
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/82141

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/46571697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/81983
mailto:wrap@warwick.ac.uk

Approximation Algorithms for Packing and

Buffering Problems

by

Nicolaos Matsakis

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Computer Science

September 2015

Contents

Acknowledgments iii

Declarations iv

Abstract v

Chapter 1 Introduction 1

1.1 Our Contribution . 13

Chapter 2 Online Packing Linear Programs 19

2.1 Introduction . 19

2.2 The upper bound for deterministic online algorithms 23

2.3 The upper bound for randomized online algorithms 30

2.4 An optimal online algorithm for linear programs with two variables . 35

2.5 Open Problems . 38

Chapter 3 The COLORFUL BIN PACKING problem 40

3.1 Introduction . 40

3.2 An approximation algorithm for the COLORFUL BIN PACKING problem 48

3.2.1 Preliminaries . 48

3.2.2 Analysis . 51

3.3 Open Problems . 58

i

Chapter 4 Online Buffer Management 60

4.1 Introduction . 60

4.2 The LQD algorithm . 64

4.2.1 Preliminaries . 64

4.2.2 Analysis . 76

4.2.3 The LQD algorithm for three-port switches 79

4.2.4 The LQD algorithm for two-port switches 87

4.3 Open Problems . 91

ii

Acknowledgments

First and foremost, I am indebted to Matthias Englert for his guidance as my

supervisor in Warwick. His help into teaching me how to arrange my ideas into

concrete mathematical proofs has been crucial.

I am, also, indebted to my current advisors Artur Czumaj and Ranko Lazić

and to my former advisor Maxim Sviridenko, for helping me to improve my research

potential. I would, also, like to thank my collaborator Marcin Mucha for discussing

with me some of the ideas I had on various research problems.

Finally, I was very fortunate to have made very good friends, during the

years that I have spent in Warwick. I would like to thank Ebrahim, Lehilton,

Lukáš, Matthew, Michail and Raphael for all the good times we had and I wish to

each one of them all the best for his career.

iii

Declarations

None of the work presented in this thesis has been submitted for a previous degree at

any university. All work was conducted during my period of study in the University

of Warwick.

Chapter 2 is based on joint work with Matthias Englert and Marcin Mucha

(Englert et al. [2014]), which was published in the proceedings of the 11th Latin

American Theoretical Informatics Symposium (LATIN 2014), held in Montevideo,

Uruguay, between March 31 and April 4 2014.

Chapter 3 is based on joint work with Matthias Englert.

Chapter 4 includes individual work (Matsakis [2016], to appear) which has

been accepted for publication by the Student Research Forum of the 42nd Interna-

tional Conference on Current Trends in Theory and Practice of Computer Science

(SOFSEM 2016), to be held in Harrachov, Czech Republic on January 2016.

iv

Abstract

This thesis studies online and offline approximation algorithms for packing
and buffering problems.

In the second chapter of this thesis, we study the problem of packing linear
programs online. In this problem, the online algorithm may only increase the values
of the variables of the linear program and his goal is to maximize the value of the
objective function of it. The online algorithm has initially full knowledge of all
parameters of the linear program, except for the right-hand sides of the constraints
which are gradually revealed to him by the adversary. This online problem has
been introduced by Ochel et al. [2012]. Our contribution (Englert et al. [2014]) is to
provide improved upper bounds for the competitiveness of both deterministic and
randomized online algorithms for this problem, as well as an optimal deterministic
online algorithm for the special case of linear programs involving two variables.

In the third chapter we study the offline COLORFUL BIN PACKING prob-
lem. This problem is a variant of the BIN PACKING problem, where each item is
associated with a color and where there exists the additional restriction that two
items packed consecutively into the same bin cannot share the same color. The
COLORFUL BIN PACKING problem has been studied mainly from an online per-
spective and has been introduced as a generalization of the BLACK AND WHITE
BIN PACKING problem (Balogh et al. [2012]), i.e., the special case of this prob-
lem for two colors. We provide (joint work with Matthias Englert) a 2-appoximate
algorithm for the COLORFUL BIN PACKING problem.

