
Malevolent App Pairs: An Android Permission
Overpassing Scheme

Antonios Dimitriadis
Dept. Electrical and Computer

Engineering, Democritus
University of Thrace, Greece

andimitr@ee.duth.gr

Pavlos S. Efraimidis
Dept. Electrical and Computer

Engineering, Democritus
University of Thrace, Greece

pefraimi@ee.duth.gr

Vasilios Katos
Dept. of Computing &

Informatics
Bournemouth University, UK

vkatos@bournemouth.ac.uk

ABSTRACT
Portable smart devices potentially store a wealth of infor-
mation of personal data, making them attractive targets for
data exfiltration attacks. Permission based schemes are core
security controls for reducing privacy and security risks. In
this paper we demonstrate that current permission schemes
cannot effectively mitigate risks posed by covert channels.
We show that a pair of apps with different permission set-
tings may collude in order to effectively create a state where
a union of their permissions is obtained, giving opportunities
for leaking sensitive data, whilst keeping the leak potentially
unnoticed. We then propose a solution for such attacks.

Keywords
Android smartphones, privacy, data exfiltration, malevolent
applications, covert channel

1. INTRODUCTION
The ever increasing number of available applications for

smartphones and tablets, inevitably increases the risk of un-
intentional exposure and disclosure of user data to a large
number of third parties. There is a plethora of applications
available for immediate download and installation within
a matter of minutes. Many of these applications collect
personal data, some of which can be sensitive, biometrical,
location-revealing or behavioural such as the user’s brows-
ing history [19]. In order to gain access to a certain user
data attributes, an installed application needs to request the
appropriate permission from the user. There are two fun-
damental assumptions on this authorisation model. First,
the user is expected to understand the permissions and the
consequences of granting them to the under installation ap-
plication. This is problematic because individuals may lack
the appropriate background and knowledge in order to make
informed decisions on their privacy [3]. Such permissions-
based mechanism is widely criticized by developers, mar-
keters, and end users [3] for the high coarse-grained con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CF’16, May 16-19, 2016, Como, Italy
c© 2016 ACM. ISBN 978-1-4503-4128-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2903150.2911706

trol of application permissions and cumbersome permissions
management setting.

The second assumption is that the authorisation model
is enforced. If an application requests a limited number
of permissions, the user may consider this application less
risky than some other application requiring more permis-
sions. Based on this perception, the user may eventually
allow its installation. For example, if an application does
not ask for Internet access permissions, the user may expect
that this application has no means to transfer any collected
sensitive data outside the phone device to a third party.
Such reasonable expectation does not hold in practice and
the misconception of applications running in isolated envi-
ronments with no collusion capabilities leads to distorted
risk perceptions as the users are under the impression that
they can protect their privacy soley on approval of applica-
tion persmissions indepentently [13]. The aim of this paper
is to empirically invalidate this assumption by demonstrat-
ing that applications can collaborate with the use of covert
channels (cc).

In [14], a number of covert and overt communication chan-
nels were proposed, enabling applications to collude and
therefore indirectly escalate their permissions. Furthermore,
it was proposed that timing cc which require precise timing,
need to synchronise using a new require precise timing
permission [14]. In the same work, the authors state that
privacy risks cannot be solely assessed by examining the ap-
plication’s permissions. Two seemingly benign applications
having only one and different permission each, is adequate
to introduce privacy failures if such applications co-exist in
the same device. This is in line with the popular saying that
“the resulting system is greater that the sum of its parts”.

In this paper we consider a scheme that uses two seem-
ingly unrelated participant apps for data theft and exfiltra-
tion. The app pair uses covert channels for communication
concealment and for exfiltrating data to a third party. This
app pair does not need precise timing, as the synchroniza-
tion is made by using system commands with no need for
separate permissions or events.

2. THE MALEVOLENT PAIR SCHEME
Our approach involves two different apps and the goal is

to gain unauthorized access to user data in order to trans-
mit these to a third party without the explicit permision
and consent of the user. This will be achieved by siphon-
ing the data from the network isolated app to the Internet
permitted app, using a cc and more specifically a timing
cc [10]. Overt communication, such as use of external or

431

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/46571833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Overview of the attack vector.

internal storage staging of data is not considered as this can
be easily detected. Fig. 1 illustrates this attack vector, with
A and B being the two respective apps.

