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Executive Summary 

Sites of special scientific interest (SSSIs) cover just under 7% of England, around 12 % of 
Wales and around 13 % of Scotland. In recent years, investments have been made to bring 
the habitats and species that SSSIs were designated for into ‘favourable’ condition. 
However, some SSSIs and other protected areas (PAs) are under direct physical threat from 
inundation following sea level rise, and changes in climate will affect the species and 
habitats that are present on most PAs. This report summarises these threats and considers 
options for changing the way that the protected area network is managed.  

The following impacts of climate change have already been detected on PAs; 

 Saltmarshes have been lost to coastal squeeze, and coastal freshwater habitats 
including grazing marsh and lowland raised bog are at risk of inundation by seawater 
under current conditions  

 Northern species have decreased in density, whilst southern species have increased 
in density. Whilst most evidence for this occurring on PAs comes from outside the 
UK, there is evidence that these patterns are occurring within the UK as well   

 Southern species in the UK have used PAs to facilitate their northwards expansion  
 

In addition, the following impacts of climate change have been predicted to occur in future;  
 

 The composition of flora and fauna on each PA will change – high confidence 
(medium evidence, high agreement) 
 

 Cold adapted species of high latitudes and altitudes will tend to decrease on PAs, 
whilst warm adapted species will tend to increase – medium confidence (medium 
evidence, medium agreement ) 
 

 PAs in the North of the UK will gain plant species overall, whilst PAs in the south are 
likely to lose plant species. This pattern is reversed for UK breeding birds – low 
confidence (medium evidence, low agreement)  
 

 Species with lower dispersal capacities and those for which urban areas are a barrier 
to dispersal will be unable to colonize PAs that become climatically suitable – low 
confidence (limited evidence, medium agreement) 
 

 Work in Africa predicted that some Important Bird Areas (IBAs) may lose all the 
species for which they were designated by 2085, although for around 90 % of 
species at least one currently occupied IBA should remain suitable. In Europe, 
species turnover is predicted to be faster than in Africa – medium confidence 
(medium evidence, medium agreement) 

 Increasing range mismatching of interacting species, such as butterflies and their 
host plants, might mean that more management is necessary on PAs to preserve 
species that interact with each other – low confidence (limited evidence, medium 
agreement) 

 Hotspots of bird diversity in Finland and Norway may no longer coincide 
geographically with PA boundaries – low confidence (limited evidence, medium 
agreement)  

 
Integrating consideration of climate change into management plans for the PA network is 
likely to result in more effective (and cost-effective) conservation solutions. In order to 
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facilitate this integration, monitoring of climate change impacts and management actions 
should be carried out to enable adaptive decision making. 
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Introduction 

Protected areas (PAs) cover 10.1-15.5 % of the globe (depending on definition; Chape et al. 
2005, Soutullo 2010), and the Aichi Targets of the Convention on Biological Diversity aim to 
increase this to 17% (Harrop 2011). In the UK, there are many different conservation 
designations. Areas designated primarily for the protection of biodiversity cover just under 7 
% of England, around 12 % of Wales and around 13 % of Scotland, (Sites of Special 
Scientific Interest (SSSI) which encompass Special Areas of Conservation (SACs, 
designated under the EU Habitats Directive), Special Protection Areas (SPAs, designated 
under the EU Birds Directive) and Ramsar sites (designated under the Ramsar convention)). 
The area protected increases to over 23 % of England and over 25 % of Wales if all 
designations are considered, including those primarily designated for the landscape 
character, such as Areas of Outstanding Natural Beauty and National Parks (Lawton et al. 
2010). Even these less biodiversity-focussed designations may decrease the likelihood of 
activities that are potentially harmful to wildlife occurring (Bate et al. 2010).  

