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Abstract. Learning with expert advice as a scheme of on-line learning
has been very successfully applied to various learning problems due to
its strong theoretical basis. In this paper, for the purpose of times se-
ries prediction, we investigate the application of Aggregation Algorithm,
which a generalisation of the famous weighted majority algorithm. The
results of the experiments done, show that the Aggregation Algorithm
performs very well in comparison to average.
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1 Introduction

A time series is a set of repeated observations of the same variable, such as stock
return or GNP. A time series consists of cyclic(for example daily fluctuations),
seasonal(variation in data due to calender related effect) or irregular effects(any
movement other than seasonal or cyclic). Machine Learning methods are now
been used to analyse large data [Ahmed et al., 2010]. Traditionally time series
auto-regressive moving average (ARMA) and auto-regressive-integrated moving
average(ARIMA) models were designed to work in batch mode, rather than the
on-line mode, however work on on-line ARMA models [Anava et al., 2013] and
ARIMA models [Liu et al., 2016] has been done.

There exist two classes of modelling techniques for time series: statistical
learning and competitive on-line learning [Anava et al., 2013], the former assumes
that the observations are drawn from some unknown distribution. Representative
techniques of this class include the well-known autoregressive moving average
(ARMA) and its alike seen as a standard time-series modelling techniques. The
motivation behind developing competative on-line learning algorithm is that the
statistical(ARMA) models have strong distributional assumptions, due to which
they have asymptotic guarantees [Kuznetsov and Mohri, 2016].
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2 Aggregation Algorithm Against Average For Time Series

On-line learning has received a great attention from the machine learning
community. Its origin goes back to the late 1980’s and early 1990’s with the ad-
vent of the paradigm of prediction with expert advice. The early work appeared
in a number of seminal papers by [Haussler et al., 1994]. On-line learning consists
of learning a sequentially presented set of training data upon arrival, without
re-examining data that has been processed so far. In general on-line learning is
practical for applications where the data set is large and cannot be processed
at once due to memory constraints. Practically an on-line learner receives a
new data instance, along with current hypothesis, checks if the data instance is
covered by the current hypothesis and updates the hypothesis accordingly. The
protocol of on-line learning can be summarized as follows: the learner receives an
observation; the learner makes a decision; the learner receives the ground truth;
learner incurs the loss and updates its hypothesis. The learning process is based
on the minimisation of the loss (regret) which corresponds to the discrepancy
between the loss and the loss of the best expert in hindsight.

Neural network is another approach used in time-series, in particular financial
and economic time-series. Neural networks are universal function approximators
that can map any non-linear function [White, 1989], which makes them extremely
attractive when dealing with non-linearity, as linearity in ARMA imposes limits
on their flexibility. A hybrid of ARIMA and neural network models has also been
used [Dı́az-Robles et al., 2008] in the past. The basic model is; the target variables
are composed of a linear and non-linear component; it estimates linear portion
using ARIMA; error term consists of non-linear relationship with previous errors,
for which the neural networks are used.

Prediction models have parameters and we are faced with the problem of
selecting the best set of parameters. If we have little information on the predictive
behaviour of parameters, one may want to keep all models and predict using the
average.

Methods of competitive prediction provide a better alternative to averaging.

The approach of this paper is drawn from the area of competitive on-line
prediction, where the goal is merging predictions of experts. In this paper we
merge predictions of time series models with respect to the square loss. [DeSan-
tis et al., 1988] for the first time presented the Bayesian mixing scheme using
log-loss, later [Littlestone and Warmuth, 1989] presented what was known as
weighted majority algorithm and Vovk generalised them which resulted in Ag-
gregation Algorithm(AA) [Vovk, 1992] and [Vovk, 1990]. AA has been proven
in [Vovk, 1995] to be optimal in some cases.

[Box et al., 2015] were the ones who probably launched auto-regressive in-
tegrated moving-average, the Box-Jenkins methodology eloberated by [Hibon
and Makridakis, 1997]. The idea was extended to state-space representation,
by [Durbin, 2004]. The book by [Hyndman and Athanasopoulos, 2014] captures
broad spectrum of work on time series.
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2 Background

We develop an underlying system of obtaining predictions with the objective of
comparing simple average against the AA.

The system we provide is a hybrid system i.e. the prediction comes from
usual statistical learning approach which we briefly outline in this section along
with the on-line protocol, then we use a competitive on-line learning algorithm
on those predictions, which are outlined in the next section.

We highlight the usefulness of AA in time-series in a similar fashion as done
in [Romanenko, 2015], the novelty of this paper is in mixing of ARIMA’s. We
hope the idea is extended to the on-line time-series set-up, since on-line time-
series also require parameters selection.