For the description of this attack we consider an An-
droid device and two applications A and B. Application A
is granted with only one permission, which gives access to
some sensitive data field, and application B is granted only
with the Internet access permission. Thus application A can
manage data on the device, but cannot transmit them to a
third party. On the other hand, application B can trans-
mit data to a remote user, whilst having no access to any
sensitive personal data. Our goal is to build a stealthy coop-
erative technique between A and B, allowing the smuggling
of the sensitive data to a third party.

As it is suggested, for each data requested by an app (and,
in general, any applications running on the user-side), it
should be clearly stated if these data will be transmitted
outside the smart device (the data item as it is or results
obtained from this data item) or if they will only be used
inside the smart device [18].

2.1 Covert Channel setup
The scheme proposed in this paper is based on the im-

plementation of a hybrid cc. Hybrid channels use an in-
direct flow of information between the different classifica-
tion domains, thus even a proactive system administrator
may not be able to reason about all the effects that occur
when actions take place within a system [17]. The goal of
such a channel is not necessarily to obscure the data flow-
ing through the channel, but to obscure the very fact that a
channel exists [5].

In order to construct this cc we take advantage of two
capabilities available in Android OS smartphone devices.
Firstly, we exploit the battery percentage variable as a syn-
chronization signal for apps A and B. The synchronization
is achieved with periodical check of the battery level, as this
does not need any specific permissions from the Android sys-
tem. The second capability is the use of the method getRun-
ningTasks, which also does not ask for any permission. This
command informs an app on which apps are currently run-
ning and is executed periodically.

An important precaution taken in the attacking scheme is
that the synchronization can only start if both apps are in
the background at the same time. This condition is neces-
sary because in order to execute the synchronization event

Figure 2: Data transmission.

the sending app needs to restart itself. If the app would be
running, the user would notice the unexpected app activity.

Moreover, performing the synchronization only while the
apps are in the background reduces the potential noise of the
covert channel. Usually a channel is noisy. This means that,
given a value for X, the resulting value for Y is not deter-
mined (illustrated in Fig. 2) but, instead, has a probability
distribution, which is determined by the characteristics of
the channel [15]. The outputs observed by the user Y may
depend on the activities of users other than X. In Android
systems each installed app is considered as a new user for
the system [1], and thus we can correlate the users referred
in [15] with the Android apps. We consider the sending
attacking app (app A) as the user X, and the receiving at-
tacking app (app B) as the user Y.

Interference to the actual attack process can be achieved
by other apps or by the user himself. In [15], it is noted that
when the sequence of all inputs from users other than user
X during a trial is constant, the channel capacity takes on
its maximum value of one bit per trial.

Thus, we firstly attempt to isolate the interference from
the user. In order to achieve this, the attack starts only if
the phone is not in use by the user; the relevant informa-
tion can be retrieved by checking the screen state (via the
function “isInteractive”). Moreover, other apps installed on
an Android device do not start or stop the attacking apps
which we used for our attack implementation, and thus we
do not have interference of other apps. In order to verify
this, we tested many different apps available on the Android
App Store. Thus, the user X has no interference from other
users, which makes the channel capacity reach its maximum
value of one bit per trial.

The combination of these capabilities allow apps A and
B to synchronize and communicate with no noticeable over-
heads or particular impact to the system. The two apps are
not required to start simultaneously. As such, synchroniza-
tion and data transmission are achieved with no required
behavioural changes from the two apps; if app A stops by
moving to the background n seconds after a specific bat-
tery percentage change or value, this information would be
available to app B.

A straightforward encoding scheme for the cc communi-
cation could be for example plain ascii. If app A for instance
wishes to send the message “Hello World” to app B, then A
could remain open for 72 time units, and this would corre-
spond to encoding the first character “H” which matches the
decimal number of 72 in ascii. Such time laps is captured
by app B which will be decoding the 72 time units back to
“H”. This example is illustrated in Fig. 3.

The process can be repeated for as long as it is required in
order to send all private data. At the end of the transmis-
sion, the source app can send an eof code to signal that the
transmission is complete. Then B can move on to sending
the received data to a third party.

432

Figure 3: Cooperation of processes A and B

2.2 The Data Exfiltration
The purpose of a cc is the concealment of the whole data

transmission process - that is, in order for the cc to meet
its goal, the covert communication will need to be applied
end-to-end. Thus, an attack which aims to remain stealthy,
needs to incorporate the cc logic not only between the app
pair but also between the app B and the final destination.
Against this background we introduce a second cc between
the mobile device and the third party.