Patterns in the distribution and size of the UK’s protected sites  

Protected areas are not spread uniformly across the UK, so this paper begins by examining 
patterns in the distribution and size of the UK’s protected sites. Ancient Woodland habitats 
are covered by the planning system as well as by SSSI designation (less than 22 % of 
broadleaved woodland in England is within SSSIs, Lawton et al. 2010), so patterns in their 
distribution have been investigated in addition to SSSIs. Within the UK, 1 km grid squares at 
higher altitudes tend to have a higher percentage cover of SSSI (Spearman’s Rank 
Correlation, rho=0.28, P<0.0001), reflecting the greater proportion of semi-natural habitat in 
the uplands. Conversely, 1 km grid squares with high percentage cover of ancient woodland 
are often found at lower altitudes (Spearman’s Rank Correlation, rho=0.05, P<0.0001 – the 
relationship is very weak despite the highly significant p-value). In addition to this, across the 
whole of the UK, higher latitudes tend to have a higher percentage of SSSI (Spearman’s 
Rank Correlation, rho=0.26, P<0.0001), whilst the distribution of Ancient Woodland shows a 
bimodal distribution with latitude, so that there is a higher percentage of cover at low and 
high latitudes, with less at the central latitudes. This pattern in distribution reflects the land 
use history of different soil types and topographies. Many areas of ancient woodland in the 
UK are very small (modal value is 0.29 hectares) although this differs between countries – 
England and Wales have many small areas of ancient woodland (mode 0.28 hectares for 
England, 0.27 hectares for Wales, >44,000 recorded sites in England, >48,000 recorded 
sites in Wales), whilst Scotland has fewer but larger areas of this habitat (mode 1.97 
hectares, <29,000 recorded sites). 

Importance of Protected Areas to conservation 

In the UK, where areas outside PAs are often highly modified, some plant species are 
entirely confined to PAs and most are well represented in PAs, although some critically 
endangered species appear not to be represented within their borders (Jackson et al. 2009). 
Across Europe, there is some evidence that SPAs improve the population trends of the 
species they were designed to protect. Donald et al. (2007) found an association between 
the percentage of land protected and the population trend of European breeding birds 
between two survey periods. This relationship was stronger for species protected under 
Annex 1 of the Birds Directive, for which SPAs are designated, but still held for non-Annex 1 
species. However, the contribution of SSSIs to conserving non-target species can be 
variable. In a study of eight British butterflies, Davies et al. (2007) found that whilst 
population trends tended to be positive on SSSIs, half the species studied maintained higher 
populations on SSSIs in unfavourable condition than they did on SSSIs in favourable 
condition according to common standards monitoring. They concluded that management for 
biodiversity in Britain is detrimental to butterflies associated with later seral stages of 
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grassland and scrub/grassland mosaics, which suggests there may be more that can be 
done to conserve biodiversity on SSSIs. A more recent study (Brereton et al. 2011) found 
that population trends for 12 specialist butterflies were no different on SSSIs than on 
unprotected land, and numbers of these species were declining across the UK. In addition to 
benefitting biodiversity, SSSIs also contribute significant economic benefits in terms of the 
ecosystem services they provide; Christie and Rayment (2012) found that the general public 
in England and Wales were willing to pay almost nine times more than the current cost of 
SSSI management for the ecosystem services they provide.  

