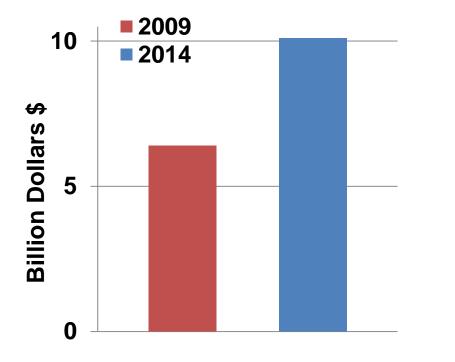


Rotationally Moulded Sandwich Composites in Small Marine Leisure Craft: Fracture Properties and Damage Analysis of The Composite Structure

PhD Researcher-Abu Saifullah

Supervisory Team: Dr Ben Thomas, Dr Kamran Tabeshfar, Prof Bob Cripps Bournemouth University, UK In Collaboration with Longitude Consulting Engineers Ltd

Contents



- ✓ Background of this work
- ✓ Research aim & objectives
- ✓ Methodology
- ✓ Result analysis
- ✓ Conclusion & future work

Europe and USA have the largest markets for leisure boats

6 million composite leisure crafts in Europe alone



End-of-life (EoL) disposal of composite leisure boats has become a major concern.

Current Disposal Method

Abandoned in marine areas

Problems

LONGITUDE Engineering

Current Disposal Method

- Landfill dumping is already banned in Germany, Netherlands. UK is also going to implement this.
- BOATCYCLE project is done in Europe [1, 2].
- Recycling is not economical. 7m
 long boat- €800, 10 m boat €1500, 15 m boat- €15000.
- ✤ Waste of material's potential.

ONGITUDE Engineering

Roto-moulded Thermoplastic Marine Leisure Craft

Rotational moulding

Rotational moulding is used to make large hollow shapes, one piece plastic parts in a single manufacturing step without any joints [3].

Rotational Moulding Process

LONGITUDE Engineering

Rotational Moulding Process

Uniqueness of Rotational Moulding

- Long processing cycles
- Slowest cooling rates
- Zero shear process
- Uniform thickness distribution
- Complex shapes, multiple layered and hollow plastic parts

Advantages of roto-moulded plastic boats over composite boats

- Cheap boats more than 10 m in length
- Reasonably durable
- Can be made from recycled materials
- Better EoL disposal fully recyclable, zero waste concept (cradle to cradle philosophy)

Roto-moulded Leisure Boat Industry

Current Problems

- Rapid fracture of the structure after getting sharp cracks or scratches.
- This industry is based on trial-error basis not on scientific understanding [4].

Research so far

- Process parameter analysis [5].
- Limited understanding on material's properties.
- Tensile, flexural, impact properties are tested [6].
- Fracture behaviour and damage analysis are still absent.

Cracks & Scratches

Aim & Objectives of this research

Aim

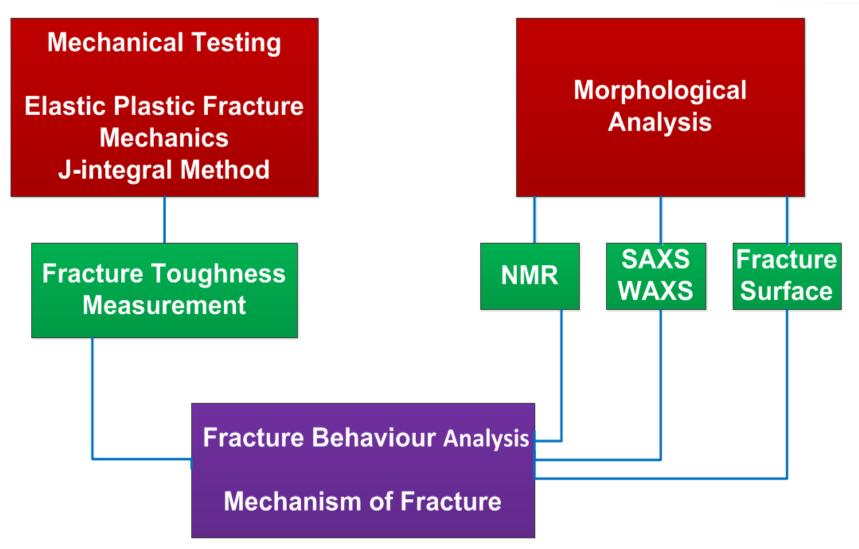
Analysis of damage creation and propagation of rotationally moulded sandwich composite under low velocity impact condition.