2.2.1 Covert channel exfiltration
Many apps designed to legitimately touch base with a

server include synchronisation functionality which is used to
beef up the user experience. This feature will be employed
for staging the covert exfiltration of the acquired data by
app B.

We assume that the first syncing attempt each day will be
scheduled under a certain code match. App B and the server
would have a prior agreement of the encoding scheme used
for the covert communication. For simplicity, let us assume
that this is based on standard ascii encoding, similar to the
cc between the two apps outlined above. Let us also assume,
without loss of generality, that synchronisation is performed
once a day. As both the server and the App have Internet
connectivity, we can assume that they can obtain a fairly
accurate timestamp. Of course we cannot assume absolute
synchronisation between the two separate clocks. However,
our scheme is able to tolerate discrepancies between them,
at the cost of a lower capacity for the covert channel.

The server and app can use a commonly agreed starting
time t0 from which to measure an time offset. In our ex-
ample, let t0 be equal to midnight. The period ∆EOF =
tEOF − t0 where tEOF is the shortest time lapse between
t0 and the synchronisation event and this can designate the
completion of covert data transmission; any time greater
than ∆EOF would designate that there are more data sent
by the cc and such data can be decoded by calculating the
ascii representation of the difference t1−∆EOF , where t1 is

the timestamp of the initiation of the synchronisation pro-
cess. In our example, if ∆EOF = 5 time units (say minutes),
then if the synchonisation begins at t1 = 77, the resulting
character sent would be “H” (i.e. ascii 72).

In the above example, the exfiltration would need ‖m‖
days, where m is the message to be covertly transmitted.
Obviously, if synchronisation is performed more frequently,
this would reduce the days required to complete the trans-
mission.

3. IMPLEMENTATION OF THE PROPOSED
ATTACK

As a proof of concept we implemented our scheme on the
corresponding apks of the apps. More precisely, we used the
ExDialer - Dialer & Contacts app published by the Mod-
oohut account, and the bbc news app published by the bbc
Worldwide (Ltd) account. These apps have been arbitrarily
chosen as representative examples of popular apps having a
fit for purpose combination of permissions. The ExDialer
app is a dialer app which has access to the Device Id & call
information, but has not access to the Internet. The bbc
app has access to the Internet, but has not access to the
Device Id & call information field. For the developed proof
of concept the ExDialer app reads the phone number and
transmits it to the bbc app, which finally transmits it to a
third party.

We unpacked the apk1 files of these apps and introduced
the malevolent action of the proposed attack. It should be
noted that the new apks are signed by our keys and not
by the official vendor’s keys, since the original signatures
are not valid for the patched apk. This approach is used
for illustration purposes. The beneficiary of such an attack
scheme would either be the actual app vendor implementing
the cc within the original app, or a third party adversary
who will need to successfully obtain a valid signatur for the
patched apk. For the proof of concept a local server was
setup for harvesting the stolen private data.

It is assumed that the desired data that the modified apps
wish to exfiltrate are one or more of the stored phone num-
bers. Knowing in advance the type of data to be exfiltrated,
we can employ a more specific encoding scheme that sup-
ports only the ten digits:

x(n) =

{
[0, 5) if n =EOF

[5n + 5, 5n + 10) otherwise
(1)

The above assigns each number to a 5ms window. The
time required for each digit varies from 5ms to 55ms, which
leads to a transfer rate of at least 18 digits per second for this
hop of the communication. Even though in many cases the
capacity of the covert channel is an important feature of an
attack (for example, one might argue that a covert channel
of bandwidth greater than 100bps would pose a significant
threat to data security [16]), the malevolent pair attack fo-
cuses on the data exfiltration of specific sensitive data fields.
The size of these data will in most cases be small. Moreover,
there is no particular time bound on the duration of such an
attack, as long as the attack can remain unnoticed.

1Android application package (APK) is the package file for-
mat used by the Android operating system for distribu-
tion and installation of mobile apps and middleware (https:
//en.wikipedia.org/wiki/Android application package).

433

Figure 4: Chain of covert communication.

The attack vector commences by the dialer modified app
reading the phone number, say “30125”. When the smart-
phone is plugged into the charger, the corresponding event
is triggered and the app remains open for 20 - 25ms, which
corresponds to the first number “3”. This process will be re-
peated for every number until all numbers are sent in which
the final eof will be sent (by the app remaining open be-
tween 0-5ms).