Vulnerability of Protected Areas to Climate Change 

Protected areas have different vulnerabilities to the effects of climate change depending on 
their location, size, sensitivity of component habitats and species, current condition and the 
presence of non-climatic factors such as pollution (Wilson et al. 2010). Coastal habitats are 
particularly vulnerable to inundation by seawater and coastal erosion. For example, large 
areas of many saltmarshes protected in SPAs have been lost to coastal squeeze since their 
designation (Haskoning 2006). Fresh water habitats located close to the coast are also at 
risk from sea-level rise (DEFRA 2011) with 1,531 ha of SSSI habitat in England (3.5 % of 
total SSSI area present in the coastal floodplain, including grazing marsh and lowland raised 
bog) at risk under current (2010) conditions. This increases to 4.7 % by 2100 under a 
medium emissions scenario with degraded defences, and recovery from inundation is not 
guaranteed. Recent wetland creation work has resulted in an increase in the number of sites 
occupied by Bittern Botaurus stellaris. However, this population growth could be threatened 
by the loss of just three sites in Suffolk that are currently under threat from sea level rise 
(Gilbert et al. 2010). Small PAs are less likely to retain areas with similar climatic conditions 
in the future (Loarie et al. 2009) so are less likely to retain the species that are currently 
resident than larger PAs due to a lack of climate connectivity (Hodgson et al. 2009). 
Because important habitats tend to be more fragmented in England and Wales than 
Scotland (see section on distribution of PAs), we might expect a higher level of vulnerability 
in these two countries. Different taxonomic groups may also have different vulnerabilities. In 
recent work carried out by the Joint Nature Conservation Committee, fish were the species 
group least likely to have been assessed as favourable, and lowland and upland heath were 
the habitat types with the lowest percentages assessed as favourable under common 
standards monitoring (Williams 2006). Since current condition can affect vulnerability to 
climate change, these habitats might therefore be expected to be especially vulnerable. 

Implications of changing species distributions for Protected Areas 

A concern for some authors is that PAs are fairly static in space, whilst species respond to 
climate change by moving their distributions. This potential problem was recognised as early 
as 1985, when Peters and Darling (1985) used paleoecological data to show that the 
predominant response of species to climate change was to shift their distributions to more 
suitable locations. Despite this early recognition of the problem, as recently as 2004, climate 
change was not recognised globally by reserve managers as a potential threat to conserving 
species within PAs (WWF 2004). Climate change is expected to become a particular 
problem at the southern range margins of species distributions, where species may move 
out of reserves which were designated for them (Araújo et al. 2004, 2011). In recent years, 
some reserves have been degazetted in response to loss of the species that they were 
designated for (Mascia and Pailler 2011), and this could become a problem in the UK, 
particularly in reserves designated for one or a few species or habitat types. So far only one 
study has specifically assessed the current effectiveness of protected areas in retaining UK 
species with retracting ranges (Gillingham et al. in prep). Using data from repeat surveys of 
four northern butterflies and six northern birds, they concluded that there was no noticeable 
effect of protection on the likelihood of persistence of species. Studies such as this are very 
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difficult to do for most species due to the requirement for repeat surveys of the same 
locations to determine where extinctions have occurred within the UK. In Australia, there 
have been calls to replace ‘underperforming’ PAs (Fuller et al. 2010). Other authors have 
also discussed the possibility of declassifying and selling some reserves in order to purchase 
or designate others (Strange et al. 2011). However, the performance criteria used by Fuller 
et al. (2010) did not include the potential future effectiveness of PAs under changed climatic 
conditions. In the UK, where many PAs are privately owned, degazetting one PA would not 
free up funds for the designation of others.  

Because many species have expanded their distributions northwards into new areas in 
response to climate change (e.g. Hickling et al. 2006), we should expect that species will 
disperse into PAs as well as out of them. In support of this theory, there is evidence that a 
wide range of invertebrate species, as well as some birds, disproportionately colonise SSSIs 
in Great Britain when expanding their distributions northwards (Thomas et al. 2012). This 
means that PAs should continue to be useful locations for conserving biodiversity in the UK 
in future, even if some species move out of them. Specialists were found to be more reliant 
on SSSIs than generalists, suggesting that it is the habitats found within UK PAs that drive 
this pattern. However, this latter effect was only investigated for colonising butterflies, so the 
extent to which this rule holds for other taxa is a knowledge gap at present. Reserve 
managers in the UK already monitor and manage habitats for some species that reserves 
were not originally designated for (Davies et al. 2007), and this presents an opportunity to 
increase the biodiversity under protection in the UK, which is one of the few countries in 
Europe predicted to ‘win’ overall in terms of the numbers of species that should find climatic 
conditions suitable in the future (IPCC 2007). This sort of pattern has been picked up in 
other European countries; on PAs in Finland, northern bird species have decreased in 
density in recent years, whilst southern species have increased, probably in response to a 
changing climate (Kujala et al. 2011, Virkkala and Rajasärkkä 2011).  