In the fourth chapter we study the Longest Queue Drop (LQD) online algo-
rithm for shared-memory switches with three and two output ports. The Longest
Queue Drop algorithm is a well-known online algorithm used to direct the packet
flow of shared-memory switches. According to LQD, when the buffer of the switch
becomes full, a packet is preempted from the longest queue in the buffer to free
buffer space for the newly arriving packet which is accepted. We show (Matsakis
[2016], to appear) that the Longest Queue Drop algorithm is (3/2)-competitive for
three-port switches, improving the previously best upper bound of 5/3 (Kobayashi
et al. [2007]). Additionally, we show that this algorithm is exactly (4/3)-competitive
for two-port switches, correcting a previously published result claiming a tight upper
bound of 4M−4

3M−2 < 4/3, where M ∈ Z+ denotes the buffer size.

v

Chapter 1

Introduction

This thesis deals with several problems in the areas of online and offline computation.

Let us start by providing the informal definition of one of the problems considered

in this thesis: Assume that we are given a set of rectangular items, each of which has

a unit width and a height which is at most one. Suppose, also, that we are supplied

with an unlimited number of square bins of unit dimensions. We are asking what is

the minimum number of bins used, so that each item is packed into a bin and the

sum of the sizes of the packed items into each bin is at most one.

This problem is called BIN PACKING and its various settings have a wide

range of practical applications from the design of integrated circuits to the backup

file storage and the cargo shipping in the transport industry. Hence, it should

come as no surprise that BIN PACKING is one of the most well-studied problems

in the area of theoretical computer science, with relevant publications ranging over

a period of several decades (Ullman [1971]; Johnson [1973]; Karmarkar and Karp

[1982]; Simchi-Levi [1994]; Rothvoß [2013]; Dósa and Sgall [2013]).

Assuming that the conjecture P 6= NP is true, as most of the researchers in

the area believe, it is not possible to derive an algorithm which will run in polynomial

time in the size of the input to this problem, for any input to BIN PACKING, guar-

anteeing to solve this problem exactly. Taking into consideration the fact that exact

1

exponential-time algorithms may require prohibitive running times even for practi-

cal input instances of every-day use, we need to look towards obtaining algorithms

that will run in polynomial time in the size of the input (or to be computationally

efficient algorithms, as we shall say) to BIN PACKING, relaxing our requirement of

solving this problem exactly to solving it approximately, but within a reasonable

amount of time.

We emphasize on the fact, however, that any algorithm for BIN PACKING

is assumed to have complete information on the input instance of this problem a

priori, that is the sizes of all given items are known in advance and this information

can be used during the computation.

Let us, now, proceed towards giving a second example of a problem: Suppose

that tasks arrive one by one over time and each of them has to be assigned upon its

arrival to a processor, from a finite set of parallel processors of, possibly, different

processing speeds. The processing of the assigned tasks starts when the last arriving

task has been assigned to a processor and each task assignment is irrevocable, which

means each task has to be processed by the processor that it has been initially

assigned to. Unfortunately, we are provided with no information regarding the

processing time requirement of any task until this task arrives and we are unaware

of the number of remaining tasks to arrive until the last task arrives. Our objective

is to assign each task to a processor such that the time it takes until all processors

end their processing is minimized. This problem is one of the many variants of

LOAD BALANCING. The various settings of LOAD BALANCING have been, also,

extensively studied in the relevant literature (Graham [1969]; Azar et al. [1994];

Bartal et al. [1995]; Azar et al. [1995]; Albers [1999]).