2.1 The underlying system

The observed time series is a realization of a stochastic processes. A stochastic
process is any collection of random variables Xt, t ∈ T defined on a common
probability space Ω, here t denotes the time. So T can be either discrete or con-
tinuous set of series. In our case we only deal with discrete-time series [Berchtold,
1995].

If a random variable X is indexed to time, we denote time by t, the obser-
vations {Xt, t ∈ T}, where T is a time indexed set, for example it may be a
set of integers. The stochastic process is described by a probability distribution
for {Xt}, where often elements lack independence. The distribution is usually
characterized using the moments.

The objective of time-series models is to make predictions, so sometimes it is
also referred as predictive inference. Time-series methods make prediction based
on historical pattern of the data, measurements are taken at successive periods,
such as over day, month, year etc. At the very heart of time series analysis lies
ARMA models, mathematically represented as:

Xt =

p∑
i=1

φiXt−i +

q∑
i=1

θiWt−i +Wt (1)

We can divide ARMA models into two parts, auto-regressive(AR) part and the
moving-average(MA) part. The challenge is often to determine the correct or-
der p and q for AR and MA part respectively. Generally the notation used is
ARMA(p,q)1. So AR(p) can be represented by the following equation:

Xt =

p∑
i=1

φiXt−i +Wt (2)

1 The equations used for time-series ARMA,ARIMA,AR, and MA are adopted from
[Liu et al., 2016]
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Similarly for MA(q) the following equation:

Xt =

q∑
i=1

θiWt−i +Wt (3)

where Xt is stationary, φ ∈ Rp, θ ∈ Rq parameters, and Wt is a Gaussian white
noise series with mean 0 and variance σ2. The AR models is very similar to the
multiple linear regression models, except that the Xt is regressed on the past
values of Xt [Liu et al., 2016], whereas MA has been used for data smooth-
ing, without explicitly using the term moving average, they were described as
instantaneous averages by [Yule, 1909]. Exponential moving average were for-
mally applied in [Haurlan, 1968] to track stock prices. Exponential smoothing
developed by [Brown, 2004] and [Holt, 2004] is a techniques regularly used now
a days for data smoothing.

In practical situation often a time-series is not a realisation of a stationary
process [Liu et al., 2016], so ARIMA(p, d, q) are used:

OdXt =

p∑
i=1

φiO
dXt−i +

q∑
i=1

θiWt−i +Wt (4)

where OXt = Xt−Xt−1, φ ∈ Rp, θ ∈ Rq, and Wt v N(0, σ2). It is worth noting
that ARMA(p, q) is a special case of ARIMA(p, 0, q).

Our main experiments uses data from Meteorology, so it is reasonable to
assume that there is some sort of cyclic behaviour or periodicity in it, which
is also justified in [Jones and Brelsford, 1967]. In order to tackle periodicity
we make use of the Fourier series. A Fourier series is a specific type of infinite
mathematical series involving trigonometric functions, the series were introduced
by [baron Fourier, 1831]. Fourier series are used in applied mathematics, and
especially in physics and electronics, to express periodic functions such as those
that comprise communications signals in waveform, however Fourier series truly
began with the profound work of Fourier on heat conduction at the beginning of
the 19th century [Walker, 1988], Fourier proposed that initial temperatures could
be represented as a series of sin functions. The discrete-time Fourier transform
is a periodic function, often defined in terms of a Fourier series. [Strang, 1994]
states “The discrete fourier transform is the most important discrete transform,
used to perform Fourier analysis in many practical applications”. The discrete
Fourier transform takes a time-based pattern, measures every possible cycle,
and returns the overall amplitude, offset, and rotation speed for every cycle that
was found, [Press, 2007] provides a comprehensive guide on its application.The
data is cyclic or periodic, thus we prefer using Fourier series [Bracewell, 1965]
approach with ARIMA, instead of SARIMA models [Hu et al., 2007], and our
model becomes:

Yt = c+

K∑
k=1

[
αk sin

(
2πkt

m

)
+ βk cos

(
2πkt

m

)]
(5)
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Where Xt is the ARIMA or ARMA model 2. The value of k can be chosen to
adjust the data 3, and c is some constant.

2.2 On-line protocol

We now define the notion of game-theoretic frame work, or to be more specific
we define [Vovk and Zhdanov, 2009] general prediction game. Let Γ be the
prediction space and Ω be the outcome space, on each trial t ∈ Z. Also we
assume the number of experts n < ∞, then each expert makes a prediction
γt ∈ Γ ; a learner observes 〈γt1...γtn〉; learner makes a γt; nature chooses an
outcome ωt ∈ Ω; finally each expert and learner loss is calculated using an
appropriate loss function.