1. Lessons from modelling bird distributions in sub-saharan Africa and Europe 

Using climate envelope models, Hole et al. (2009) modelled the potential future distributions 
of 1,608 bird species breeding in 803 Important Bird Areas (IBAs).  815 of these were 
‘priority’ species for which IBAs are designated.  For 88-92 % of priority species (depending 
on climate scenario used) at least one of the IBAs projected to be climatically suitable in 
2085 is currently designated for the species (i.e. there is an overlap in current and projected 
future range), and less than 1 % are projected to lose all suitable climate space within the 
network by 2085. However, 51-55 % of IBAs are projected to lose all the priority species for 
which they are currently designated, and range extent for priority species is projected to 
decline to 74 % of the current area occupied. In addition, in parts of the continent IBAs are 
separated by distances of > 500 km, which is substantially greater than the dispersal 
distances even bird species are capable of attaining, especially if the intervening terrain is 
inhospitable. 

Modelling the distributions of 487 breeding birds in Europe, Huntley et al. (2010) found that 
species turnover was predicted to be higher and persistence lower in PAs in Europe than in 
Africa, with the 156 Annexe 1 species projected to be particularly affected. However, 
northern Scotland was predicted to have high persistence of species, probably reflecting the 
high topographic heterogeneity and hence wide range of microclimatic conditions present. 

Lessons learned – Reserve networks can be effective in protecting biodiversity in the short 
term even without significant dispersal of species, and PAs in the UK can contribute to 
international conservation objectives. However, in the longer term, actions that help species 
move between protected areas (such as habitat creation between isolated reserves, 
sympathetic management of areas surrounding reserves or even assisted colonisation) may 
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be important. Flexibility in reserve designation may also be required, since some reserves 
may well lose all the species they have been designated for. These conclusions are echoed 
in part by a study from North America that looked at trees, birds, mammals and amphibians 
(Lawler and Hepinstall-Cymerman 2010). 

Projecting future impacts of climate change on PAs  

Modelling work in the US has shown that the composition of flora and fauna on individual 
PAs is likely to change (Lawler and Hepinstall-Cymerman 2010), and other studies have 
predicted that the representation of northern biomes on PAs will decrease, whilst 
representation of southern biomes will increase in both Canada and the UK (Lemieux and 
Scott 2005, Trivedi et al. 2008). Some PAs in Africa may lose all the species for which they 
were designated (Hole et al. 2009, Huntley et al. 2012, see box 1), and the likelihood of this 
occurring will increase with more severe climatic change. Despite these losses, around 90 % 
of the bird species modelled were predicted to retain suitable climatic conditions in at least 
one PA. In addition, colonisation of PAs by expanding species will mean that some PAs will 
likely gain species overall, whilst others will lose species overall. PAs in the north of the UK 
have been predicted to gain plant species, whilst PAs in the south are likely to lose plant 
species (Dockerty et al. 2003, see box 3). This pattern is reversed for UK breeding birds 
however (Pearce-Higgins et al. 2011, see box 4), so there is uncertainty in what the relative 
impacts of climate change will be on different taxonomic groups and sites. Using predicted 
range changes of species, PAs can be classified as likely to have high persistence of 
species, increasing specialisation, high predicted turnover, increasing value or increasing 
diversification. These different types of PA will have different optimum management 
strategies (Hole et al. 2011) if their biodiversity is to be conserved effectively.  

