T1.2 : skip]). Task T1.1 can be satisfied
by the fulfillment of either T1.11 or T1.12. Additionally,
T1.11 is only available if context C2 is satisfied.

Finally, to exemplify ID index function let us con-
sider task T1.2 : Processdata on the rightmost side

6

https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

Figure 3: Corresponding CRGM for the goal model from Figure 1.

of Figure 3. Its T prefix identifies that Process data
is a task. Function counter returns a decimal number
(1.2), where 1 inherits from its parent means-end task
T1, while the remaining part (.2) represents its loca-
tion vector w.r.t. to its parent node T1. The content
of the location vector (2) represents the second AND-
decomposition branch of T1 and the position in the vec-
tor represents its depth-level. Accordingly, the child
nodes of a task inherit their parent’s index and incre-
ment their location vector following their branch and
depth level. For example, task T1.2 has two children:
Validate data and Post data. As a result, Validate data,
on the first AND-decomposition branch, is indexed as
T1.21, while Post data is indexed as task T1.22 since it is
on the second AND-decomposition branch of T1.2. Note
that both child nodes of T1.2 have their location vector
incremented following their depth level in the tree struc-
ture.

3.2. From CRGM to DTMC

This section describes the transformation of a CRGM
into a corresponding DTMC, rendered in the PRISM
language.

The state diagram of Figure 4 describes the states
of CRGM nodes. Differently from [13], state Waiting
is not explicitly represented since we abstract it away
in state Running. Additionally, state Skipped has been
added to represent nodes that have not been either se-
lected as an option (or alternative) or enacted due to
contextual restrictions.

Figure 4: Transition states of CRGM nodes.

For each state in Figure 4, there is a corresponding
value for the state variable s in the PRISM model. State
Initial (s = 0) corresponds to the initial/ready state of
a node. From this state, a node can enter state Run-
ning (s = 1), if it is selected, or the final state Skipped
(s = 3), if it does not participate in the fulfillment of the

7

https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

parent goal. The result of the fulfillment can be either
Success (s = 2) or Failure (s = 4), that is, the fulfill-
ment has deviated from its expected behavior as a con-
sequence of natural phenomena, a human-made fault, a
malicious fault, or an interaction fault [5].

The DTMC that corresponds to the state diagram of
Figure 4 is presented in Listing 2 as a PRISM mod-
ule. In particular, dNode represents the probability of
the successful fulfillment of the node, that is, the prob-
ability of moving from Running (s=1) to Success state
(s=2). Consequently, 1 − dNode represents the proba-
bility from Running (s=1) to Failure state (s=4). Due
to optionality of node fulfillment, transition to Skipped
state (s=3) means the node is opted-out. For simplicity,
skipped states have their action labelled in the DTMC
as success.

Note that the way in which dNode is initialized de-
pends on the type of the node. If the node is a non-leaf
task, dNode is given a value by means of the proba-
bilistic existence property (Equation 1). For leaf-tasks,
considering they ultimately realize goals in a concrete
level, their dNode can be obtained in various ways, for
example, by monitoring the system for Mean-times to
failure (MTTF). A sound approach for such computa-
tion at runtime may follow from recent work in the field
by Su et al. [43].

1 double dNode; // dependability of a node
2 module N1
3 s :[0..4] init 0;
4

5 [init] s = 0 -> (s’=1);//init to running
6 [] s = 1 -> dNode : (s’=2) + (1 - dNode) : (s

’=4);// running to final or failure states
7 [success] s = 2 -> (s’=2);//final state success
8 [success] s = 3 -> (s’=3);//final state skipped
9 [fail] s = 4 -> (s’=4);//final state failure

10 endmodule

Listing 2: DTMC for the state diagram of nodes.

The DTMC for a goal Gi is obtained by composing
the DTMC models of its subtrees. Accordingly, the
DTMC models of nodes that fulfill all chains of sub-
goals up to Gi will be composed. To provide a precise
specification of the transformation of a CRGM into a
DTMC, we propose a generic inference rule in the form
of structured operational semantics:

C1 ` n1 → d1 < C2 ` n2 → d2,C3 ` n3 → d3 >

C1 <,C2,C3 >` ∗(n1 <, n2, n3 >)→ ~(d1 <, d2, d3 >)

where n1, n2, and n3 are are either CRGM goals or
tasks, d1, d2, and d3 are DTMCs, and C1, C2, and
C3 are context facts. ∗ identifies any if the runtime
rule operators (sequential, interleaving4, alternative, op-

4A widely adopted paradigm for parallel systems is that of inter-

tional, conditional, cardinality), described bellow. An-
gle brackets denote an optional list of parameters to ac-
commodate the different arities of the operators. Sym-
bol ` indicates that the context on the left is used in
the transformation of the node on the right into a cor-
responding DTMC. If the context is omitted, it is as-
sumed to be empty. The DTMC representation of a
composed node ∗(n1 <, n2, n3 >) then corresponds to
defining ~(d1 <, d2, d3 >) in terms of the primitives
provided by PRISM, as explained in Subsections 3.2.1–
3.2.5.

The DTMC obtained by transformation from a
CRGM must preserve the temporal order among goals
and tasks and respect the further behavioral constraints
imposed by runtime rules. To convey this, we have de-
fined an abstract fulfillment time of the CRGM nodes
formalized as follows:

Definition 3.2. The fulfillment time of a CRGM node
is a tuple τ = (f , p), where p represents a sequen-
tial execution branch, named time path, and f , named
time frame, represents the sequential execution position
within a given time path, with f , p ∈ N.

The fulfillment time of a CRGM starts at τ = (0, 0),
and follows a depth-first traversal of the goal tree, from
left to right, in accordance with the runtime rules of each
CRGM node (goals and tasks). Nodes can be fulfilled
either sequentially or in parallel with respect to each
other. The initial state of each CRGM node is mapped
to a specific τ, which defines the time before the fulfill-
ment of the node. Sequential nodes ni and n j are in sub-
sequent time frames, that is, τi = (f , p), and τ j = (f ′, p),
where f ′ > f . In contrast, parallel nodes share the same
time frame and path, that is, τi = τ j = (f , p).

The effect of each rule on the τ of the involved nodes
after their fulfillment —that is, in their final states— is
also described in the corresponding annotations to the
activity diagrams. It is also described in the DTMC ex-
pression ~(d1 <, d2, d3 >) as a suffix in the [action] con-
struct of specific transitions, as follows: the first suffix
term represents the time frame f and the second, sepa-
rated by an underscore, the time path p of that node. The
suffix is used for the synchronization of final and initial
states of subsequent nodes and initial states of parallel
nodes.

leaving, that is, the nondeterministic choice between activities of the
simultaneously acting processes [6]. Henceforth, the term interleav-
ing is used to identify the nondeterministic fulfillment of nodes under
parallel runtime rule.

8

https://www.researchgate.net/publication/234825825_Principles_of_Model_Checking_Representation_and_Mind_Series?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3449335_Basic_Concepts_and_Taxonomy_of_Dependable_and_Secure_Computing?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

3.2.1. Sequential and Parallel Nodes
Figures 5a and 5b illustrate the sequential and paral-

lel fulfillment of nodes n1 and n2, where semicolon (;)
denotes sequential and hash (#) denotes parallel, respec-
tively. The bold line in Figure 5b refers to the parallel
fulfillment of nodes n1 and n2.

(a) Sequential nodes n1; n2.

(b) Parallel nodes n1#n2.

Figure 5: Sequential and parallel nodes

Sequential nodes (n1; n2) have subsequent time
frames, meaning that the fulfillment of n2 comes after
the fulfillment of n1. To model this, we have synchro-
nized the initial state of d2 (the DTMC that corresponds
to n2) with the final state of d1, as shown in Listing 3.
The synchronization occurs between lines 11/13 (final
state of first module) and lines 21/23 (initial state of
second module). Lines 27/29 say that the time frame
is increased and the time path remains the same.

In contrast, parallel nodes (n1#n2) have the same τ,
i.e., they have the same time frame and path, mean-
ing that they start their fulfillment in parallel—achieved
through the synchronization of their initial state. In-
terleaving occurs in the running state. Accordingly, in
Listing 4, the interleaving occurs at lines 9/25 (running
state), while the synchronization in the initial state oc-
curs between lines 5/7 and lines 21/23. Lines 11/13 and
lines 27/29 (final state) are synchronized with sequential
nodes (if any) after n1 and n2, respectively.

In both cases, the context of each node is addressed
by using formulas (e.g, C1 and ! C1 in n1 and simi-
larly for n2) that are then employed as guard condi-
tions in the corresponding node modules, for example,
lines 5,7,21,23 in Listing 3 and Listing 4. If the con-
text formula is not satisfied, a deterministic transition to
the skipped final state automatically excludes the related

nodes from the analysis; otherwise, a transition evolves
the node to the running state. This treatment of context
is also applied to the remaining templates.

1 double dNode;
2 module N1
3 sN1 :[0..4] init 0;
4 //init to running
5 [initN1 <f>_<p>] C1 & sN1 = 0 -> (sN1 ’=1);
6 //init to skipped
7 [initN1 <f>_<p>] !C1 & sN1 = 0 -> (sN1 ’=3);
8 // running to final state
9 [] sN1 = 1 -> dNodeN1 : (sN1 ’=2) + (1 -

dNodeN1) : (sN1 ’=4);
10 //final state success
11 [success <f>_<p>] sN1 = 2 -> (sN1 ’=2);
12 //final state skipped
13 [success <f>_<p>] sN1 = 3 -> (sN1 ’=3);
14 //final state failure
15 [failN1] sN1 = 4 -> (sN1 ’=4);
16 endmodule
17

18 module N2
19 sN2 :[0..4] init 0;
20 //init to running
21 [success <f>_<p>] C2 & sN2 = 0 -> (sN2 ’=1);
22 //init to skipped
23 [success <f>_<p>] !C2 & sN2 = 0 -> (sN2 ’=3);
24 // running to final state
25 [] sN2 = 1 -> dNodeN2 : (sN2 ’=2) + (1 -

dNodeN2) : (sN2 ’=4);
26 //final state success
27 [success <f+1>_<p>] sN2 = 2 -> (sN2 ’=2);
28 //final state skipped
29 [success <f+1>_<p>] sN2 = 3 -> (sN2 ’=3);
30 //final state failure
31 [failN2] sN2 = 4 -> (sN2 ’=4);
32 endmodule

Listing 3: DTMC template for the sequential composition of nodes n1
and n2.

1 double dNode;
2 module N1
3 sN1 :[0..4] init 0;
4 //init to running
5 [init <f>_<p>] C1 & sN1 = 0 -> (sN1 ’=1);
6 //init to skipped
7 [init <f>_<p>] !C1 & sN1 = 0 -> (sN1 ’=3);
8 // running to final state
9 [] sN1 = 1 -> dNodeN1 : (sN1 ’=2) + (1 -

dNodeN1) : (sN1 ’=4);
10 //final state success
11 [success <f>_<p>] sN1 = 2 -> (sN1 ’=2);
12 //final state skipped
13 [success <f>_<p>] sN1 = 3 -> (sN1 ’=3);
14 //final state failure
15 [failN1] sN1 = 4 -> (sN1 ’=4);
16 endmodule
17

18 module N2
19 sN2 :[0..4] init 0;
20 //init to running
21 [init <f>_<p>] C2 & sN2 = 0 -> (sN2 ’=1);
22 //init to skipped
23 [init <f>_<p>] !C2 & sN2 = 0 -> (sN2 ’=3);
24 // running to final state
25 [] sN2 = 1 -> dNodeN2 : (sN2 ’=2) + (1 -

dNodeN2) : (sN2 ’=4);
26 //final state success
27 [success <f+1>_<p+1>] sN2 = 2 -> (sN2 ’=2);
28 //final state skipped
29 [success <f+1>_<p+1>] sN2 = 3 -> (sN2 ’=3);
30 //final state failure
31 [failN2] sN2 = 4 -> (sN2 ’=4);

9

32 endmodule

Listing 4: DTMC template for the parallel composition of nodes n1
and n2.

