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Introduction

•We present an adaptive 3D bipedal model for adaptive locomotion.
•The uncontrolled manifold hypothesis asserts that neural control applies only to

high level, spatio-temporal aspects of task performance — e.g. keeping the head
steady while running — while the mechanics of the body and Central Nervous Sys-
tem resolve the remaining degrees of freedom through activation patterns, called
motion primitives.
•The equilibrium point hypothesis states that the body completes the task with lim-

ited input from neural system, provided the specified motion is stable and com-
pletes the objectives.
•These principles are implemented via two adaptive controllers: a neural oscillator

coupled with the mechanical system to achieve entrainment, and symmetry con-
trollers which adapt phase space to changes in the environment [3].
•We analyse the efficiency and and stability of entrainment as a control strategy for

this model.

Objectives

1. Motion synthesis through integrating the current state of knowledge from diverse
fields such as motor control, robotics and bio-mechanics.

2. Extend these principles to the 3D bipedal model of [1].
3. Develop tools to evaluate the influence of entrainment by numerical analysis to

find the relationship between stability, cost of transport and changes in slope.

Methods

Mechanical Model

•Ames and Gregg [1] describe the continuous phase manipulator equation and hy-
brid dynamics as the instantaneous equation of the dynamics.
•They decoupled frontal-plane and sagital-plane dynamics.
•This 3D compass gait has a stable limit cycle walking on flat surface in R3.

Environment Adaptation using Control Symmetry

•The Lie Group Symmetry Control offset action has been used in [2, 3, 4]. This
control strategy shapes the potential energy of bipedal walker to stable walking on
a flat surface.
•We adapt this method to satisfy new environmental constraints. Given a trans-

formation m′ = g(m) a controller is found which satisfies the motor invariant I ,
i.e.

I(g(m)) = I(m), g ∈ G;m ∈M (1)

where G and M represent the action and motion spaces, respectively, and I is a
desired motion invariant.
•Applied to [1], this provides the local controller

u = Kα
3D(θ) := B3D

∂

∂θ
(V3D − V3D(Ψγ(θ)) +

1

2

α2φ2

m3D(θ)
). (2)

•The new control scheme implicitly utilizes the Lie group control symmetry

u = Kα
3D(q) + (1 0 0)Tv

A standard nonlinear SISO control system is used to drive the walker’s frontal
plane dynamic response to 0 as seen in Fig 1.

Global Control with Entrainment

•Entrainment between the mechanical system and a neural oscillator have been
shown to enhance structural stability [3].
•We combine controller from previous local Control Law resulting into our final

system
ẋ = F (x, houtuout(xc)) + Bulocal(x)

ẋc = S(xc, hinuin(x)) (3)

.
•We couple the Matsuoko oscillator as in [3].
• Perturbations (see Fig. 3) are handled by the entrainment with the neural oscilla-

tors providing the necessary structural stability to adapt to a new limit cycle.
•The neural oscillator input is given by the angle between two legs.

Results

• State stability improved by combination of local and global controllers.
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Figure 1: Local Control Law based adaptation at 5 different slopes in range γ = (0,−0.0628) radians. This demon-
strates the ability of this model to walk on uneven terrain.

•The global controller enables the adaptation to perturbations at rate of -0.015 per
10 steps. The strength of coupling between the systems correlates with the rate of
convergence towards a stable periodic orbit.
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Without coupling

Entrained biped walker with Matsuoko oscillator

Figure 2: Convergence of the stance phase after a perturbation. The states regain periodic limit cycle after the pertur-
bation at 10th step on coupled oscillator.
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R− square    0.7983
R− squared  0.7669
RMSE 4.381e−04

Figure 3: On the left, the global controller improves stability at instantaneous slope change of -0.02 rad(s). On the
right, we evaluate the effect of the coupling coefficient hout on the cost of transport.

• In Fig.3 we propose a method to choose the optimal coupling coefficient to min-
imise the cost of transport with stable control.

Future Work

In the future we intend to
• develop an on–line method to identify optimal control parameters for uneven ter-

rain;
• derive a motion planning method which accounts for adaptation costs;
• develop smooth and effective switching between motion primitives, such as of be-

tween running, walking and balancing in R3; and
• leverage underpinning biological principles of locomotion in the development of

robotic models which are stable and energy efficient.
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