 

2. UK Bryophytes and Climate Change  

Anderson and Ohlemüller (2011) modelled the distributions of 43 rare UK bryophytes under 
current and future climates. Across all species, there was an increase in coverage within 
protected areas of the area considered climatically suitable, from 8.9 % in 1990-2020 to   
10.2 % in 2051-2080. Suitable climate space moves uphill and to higher latitudes, which 
have a higher percentage covered within the protected area network. However, the median 
overlap between the current range and the climate space that is predicted to be suitable in 
future decreases from 21 % in 1990-2020 to 10 % in 2051-2080. At least a quarter of all 
species have no overlap between their current distribution and areas with analogous 
climates in future. Many species may therefore find it difficult to migrate to areas that are 
suitable in the future. 

   

3. Plants in UK protected areas  

Dockerty et al. (2003) classified 200 species as ‘declining’, ‘increasing’ or ‘no change’ 
between current and projected future distributions on 66 nature reserves in the UK. Future 
moisture levels and temperature were projected to stay within the ranges already 
experienced by all 200 species in some part of their current European ranges. Northerly 
sites were projected to have more increasing trends in the probability of occurrence, whilst 
southerly sites were predicted to have more decreasing trends. At a single reserve 
(Backwarden SSSI in Essex), depending on the climate scenario used, 17-20 % of species 
showed increasing probability of occurrence, 28-48 % showed no change and 29-49 % 
showed a decreasing trend, including 3 species identified as of conservation priority by the 
site managers. Warming is likely to favour southern-temperate and Mediterranean types, 
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with arctic-montane and boreal-montane types likely to decline (Trivedi et al. 2008).  

 

Not all species will be able to colonise all newly suitable PAs (see boxes 1 and 2). Species 
with lower dispersal capacities and those that are sensitive to urban barriers, such as the 
pool frog, may find it difficult to colonize areas that become climatically suitable (BRANCH 
partnership 2007, Anderson and Ohlemüller 2011, Pellatt et al. 2012). Because species 
have different dispersal capabilities, there may in future be an increasing mismatch in the 
ranges of interacting species, such as butterflies and their host plants (Schweiger et al. 
2012), although a lack of data on dispersal distances and how this interacts with habitat 
fragmentation to affect the ability of species to track climate change (Hodgson et al. 2012) 
mean that it is difficult to assess where these mismatches might occur. Projections of bird 
distributions in Finland and Norway showed that in those countries, even if species colonise 
new areas, hotspots of species diversity may no longer coincide geographically with PA 
boundaries (Virkkala et al. 2010). However, in the UK, where there is extensive human-
dominated use of the landscape between PAs, this is less likely since PAs represent the 
most suitable places for many species to colonise (Thomas et al. 2012). 

4. The impact of climate change on UK birds on SPAs (CHAINSPAN project) 

An important criterion for SPA designation is based on numerical thresholds – for instance, 
whether >1% of the UK population of a species is present at a site, or whether the site holds 
an important congregation of species. Changes in abundance at individual sites could 
therefore cause SPAs to be degazetted if they become less suitable for the species they 
were selected for. These criteria also result in poor representation of certain species groups, 
such as migratory passerines, in the UK SPA network. 

Until recently, most modelling of potential climate impacts looked at impacts on range, rather 
than the population criterion on which designation is based. Pearce-Higgins et al. (2011) 
therefore projected future changes in abundance of bird species at individual Special 
Protection Areas (SPAs) as a result of climate change, using data from the UK, Ireland, the 
Netherlands and France. Sufficient data existed to fit 118 models (including separate models 
for some species in two seasons). Climate was a reasonable predictor of distribution across 
the models fitted, but it was a weak predictor of abundance at individual sites. In 33 of the 
models, climate had very low predictive power and only six models fitted the data well (r > 
0.5), with climate accounting for approximately 19 % of variation in recent population trends 
across all populations modelled. This suggests that other factors are currently more 
important in determining the abundances of birds within individual SPAs. Therefore, site-
based management is likely to be of use in reducing the adverse effects of climate change. 
Many species were projected to respond favourably to climate change in the short term, but 
with increasing severity of change, a greater proportion of species were projected to decline. 
The most vulnerable groups were predicted to be northern breeding seabirds and terrestrial 
species. Northern SPAs were predicted to lose qualifying features whilst many southern 
sites were predicted to gain features, but larger sites should continue to support more birds.  