3.2.2. Optional Node
A node in an AND-decomposition may be tagged

as optional, meaning that its fulfillment is not a nec-
essary condition for the fulfillment of the element it
refines. The other non-optional elements in an AND-
decomposition must be fulfilled. Figure 6 illustrates an
optional node denoted as opt(n).

Figure 6: Optional node opt(n).

Optional nodes do not cause any increment to τ. To
synchronize an optional node n1 with a subsequent node
n2, the initial state of n2 is synchronized with both the
skipped and succeeded states of n1. Correspondingly,
the optionality in the DTMC model of Listing 5 comes
from an additional constant OPT_N_ID, whose value
determines the actual state after the initial one: running
if OPT_N_ID = 1, or skipped if OPT_N_ID = 0. This
is implemented in the PRISM model (Line 7 of List-
ing 5) by means of a deterministic transition to either
state running or state skipped. Therefore, the selection
depends on an external input provided at design-time by
the user or at runtime by the component responsible for
dependability analysis.

1 const int OPT_N1;
2 double dNode;
3

4 module N1
5 sN1 :[0..4] init 0;
6 //init to running or to skipped
7 [initN1 <f><p>] C1 & sN1 = 0 -> (OPT_N1) : (sN1

’=1) + (1-OPT_N1) : (sN1 ’=3);
8 //init to skipped
9 [initN1 <f><p>] !C1 & sN1 = 0 -> (sN1 ’=3);

10 // running to final state
11 [] sN1 = 1 -> dNodeN1 : (sN1 ’=2) + (1-dNodeN1)

: (sN1 ’=4);
12 //final state success
13 [success <f+1>_<p>] sN1 = 2 -> (sN1 ’=2);
14 //final state skipped
15 [success <f+1>_<p>] sN1 = 3 -> (sN1 ’=3);
16 //final state failure
17 [failN1] sN1 = 4 -> (sN1 ’=4);
18 endmodule

Listing 5: DTMC template for an optional node n1 with additional
selector OPT_N1.

3.2.3. Alternative Nodes

Figure 7: Alternative nodes n1|n2.

Alternative nodes are mutually exclusive (XOR-
decomposition) and only one of them is executed. Fig-
ure 7 proposes the graphical representation of two alter-
native nodes (n1|n2). These nodes share both the time
frame and path as only one node is selected. The in-
crement of τ is defined by the preceding sequential or
parallel rule. Like optional nodes, the selection among
the alternative nodes depends on an external input. The
corresponding DTMC model is then obtained by apply-
ing the pattern for optional nodes (Section 3.2.2) to each
alternative node and also by requiring that the selectors
be alternatively enabled, as shown in Listing 6. The al-
ternative chosen to fulfill the parent node also comes
from additional constants OPT_N_ID, which must be
selected alternatively.

1

2 const int OPT_N1;
3 // alternatively selected with OPT_N1
4 const int OPT_N2;
5 double dNode;
6

7 module N1
8 sN1 :[0..4] init 0;
9 //init to running or to skipped

10 [init <f><p>] C1 & sN1 = 0 -> (OPT_N1) : (sN1
’=1) + (1-OPT_N1) : (sN1 ’=3);

11 //init to skipped
12 [init <f><p>] !C1 & sN1 = 0 -> (sN1 ’=3);
13 // running to final state
14 [] sN1 = 1 -> dNodeN1 : (sN1 ’=2) + (1-dNodeN1)

: (sN1 ’=4);
15 //final state success
16 [success <f+1>_<p>] sN1 = 2 -> (sN1 ’=2);
17 //final state skipped
18 [success <f+1>_<p>] sN1 = 3 -> (sN1 ’=3);
19 //final state failure
20 [failN1] sN1 = 4 -> (sN1 ’=4);
21 endmodule
22

23 module N2
24 sN2 :[0..4] init 0;
25 //init to running or to skipped
26 [init <f><p>] C2 & sN2 = 0 -> (OPT_N2) : (sN2

’=1) + (1-OPT_N2) : (sN2 ’=3);
27 //init to skipped
28 [init <f><p>] !C2 & sN2 = 0 -> (sN2 ’=3);
29 // running to final state

10

30 [] sN2 = 1 -> dNodeN2 : (sN2 ’=2) + (1-dNodeN2)
: (sN2 ’=4);

31 //final state success
32 [success <f+1>_<p>] sN2 = 2 -> (sN2 ’=2);
33 //final state skipped
34 [success <f+1>_<p>] sN2 = 3 -> (sN2 ’=3);
35 //final state failure
36 [failN2] sN2 = 4 -> (sN2 ’=4);
37 endmodule

Listing 6: DTMC template for alternative nodes n1 and n2 with
OPT_N_1 and OPT_N_2 used as selectors.

3.2.4. Conditional Nodes
The fulfillment of some nodes may depend on the ful-

fillment of others. In this case, an OR-decomposition is
annotated with a ternary rule try(n1) ? n2 : n3, where the
fulfillment of n2 depends on the success of n1, whereas
the fulfillment of n3 depends on its failure. S kip can be
used instead of n2 or n3 to say that nothing must happen.
For example, try(n1) ? skip : n2, states that n2 is only
executed if n1 fails, and, if it succeeds, nothing happens.
Note that the aforementioned solution can also be used
to render a fault-tolerant fulfillment of n1. Figure 8 il-
lustrates a conditional decomposition.

Figure 8: Conditional decomposition try(n1) ? n2 : n3.

A conditional decomposition increments the time
frame as the conditional nodes come after the success or
failure of n1. If n1 succeeds, it synchronizes its final suc-
cessful state with the initial state of the subsequent node,
that is, n2. Otherwise, the final f ailed state of n1 syn-
chronizes with the initial state of the exceptional node
(n3). In case n2 succeeds its fulfillment, it synchronizes
with the skipped state of node n3. The analogous syn-
chronization procedure applies between nodes n1 and n3
in case the second argument of the ternary statement, n2,
is not present. Thus to represent conditional executions
in DTMC models, shared actions synchronize the initial
state of conditional nodes to the success and failure of
the ancestor ones (Listing 7).

1 double dNode;
2

3 module N1
4 sN1 :[0..4] init 0;

5 //init to running
6 [initN1 <f><p>] C1 & sN1 = 0 -> (sN1 ’=1);
7 //init to skipped
8 [initN1 <f><p>] !C1 & sN1 = 0 -> (sN1 ’=3);
9 // running to final state

10 [] sN1 = 1 -> dNodeN1 : (sN1 ’=2) + (1 -
dNodeN1) : (sN1 ’=4);

11 //final state success
12 [success <f><p>] sN1 = 2 -> (sN1 ’=2);
13 //final state skipped
14 [success <f><p>] sN1 = 3 -> (sN1 ’=3);
15 //final state failure
16 [failN1] sN1 = 4 -> (sN1 ’=4);
17 endmodule
18

19 module N2
20 sN2 :[0..4] init 0;
21 //init to running
22 [failN1] C2 & sN2 = 0 -> (sN2 ’=1);
23 //init to skipped
24 [failN1] !C2 & sN2 = 0 -> (sN2 ’=3);
25 //not used , skip running
26 [success <f><p>] sN2 = 0 -> (sN2 ’=3);
27 // running to final state
28 [] sN2 = 1 -> dNodeN2 : (sN2 ’=2) + (1 -

dNodeN2) : (sN2 ’=4);
29 //final state success
30 [success <f+1><p>] sN2 = 2 -> (sN2 ’=2);
31 //final state skipped
32 [success <f+1><p>] sN2 = 3 -> (sN2 ’=3);
33 //final state failure
34 [failN2] sN2 = 4 -> (sN2 ’=4);
35 endmodule

Listing 7: DTMC template for conditional nodes n1 and n2 such that
try(n1) ? skip : n2.

3.2.5. Multiple Instances
Instead of considering a single node instance, one can

think of multiple instances of the same node n executed
sequentially (n + k, Figures 9a) or in parallel (n#k, Fig-
ure 9b). In both cases, an upper bound k is used to limit
the number of instances that should be executed.

In the corresponding DTMC models, the modules are
repeated k − 1 times —through renaming— in addi-
tion to the original one. In case of sequential compo-
sition, the state variable and the initial and final tran-
sition actions are renamed at each repetition, forming
a sequential fulfillment chain of the same node, where
τi = (f , p)⇒ τi+1 = (f + 1, p), as shown in Listing 8.

In parallel compositions, only the state variable and
the final state action are renamed, resulting in the syn-
chronization of the initial transitions of the renamed
modules, and the increment of the time path of subse-
quent nodes, which causes the run and final actions to
remain unsynchronized. Thus, the renaming of mod-
ules forms an interleaving of the different instances of
the same node at their running states, while the incre-
ment of τi = (f , p) ⇒ τi+1 = (f + 1, p + 1) leaves each
final state unsynchronized w.r.t. other parallel nodes in
the same decomposition (Listing 9).

1 double dNode;
2 module N1

11

(a) Sequential fulfillment of k
instances of n (n + k).

(b) Parallel fulfillment of k instances of n (n#k).

Figure 9: Multiple instances of n.

3 sN1 :[0..4] init 0;
4 //init to running
5 [success <f>_<p>] C1 & sN1 = 0 -> (sN1 ’=1);
6 //init to skipped
7 [success <f>_<p>] !C1 & sN1 = 0 -> (sN1 ’=3);
8 // running to final state
9 [] sN1 = 1 -> dNodeN1 : (sN1 ’=2) + (1 -

dNodeN1) : (sN1 ’=4);
10 //final state success
11 [success <f+1>_<p>] sN1 = 2 -> (sN1 ’=2);
12 //final state skipped
13 [success <f+1>_<p>] sN1 = 3 -> (sN1 ’=3);
14 //final state failure
15 [failN1] sN1 = 4 -> (sN1 ’=4);
16 endmodule
17 module N2 = N1 [sN1=sN2 , failN1=failN2 , success <

f+1>_<p>=success <f+2>_<p>, success <f>_<p>=
success <f+1>_<p>] endmodule

18 ...
19 module N<K> = N<K-1> [sN <K-1>=sN<K>, failN <K-1>=

failN <K>, success <f+K-1>_<p>=success <f+K>_<p
>, success <f+K-2>_<p>=success <f+K-1>_<p>]
endmodule

Listing 8: DTMC template for node n1 with k =< K > sequential
instances.