Objectives

- Materials selection- fracture behaviour.
- Making sandwich composites.
- Low velocity impact testing and damage identification .
- Damage propagation analysis

Fracture Behaviour of the materials

Fracture behaviour at slow loading rate


- Determination of fracture toughness properties.
- Investigation of microstructure arrangements of the materials.
- Identification of crack growth mechanism.

Fracture Toughness Provides

- Following fracture mechanics
- Crack initiation point
- Crack propagation resistance behaviour.
- Predict the progress of material damage subjected to external loads.
- One of the most important design parameters.

Methodology & Experimental Design

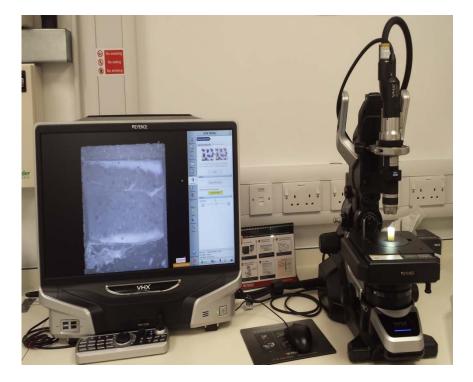
Testing Process

- Single edge notch sample.
- Initial notch & crack

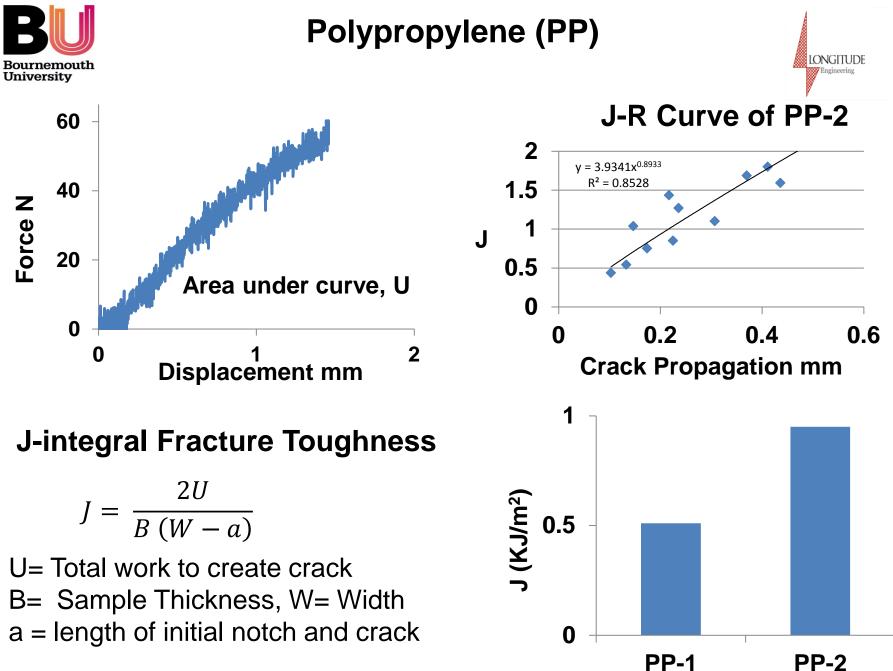
Sample with Notch

Testing in Instron

- Elastic-plastic fracture mechanics J-integral Method
- Multiple specimen process
- ✤ 3-point bending arrangement.
- 1mm/min loading rate, room temp.