Several knowledge gaps were highlighted, as there were insufficient data to produce models 
for several of the most threatened terrestrial species. There is also currently no consistent 
approach to the management of UK SPAs, or requirement to take climate change into 
account when creating future management plans. 

 

Clearly, sites designated for several species or habitats of interest will be less vulnerable to 
being degazetted as species move in response to climate change than sites designated for 
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one or a few species or habitats. Since the presence of Annex-listed species determines the 
management of Natura 2000 sites (Verschuuren 2010), adding species of conservation 
concern to designation criteria as they colonise new areas should result in a lower likelihood 
of degazettement along with appropriate management being planned to ensure long-term 
survival of these colonising species. However, species with their warm range margins within 
the UK, for which dispersal to new areas would be difficult, could be disadvantaged by such 
actions if they were to result in less available suitable habitat. A complementary strategy 
would be to integrate expected shifts in species’ distributions due to climate change into the 
conservation strategy of the Habitats Directive (as suggested by Normand et al. 2007).  

Managing climate change impacts in PAs  

As well as preventing harmful activities from occurring within their borders, PAs also have 
the potential for positive management. In some cases, appropriate management may have 
potential to reduce the negative impact of climate change by reducing the impacts of other 
negative drivers of population density (Pyke and Marty 2005, Pearce-Higgins 2011a, Singh 
and Milner-Gulland 2011). For example, the Golden Plover Pluvialis apricaria is dependent 
on the abundance of adult craneflies (Diptera: Tipulidae), which are a key prey item during 
the breeding season (Pearce-Higgins et al. 2010). Re-wetting peat by blocking drainage 
channels is expected to increase the numbers of craneflies available as a food source 
(Carroll et al. 2011), which may help the Golden Plover persist in the face of climate change. 
However, there are trade-offs to be considered with such a course of action. A single 
management action can affect species of conservation concern differentially. For example, 
intensively managed grouse moors in upland Britain are associated with lower declines of 
Lapwing Vanellus vanellus but faster declines of Golden Plover P. apricaria (Amar et al. 
2011). In addition, management to restore one vegetation type can negatively impact the 
cover of other desirable plants (Mitchell et al. 2009).  

Another potential management action is to create habitat suitable for expanding species in 
areas that become climatically suitable for them. The Royal Society for the Protection of 
Birds (RSPB) has recently re-created heathland suitable for the Dartford Warbler from a 
conifer plantation, to enable it to colonise new areas during its current northwards expansion 
(RSPB 2010). Habitat management may also be necessary if translocations are to be 
considered to aid species to track climate change (e.g. Willis et al. 2009). There is a trade-off 
to consider here, as maintaining habitat for retreating species may discourage expanding 
species from colonising protected areas. In a world where conservation resources are 
limited, some management actions may use resources that could potentially be spent 
elsewhere. In the UK in recent years, beech Fagus sylvatica has been removed from 
woodland in the North West, where it is was not previously found. However, in Southern 
England, where conditions are becoming unsuitable for it, it is managed to enable 
persistence (Gaston et al. 2006). If species distributions and losses were considered in 
terms of whole-range dynamics, such management actions might be changed to allow the 
species in question to colonise areas that become climatically suitable (Monzón et al. 2011). 
A new policy of facilitating movement across the landscape could result in more cost-
effective conservation outcomes, enabling resources to be redirected. This would require 
new interest features to be added to reserve management plans, whilst species that have 
been irreversibly lost from a site would be removed from the designation and management 
objectives to ensure efficient use of resources. In all cases, new objectives for individual PAs 
should take into account species’ wider conservation status and distributions (Dodd et al. 
2012). This approach is already adopted by Natural England (Natural England 2012), who 
have committed to revise the conservation objectives for SSSIs and develop new SSSI 
guidance that will take into account climate change issues. They will also implement a 
Notification Strategy which includes a boundary and feature review of all SSSIs, ensuring 
that climate change adaptation is considered. 
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Habitat associations of species change along climatic gradients (Oliver 2009, Suggitt et al. 
2012), which may complicate the picture further as it will be difficult for reserve managers to 
predict how best to manage for a particular species in the future. At the leading edge of 
species’ ranges, habitat breadth can expand as the climate becomes more suitable, enabling 
species to exploit a wider range of habitats (Pateman et al. 2012), which might facilitate 
range expansions in response to climate change. Given this information, it is reasonable to 
expect that habitat breadth might decrease at the trailing edge of species’ ranges, as the 
climate becomes less suitable. In addition, other environmental drivers can reduce habitat 
breadth despite climatic release (Oliver et al. 2012). Hen Harrier Circus cyaneus shows 
differential responses to management at different sites within the UK, meaning that habitat 
management guidelines have had to be developed on a site by site basis (Arroyo et al. 
2005). The likely changes of habitat preference under climatic change and at different 
latitudes and elevations is a major knowledge gap, as most of the available literature is 
concentrated on the Lepidoptera, and it is not currently known to what extent other species 
might follow similar patterns.  