1 double dNode;
2 module N1
3 sN1 :[0..4] init 0;
4 //init to running
5 [success <f>_<p>] C1 & sN1 = 0 -> (sN1 ’=1);
6 //init to skipped
7 [success <f>_<p>] !C1 & sN1 = 0 -> (sN1 ’=3);
8 // running to final state
9 [] sN1 = 1 -> dNodeN1 : (sN1 ’=2) + (1 - dNodeN1

) : (sN1 ’=4);
10 //final state success
11 [success <f+1>_<p>] sN1 = 2 -> (sN1 ’=2);
12 //final state skipped
13 [success <f+1>_<p>] sN1 = 3 -> (sN1 ’=3);
14 //final state failure
15 [failN1] sN1 = 4 -> (sN1 ’=4);
16 endmodule

17 module N2 = N1 [sN1=sN2 , failN1=failN2 , success <
f+1>_<p>=success <f+1>_<p+1>] endmodule

18 ...
19 module N<K> = N<K-1> [sN <K>=sN<K-1>, failN <K>=

failN <K-1>, success <f+1>_<p+K-2>=success <f+1>
_<p+K-1>] endmodule

Listing 9: DTMC template for node n1 with k =< K > parallel
instances.

In addition to sequential and parallel fulfillment, we
also support the specification of retries for node fulfill-
ment (n@k). This is a special case of sequential fulfill-
ment. In this particular case, the run action is performed
multiple times until either the maximum number of re-
tries or the final success state is reached. If the former
applies, the fail action takes the node to the final fail-
ure state. Listing 10 presents the corresponding DTMC
template.

1 double dNode;
2 const double maxRetriesN1=<K>;
3

4 module N1
5 sN1 :[0..4] init 0;
6 triesN1 : [0.. maxRetriesN1] init 0;
7 //init to running
8 [success <f>_<p>] C1 & sN1 = 0 -> (sN1 ’=1);
9 //init to skipped

10 [success <f>_<p>] !C1 & sN1 = 0 -> (sN1 ’=3);
11 //try
12 [] sN1 = 1 & triesN1 < maxRetriesN1 -> dNodeN1

: (sN1 ’=2) + (1 - dNodeN1) : (triesN1 ’=
triesN1 +1);

13 //no more retries
14 [] sN1 = 1 & triesN1 = maxRetriesN1 -> (sN1 ’=4)

;
15 //final state success
16 [success <f+1>_<p>] sN1 = 2 -> (sN1 ’=2);
17 //final state skipped
18 [success <f+1>_<p>] sN1 = 3 -> (sN1 ’=3);
19 //final state failure
20 [failN1] sN1 = 4 -> (sN1 ’=4);
21 endmodule

Listing 10: DTMC template for node n1 with retry and k =< K >.

3.3. Synthesis of Dependability Properties
The specification of dependability properties in

GODA is based on the idea of probabilistic existence
property [19], that is, the probabilistic successful fulfill-
ment of system goals, irrespective of the time. Such
properties compute the probability that a system will
eventually reach a state that satisfies a goal of interest.
Therefore, the probability of fulfilling a goal Gi is de-
fined as:

PGi =? [F (φ)] (1)

where the proposition φ represents the success of Gi

and is recursively formed by composing the proposi-
tions of the nodes underlying Gi. For each runtime rule
contained in the runtime annotation of a node n, a cor-
responding part of φ is synthesized as follows:

12

https://www.researchgate.net/publication/223187073_An_effective_sequential_statistical_test_for_probabilistic_monitoring?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

• Sequential or parallel fulfillment of nodes ni and
n j:

φ = succeededi ∧ succeeded j

The case of k sequential or parallel nodes ni is a
mere extension of the aforementioned proposition.

• Optional fulfillment of nodes ni:

φ =

k∨
i=1

(succeededi ∨ skippedi),

where 0 < i ≤ k.

• Alternative fulfillment of nodes ni and n j:

φ = (succeededi∧skipped j)∨(skippedi∧succeeded j),

where exactly one node should be successfully ful-
filled.

• Conditional fulfillment of nodes ni, n j and nk:

φ = (succeededi∧succeeded j)∨(f ailedi∧succeededk),

where n j should succeed if ni succeeds and nk

should succeed if ni fails.

• Retry of k node instances of ni:

φ = succeededi

Note that property φ in this last case is the same as
the one for ni. This is due to the fact that the retries will
happen on the same node while it tries to fulfill. If one
of the attempts succeeds, it leads to the node’s success
state; it leads to the failure state if all attempts fail.

In particular, when a CRGM node ni is constrained
by a context formula Ci, its dependability property φ′ is
defined as follows:

φ′ = (! Ci ∧ skippedi) ∨ φ (2)

where ! Ci means that the context formula constraining
ni is not satisfied and, therefore, the fulfillment of ni is
skipped. Otherwise, Ci is satisfied and the fulfillment
of ni depends on the proposition φ corresponding to the
runtime annotation of ni.

Following Section 3.4 presents how the dependabil-
ity property takes part into the design-time as well as
runtime verification process in GODA.

3.4. Model Composition and Verification
The following sections explain the composition of a

DTMC model for design-time verification via PRISM
(Section 3.4.1) and parametric formulas for runtime ver-
ification (Section 3.4.2).

3.4.1. DTMC Model Composition
Since CRGM goals are ultimately realized by leaf-

tasks, the overall system behavior is the composition
of these tasks. Additionally, the fulfillment of CRGM
goals is mapped as φ propositions, previously presented
in Section 3.3. As such, goals states (following Fig-
ure 4) are reduced to fulfilled (if φ holds) or not ful-
filled (otherwise). Accordingly, the design-time model
checking for a goal Gi is first obtained by composing the
DTMC model for all leaf-tasks that satisfy all chains of
subgoals up to Gi. Then, the φ propositions for Gi are re-
cursively formed by composing the propositions of the
underlying subgoals of Gi.

The DTMC representation ~(d1 <, d2, d3 >) of the
composed CRGM node ∗(n1 <, n2, n3 >) (following
Section 3.2) is composed by the corresponding DTMCs
for all leaf-tasks underlying n1, and, if applicable, n2,
and n3, respectively. That is, d1, and, if applicable, d2,
and d3 correspond to the compositions that started with
leaf-tasks (bottom-up recursion of the CRGM tree). As
a result, the overall CRGM DTMC may have as many
PRISM modules as there are leaf-tasks underlying n1,
and, if applicable, n2, and n3.

Take, for example, the CRGM in Figure 10. The
transformation of such CRGM renders the PRISM’s
DTMC in Listing 11. The CRGM DTMC is com-
posed by four PRISM modules, one for each leaf-task.
The bottom-up recursion of the CRGM tree can be no-
ticed, for example, in module G3_T1. Such module
models the behavior of task T1, which realizes the left-
most alternative realization of goal G3, considering G1’s
alternative rule [G3|G4]. This alternate is expressed
into XOR_G3 and XOR_G4 constants declared in lines
03/04 and used in line 9 of Listing 11. In case goal G3 is
chosen (XOR_G3 = 1), a transition to running state will
happen. Multiple fulfillment of G3 as three instances of
T1 ([T1 + 3]) in lines 19 and 20 of Listing 11.

1 dtmc
2

3 const int XOR_G3;
4 const int XOR_G4;
5 const double dTaskG3_T1;
6 module G3_T1
7 sG3_T1 :[0..4] init 0;
8 //init to running or skip
9 [success0_0] sG3_T1 = 0 -> XOR_G3 : (sG3_T1

’=1) + (1 - XOR_G3) : (sG3_T1 ’=3);
10 // running to final state
11 [] sG3_T1 = 1 -> dTaskG3_T1 : (sG3_T1 ’=2) + (1

- dTaskG3_T1) : (sG3_T1 ’=4);
12 //final state success
13 [success1_0] sG3_T1 = 2 -> (sG3_T1 ’=2);
14 //final state skipped
15 [success1_0] sG3_T1 = 3 -> (sG3_T1 ’=3);
16 //final state failure
17 [failG3_T1] sG3_T1 = 4 -> (sG3_T1 ’=4);
18 endmodule
19 module G3_T1_S2 = G3_T1 [sG3_T1=sG3_T1_S2 ,

13

Figure 10: A CRGM example.

success1_0=success2_0 , success0_0=success1_0
] endmodule

20 module G3_T1_S3 = G3_T1_S2 [sG3_T1_S2=sG3_T1_S3 ,
success2_0=success3_0 , success1_0=success2_0
] endmodule

21

22 formula G3 = sG3_T1_S3 =2 | sG3_T1_S3 =3;
23

24 const double dTaskG4_T1;
25 module G4_T1
26 sG4_T1 :[0..4] init 0;
27 //init to running or skip
28 [success3_0] sG4_T1 = 0 -> XOR_G4 : (sG4_T1

’=1) + (1 - XOR_G4) : (sG4_T1 ’=3);
29 [] sG4_T1 = 1 -> dTaskG4_T1 : (sG4_T1 ’=2) + (1

- dTaskG4_T1) : (sG4_T1 ’=4);
30 //final state success
31 [success4_0] sG4_T1 = 2 -> (sG4_T1 ’=2);
32 //final state skipped
33 [success4_0] sG4_T1 = 3 -> (sG4_T1 ’=3);
34 //final state failure
35 [failG4_T1] sG4_T1 = 4 -> (sG4_T1 ’=4);
36 endmodule
37

38 formula G4 = sG4_T1 =2 | sG4_T1 =3;
39 formula G1 = G3 | G4;
40

41 const bool fact1;
42 const bool fact2;
43

44 const double dTaskG2_T1_1;
45 module G2_T1_1
46 sG2_T1_1 :[0..4] init 0;
47 //init to running
48 [success4_0] (G1) & (fact2 & fact1) & sG2_T1_1

= 0 -> (sG2_T1_1 ’=1);
49 //not selected , skipped
50 [success4_0] (G1) & !(fact2 & fact1) & sG2_T1_1

= 0 -> (sG2_T1_1 ’=3);
51 // running to final state
52 [] sG2_T1_1 = 1 -> dTaskG2_T1_1 : (sG2_T1_1

’=2) + (1 - dTaskG2_T1_1) : (sG2_T1_1 ’=4);
53 //final state success
54 [success5_0] sG2_T1_1 = 2 -> (sG2_T1_1 ’=2);
55 //final state skipped
56 [success5_0] sG2_T1_1 = 3 -> (sG2_T1_1 ’=3);
57 //final state failure
58 [failG2_T1_1] sG2_T1_1 = 4 -> (sG2_T1_1 ’=4);
59 endmodule
60

61 const double dTaskG2_T1_2;
62 module G2_T1_2
63 sG2_T1_2 :[0..4] init 0;

64 //init to running
65 [failG2_T1_1] (G1) & sG2_T1_2 = 0 -> (sG2_T1_2

’=1);
66 //try succeeded , skip running
67 [success5_0] (G1) & sG2_T1_2 = 0 -> (sG2_T1_2

’=3);
68 // running to final state
69 [] sG2_T1_2 = 1 -> dTaskG2_T1_2 : (sG2_T1_2

’=2) + (1 - dTaskG2_T1_2) : (sG2_T1_2 ’=4);
70 //final state success
71 [success6_0] sG2_T1_2 = 2 -> (sG2_T1_2 ’=2);
72 //final state skipped
73 [success6_0] sG2_T1_2 = 3 -> (sG2_T1_2 ’=3);
74 //final state failure
75 [failG2_T1_2] sG2_T1_2 = 4 -> (sG2_T1_2 ’=4);
76 endmodule
77

78 formula G2 = (sG2_T1_1 =2) | (sG2_T1_1 =4 &
sG2_T1_2 =2) | (sG2_T1_1 =3 & sG2_T1_2 =3 & !(
fact1 & fact2));

79 formula G0 = G1 & G2;

Listing 11: PRISM model generated for the CRGM in Figure 10.