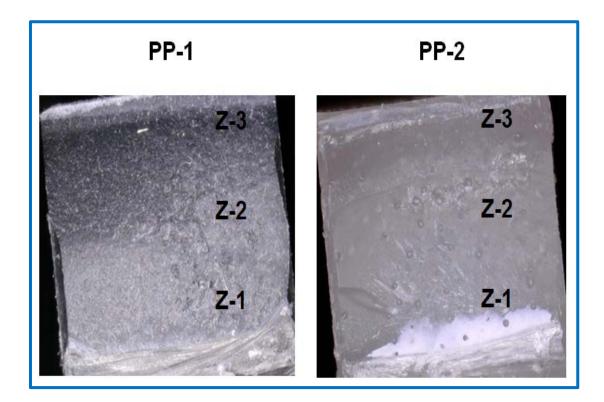

ONGITUDE Engineering

Testing Methodology



Measuring Crack Front with Optical Microscope

SEM for Higher Magnification Image



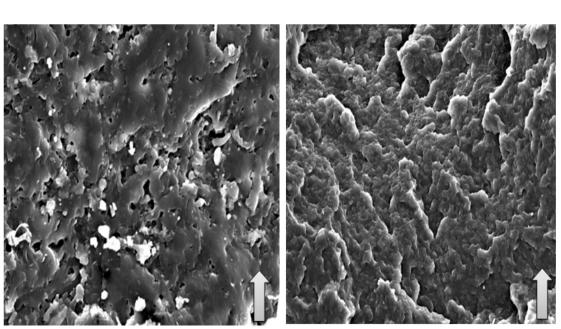
Polypropylene (PP)

Fracture Surfaces

Z-1 = Stable crack growth.

Z-2 = Smooth wide, diffuse, lighter stress whitened area.

Z-3 = Brittle fracture.


Polypropylene (PP)

PP-2

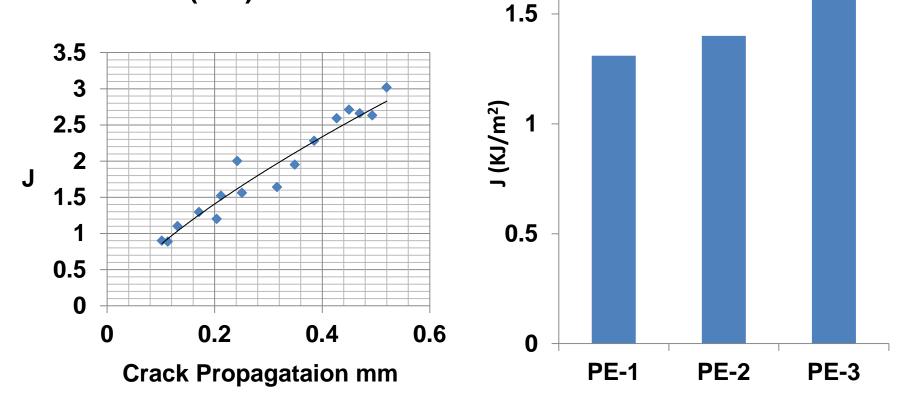
SEM Images

PP-1

Brittle fracture in PP-1.

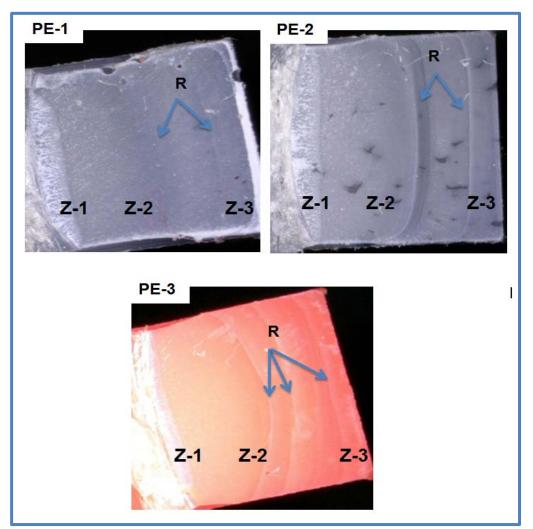
Patchy, wavy, more plastic deformation leads to higher toughness in PP-2.

NMR, X-ray scattering, DSC analysis agree with this.


- PP copolymers.
- Cavitation in co-particles- transferred to PP main matrix- micro-voiding & shear yielding
 - crazing in PP matrix.