Adapting the PA network to ameliorate climate change 

Based on the best current knowledge, Lawton et al. (2010) concluded that England’s 
protected area network would need to be modified in order to adapt to the challenges posed 
by climate change. Several options have been proposed when designating new PAs in 
response to climate change. Because climate change and habitat fragmentation act 
synergistically to decrease the abundance and range of species (Opdam and Wascher 
2004), many authors have suggested increasing physical connectivity between habitats 
(Heller and Zavaleta 2009) or temporal connectivity between suitable climate space 
(Hodgson et al. 2009) by including areas of topographic and climatic heterogeneity within 
PAs (Carroll et al. 2010).  Some authors advocate designating dynamic PAs to complement 
existing static ones in the marine environment (Game et al. 2009), but this would be difficult 
to achieve within the UK’s highly modified terrestrial environment. The use of dynamic 
reserves are constrained by habitat fragmentation outside reserves, necessitating 
management of the matrix (Rayfield et al. 2008), and other authors have stressed that 
expanding and connecting reserve networks will be insufficient to conserve biodiversity 
under climate change (Kostyack et al. 2011), so management of land between reserves will 
be necessary anyway. Others have suggested that reserves should be designated based on 
criteria that include future performance (Singh and Milner-Gulland 2011) or that new 
reserves should be established in the expected direction of travel of suitable climate space 
(Pearson and Dawson 2005). These approaches are species-centric and could be expensive 
to apply to a large number of species, many of which will have competing demands, as well 
as relying on uncertain model predictions. However, only a small amount of additional land 
may be necessary to create a climatically robust representation of some species (Pyke and 
Fischer 2005), and if this did not involve a high economic cost might be worth considering 
when designating new reserves. Monzón et al. (2011) suggested that management should 
be changed within reserves to take account of the dynamism of species responses to 
climate change, so that resources are not wasted on maintaining species at a site once the 
climate has become unsuitable, assuming that the species in question has expanded its 
distribution elsewhere. The use of long-term monitoring of population densities will be 
important in detecting initial responses to climate change, as well as the effectiveness of any 
management actions (see Figure 1).  
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Based on the information provided in this report, the UK Biodiversity Partnership adaptation 
principles (Hopkins et al. 2007), and the England Biodiversity Strategy (Smithers et al. 2008) 
several recommendations can be made; 
 
1. Existing PAs should be retained. PAs protect large percentages of most important semi-

natural habitats, without this protection the land might be used for activities harmful to 

biodiversity (Lawton et al. 2010). 