As for the probability existence property of a goal Gi,
propositions φGi are recursively composed according to
nodes rules underlying Gi, following Section 3.3. In our
approach, such propositions are represented in PRISM
as a set of PRISM f ormula constructs. For example, the
fulfillment of root goal G0 in Figure 10 is a sequential
fulfillment of goals G1 and G2 (G1;G2), whose proposi-
tion is the PRISM formula G0 in line 79 of Listing 11.
In turn, the fulfillment of G1 is defined as the alterna-
tive fulfillment of G3 and G4 (line 39 of Listing 11).
The propositions for G3 and G4 are defined in a similar
way. Differently, the fulfillment of G2 requires the real-
ization of task T1. The proposition for G2 is in line 78
of Listing 11.

Finally, dependability of goal G0 can be simply ob-
tained by running the following PCTL formula:

P =? [F(G0)]

where G0 is the PRISM formula in line 79 of Listing 11.

3.4.2. Parametric Formula Composition
At design-time, we can then exploit PRISM to carry

out the verification of the DTMC corresponding to the
CRGM. This is usually useful to identify the most criti-
cal goals/tasks in the model, that is, those with a higher
impact on its dependability through sensitivity analysis
at early stages of a software system development.

However, performing such analysis at runtime would
be too slow and would not scale properly —as observed
in [40] and also witnessed by the experiments further
presented in Section 4. While verification speed can be
mitigated by the fact that probability formulas can be
computed off-line, scalability of the verification process
itself remains an issue.

14

https://www.researchgate.net/publication/279850297_Modeling_and_Verification_for_Probabilistic_Properties_in_Software_Product_Lines?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

To sort this out, we exploit both parametric model
checking and the particular tree structure of goal mod-
els in a compositional way: probability formulas of
smaller DTMCs corresponding to smaller goal models
are computed and then composed to obtain the proba-
bility formula of a DTMC for its corresponding larger
goal model. In particular, we use parametric PMC,
PARAM more precisely, to analyze the DTMCs corre-
sponding to behavioral models according to the trans-
formation explained in Section 3.2. These models are
pretty small and the resulting formulas can be computed
—and recomputed—quite easily. Table 2 presents them,
together with their corresponding runtime rules. Note
that, on the first column, n, n1 and n2 represent sub-
trees, whereas, on the second column, N, N1 and N2
represent their respective symbolic parametric formula
to estimate the dependability of the respective sub-trees.
These formulas are generated once in PARAM and they
represent the formulas for the diverse behavior models.

Runtime Rule Symbolic formula

Sequential AND (n1;n2) N1 ∗ N2
Sequential OR (n1;n2) MAX(N1,N2)
Parallel AND (n1#n2) N1 ∗ N2
Parallel OR (n1#n2) MAX(N1,N2)
Optional (n) Xn ∗ N − Xn + 1
Alternative n1|n2 Xn1 ∗ N1 − Xn1 ∗ Xn2 ∗ N2 + Xn2 ∗ N2
Try (n)?n1:n2 N ∗ N1 − N ∗ N2 + N2
Cardinality (n+k) (N)k

Cardinality (n#k) (N)k

Retry (n@k) 1 − (1 − N)k+1

Table 2: Symbolic parametric formulas for their corresponding
CRGM runtime rules.

Sequential and Parallel compositions are rendered
into the same formula. This comes from the fact that
the order with which the dependability of parallel tasks
is computed should not matter for computing the for-
mula. Therefore, given the quantitative nature of the
dependability estimate, operators ; and # are commu-
tative. Note also that the symbolic formulas for Op-
tional and Alternative compositions yield a variable X
that can be either 1 (true) or 0 (false) to render the
actual choice. Finally, the n-ary MAX operator for
OR-decomposition computes the highest dependability
value among its operands.

The formulas of Table 2 define the dependability of a
CRGM model recursively on the structure of this model.
Therefore, these formulas define building blocks so that
atomic formulas are then composed for obtaining the
parametric formula for the goal model by rewriting the

formula associated with this model in terms of the for-
mulas associated with its sub-trees. The rewriting ter-
minates when it reaches leaf tasks, in which case the
formula cannot be further rewritten.

Algorithm 1 presents the compositional approach to
build the parametric formulas. Such an algorithm fol-
lows a recursive depth-first strategy to visit both the tree
structure of the goal model and the syntactic tree built
by parsing the runtime annotations in the nodes. The al-
gorithm starts from node, which is the root node of the
model for which the parametric formula is to be built,
and perRuleForms, which is a map structure that con-
tains the correspondences presented in Table 2. Start-
ing from node, Line 1 stores its children nodes in a
list named decNodes. Line 2 fetches decType, that is,
the decomposition type—either AND or OR—of node.
Line 3 uses rtAnnot to store the fetched runtime anno-
tation of node. Line 4 calls function getForm, which
returns the parametric formula for runtime annotation
rtAnnot and decomposition type decType of that node
in nodeForm.

A syntactic tree composed of runtime rules opera-
tors and operands is built using a grammar parser over
rtAnnot. Each rule operator in the tree is parsed into
its corresponding symbolic formula in perRuleForms.
Each operand, i.e., symbol, is parsed as follows: goals
or tasks into their ID, nested operators into the result of
a call to getForm to fetch their own symbolic formulae
(refer to the definition of rtAnnot in Sec. 3.1). The right
formula is obtained by applying the correspondences of
Table 2.

Accordingly and following a depth-first strategy, each
subNode of the goal tree is traversed through a re-
cursive call to composeNodeForm, which produces a
subNodeForm that replaces its corresponding ID sym-
bol in nodeForm (lines 5 to 9). Finally, Line 10 returns
the symbolic parametric formula for the CRGM model
whose root is node.

Figure 11 exemplifies how the algorithm works for
the creation of the formula associated with a model hav-
ing root goal G1 realized by task T1, which in turn
is realized by the annotation Try(T1.1%2)? T1.2 : T1.3,
that is, if one of the two execution retries of T1.1 suc-
ceeds, then execute T1.2, otherwise execute T1.3. Note
the dual recursion (performed by composeNodeForm
and getForm, respectively): one over the goal tree (Fig-
ure 11a) and the other one over the syntactic tree rep-
resenting the runtime annotation for T1, where a retry
(T1.1@2) is nested into a try (Figure 11b).

This algorithm is a key enabler towards an afford-
able time-space runtime analysis. It allows one to per-
form the model checking of independent and smaller

15

Algorithm 1: composeNodeForm(Node node, Map
perRuleForms)

Input: A node, either a root or a local goal
Result: Symbolic Parametric formula of the node

1 List [] decNodes← getDecomposition(node);
2 DecType decType← getDecType(node);
3 String rtAnnot← getRuntimeRule(node);
4 String nodeForm← getForm(decType, rtAnnot,

perRuleForms);
5 foreach subNode in decNodes do
6 String subNodeId← getId(subNode);
7 String subNodeForm←

composeNodeForm(subNode, perRuleForms);
8 replaceSubForm(nodeForm,subNodeForm,subNodeId);

9 replaceSubForm(nodeForm, subForm, subNodeId);
10 end
11 return nodeForm;

parts of the system—that is, the behavior of each behav-
ior model— and compose these pre-computed results,
thus avoiding combinatorial state explosion problems.
It requires significantly smaller formulas than the para-
metric model checking of the whole CRGM through a
single DTMC, and does it in significantly shorter time.
Otherwise, long delays and memory consumption could
make the approach prohibitive in many cases. The scal-
ability of the approach is analyzed in Section 4.

The computation of obtained parametric formulas
quantifies the dependability of the given combinations
of goals/tasks in the CRGM. Accordingly, one can use
such formulas to evaluate the dependability of the vari-
ants specified in the CRGM at runtime.

Since the focus of this work is on the runtime anal-
ysis, we reasonably assume the existence of other lay-
ers/components in charge of detecting and monitoring
context information, which is then used to feed the para-
metric formulas evaluated at runtime to estimate the de-
pendability of the system. We also assume the moni-
torability of the execution of individual leaf-tasks. As
such, the dependability of leaf-tasks can be estimated
based on logged data, following, for example, a mean-
time between failures (MTBF) approach. As soon as
this information is available, GODA is ready to carry
out the analysis.

3.5. Tool support

The manual translation of Context and Runtime Goal
Models into DTMC models could be a tedious, costly,
and error-prone activity. The absence of significant and
automated tool support would definitively hamper the

(a) CRGM tree.

(b) Syntactic tree of the runtime annotation of T1.

Figure 11: Example application of Algortihm 1.

usability of the proposed solution. The purpose of the
GODA framework is thus to support the formal verifica-
tion by hiding the probabilistic modeling to reduce the
overhead and errors caused by the manual generation of
the verification model. GODA automates the generation
of the DTMC models rendered into PRISM/PARAM.

The modeling and transformation environments pro-
vided by GODA extend an existing open source tool
for TROPOS called TAOM4E [36]. TAOM4E provides
a graphical environment for goal modeling based on
the Eclipse Modeling Framework (EMF) and Graphi-
cal Editing Framework (GEF). It also supports model-
driven code generation. The CRGM-to-DTMC code
generator has been implemented as an Eclipse plug-in
in Java and integrated in TAOM4E5.

Figure 12 presents a high-level view of the GODA
framework. It starts from a CRGM file in the TAOM4E
format and generates the PRISM/PARAM verification
models for the proposed dependability analysis. Two
dedicated plug-ins generate the PRISM and PARAM
models, respectively.

5The GODA framework is available at https://github.com/
lesunb/CRGMToPRISM.

16

Figure 12: High-level view of the GODA framework.

4. Evaluation

This section describes the evaluation of GODA and
its supporting framework on Mobee, a real-life soft-
ware system that allows people to share live and up-
dated information about public transport via mobile de-
vices. Mobee has been running for more than a year and
has already more than three thousand users. Addition-
ally, we evaluate GODA on its time-space scalability
to support design time decisions and runtime depend-
ability analysis by considering a comprehensive set of
behavior models that can be embedded in a CRGM.

4.1. Mobee

Mobee has been conceived as a platform for sharing
public transport information among users. The basic
idea is to empower users with the access to information
regarding how to reach a destination from a given loca-
tion, either in advance or live through a mobile appli-
cation. Users are not only the receivers of information,
but also the providers: they can feed the system with
new bus lines and bus stops that have not been mapped
before or they can send suggestions about modifications
of those assets. Also, the automatic monitoring of the
location of a user’s device enables the tracking of the
transport in use. The project started in early 2013 and
has been deployed to production and available for use
since November of the same year as a web application.
Mobile versions for both Android and iOS systems have
been released in early 2014 and they have achieved three
thousand users each [34].

Mobee, as many applications running on a mobile de-
vice, is designed to be sensitive to its dynamic context
including battery, availability of GPS signal, and other
spatio-temporal aspects. Some of these elements impact

the dependability of the application and on its ability to
meet user requirements. Figure 13 presents the overall
system architecture and Figure 14 presents one of the
user interfaces used for displaying the itinerary of a bus
line over a city map.

Figure 13: Mobee Architecture.

Figure 14: Mobee - Example GUI.

The context conditions related to Mobee are listed in
Table 3. Each context condition has a unique identifier
(CID), a description, and the corresponding Boolean ex-
pression (context facts). Column Affected Element indi-
cates the goals or tasks activated/restricted by the con-
text condition.