The following notation is used

– outcomes are denoted as ω1, ω2, they happen sequentially from the outcome
space Ω = [A,B], where A and B are the minimum and maximum(of a
particular data for example).

– predictions at time t is represented as γt, and they belong to prediction space
Γ = {A,B}.

– θ1, ..., θN experts, there are finite number of experts and the experts space
is denoted by Θ.

– we denote learner by L and its loss at time T as LossT (L) =
∑T
t=1 λ(γt, ωt),

where γt and ωt and the expert loss is LossT (θ).

Following are the set of assumptions or rather a scenario under we work:

– We do not assume that there is a model generating outcomes
– Outcomes may be adversarial meaning, for example output of 1 every-time

we predict zero
– We have access to the experts predictions and expert prediction is incorpo-

rated or consulted before a prediction is given
– The objective to be as close as possible to the best expert
– Experts maybe adversarial too

2 An ARIMA is just the differencing of ARMA model, if ARMA models are not
stationary, but are difference stationary then we call them ARIMA, where I is the
number of difference we took to make it stationary [Ghosh, 1976], but forcast

package by Rob J Hyndman provides more flexibility.
3 We used (5) in our experiment from the implementation in the package forecast

by Rob J Hyndman, for details [Hyndman and Athanasopoulos, 2014]
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The protocol for on-line prediction described in introduction and here can
be formalised as follows:4

Protocol Prediction With Expert Advise

for t = 1, 2, ... do
θ ∈ Θ predicts γθt ∈ Γ
Learner output γt ∈ Γ
System output ωt ∈ Ω
θ ∈ Θ suffers losses λ(γθt , ωt)
Learner loss λ(γt, ωt)

end for

There are different loss functions that can be used, but for the purposes of
our experiment we use square-loss, the main reasons are as follows:

– If the outcomes and predictions are bounded, square loss is bounded;
– bounded square loss is mixable [Vovk, 2001].

3 Applying AA on Time Series

The weighted majority algorithm is very restrictive, so we go on a better algo-
rithm, known as the Aggregating Algorithm(AA). The AA takes two parame-
ters, a prior probability say W0 and the learning rate η > 0. W0 is related to
the weights and the 0 in the subscript makes it the initial weights. Before we
describe the AA, we explain the mechanics of the algorithm i.e. obtaining the
generalised prediction, later that can be easily used for the purposes of the actual
prediction. At every step t experts weight is updated, so intuitively, if an expert
makes a mistake we would reduce its weight, mathematically we represent this
by using our defined notation:

gt(ω) = logβ

∫
Θ

βλ(γt,ω
θ)W ∗

t−1dθ (6)

where θ ∈ Θ and W ∗ = Wt−1(dθ)
Wt−1(Θ) in simple words W ∗ represent the normalised

weights. For mathematical details and optimality of AA see [Vovk, 2001].
Notice in (6) we use ω not ωt, this is because we are at the moment mak-

ing prediction. What AA does is uses a substitution function5 which maps the
generalised prediction into Γ .

In certain situations it may not be possible to use a substitution function
that perfectly maps to Γ , we call such situations non-mixable scenario, however

4 The notation are adopted from [Vovk, 2001] and [Vovk and Zhdanov, 2009]
5 The substitution function used in this experiment was B+A

2
+ g(B)−g(A)

2(B−A)
, by consider-

ing square loss with Ω = Γ = [A,B] and η ≤ 2
(B−A)2

, by using [Haussler et al., 1998]

the restriction [−1, 1] can be removed and then we solve the system of equations.
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in the case of square loss it is possible to find a substitution function that maps
to Γ . Mathematically we say that the loss function λ is η-mixable if there is a
super-predictionΣ = {(x, y)| there is γ ∈ Γ : x ≥ λ(γ,−1), y ≥ λ(γ, 1)}meaning
C(η) = 1, and we can always solve the λ(γ,−1) ≤ gt(−1) and λ(γ,−1) ≤ gt(1).
The loss of AA can not be much larger than the best expert, for a mixable finite
experts game, and uniformly initialising the prior weights of the experts.

Loss(AA) = Lossbest(θ) +
logN

η
(7)

where θ ∈ Θ, η is the learning rate, and N is the number of experts. This
bound (7) is shown [Vovk, 1995] to be optimal in a very strong sense i.e. it can’t
be improved by any other prediction algorithm.

We now formally present the pseudo-code, where parameters are η > 0 and
initial distribution is of q1, q2, .., qn. This algorithm is also for the cases of non-
mixable game.