Upon reception of the eof character, the bbc app realizes
that the data transmission is completed, stops monitoring
the dialer app and sends the collected data “30125” to our
local server. This procedure is illustrated in Fig. 4.

4. EVALUATION OF THE SCHEME
As the app installation approval approach involves the

proactive participation of the user, we conduct a risk analy-
sis by considering three types of user personas - an ordinary
user, a fastidious user and an expert as follows:

• An ordinary user may not detect the malevolent activ-
ity, since there are no tangible results on the Android
device, which could attract user’s attention.

• A fastidious user may use tools like network traffic
monitor tools in order to investigate these apps. This
user may need to continuously monitor the traffic in
order to discover the connection between the bbc mod-
ified app and the remote server. If finally this connec-
tion is discovered, then the user could eventually find
out that the IP belongs to the legitimate company.
Thus, no real warning will emerge. Moreover the user

will notice no data transmission due to the presence of
the cc.

• At this point we consider the case of an expert analyst,
who will analyze the two apps. In order to examine the
two apps, we consider the cases of static and dynamic
analysis.

1. Static Analysis - This method of testing has dis-
tinct advantages in that it can evaluate both web
and non-web applications and, through advanced
modeling, can detect flaws in the software’s in-
puts and outputs that cannot be seen through
dynamic web scanning alone [7]. After the anal-
ysis, the Android-manifest files of the two apps
will be revealed. These files do not contain any
clues for potential connections between the two
applications. Thus the examiner needs to investi-
gate each file of the bbc app, in order to find out
evidence of the cc. The name of the sending app
is concealed inside an obfuscating function, and
thus the examiner will not find the name of the
app inside the source code. Thus, the examiner
should analyze the code in order to find details
about the connection between the two apps.

2. Dynamic Analysis - This type of analysis allows
the pair of the apps to run on a system, while their
actions are being monitored. When this analysis
is preformed, the pair of the two apps will not
necessarily cause any concerns to emerge.

The malevolent pair attack proposed in this paper, works
on all Android versions, including version 6.0. The method
getRunningTasks was deprecated in Android lollipop (api
level 21) [2], because of the possibility of leaking personal
information to third party applications. In [11] the method
getRunningTasks was used in order to implement a cc at-
tack. This function has merely the same usability for cc
attack as the getRunningApps function which is used under
no permission need. This function let the malevolent pair to
transmit information packets without users’ acceptance. We
proved this functionality under our proposed attack scheme
above. The getRunningApps function has a different usage
result on Android 5.1.1 and above, which returns a list of
your own application package. In order to implement the
same attack on Android 5.1.1 and above versions, we parsed
the output of running “ps” command in a shell, which let us
get the current running apps.

5. DETECTING MALEVOLENT PAIRS
One of the general techniques that was proposed to be ap-

plied as countermeasure [14] is Limiting Multitasking. The
concept of multitasking allows concurrent execution of tasks
which is necessary in applications requiring parallel task ex-
ecution. However, it enables all the channels that require
synchronous communication. This may lead to timing cc.

It is confirmed that two recently proposed architecture
modifications and tools that deal with overt and covert chan-
nels discovery, TaintDroid [8] and XManDroid [4], still fail
to detect several of the implemented channels [13]. Thus,
we propose that defences against cc schemes should be im-
plemented inside the Android software. In this way the user
should not need to trust third party privacy protection ven-
dors. Solving the confinement problem, and in particular

434

closing all possible covert channels in a system, is known
to be a difficult problem [6, 12]. In [13] it is referred that
the mitigation can be achieved at the design time (by reduc-
ing access to sensitive APIs or by limiting communication
possibilities).

An interesting tool is Poly, an advanced Android appli-
cation installer, presented in [13]. Poly augments the ex-
isting package installer by allowing users to specify their
constraints for each permission during installation using a
simple and usable interface [13]. However this framework
has a substantial impact on the user, who in this case needs
to make further trust assumptions and understand the ac-
cess controls with a great deal of granularity.

Against the above challenges and possible remedies, the
proposed solution would need to take into account the fol-
lowing considerations:

1. Retain the usability level. The user should not need
to consume more time and effort than before in order
to decide on what to install or not.

2. Integrate with the existing Android permission scheme.
The new Android permission scheme, should be com-
patible with the current permission framework.