In the case of LOAD BALANCING we are provided with incomplete knowledge

on the input of the problem. An algorithm for this problem has no information

regarding the processing time requirement of any task and the number of remaining

tasks to arrive, a priori. Even if we assume the unrealistic scenario that we are

2

given unlimited computational resources (contrary to our first example of the BIN

PACKING problem), an algorithm for LOAD BALANCING is restricted to perform

under a state of uncertainty regarding the sequence of arriving tasks.

It is, also, worth mentioning that since each task assignment is irrevocable,

the decision of an algorithm to assign any task to a processor, may have an irre-

versible impact on its overall performance. In other words, the task assignment that

an algorithm for LOAD BALANCING outputs, may not be one of those assignments

which minimize the time it takes for all processors to complete their processing,

for a given input of arriving tasks. We note that this may be the case even if the

given input sequence is comprised by relatively few tasks and, therefore, for an input

where a reasonable amount of time for the completion of the computation is not an

issue of concern.

The aforementioned computational efficiency and the lack of information

regarding the input instance of the problem are not the only restrictions that an

algorithm may be imposed with. We may recall, here, the space storage requirements

that an algorithm may be, also, imposed with. In this thesis, however, we shall only

deal with algorithms that are restricted to complete in time which is upper-bounded

by a polynomial in the size of the input to the given problem or algorithms that are

restricted to perform under a state of incomplete information regarding the input

instance.

The two described problems, BIN PACKING and LOAD BALANCING, are two

examples of optimization problems. An optimization problem can be either a cost

minimization problem or a profit maximization problem.

For each input I to a minimization problem P (belonging to a set I of legal

inputs to P), there exists a set of feasible outputs F (I) and for each feasible output

O ∈ F (I) there exists a positive real number g(I,O), which is the cost. The function

g is called as objective function or cost function. The optimal solution to an input

instance of P is a feasible output that achieves the smallest objective function value,

3

for this given input. Finally, an optimal algorithm for P is an algorithm which for

any input I ∈ I outputs an optimal solution.

In a similar way, but for the case of a maximization problem P ′, there exists

an objective function (or profit function) that associates each legal input to the

problem P ′ and the derived output, with a positive real number, which is the profit.

The optimal solution to an input instance of P ′ is a feasible output achieving the

largest value of the objective function, for the given input. Finally, an optimal

algorithm for P ′ is an algorithm which for any legal input to this problem, outputs

an optimal solution.

An optimization problem, where the information on the input instance is

gradually received by the algorithm and the output of the algorithm has to be

produced in an online manner, is called online problem. This lack of information

refers solely to the input instance and not to the parameters of the problem. For

example, in the case of the previously described variant of LOAD BALANCING,

the number of parallel processors and the processing speed of each of those are

considered to be parameters that are known in advance.

Even though the running times of algorithms are generally considered to be

an irrelevant issue for the area of online computation, we prefer obtaining online

algorithms (as we shall call the algorithms solving online problems) that are compu-

tationally efficient. In fact, it is quite interesting to mention that the great majority

of published online algorithms in the relevant literature happen to be computation-

ally efficient as well (Borodin and El-Yaniv [1998]; Fiat and Woeginger [1998]).

On the other hand, if complete information on the input is provided to the

algorithm a priori, then the optimization problem is called offline and this algo-

rithm is called offline, as well. The analysis of offline approximation algorithms for

NP-hard optimization problems deals with the subject of deriving computationally

efficient algorithms which will guarantee to produce solutions of a satisfactory ap-

proximation. In other words, we are seeking to derive approximation algorithms

4

that will be considered preferable from exact algorithms that run in exponential

time in the size of the input to this problem.

Whilst some optimization problems can be viewed as being naturally offline

and others as having an online character, there exists a large number of problems

that have been studied from both an online and an offline aspect, due to their rich

variety of practical applications from both of these perspectives. For instance, the

offline BIN PACKING problem has been extensively studied in the relevant literature,

as we have already mentioned. However, the online BIN PACKING problem has been,

also, studied to a great extent (Lee and Lee [1985]; Ramanan et al. [1989]; Seiden

[2002]; Balogh et al. [2015c]) as we shall see in Chapter 3.