Polyethylene (PE)

Crack Propagation Resistance Curve (J-R) of PE-3

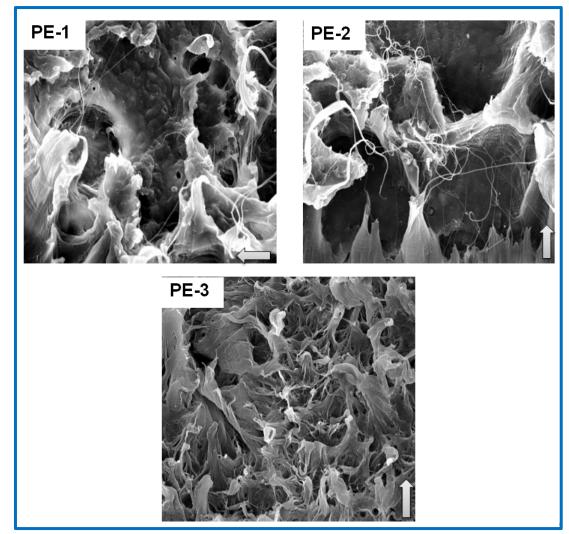


Polyethylene (PE)

Fracture Surfaces

Three distinct regions.

Ridges were noticed that mention stick-slip crack propagation.


Ridges slows down the crack growth in rapid crack growth region.

Polyethylene (PE)

SEM Images

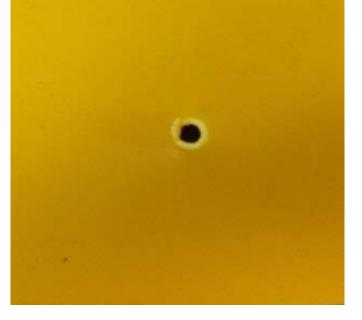
Voids formation- coalescence of voids - crazes - fibril formation - rapid crack propagation.

More fibrillar morphology was found for PE-3.

More fibrillar morphology creates higher plastic deformation that increase fracture toughness value.

Fracture behaviour of the materials at dynamic loading

- Drop weight Impact testing
- Impact properties
- Srittle or ductile fracture


Dynamic Mechanical Analysis (DMA)

Dynamic Mechanical Analysis

Identification of the transition in the materials
Explanation of the impact properties

Brittle Fracture

Ductile Fracture

Sandwich Composite

- ✤ Top and bottom layer –PE
- ✤ Middle layer PE foam
- Different skin-core thickness combination

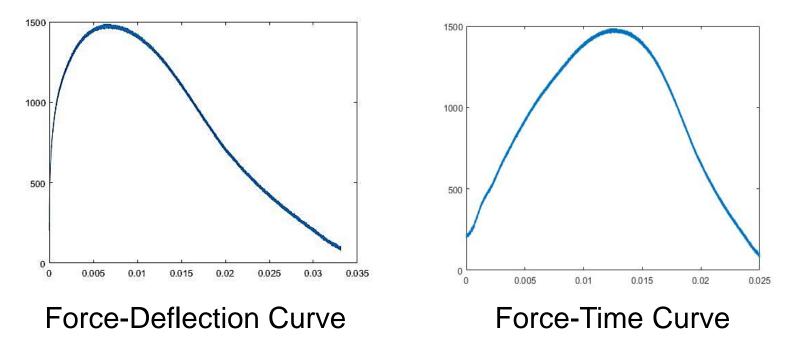
Low velocity impact testing

- ✤ Testing at different energy level from 20 J to 50 J
- Identification of damages at different layers
- Measuring skin-core thickness effect on impact properties as well as damage creation