3. The new scheme should inherently support a much
more detailed and fine-grained access to the permissions-
related features of each App. The additional informa-
tion should be accessible to any user that would like
to assess the actual privacy and security-related calls
of an app. That is, the permissions scheme should ad-
mit increased user awareness, without limiting access
to APIs or other system functions.

The cc attack techniques exploit functions supported and
provided by the Android OS. These functions are system ori-
ented, as they ask for app usage characteristics (cpu, mem-
ory, current state, etc). Each cc attack uses one or more
of these characteristics in order to succeed. The implemen-
tation of such attack performs system queries for obtain-
ing certain app characteristics and eventually setup the cc.
Thus, in order to mitigate the cc attacks, each query for
app usage characteristics should be declared under certain
permissions, warning the user about the potential risks.

The proposed solution extends the Android permission
list. This should be done in order to maintain the control
over the information that is offered by the system and reduce
the risk of not only allowing CCs to manifest but also to
attempt to control side and inference channels. The latter
can pose threats to privacy. As an example, the battery
level is a system information attribute available to all apps
without requiring any permissions. In order to illustrate the
potential risk, consider an app which interrogates the system
every minute to obtain the battery level. This app would
effectively have detailed information on how much battery
is drained at certain periods. When the app notes increased
battery drainage, it can infer that the user is operating the
device.

In Android 6.0 the permissions are divided into two sep-
arate groups, namely normal and dangerous. Normal per-
missions pose little risk to the user’s privacy or the opera-
tion of other apps, while dangerous could potentially affect
the user’s stored data or the operation of other apps [1].
The battery level is not provided by a dangerous permission,

while it can be easily turned to a monitoring tool captur-
ing the user’s device usage history. Moreover, the getRun-
ningApps function is also restricted. Yet this is not adequate
as the unrestricted information can be obtained by issuing
commands that do not require permissions. It is therefore
proposed to transform the Android permission scheme from
a normal/dangerous classification approach to an architec-
ture enabling the user to perform more informed decisions
on their privacy.

We propose dividing the existing permission list into three
permission groups, corresponding to system, apps and sen-
sors as follows:

1. The functions revealing information about the system
itself, to be grouped under a new permission, named
system information.

2. The functions revealing information about other apps
installed on the system, to be grouped under the per-
mission app usage information.

3. The functions revealing information from the system
sensors, to be grouped under the permission system se-
nsor information.

The above grouping of functions will allow the user to
highlight the functions relating to a particular app in a more
systematic manner.

In this way a novice user will be able to install an app as
she normally does in Android 6.0 or earlier, while a more
expert user will have the chance to further investigate. This
approach does not necessarily prevent any cc, but helps the
examiner to identify potential cc attacks. To demonstrate
this, consider the proof of concept app pair. When the two
apps are installed, the examiner will be informed that one
of them (the bbc app), uses the getRunningApps function.
As this function provides information about other apps, ac-
cording to the proposed plan this function will be contained
in the app usage information permission. The examiner
will be notified that this permission is used and in the same
time she will be informed that the particular function used
is getRunningApps.

Moreover, for Android versions 5.1.1 and above the attack
does not invoke the getRunningApps function but executes
commands that do not require any permissions. It is pro-
posed that the device administrative commands need also to
be included in the scheme so that an examiner will have the
opportunity to make an informed decision whether to install
an app or not.

Furthermore, in [11] a cc attack based on a process prior-
ity reporting function was proposed. On a similar note, this
function does not ask for any permissions. In our proposed
scheme this function could be grouped in the app usage in-
formation permission. Moreover, the user will be informed
and alerted that the malevolent app uses the process-priorities
function. Another cc enabling function mentioned in the
same work [11] is the screen on/off state. This attack in
particular uses the isInteractive function through the Pow-
erManager system service, again without the need to request
permission. In our proposed scheme this function would be
confined by the system information permission.

Extending the permission group with these three permis-
sions and organizing the permission scheme in a more in-
forming scheme, we strengthen the defense against cc at-

435

tacks, protecting users’ privacy. Moreover, privacy con-
cerned users will be able to take a first glance about po-
tential risks that an app may pose. Developers who build
apps respecting users’ privacy may be able to prove their
privacy oriented apps, by using as many permissions as they
really need, and also as many functionalities of these per-
missions as they need. In [9] the Stowaway tool was applied
to 940 Android applications and it was shown that about
one-third of them are over-privileged. The results revealed
that applications are in principle over-privileged by only a
few permissions, but most additional and unnecessary per-
missions can be attributed to developer confusion [9].