 

2. Management within PAs could help to reduce sources of harm not linked to climate 
change, for example (Pearce-Higgins 2011a) by decreasing predation rates and 
increasing available prey resources for birds. The effectiveness of these management 
interventions in decreasing vulnerability to climate change should be monitored and 
conservation priorities regularly reviewed to ensure resources are used efficiently (e.g. 
Pearce-Higgins 2011a, 2011b, see figure 1).  
 

3. Maintaining heterogeneity within landscapes should increase the chances that species 

will be able to spread locally into newly favourable habitat (Hodgson et al. 2009, Carroll 

et al. 2010). 

 

4. Creating new habitat (Hodgson et al. 2011), restoring degraded habitat, or reducing the 

intensity of management of the landscape between existing habitats should facilitate 

species’ movements between PAs. The RSPB aims to double the area it currently 

manages for nature conservation by 2030 (RSPB 2007). 

 

5. When reviewing management plans, the likely future impacts of climate change should 

be considered and appropriate changes made (Monzón et al. 2011, Pearce-Higgins 

2011b, see figure 1). This approach has been taken by the RSPB in their futurescapes 

campaign (Dodd et al. 2010, RSPB 2010). 

 

Figure 1: Schematic diagram outlining a potential approach to site-based adaptation 

management. Adapted from Pearce-Higgins (2011b) 
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6. Intertidal habitat should be re-created and protected through managed realignment, to 
compensate for losses predicted by coastal squeeze (DEFRA 2011). This should be 
done as soon as possible, since compensatory sites can take some time to become 
suitable for their target species (Gilbert et al. 2010) and may not achieve the same plant 
communities as natural sites (Mossman et al. 2012). 
 

7. The needs of species currently resident in PAs for which climate will become less 
suitable should be balanced against the needs of species of conservation concern that 
colonise these sites during range expansions. The optimal balance will depend on the 
location of each reserve within the UK, and the importance of the site to the species it 
protects on an international level. Many birds associated with upland and montane 
habitats in the UK are of international conservation importance (Pearce-Higgins et al. 
2011), so care should be taken not to disadvantage these species through habitat 
management. 

 

8. The habitat requirements of species that might colonise new areas should be identified 
from the north of their current climatic range. This is because species often show 
variation in habitat use across their full geographic range (e.g. Suggitt et al. 2012) and 
the requirements towards the north of their current range are likely to be the most similar 
to areas that become climatically suitable. 
 

Knowledge Gaps  
 
The effectiveness of PAs in conserving biodiversity under climate change is an emerging 
field of study, and as such there are a large number of knowledge gaps that should be 
considered priorities for research.  

 

 Likely changes in abundance within PAs in taxa other than birds are unknown, but if 
models were generated these could be compared to monitoring data to determine 
whether numbers observed are as expected by models.  
 

 The impact of changes in habitat extent and quality on abundance is unknown for most 
species, along with the likely interactions of these impacts with climate change. 
 

 There is a lack of population monitoring of most taxa, even birds listed on the Birds 
Directive (Pearce-Higgins et al. 2011), from non-PA land, which makes it difficult to 
quantify the effectiveness of PAs. 

 

 The area requirements and habitat preferences of species that might colonise the UK are 
often unknown in their current ranges, and filling this knowledge gap would help inform 
future habitat creation in the UK. 
 

 The likely effectiveness of PA management in retaining viable populations of species 
predicted to do badly under climate change is largely unknown, and the results of 
management actions should therefore be closely monitored. 
 

 Little is understood about the genetic components of biodiversity, and how to protect 
genetic diversity using PAs (Gaston et al. 2006). 
 

 Likely future changes in land use in the matrix surrounding PAs is difficult to predict, and 
how these changes will affect species’ ability to colonise areas that become climatically 
suitable is therefore unknown. 
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 The ability of species to track climate change to colonise all newly suitable PAs is largely 
unknown, as dispersal distances are not well understood for most species (e.g. 
Jaeschke et al. 2012). This limits our ability to project the future utilisation of PAs by 
potential colonisers.   
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