Rotational moulding of the sandwich structure

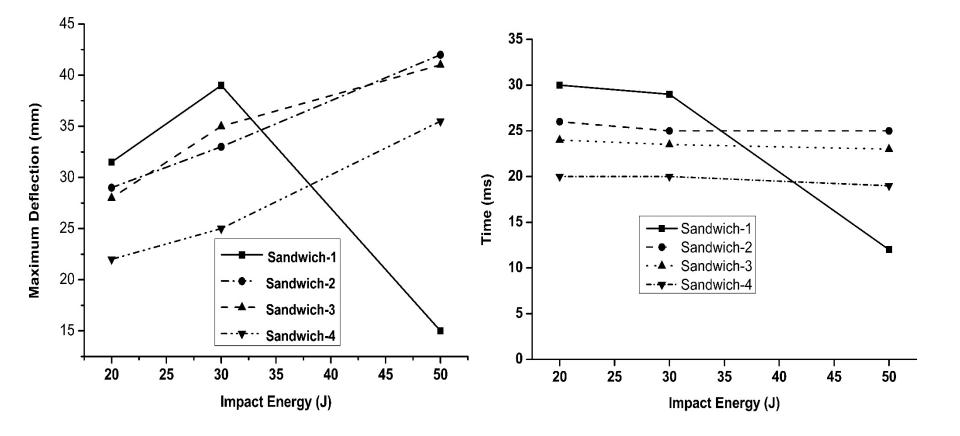
Materials

Materials Grade	Material Type	Layer	MFI (g/10 mins)	Density (g/cm³)
Revolve M- 601	PE	Skin	3.50	0.949
M-56	PE	Core	3	0.310


Thickness Combinations

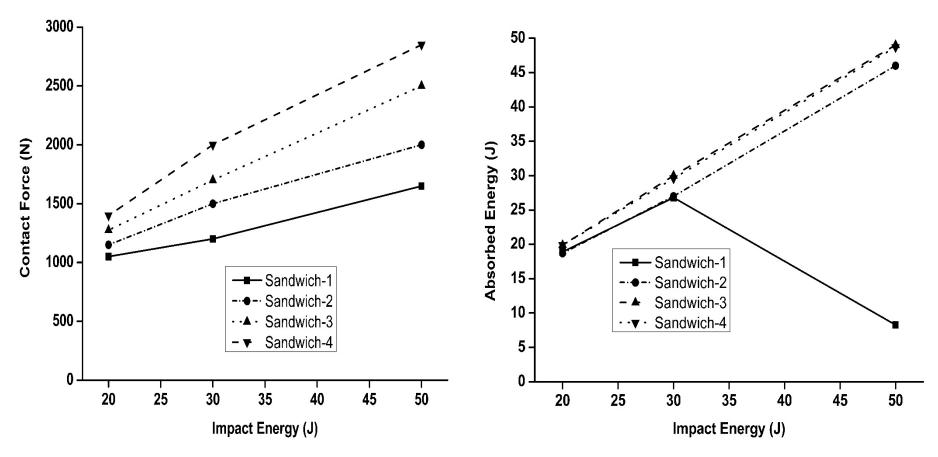
Sandwich Type	Thickness Combination (Skin + Core + Skin) (mm)
Sandwich-1	1+4+1
Sandwich-2	1+8+1
Sandwich-3	2+4+2
Sandwich-4	2+8+2

- Energy level- 20, 30 and 50 J.
- Tested four different sandwich samples- 1+4+1, 1+8+1, 2+4+2, 2+8+2.
- Force, deflection, time, absorbed energy were calculated.



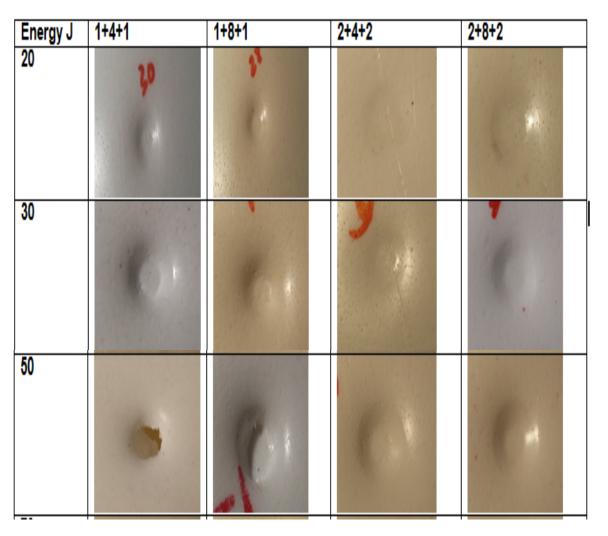
Deflection-impact energy Curve

Time-impact energy Curve



Force-impact energy Curve

Absorbed energy –impact energy Curve



- Force increase with core thickness as well as overall thickness.
- Deflection and time decrease with core thickness as well as overall thickness.
- It means the bending stiffness of the sandwich samples increase with core thickness as well as overall thickness.
- Core thickness is more responsible to increase the stiffness of the sandwich samples compared to core thickness.