Consequently, there are two alternatives the app develop-
ers seem to follow. One is a scattergun approach, asking for
a long list of permissions, but effectively using only a few of
them. The other is to be conservative and ask for a limited
number of permissions but overuse the enclosed functions.
The proposed solution can deal with both approaches as it
ties and highlights not only the permissions but also the
underlying functions.

6. CONCLUSION
The current Android permission schemes provide limited

support to a user for making informed decisions relating to
their privacy. In addition, the limited scope of the permis-
sion schemes exluding a number of system functions, pave
the way for cc attacks which effectively circumvent the per-
missions. In this paper we developed a proof of concept to
demonstrate how data exfiltration can be achieved using two
apps and two cc.

Two important observations are:

• Permission circumventing attacks like the malevolent
pair attack are a real threat for current Android-based
smartphones.

• The user awareness about this type of attacks is very
low; this fact makes the such attacks even more dan-
gerous.

Interestingly, even though such an attack has already been
presented in [13, 14], the user community (including until
recently the authors of this work) is still generally not aware
of such attacks, and the software vendor has not taken any
action since, to effectively encounter this threat.

The proposed work reflects upon the privacy implications
of the current permission schemes by proposing a framework
for informing the user or examiner on potential privacy leaks
and associated risks. As part of future work a formal treat-
ment of the permissions and functions will be further devel-
oped and a model with a view to assess the scope, impact
and potential of cc in Android devices.

7. REFERENCES
[1] http://developer.android.com/guide/topics/security/

permissions.html. [Online; accessed 14-February-2016].

[2] http://developer.android.com/reference/android/app/
ActivityManager.html. [Online; accessed
14-February-2016].

[3] A. Acquisti and J. Grossklags. Privacy and rationality
in individual decision making. IEEE Security &
Privacy, (1):26–33, 2005.

[4] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming
privilege-escalation attacks on android. In NDSS,
2012.

[5] E. Couture. http://www.sans.org/reading-room/
whitepapers/detection/covert-channels-33413. [Online;
accessed 14-February-2016].

[6] D. E. Denning and P. J. Denning. Data security. ACM
Computing Surveys (CSUR), 11(3):227–249, 1979.

[7] N. DuPaul. http://www.veracode.com/products/
static-analysis-sast/static-analysis-tool. [Online;
accessed 14-February-2016].

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G.
Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. Taintdroid: an information-flow tracking
system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[9] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner. Android permissions demystified. In
Proceedings of the 18th ACM conference on Computer
and communications security, pages 627–638. ACM,
2011.

[10] P. C. Kocher. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In
Advances in Cryptology - CRYPTO ‘96, pages
104–113. Springer, 1996.

[11] J.-F. Lalande and S. Wendzel. Hiding privacy leaks in
android applications using low-attention raising covert
channels. In Availability, Reliability and Security
(ARES), 2013 Eighth International Conference on,
pages 701–710. IEEE, 2013.

[12] S. B. Lipner. A comment on the confinement problem.
In ACM SIGOPS Operating Systems Review,
volume 9, pages 192–196. ACM, 1975.

[13] C. Marforio, A. Francillon, S. Capkun, S. Capkun, and
S. Capkun. Application collusion attack on the
permission-based security model and its implications
for modern smartphone systems. Department of
Computer Science, ETH Zürich, Switzerland, 2011.

[14] C. Marforio, H. Ritzdorf, A. Francillon, and
S. Capkun. Analysis of the communication between
colluding applications on modern smartphones. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 51–60. ACM, 2012.

[15] J. K. Millen. Covert channel capacity. In null, page 60.
IEEE, 1987.

[16] N. NCSC. Covert channel analysis of trusted systems
(light pink book). NSA/NCSC-Rainbow Series
publications, 1993.

[17] H. Okhravi, S. Bak, and S. T. King. Design,
implementation and evaluation of covert channel
attacks. In Technologies for Homeland Security
(HST), 2010 IEEE International Conference on, pages
481–487. IEEE, 2010.

[18] M. Tsavli, P. S. Efraimidis, V. Katos, and L. Mitrou.
Reengineering the user: privacy concerns about
personal data on smartphones. Information &
Computer Security, 23(4):394–405, 2015.

[19] J. M. Urban, C. J. Hoofnagle, and S. Li. Mobile
phones and privacy. BCLT Research Paper Series,
2012.

436