17

CID Description Boolean expression Affected element

C1 Minimum battery level BATT ERY >= 15 G10

C2 GPS GPS T1.11 (G10)
C3 Minimum storage level S TORAGE > 10 T1.33 (G6)

Table 3: Contexts conditions affecting the behavior of Mobee.

The system has been modeled as the CRGM pre-
sented in Figure 15. This model includes all the main
goals of the current system and the tasks responsible
for fulfilling them. Despite the reverse engineering ap-
proach used to elicit goals and tasks, the use of GODA at
design-time has been useful to analyze the dependabil-
ity of the system given a certain context of operation and
the dependability of leaf-tasks. GODA can then be use-
ful to clarify and document dependability aspects that
are usually left implicit.

4.2. Goal Question Metric

The design of our empirical study follows the Goal
Question Metric (GQM) method, which provides a sys-
tematic structure to guide the evaluation process [9].

Our first evaluation goal G1 aims to perform the de-
pendability assessment of Mobee while varying through
a controlled experiment the contexts that affect its oper-
ation, that is, connectivity, precision of geolocation as
well as battery and storage capabilities, as presented in
Table 3. Such an evaluation required the definition of
the following questions and metrics:

Q1.1: Is GODA a feasible approach to provide valu-
able strategies to conduct the dependability assessment
of Mobee while varying its contexts of operation?

• M1.1: Estimated sensitivity analysis of Mobee de-
pendability.

Q1.2: Is GODA a feasible approach for the depend-
ability assessment of Mobee at runtime while varying
its contexts of operation?

• M1.2: Time needed for evaluating the dependabil-
ity of Mobee at runtime.

Since the CRGM defined for Mobee does not allow
for the experimentation of all behavior models, our sec-
ond evaluation goal G2 aims to provide a more com-
prehensive time-space scalability analysis of GODA. As
such, we defined the following questions and metrics:

Q2.1: What is the space complexity of the automated
generation of DTMC models?

• M2.1a: The size of the file of the DTMC model.

• M2.1b: The number of states in the model.

• M2.1c: The number of transitions in the model.

Q2.2: What is the time complexity to create the verifi-
cation structure?

• M2.2a: The time consumed to model check the
generated DTMC.

• M2.2b: The time consumed to build the parametric
formula.

Q2.3: What is the time-space complexity of the run-
time verification?

• M2.3a: The size of the generated CRGM paramet-
ric formula.

• M2.3b: The time consumed to evaluate the para-
metric formula.

Conducted experiments used version 4.0.3-linux64 of
PRISM and version 2-2-64α of PARAM on a personal
computer with dual-core/4-threads Intel i5 2.40GHz
processor, 8GB DDR3-800 1066 MHz memory, and
Linux Ubuntu 14.04 as operating system. The evalua-
tion of the parametric formulas as part of the runtime
analysis is based on a 2GB memory and Dual-core 1.7
GHz Krait 300 processor running Android 4.4.

4.3. Feasibility Assessment
At design-time, we used PRISM to reason about the

dependability of the system. As no measurements that
refer to individual leaf-tasks exist at this time, we have
conducted experiments with dependability values vary-
ing within a reasonable range, and considered different
aspects related to Mobee contexts of operation to evalu-
ate alternative design decisions.

At runtime, our dependability analysis is based on
PARAM and the use of a parametric formula that states
the probability of fulfilling system goals given the mon-
itored values of the reliability of leaf-tasks. This way,
one can evaluate any variation of the system and vali-
date stated requirements. It could also help decide the
alternative solutions that should be used to fulfill the dif-
ferent system goals.

18

Figure 15: The complete CRGM of Mobee Mobile system

4.3.1. Design-time Contextual dependability Analysis
As for question Q1.1, PRISM was used for running

the experiments in which the values of the constants in
the model vary within set ranges. The important aspects
related to the dependability of Mobee were analyzed
and produced valuable results for designing the system
(metric M1.1).

Connectivity: The service provided by mobile data
providers is still subject to signal quality degradation
and even unavailability. By varying the dependability
of connection-dependent leaf-tasks, their impact on the
global dependability was estimated for different num-
bers of retries. The results guided the selection of the
appropriate number of retries. Figure 16 presents the
sensitivity analysis for a connectivity-dependent leaf-
task, and we can clearly see the positive effect of a single
retry. With more than two retries —with an average de-
pendability of the leaf-task as low as 87.5%— there is
no additional significant gain in the global dependabil-
ity of Mobee. This justifies our choice of maximum two
retries for connection-dependent tasks.

Precision of geolocation: To provide accurate infor-
mation about the different buses, only GPS-based solu-
tions are accepted as a means to fulfill the goal that says
that ‘line location is traced’. As GPS signal may be-
come unavailable, this goal could be deactivated instead
of resulting in a failure. A retry rule is also used to

Figure 16: Dependability with different numbers of retries while vary-
ing task T1.22 (goal G9).

allow for multiple attempts in case of failures in retriev-
ing accurate geolocation from GPS. Figure 17 presents
the results for task ‘request GPS location’. The chart
shows that three retries can be considered an appropri-
ate choice.

Battery and storage: The system has been designed
to persist locally the data of searched bus lines to reduce
the amount of exchanged data. Given the vast number
of bus lines in a big city, this task is only activated when
the storage available on the mobile device is greater than
10% of its capacity before starting retrieving data from
the server. This is clearly to avoid failures caused by the
unavailability of storage on the device. Moreover, a bat-
tery level below 15% imposes a restriction on goal ‘line

19

Figure 17: Dependability with different numbers of retries while vary-
ing task T1.11 (goal G10).

locations traced’ due to the high power consumption
of the GPS module. The battery and storage analyses
were performed based on domain knowledge. Note that,
at design time, the evaluation of this goal carried out
through PRISM is more a qualitative analysis (yes/no)
rather than a quantitative dependability assessment per
se.

4.3.2. Runtime Contextual Dependability Analysis
To assess the feasibility of using GODA as run-

time solution for estimating the dependability of Mobee
(question Q1.2), we created a computable parametric
formula that represents the probability of fulfilling the
root goal of the system for different contexts of opera-
tion. This formula includes parameters for the depend-
ability of leaf-tasks and for the selection of optional and
alternative tasks. We used the algorithm presented in
Section 3.4.2 to generate the formula, optimize its size,
and thus reduce the verification time.

Since the focus of this experiment is on the runtime
analysis, we reasonably assume the existence of other
layers/components responsible for detecting and moni-
toring context information. According to retrieved con-
text information, the parametric formula is evaluated at
runtime to estimate the dependability of the root goal of
the system. We also assume the monitorability of the
execution of individual leaf-tasks. As such, the reliabil-
ity of leaf-tasks is estimated within a fixed time window
by calculating its mean-time between failures from its
previous failures registered in a history log. As soon as
this information is available at runtime, GODA is ready
to start the analysis phase. As for Mobee, the analyses
were performed by evaluating the formulas on an An-
droid phone. Such formulas required less than 1Kbytes
of storage.

Table 4 presents the results for metric M1.2 obtained
by measuring, on the Android version of Mobee, the
time to evaluate the each of formulae corresponding to
different contexts of operation, as in this work contexts

C1 C2 C3 Evaluation Time (ms)

true true true 22.019291000
true true false 12.011298000
true false true 19.344944000
true false false 13.807750000
false true true 15.942896000
false true false 13.744944000
false false true 13.743191000
false false false 12.383381000

Table 4: Parametric formulas evaluation time in different contexts of
Mobee’s operation (M1.2)

are not parametrized, thus each context combination has
a parametric formula. The magnitude of the results is
compatible with the initial requirements set for Mobee
as far as performance is concerned.

4.4. Scalability Assessment

The second goal of our evaluation was the assessment
of the actual scalability of GODA with respect to all
the behavior models defined for CRGMs. Since Mobee
does not require all the behaviors, we decided to create
generic CRGMs with a growing number of leaf-tasks
for different behaviors. This is to obtain a clear under-
standing of the impact each behavior has on the metrics
of interest.

As for question Q2.1, the size of the textual DTMC
model in PRISM (M2.1a) grows linearly with respect
to the number of leaf-tasks as each leaf-task is mapped
onto a single PRISM module. This result is illustrated
in Figure 18.

24 8 16 32 64

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

·104

Leaf-tasks

D
T

M
C

m
od

el
si

ze
(b

yt
es

)

DTMC model size

Figure 18: Size of the textual DTMC model with respect to the in-
creasing number of leaf-tasks (M2.1a).

20

The plots of Figures 19a and 19b say that the num-
ber of states (M2.1b) and transitions (M2.1c) of the re-
sulting DTMC grows exponentially with the number of
leaf-tasks, with the exception of sequential leaf-tasks.
In contrast to interleaved ones, sequential tasks only
have a single order for state transitions to happen. More-
over, with sequential tasks we also have a single path
from the initial state to the final, successful state, while
the other behavior models add multiple possible paths
causing the number of states and transitions to grow ex-
ponentially.

The time complexity Q2.2, that is, the time re-
quired by PRISM to model check the generated DTMC
(M2.2a) is shown in Figure 19c. As can be seen, the
verification time grows exponentially for all the rules.

At runtime GODA applies the solution presented in
Section 3.4.2. The results for the generation time of
the parametric formula (M2.2b), its size (M2.3a) and
its evaluation time (M2.3b) are shown in Figures 20a,
20b, and 20c, respectively. Results show that GODA
allows for orders of magnitude improvement compared
to previous results with PRISM, in accordance with the
arguments presented in Section 3.4.2, namely the iso-
lated offline verification of behavior models to generate
symbolic formulae used later by Algorithm 1 and the
commutativity of sequential and interleaved behaviors.
Accordingly, the results for sequential and interleaved
results are merged in Figures 20a, 20b, and 20c.

In conclusion, obtained results show that while
design-time verification in PRISM is an expensive pro-
cess, our runtime verification seems to be very afford-
able: for goal models up to two thousand leaf-tasks,
formula generation time, performed off line, remained
under 4.5 seconds (M2.2b), requiring less than 240
kbytes (M2.3a) of storage in the worst-case scenario.
Finally, the runtime verification time remained under
35ms (M2.3b). As a result, we can conclude that GODA
is scalable for a size up to few thousands of leaf tasks
at runtime. Such scalability highlights the efficiency of
our approach to optimize runtime model checking in the
context of goal modeling. As a future follow-up work to
provide a more scalable approach for design time veri-
fication in PRISM, a step-wise approach could be per-
formed by following the principles of partial order re-
duction. As such, an analysis based on the branches of
the CRMG could be iteratively performed, as long as
those branches do not share common (or mutually de-
pendent) behaviors or information.

4.5. Threats to Validity
Construct validity: The mapping of leaf-tasks repre-

senting operations of the system on their concrete coun-

terparts in the implemented system is a common and
well-known problem of the requirements engineering
community. We assume that leaf-tasks can be traced
back to software operations and that the dependability
of the former ones represents the probability of a suc-
cessful execution of the later elements.

Internal validity: The suitability of GODA for rea-
soning about Mobee has been presented. The de-
pendability analysis at design-time showed how fault-
tolerant aspects can be better designed in Mobee; at run-
time, it also showed the low overhead the analysis takes.