Algorithm Aggregating Algorithm

initialise weights wn0 = qn, n = 1, 2, ...N
for t = 1, 2, .. do

notice experts prediction γnt , n = 1, 2, ..., N

weights normalisation pnt−1 =
wnt−1∑N
i=1 w

i
t−1

solve the system (ω ∈ Ω)λ(γ, ω) ≤ −C(η)
η

log
∑N
n=1 p

n
t−1e

−ηλ(γnt ,ω) w.r.t γ and
output a solution γt

notice ωt
experts weights update wnt = wnt−1e

−ηλ(γnt ,ωt), n = 1, 2, ..., N
end for

4 Empirical evaluation

Our experiments uses [Dai, 2012a] and [Dai, 2012b] data, we address them as
maximum temperature and minimum temperature data respectively, they have
3650 days of maximum and minimum temperatures in Degrees Celsius respec-
tively, from year 1981 to 1990. The data can be downloaded and visualised from
the links provided in maximum temperature and minimum temperature data .
The reason behind using this data is its periodicity (the time series model used
in our experiments don’t update the coefficients or the value of k or the coeffi-
cients of the ARIMA models) and its size. We performed experiments by fitting
18 combinations of ARIMA models (experts for AA) with parameters p = 0, 1, 2,
d = 0, 1, q = 0, 1, 2 see [Pankratz, 2012], and their respective coefficients on the
first 365 days, then these models were used to obtain one-step ahead forecast
for each model. For the Fourier part k = 57 for minimum temperature data and
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k = 95 for maximum temperature, see (6). The value of k was chosen by doing
cross-validation on the first 365 days.

To be more explicit, first 365 days were used to select the coefficients for
the 18 models (experts for AA) and the value of k, then at each step these
models give one step ahead prediction (experts predictions for AA) based on the
previous observations.

Table 1. The table shows the overall cumulative losses of each expert(model)

ARIMA(p, d, q) Daily min temp Melbourne, Aus Daily max temp Melbourne, Aus

(0, 0, 0) 4.221216× 104 1.157103× 105

(1, 0, 0) 5.574656× 104 2.343769× 105

(2, 0, 0) 9.666095× 104 5.388992× 105

(0, 1, 0) 2.809737× 104 1.056317× 105

(1, 1, 0) 3.158952× 104 1.566821× 105

(2, 1, 0) 3.687223× 104 2.471392× 105

(0, 0, 1) 9.097908× 104 1.8425422451× 109

(1, 0, 1) 8.841317× 104 4.3844789747× 109

(2, 0, 1) 2.225837× 109 2.0250958758× 109

(0, 1, 1) 4.179097× 104 1.147874× 105

(1, 1, 1) 5.497162× 104 2.318993× 105

(2, 1, 1) 9.500385× 104 4.907601× 105

(0, 0, 2) 6.314768× 108 8.264529109× 108

(1, 0, 2) 7.016491× 108 5.034708878× 108

(2, 0, 2) 9.846070× 108 3.27074535× 107

(0, 1, 2) 1.474706× 106 1.9450601× 106

(1, 1, 2) 2.267545× 105 1.54908386× 107

(2, 1, 2) 1.322986× 106 1.7343336× 106

Table 2. The table shows the overall cumulative losses of each average and the AA.

Square Loss Daily min temp Melbourne, Aus Daily max temp Melbourne, Aus

Average 82052051 77401075
AA 28048.76 102187.7

Fig 1 demonstrates that AA follows the best expert, which in both ( A and C
for minimum temperature data) experiments is ARIMA(0, 1, 0) with respective
values of k. In our experiments overall loss of AA is even less than the best
expert. This is because the best expert gives the lowest overall loss, however it
does not give lower loss from the start, there are other experts who are able to
compete with this expert and some outperform the best expert, all of this AA
captures, and is able to outperform the best expert.
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Fig. 1. The plot A and B shows that the lower bound
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−1061.35 and −1904.307 respectively has not been violated by AA, whereas plot C
and D show an overall behaviour.
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One can compare Fig 2 (E and G for minimum temperature data) with Fig 1
and easily see averaging is not favourable, since the spread between the expert
with maximum loss and the expert with minimum loss is colossal. Fig 3 shows
that AA actually does very well in predicting the outcomes, only the extreme
temperatures are missed mainly.

Fig 4 is the plot demonstrating the difference between the AA and the average
(AA minus average) square loss, since average is greater than the AA, hence the
decreasing behaviour in the curve.

5 Conclusion

We have studied the performance of AA, and average on minimum temperature
and maximum temperature data . We conclude that, best expert ARIMA(0, 1, 0)
with k = 95 for maximum temperature data and k = 54 for minimum temper-
ature data are outperformed by AA prediction, furthermore AA is significantly
better than taking simple average as shown in Table 2 (the square loss of AA
is substantially lower then the average) Fig 1 clearly show that the theoretical
bound by AA has not been violated, due to which AA gives a better result than
the simple average. Experts predictions are used by AA to produce a better
overall result.
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