Damages at Different Layers

Damages- Outer skin

1. Local plastic deformation. 2. Depth of deformation increase with energy. 3. For 1+4+1 sample penetration happens at 50 J. 4. For 1+8+1 sample 50 J shows no penetration. 5. For 2+4+2 and 2+8+2 no penetration or crack observed in outer skin.

Damages at Different Layers

Damages- Lower skin

Energy	1+4+1	1+8+1	2+4+2	2+8+2	1
20	per la man				
	Sec. 18				2
	1 March				
20					p 5
30	100		1 Stall		3
	dia.		11 martin		1
			S. S. S.		S
	Salla Maria		C. A. M. C.		la
50	and				4
	1. 1.	100	-34		2
		1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	-14.18		S
	J	C. P. P.			O

. For 1+4+1 sample rack starts at 30 J. 2. For 1+8+1 sample penetration happens at 50 J. 3. For 1+4+1 and +8+1 samples cracks tart at first in bottom ayer, then top layer. I. For 2+4+2 and 2+8+2 no prominent cratch or cracks were observed.

LONGITUDE Engineering

Damages at Different Layers

Damages- Cross sectional views

Non penetration (non broken sample)

- Plastic deformation in outer skin
- No delamination in the skin-core interface.
- No cracking in the core.
- Thickness reduction in the core.

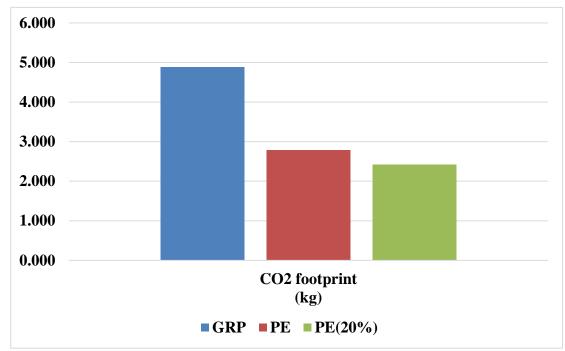
Penetrated sample (Broken sample)

- Full destruction
- Core layer doesn't provide any extra support when the outer layer gets penetrated.

Major findings

1. 1+4+1 sample gets cracks in bottom layer at------30 J
 2. 1+8+1 sample gets cracks in bottom layer at-----50 J
 (by increasing core thickness double it is possible to increase the damage resistance limit up-to two times)

3. For 2+8+2 the damage tolerance is very high. (For creating cracks it needs more energy, possibly 100 J. Therefore by increasing 1 mm skin thickness it is possible to increase the damage resistance limit up-to or more than three times compared to 1+4+1)


4. Between 1+8+1 and 2+4+2, 2+4+2 has higher stiffness and damage resistance, but 1+8+1 has moderate damage resistance and lightweight.

Life cycle analysis

CO2 footprint per kg – Glass reinforce composite vs. PE and PE with 20% recycled content

Material	Energy (MJ)	-	CO2 footprint (kg) % vs. GRP
GRP	101.772	4.884	100%
PE	78.608	2.782	57%

Conclusion & Remarks

- Material was selected based fracture behaviour analysis
- Low velocity impact properties of sandwich structure were studied.
- Damages at different layers were identified.

Future Work

Compression after impact test
FEA analysis of CAI properties.
Detail life cycle analysis.

References

[1]. Marsh, G., End-of-life boat disposal–a looming issue. Reinforced Plastics, 2013. 57(5): p. 24-27.

[2]. BOATCYCLE project , <u>www.life-boatcycle.com</u> .

[3]. Crawfoard, R.J.K., M.P, Introduction to the rotational moulding process. In: Practical guide to rotary moulding. 2003, Shrewsbury: GBR: Smithers Rapra.

[4]. Torres, F. and C. Aragon, Final product testing of rotational moulded natural fibre-reinforced polyethylene. Polymer testing, 2006. 25(4): p. 568-577.

[5]. Crawford, R., Recent advances in the manufacture of plastic products by rotomoulding. Journal of materials processing technology, 1996. 56(1): p. 263-271.

[6]. Godinho, J., A. Cunha, and R. Crawford, Prediction of the mechanical properties of polyethylene parts produced by different moulding methods. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2002. 216(3): p. 179-191.

Question Answer

Abu Saifullah

asaifullah@bournemouth.ac.uk