External validity: We performed the evaluation of
our framework in the context of Mobee and further
performed a scalability analysis with GODA through
question metrics M2.1a to M2.3b. All the behaviors
a CRGM can accommodate were considered, without
taking into account a particular domain. It is most likely
the performance results are compatible with many kinds
of systems where the analysis overhead must be con-
strained to low bounds. However, to empirically vali-
date such statement, assessment on the suitability of the
GODA framework on other real-life systems has still to
be performed.

5. Related Work

Goal models have been extensively used in require-
ments engineering to elicit, model, and analyze stake-
holders’ requirements [14, 46, 47, 48, 45, 10]. The ma-
jority of goal-oriented requirements engineering solu-
tions share a common set of conceptual elements and
differ in the syntax/notation used to render them. They
also target specific categories of requirements: for ex-
ample security [32, 37], trust [39] and risk [4]. The
fact that GODA uses Tropos does not compromise its
generality as the concepts and analyses proposed are
built around the core concepts of GORE. The ability to
reuse TAOM4E, a Troops-based open source tool, en-
abled us to enrich a tested and stable machinery and ef-
fectively implement our GODA framework as extension
to a well-known solution.

Dalpiaz et al. [13] proposed a conceptual distinc-
tion between static Goal Model, called Design Goal
Model (DGM) , and the Runtime Goal Model (RGM),
which extends DGM with additional state, behavioral,
and historical information about the fulfillment of goals.
GODA has benefited from the RGM in the sense that it
provides a high-level description of a system behavior.
In GODA, RGM leaf-tasks are mapped onto a proba-
bilistic verification model that preserves the behavior
semantics inherited from the RGM. Our work also lever-

21

https://www.researchgate.net/publication/220136080_Computer-aided_Support_for_Secure_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/225198353_Tropos_An_Agent-Oriented_Software_Development_Methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3913915_Goal-Oriented_Requirements_Engineering_A_Guided_Tour?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3187984_Inferring_declarative_requirements_specifications_from_operational_scenarios?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/239535527_Modelling_strategic_relationships_for_process_reengineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/47529129_Secure_Tropos_A_Security-Oriented_Extension_of_the_Tropos_methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3556090_Modeling_organizations_for_information_systems_requirements_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220130828_Goal-Directed_Requirements_Acquisition?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

2 4 8 16 24
100

102

104

106

108

1010

1012

1014

Leaf-tasks

N
um

be
ro

fs
ta

te
s

Sequential tasks
Sequential tasks with try
Sequential tasks, 2 retries

Interleaved tasks)
Interleaved tasks, 2 retries

(a) Number of DTMC states (M2.1b).

2 4 8 16 24
100

102

104

106

108

1010

1012

1014

1016

Leaf-tasks

N
um

be
ro

ft
ra

ns
iti

on
s

Sequential tasks
Sequential tasks with try
Sequential tasks, 2 retries

Interleaved tasks
Interleaved tasks, 2 retries

(b) Number of DTMC transitions
(M2.1c).

2 4 8 16

102

103

104

105

Leaf-tasks

PR
IS

M
ve

ri
fic

at
io

n
tim

e
(m

s)

Sequential tasks
Sequential tasks, 2 retries

Interleaved tasks
Interleaved tasks, 2 retries

(c) Verification time (M2.2a).

Figure 19: Results for design-time verification metrics M2.1b, M2.1c and M2.2a.

100 500 1,000 1,500 2,000 2,500

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Leaf-tasks

Pa
ra

m
et

ri
c

fo
rm

ul
a

ge
ne

ra
tio

n
tim

e
(m

s)

Sequence/Interleaved Tasks
Sequence/Interleaved Tasks, 2 retries

Optional tasks
Two alternative tasks

(a) Generation time of the parametric for-
mula (M2.2b).

100 500 1,000 1,500 2,000 2,500
−0.2

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

·105

Leaf-tasks

Pa
ra

m
et

ri
c

fo
rm

ul
a

si
ze

(b
yt

es
)

Sequence/Interleaved Tasks
Sequence/Interleaved Tasks, 2 retries

Optional tasks
Two alternative tasks

(b) Size of the parametric formula
(M2.3a).

100 500 1,000 1,500 2,000 2,500

10

15

20

25

30

35

Leaf-tasks

Pa
ra

m
et

ri
c

fo
rm

ul
a

ev
al

ua
tio

n
tim

e
(m

s)

Sequence/Interleaved Tasks
Sequence/Interleaved Tasks, 2 retries

Optional tasks
Two alternative tasks

(c) Evaluation time of parametric for-
mula (M2.3b).

Figure 20: Results for runtime verification metrics M2.2b, M2.3a and M2.3b.

22

ages the RGM by taking into account contextual facts,
which are paramount in a real runtime environment.

GODA also exploits formal methods to maximize
rigor and enable automated reasoning. KAOS is a goal-
oriented requirements engineering methodology that of-
fers a formal language that combines semantic nets and
linear-time temporal logic. Formal Tropos (FT) [16]
is motivated by translating Tropos models to a formal
representation to enable consistency verification in the
different strategies to achieve goals. The work by Ali
et al [2] only considers whether context specifications
over goals are consistent and whether tasks and op-
erations require that contradictory context changes be
made. The formalization of the context and probabil-
ity facets of goal achievement was limitedly researched.
GODA considers these two facets for analyzing depend-
ability requirements and extends the basic model check-
ing proposed in KAOS and FT, for example, for the con-
sistency of the model and for reasoning about the fulfill-
ment of goals and soft goals [17].

GODA is meant to estimate the dependability of the
different strategies for goal fulfillment as preliminary
step for deciding the one to take. This enables in-
formed decisions at both design- and run-time. Sim-
ilarly, Souza et al. [42] proposed AwReqs as a class
of meta-requirements in a goal model, that is, to spec-
ify the success/failure rate of other requirements in the
model, including goals, tasks, domain assumptions, and
even other AwReqs meta-requirements. Their objec-
tive is to enrich the original goal model with constraints
on the performance of the system and criteria on its
self-adaptation capabilities —as runtime AwReqs vio-
lations should be addressed by corrective actions. In
contrast, GODA tackles the contextual and probabilistic
facets of possible failures and provides reasoning ca-
pabilities that could precede the decision making done
via AwReqs and adds information that could enrich it
further (e.g. the probabilities of success before actual
failures occur).

Mohammadi et al. [35] proposed an iterative and re-
cursive approach to bridge the gap between the knowl-
edge of the context and the system purposes. While
our approach focuses on the quantitative aspects of de-
pendability analysis, that approach can be quite useful
in conjunction with ours so as to refine the goal model
strategies in the presence of contexts that not only con-
strain the goal realization but also also compromises the
system dependability.

Baresi et al. [7, 8] express and assess the degree of
goal fulfillment by exploiting fuzziness with the idea
of preventing violations and tolerating some deviations.
They allow for the selection and tuning of adaptation

strategies. While “crisp” goals are defined in LTL,
“fuzzy” goals use a fuzzy temporal language they speci-
fied. In our work, we focus on the probabilistic nature of
goal fulfillment as we advocate the success reachability
of a system is a probabilistic measure. In addition, we
explicitly considered context and runtime annotations in
the goal-model so that adaptation strategies may be con-
sidered as variation points, specially when dependabil-
ity is a major concern.

Cailliau and Lamsweerde [11] propose a probabilis-
tic framework for goal specification and obstacle/risk
assessment. They provide a specification language for
goals and obstacles with a probabilistic layer. Their
work can be compared to ours to the extent they envi-
sion the benefits of a sound quantitative goal-modeling
analysis structure. While our work focuses on help-
ing the system to self-adapt at runtime by analyzing
the different alternatives, this is not a direction they tar-
get their contribution. As a result, their work does not
take into account context modelling structure and nei-
ther consider such structure as part of the provided risk
assessment. Finally, there is no evidence of automated
analysis of the proposed methodology and no evidence
of its suitability for runtime assessment. As the au-
thors clearly state on their paper, the analysis by using
markov-based model checking was an open issue not
addressed in their work.

The work closest in nature to our approach is that
by Letier et al. [31, 30]. They present techniques for
specifying partial degrees of goal fulfillment and for
quantifying the impact of alternative system designs on
the degree of goal fulfillment. From the perspective of
quantitative analysis, their approach is close to ours in
the sense that they enrich goal refinement models with
a probabilistic layer for reasoning about partial fulfill-
ment. They also derived a model that can be used for
the formal analysis and animation of KAOS operation
models in LTSA [38]. In our work we leverage such an
approach by taking into account runtime aspects that a
GORE model can embrace, where dependability is our
first-class citizen. Also, our work takes into account the
complex implications that context may impose on the
partial and global realization of goals. This is central to
our contribution since the overall goal fulfillment may
not only be affected but also be refrained from being
achieved due to context restrictions.

6. Conclusions and Future Work

This paper proposes the Goal Oriented Dependabil-
ity Analysis (GODA) framework to help experts assess
dependability at both design- and run-time, and where

23

https://www.researchgate.net/publication/226415062_Specifying_and_Analyzing_Early_Requirements_in_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224168787_Adaptive_Goals_for_Self-Adaptive_Service_Compositions?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224195439_Fuzzy_Goals_for_Requirements-Driven_Adaptation?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257455390_Assessing_requirements-related_risks_through_probabilistic_goals_and_obstacles?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220135995_Deriving_event-based_transition_systems_from_goal-oriented_requirements_models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/256361000_A_Framework_for_Combining_Problem_Frames_and_Goal_Models_to_Support_Context_Analysis_during_Requirements_Engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257391112_Reasoning_with_contextual_requirements_Detecting_inconsistency_and_conflicts?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221553551_Awareness_Requirements_for_Adaptive_Systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221560194_Reasoning_about_partial_goal_satisfaction_for_requirements_and_design_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221268885_Reasoning_with_Goal_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

different contexts may take place. GODA allows for the
estimation of the dependability of the different strate-
gies to reach goals, and thus it can be seen as enabler
for the self-adaptation of systems with respect to con-
text changes. We implemented GODA by extending
TAOM4E and made it available to be further explored
by the GORE community. We evaluated our frame-
work on Mobee, a real-life software system that al-
lows people to share live and updated information about
public transport via mobile devices. Our results show
that GODA enables contextual and dependability-driven
analyses at runtime even under limited computational
resources. We also performed a comprehensive simula-
tion to carry out a time-space scalability analysis, where
results overcame our expectations for probabilistic run-
time verification based on a parametric approach.

As future work, we envision the integration of GODA
into a complete self-adaptation loop and its use on other
real-life software systems that require self-adaptation
strategies, potentially allowing for multi-agents mod-
elling, specially towards dependability assurance at run-
time. In addition, from the software design perspec-
tive, we plan to elicit the traceability of CRGM tasks
on corresponding software components at both architec-
tural and implementation levels. The major purpose be-
hind this goal/task-component traceability is to be able
to monitor the dependability of GODA tasks at runtime.

Probability values are not a limitation of our work,
since they are parameters and can be fed into the model
once these information become readily available. As
previously stated, ways to obtain the probability val-
ues are various ones such as computing the system’s
MTTF or following a runtime computation approach by
Su et al. [43]. Although the monitoring and update pro-
cedure of probability values at runtime is out of scope
of this work, a very suitable approach that could be in-
corporated into GODA in the future is the proposal by
Grunske [19]. Finally, we plan to extend our GODA
framework to further improve the design-time evalua-
tion by supporting a cost-based analysis to achieve a so-
lution that balances dependability and use of system re-
sources, since these are often conflicting requirements.

References

[1] Ali, R., Dalpiaz, F., Giorgini, P., 2010. A goal-based frame-
work for contextual requirements modeling and analysis. Re-
quirements Engineering 15 (4), 439–458.

[2] Ali, R., Dalpiaz, F., Giorgini, P., 2013. Reasoning with contex-
tual requirements: Detecting inconsistency and conflicts. Infor-
mation and Software Technology 55 (1), 35–57.

[3] Ali, R., Dalpiaz, F., Giorgini, P., 2014. Requirements-driven de-
ployment. Software & Systems Modeling 13 (1), 433–456.

[4] Asnar, Y., Massacci, F., 2011. A method for security gover-
nance, risk, and compliance (GRC): A goal-process approach.
In: Foundations of Security Analysis and Design VI - FOSAD
Tutorial Lectures. Lecture Notes in Computer Science. Springer,
pp. 152–184.

[5] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C., 2004.
Basic concepts and taxonomy of dependable and secure comput-
ing. IEEE Transactions on Dependable and Secure Computing
1 (1), 11–33.

[6] Baier, C., Katoen, J.-P., 2008. Principles of Model Checking
(Representation and Mind Series). The MIT Press.

[7] Baresi, L., Pasquale, L., 2010. Adaptive Goals for Self-Adaptive
Service Compositions. In: 2010 IEEE International Conference
on Web Services. IEEE, pp. 353–360.

[8] Baresi, L., Pasquale, L., Spoletini, P., 2010. Fuzzy Goals for
Requirements-Driven Adaptation. In: 2010 18th IEEE Interna-
tional Requirements Engineering Conference. IEEE, pp. 125–
134.

[9] Basili, V. R., Caldiera, G., Rombach, H. D., 1994. The goal
question metric approach. In: Encyclopedia of Software Engi-
neering. Wiley.

[10] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopou-
los, J., 2004. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems
8 (3), 203–236.

[11] Cailliau, A., Lamsweerde, A., 2013. Assessing requirements-
related risks through probabilistic goals and obstacles. Require-
ments Engineering 18 (2), 129–146.

[12] Clarke, E. M., Emerson, E. A., Sistla, A. P., 1986. Automatic
verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming Lan-
guages and Systems 8 (2), 244–263.

[13] Dalpiaz, F., Borgida, A., Horkoff, J., Mylopoulos, J., May 2013.
Runtime goal models: Keynote. In: IEEE Seventh Interna-
tional Conference on Research Challenges in Information Sci-
ence (RCIS). pp. 1–11.

[14] Dardenne, A., van Lamsweerde, A., Fickas, S., 1993. Goal-
directed requirements acquisition. Science of Computer Pro-
gramming 20 (1), 3–50.

[15] Filieri, A., Ghezzi, C., Tamburrelli, G., May 2011. Run-time
efficient probabilistic model checking. In: Software Engineering
(ICSE), 2011 33rd International Conference on. pp. 341–350.

[16] Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M.,
Traverso, P., May 2004. Specifying and analyzing early require-
ments in tropos. Requirements Engineering 9 (2), 132–150.

[17] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.,
2003. Reasoning with goal models. In: Spaccapietra, S., March,
S., Kambayashi, Y. (Eds.), Conceptual Modeling, ER 2002. Vol.
2503 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 167–181.

[18] Grunske, L., 2008. Specification patterns for probabilistic qual-
ity properties. In: Proceedings of the 30th International Confer-
ence on Software Engineering. ICSE ’08. ACM, New York, NY,
USA, pp. 31–40.

[19] Grunske, L., 2011. An effective sequential statistical test for
probabilistic monitoring. Information and Software Technology
53 (3), 190 – 199.

[20] Hahn, E., Hermanns, H., Zhang, L., 2011. Probabilistic reach-
ability for parametric markov models. International Journal on
Software Tools for Technology Transfer, STTT 13 (1), 3–19.

[21] Hahn, E. M., Han, T., Zhang, L., 2011. Synthesis for pctl in
parametric markov decision processes. In: Proc. 3rd NASA
Formal Methods Symposium, NFM’11. Vol. 6617 of LNCS.
Springer.

[22] Hahn, E. M., Hermanns, H., Wachter, B., Zhang, L., 2010.

24

https://www.researchgate.net/publication/223187073_An_effective_sequential_statistical_test_for_probabilistic_monitoring?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/223187073_An_effective_sequential_statistical_test_for_probabilistic_monitoring?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/223187073_An_effective_sequential_statistical_test_for_probabilistic_monitoring?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/223187073_An_effective_sequential_statistical_test_for_probabilistic_monitoring?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/226415062_Specifying_and_Analyzing_Early_Requirements_in_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/226415062_Specifying_and_Analyzing_Early_Requirements_in_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/226415062_Specifying_and_Analyzing_Early_Requirements_in_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224168787_Adaptive_Goals_for_Self-Adaptive_Service_Compositions?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224168787_Adaptive_Goals_for_Self-Adaptive_Service_Compositions?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224168787_Adaptive_Goals_for_Self-Adaptive_Service_Compositions?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234807189_Automatic_Verification_of_Finite_State_Concurrent_Systems_Using_Temporal_Logic_Specifications?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234807189_Automatic_Verification_of_Finite_State_Concurrent_Systems_Using_Temporal_Logic_Specifications?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234807189_Automatic_Verification_of_Finite_State_Concurrent_Systems_Using_Temporal_Logic_Specifications?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234807189_Automatic_Verification_of_Finite_State_Concurrent_Systems_Using_Temporal_Logic_Specifications?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/225198353_Tropos_An_Agent-Oriented_Software_Development_Methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/225198353_Tropos_An_Agent-Oriented_Software_Development_Methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/225198353_Tropos_An_Agent-Oriented_Software_Development_Methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/225198353_Tropos_An_Agent-Oriented_Software_Development_Methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41693738_A_Goal-based_Framework_for_Contextual_Requirements_Modeling_and_Analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41693738_A_Goal-based_Framework_for_Contextual_Requirements_Modeling_and_Analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41693738_A_Goal-based_Framework_for_Contextual_Requirements_Modeling_and_Analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221555426_Run-time_efficient_probabilistic_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221555426_Run-time_efficient_probabilistic_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221555426_Run-time_efficient_probabilistic_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/226722377_Probabilistic_Reachability_for_Parametric_Markov_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/226722377_Probabilistic_Reachability_for_Parametric_Markov_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/226722377_Probabilistic_Reachability_for_Parametric_Markov_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224195439_Fuzzy_Goals_for_Requirements-Driven_Adaptation?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224195439_Fuzzy_Goals_for_Requirements-Driven_Adaptation?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224195439_Fuzzy_Goals_for_Requirements-Driven_Adaptation?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/224195439_Fuzzy_Goals_for_Requirements-Driven_Adaptation?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257455390_Assessing_requirements-related_risks_through_probabilistic_goals_and_obstacles?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257455390_Assessing_requirements-related_risks_through_probabilistic_goals_and_obstacles?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257455390_Assessing_requirements-related_risks_through_probabilistic_goals_and_obstacles?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234825825_Principles_of_Model_Checking_Representation_and_Mind_Series?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/234825825_Principles_of_Model_Checking_Representation_and_Mind_Series?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3449335_Basic_Concepts_and_Taxonomy_of_Dependable_and_Secure_Computing?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3449335_Basic_Concepts_and_Taxonomy_of_Dependable_and_Secure_Computing?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3449335_Basic_Concepts_and_Taxonomy_of_Dependable_and_Secure_Computing?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3449335_Basic_Concepts_and_Taxonomy_of_Dependable_and_Secure_Computing?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/303098983_Reliability_of_Run-Time_Quality-of-Service_evaluation_using_parametric_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257391112_Reasoning_with_contextual_requirements_Detecting_inconsistency_and_conflicts?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257391112_Reasoning_with_contextual_requirements_Detecting_inconsistency_and_conflicts?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/257391112_Reasoning_with_contextual_requirements_Detecting_inconsistency_and_conflicts?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/271478066_Runtime_goal_models_Keynote?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221554456_Specification_patterns_for_probabilistic_quality_properties?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221554456_Specification_patterns_for_probabilistic_quality_properties?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221554456_Specification_patterns_for_probabilistic_quality_properties?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221554456_Specification_patterns_for_probabilistic_quality_properties?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221413056_Synthesis_for_PCTL_in_Parametric_Markov_Decision_Processes?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221413056_Synthesis_for_PCTL_in_Parametric_Markov_Decision_Processes?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221413056_Synthesis_for_PCTL_in_Parametric_Markov_Decision_Processes?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221413056_Synthesis_for_PCTL_in_Parametric_Markov_Decision_Processes?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220130828_Goal-Directed_Requirements_Acquisition?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220130828_Goal-Directed_Requirements_Acquisition?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220130828_Goal-Directed_Requirements_Acquisition?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221268885_Reasoning_with_Goal_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221268885_Reasoning_with_Goal_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221268885_Reasoning_with_Goal_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221268885_Reasoning_with_Goal_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221268885_Reasoning_with_Goal_Models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

Param: A model checker for parametric markov models. In:
CAV. pp. 660–664.

[23] Hahn, E. M., Hermanns, H., Zhang, L., Wachter, B., 2015.
PARAM language manual. http://depend.cs.uni-sb.de/
tools/param/manual, [Online; accessed 25-august-2015].

[24] Hansson, H., Jonsson, B., 1994. A logic for reasoning about
time and reliability. Formal Aspects of Computing 6 (5), 512–
535.

[25] Kwiatkowska, M., Norman, G., Parker, D., 2009. Prism: Proba-
bilistic model checking for performance and reliability analysis.
ACM SIGMETRICS Performance Evaluation Review 36 (4),
40–45.

[26] Kwiatkowska, M., Parker, D., 2012. Advances in probabilistic
model checking. In: Nipkow, T., Grumberg, O., Hauptmann, B.
(Eds.), Software Safety and Security - Tools for Analysis and
Verification. Vol. 33 of NATO Science for Peace and Security
Series - D: Information and Communication Security. IOS Press,
pp. 126–151.

[27] Laboratory, O. U. C., 2015. PRISM case studies. http://
www.prismmodelchecker.org/casestudies/, [Online; ac-
cessed 25-august-2015].

[28] Laboratory, O. U. C., 2015. PRISM language man-
ual. http://www.prismmodelchecker.org/manual/
ThePRISMLanguage/Introduction, [Online; accessed
25-august-2015].

[29] Laboratory, O. U. C., 2015. PRISM web site. http://www.
prismmodelchecker.org/, [Online; accessed 25-august-
2015].

[30] Letier, E., Kramer, J., Magee, J., Uchitel, S., 2008. Deriving
event-based transition systems from goal-oriented requirements
models. Automated Software Engg. 15 (2), 175–206.

[31] Letier, E., van Lamsweerde, A., 2004. Reasoning about par-
tial goal satisfaction for requirements and design engineering.
In: Proceedings of the 12th ACM SIGSOFT Twelfth Inter-
national Symposium on Foundations of Software Engineering.
SIGSOFT ’04/FSE-12. ACM, New York, NY, USA, pp. 53–62.

[32] Massacci, F., Mylopoulos, J., Zannone, N., 2007. Computer-
aided support for secure tropos. Autom. Softw. Eng. 14 (3), 341–
364.

[33] Mendonça, D. F., Ali, R., Rodrigues, G. N., 2014. Modelling
and analysing contextual failures for dependability require-
ments. In: Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems.
SEAMS 2014. ACM, New York, NY, USA, pp. 55–64.

[34] Mobee, 2015. Mobee: App for Android in Google
Play. https://play.google.com/store/apps/details?
id=app.mobee, [Online; accessed 3-august-2015].

[35] Mohammadi, N. G., Alebrahim, A., Weyer, T., Heisel, M., Pohl,
K., 2013. Springer Berlin Heidelberg, Berlin, Heidelberg, Ch.
A Framework for Combining Problem Frames and Goal Models
to Support Context Analysis during Requirements Engineering,
pp. 272–288.

[36] Morandini, M., Nguyen, D. C., Perini, A., Siena, A., Susi, A.,
2008. Tool-supported development with tropos: The conference
management system case study. In: Proceedings of the 8th In-
ternational Conference on Agent-oriented Software Engineering
VIII. AOSE’07. Springer-Verlag, Berlin, Heidelberg, pp. 182–
196.

[37] Mouratidis, H., Giorgini, P., 2007. Secure tropos: a security-
oriented extension of the tropos methodology. International
Journal of Software Engineering and Knowledge Engineering
17 (2), 285–309.

[38] of Computing Imperial College London, D., 2013. La-
belled Transition Analyser Tool. http://www.doc.ic.ac.
uk/ltsa/, [Online; accessed 25-august-2015].

[39] Paja, E., Chopra, A. K., Giorgini, P., 2013. Trust-based speci-
fication of sociotechnical systems. Data Knowl. Eng. 87, 339–
353.

[40] Rodrigues, G. N., Alves, V., Nunes, V., Lanna, A., Cordy, M.,
Schobbens, P., Sharifloo, A. M., Legay, A., 2015. Modeling
and verification for probabilistic properties in software product
lines. In: 16th IEEE International Symposium on High Assur-
ance Systems Engineering, HASE 2015, Daytona Beach, FL,
USA, January 8-10, 2015. IEEE, pp. 173–180.

[41] Rodrigues, G. N., Alves, V., Silveira, R., Laranjeira, L. A., 2012.
Dependability analysis in the ambient assisted living domain:
An exploratory case study. Journal of Systems and Software
85 (1), 112 – 131, dynamic Analysis and Testing of Embedded
Software.

[42] Silva Souza, V. E., Lapouchnian, A., Robinson, W. N., My-
lopoulos, J., 2011. Awareness requirements for adaptive sys-
tems. In: Proceeding of the 6th international symposium on
Software engineering for adaptive and self-managing systems
- SEAMS ’11. p. 60.

[43] Su, G., Rosenblum, D. S., Tamburrelli, G., 2016. Reliability of
run-time quality-of-service evaluation using parametric model
checking. In: Proceedings of the 38th International Conference
on Software Engineering. ICSE ’16. ACM, pp. 73–84.

[44] Tang, S., Peng, X., Yu, Y., Zhao, W., 2009. Goal-directed
modeling of self-adaptive software architecture. In: Halpin, T.,
Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P.,
Ukor, R. (Eds.), Enterprise, Business-Process and Information
Systems Modeling. Vol. 29 of Lecture Notes in Business Infor-
mation Processing. Springer Berlin Heidelberg, pp. 313–325.

[45] van Lamsweerde, A., 2001. Goal-oriented requirements engi-
neering: a guided tour. In: Requirements Engineering, 2001.
Proceedings. Fifth IEEE International Symposium on. pp. 249–
262.

[46] van Lamsweerde, A., Willemet, L., December 1998. Inferring
declarative requirements specifications from operational scenar-
ios. IEEE Transactions on Software Engineering 24 (12), 1089–
1114.

[47] Yu, E., January 1993. Modeling organizations for information
systems requirements engineering. In: Requirements Engineer-
ing, 1993., Proceedings of IEEE International Symposium on.
pp. 34–41.

[48] Yu, E. S.-K., 1996. Modelling strategic relationships for process
reengineeringUMI Order No. GAXNN-02887 (Canadian disser-
tation).

[49] Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.,
2008. From goals to high-variability software design. In: An, A.,
Matwin, S., Raś, Z., Ślęzak, D. (Eds.), Foundations of Intelli-
gent Systems. Vol. 4994 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 1–16.

25

https://www.researchgate.net/publication/41459789_PRISM_Probabilistic_model_checking_for_performance_and_reliability_analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41459789_PRISM_Probabilistic_model_checking_for_performance_and_reliability_analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41459789_PRISM_Probabilistic_model_checking_for_performance_and_reliability_analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/41459789_PRISM_Probabilistic_model_checking_for_performance_and_reliability_analysis?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221419149_Tool-Supported_Development_with_Tropos_The_Conference_Management_System_Case_Study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221419149_Tool-Supported_Development_with_Tropos_The_Conference_Management_System_Case_Study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221419149_Tool-Supported_Development_with_Tropos_The_Conference_Management_System_Case_Study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221419149_Tool-Supported_Development_with_Tropos_The_Conference_Management_System_Case_Study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221419149_Tool-Supported_Development_with_Tropos_The_Conference_Management_System_Case_Study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221419149_Tool-Supported_Development_with_Tropos_The_Conference_Management_System_Case_Study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/266657638_Modelling_and_analysing_contextual_failures_for_dependability_requirements?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/266657638_Modelling_and_analysing_contextual_failures_for_dependability_requirements?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/266657638_Modelling_and_analysing_contextual_failures_for_dependability_requirements?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/266657638_Modelling_and_analysing_contextual_failures_for_dependability_requirements?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/266657638_Modelling_and_analysing_contextual_failures_for_dependability_requirements?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220136080_Computer-aided_Support_for_Secure_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220136080_Computer-aided_Support_for_Secure_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220136080_Computer-aided_Support_for_Secure_Tropos?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/2258189_A_Logic_for_Reasoning_about_Time_and_Reliability?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/2258189_A_Logic_for_Reasoning_about_Time_and_Reliability?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/2258189_A_Logic_for_Reasoning_about_Time_and_Reliability?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3913915_Goal-Oriented_Requirements_Engineering_A_Guided_Tour?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3913915_Goal-Oriented_Requirements_Engineering_A_Guided_Tour?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3913915_Goal-Oriented_Requirements_Engineering_A_Guided_Tour?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3913915_Goal-Oriented_Requirements_Engineering_A_Guided_Tour?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3187984_Inferring_declarative_requirements_specifications_from_operational_scenarios?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3187984_Inferring_declarative_requirements_specifications_from_operational_scenarios?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3187984_Inferring_declarative_requirements_specifications_from_operational_scenarios?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3187984_Inferring_declarative_requirements_specifications_from_operational_scenarios?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/239535527_Modelling_strategic_relationships_for_process_reengineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/239535527_Modelling_strategic_relationships_for_process_reengineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/239535527_Modelling_strategic_relationships_for_process_reengineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/259119360_Trust-based_specification_of_sociotechnical_systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/259119360_Trust-based_specification_of_sociotechnical_systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/259119360_Trust-based_specification_of_sociotechnical_systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220925072_From_Goals_to_High-Variability_Software_Design?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/47529129_Secure_Tropos_A_Security-Oriented_Extension_of_the_Tropos_methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/47529129_Secure_Tropos_A_Security-Oriented_Extension_of_the_Tropos_methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/47529129_Secure_Tropos_A_Security-Oriented_Extension_of_the_Tropos_methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/47529129_Secure_Tropos_A_Security-Oriented_Extension_of_the_Tropos_methodology?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220376411_Dependability_analysis_in_the_Ambient_Assisted_Living_Domain_An_exploratory_case_study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220376411_Dependability_analysis_in_the_Ambient_Assisted_Living_Domain_An_exploratory_case_study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220376411_Dependability_analysis_in_the_Ambient_Assisted_Living_Domain_An_exploratory_case_study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220376411_Dependability_analysis_in_the_Ambient_Assisted_Living_Domain_An_exploratory_case_study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220376411_Dependability_analysis_in_the_Ambient_Assisted_Living_Domain_An_exploratory_case_study?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220135995_Deriving_event-based_transition_systems_from_goal-oriented_requirements_models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220135995_Deriving_event-based_transition_systems_from_goal-oriented_requirements_models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/220135995_Deriving_event-based_transition_systems_from_goal-oriented_requirements_models?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3556090_Modeling_organizations_for_information_systems_requirements_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3556090_Modeling_organizations_for_information_systems_requirements_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3556090_Modeling_organizations_for_information_systems_requirements_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/3556090_Modeling_organizations_for_information_systems_requirements_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/256361000_A_Framework_for_Combining_Problem_Frames_and_Goal_Models_to_Support_Context_Analysis_during_Requirements_Engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/256361000_A_Framework_for_Combining_Problem_Frames_and_Goal_Models_to_Support_Context_Analysis_during_Requirements_Engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/256361000_A_Framework_for_Combining_Problem_Frames_and_Goal_Models_to_Support_Context_Analysis_during_Requirements_Engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/256361000_A_Framework_for_Combining_Problem_Frames_and_Goal_Models_to_Support_Context_Analysis_during_Requirements_Engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/256361000_A_Framework_for_Combining_Problem_Frames_and_Goal_Models_to_Support_Context_Analysis_during_Requirements_Engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/303098983_Reliability_of_Run-Time_Quality-of-Service_evaluation_using_parametric_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/303098983_Reliability_of_Run-Time_Quality-of-Service_evaluation_using_parametric_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/303098983_Reliability_of_Run-Time_Quality-of-Service_evaluation_using_parametric_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/303098983_Reliability_of_Run-Time_Quality-of-Service_evaluation_using_parametric_model_checking?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/279850297_Modeling_and_Verification_for_Probabilistic_Properties_in_Software_Product_Lines?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/279850297_Modeling_and_Verification_for_Probabilistic_Properties_in_Software_Product_Lines?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/279850297_Modeling_and_Verification_for_Probabilistic_Properties_in_Software_Product_Lines?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/279850297_Modeling_and_Verification_for_Probabilistic_Properties_in_Software_Product_Lines?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/279850297_Modeling_and_Verification_for_Probabilistic_Properties_in_Software_Product_Lines?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/279850297_Modeling_and_Verification_for_Probabilistic_Properties_in_Software_Product_Lines?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221553551_Awareness_Requirements_for_Adaptive_Systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221553551_Awareness_Requirements_for_Adaptive_Systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221553551_Awareness_Requirements_for_Adaptive_Systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221553551_Awareness_Requirements_for_Adaptive_Systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221553551_Awareness_Requirements_for_Adaptive_Systems?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221560194_Reasoning_about_partial_goal_satisfaction_for_requirements_and_design_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221560194_Reasoning_about_partial_goal_satisfaction_for_requirements_and_design_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221560194_Reasoning_about_partial_goal_satisfaction_for_requirements_and_design_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221560194_Reasoning_about_partial_goal_satisfaction_for_requirements_and_design_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==
https://www.researchgate.net/publication/221560194_Reasoning_about_partial_goal_satisfaction_for_requirements_and_design_engineering?el=1_x_8&enrichId=rgreq-aa5762afd432c263638a561fa58d2b22-XXX&enrichSource=Y292ZXJQYWdlOzMwODA2NzU2MDtBUzo0MDYwNzEzNjY3MDEwNTdAMTQ3MzgyNjM2NjMwMw==