Let us, now, concentrate solely on offline computation, for a while. The

study of offline approximation algorithms for NP-hard optimization problems started

to flourish around the early 1970’s, after the breakthrough papers of Cook [1971]

and Karp [1972] were published. However, approximation algorithms for NP-hard

problems had been derived before even the concept of NP-hardness was introduced;

we may recall here an approximation algorithm for the MINIMUM EDGE COLORING

problem which is due to Vizing [1964].

An immediate question that may arise is how two offline approximation algo-

rithms for the same NP-hard optimization problem are compared to each other, or

to rephrase this, how the quality of the offline approximation is being quantified. We

shall only deal with deterministic offline algorithms here without having to mention

this explicitly.

Hence, letting OPT denote an optimal algorithm for a cost minimization

offline problem P and assuming that ALG(I) denotes the cost of any algorithm ALG

when provided with an input I ∈ I for P, we have the next definition.

Definition 1.1. The approximation ratio of an offline algorithm A for P is defined

as RA = supI{ A(I)
OPT(I)}, where I ranges over all legal inputs to P.

It holds RA ≥ 1, since the cost was defined as a positive real number and

5

because no algorithm may give a cost function value smaller than the optimal one,

for the same input. Finally, we say that the offline algorithm A is α-approximate, if

it holds α ≥ RA for an α ≥ 1.

In the case of a profit maximization offline problem P ′, we similarly obtain

the next definition, where we assume that ALG(I) denotes the profit of any algorithm

ALG when provided with a legal input I for P ′ and OPT an optimal algorithm for

the same problem:

Definition 1.2. The approximation ratio of an offline algorithm B for P ′ is defined

as R′B = infI{ B(I)
OPT(I)}, where I ranges over all legal inputs to P ′.

It holds 0 < R′B ≤ 1 since the profit was defined as a positive real number and

because no algorithm may provide a profit function value greater than the optimal

one, for the same input. Finally, we say that B is a β-approximate algorithm, if it

holds β ≤ R′B for a positive β.

It is, sometimes, the case to study the performance of an approximation

algorithm for a cost minimization problem, solely for inputs for which the optimal

cost is very large. For this, we define the asymptotic approximation ratio. Therefore,

denoting as OPT(I) the optimal cost for a legal input I to a cost minimization

problem P and as A(I) the cost of an offline algorithm A for the same input, we

have the next definition:

Definition 1.3. The asymptotic approximation ratio of A for the cost minimization

problem P is defined as R∞A = lim sup
n→∞

supI{ A(I)
OPT(I) |OPT(I) = n}, where I ranges

over the set of all legal inputs to P.

The analysis of the performance of any algorithm, whether this is offline or

online, can be categorized as being average-case analysis or worst-case analysis. The

approximation ratio was just defined in terms of the latter approach, as it may be

easily observed.

6

Especially for the case of online computation, on which we shall concentrate

from now and until the end of this brief introduction, the worst-case analysis studies

the performance of the examined online algorithm towards the performance of an

optimal algorithm which is provided with the advantage of having complete infor-

mation of the input, in advance. Note that such an optimal offline algorithm, as we

shall simply refer to it from now, may not be a realizable algorithm, since complete

information about the input instance is usually an unrealistic scenario for practical

applications of online problems.

On the other hand, the average-case analysis works by first assuming a dis-

tribution of inputs to the examined online problem and then, based on this input

distribution, the expected performance of the online algorithm is obtained.

A disadvantage of the worst-case analysis is that the comparison with an

optimal offline algorithm which is provided with a power that may be unrealistic

could underestimate the performance of the online algorithm. On the other hand, an

undisputable disadvantage of the average-case analysis is the difficulty in obtaining

an input distribution representative of the one that the online algorithm is actually

faced with. Obviously, a non-representative input distribution may lead to an er-

roneous estimation of the actual algorithmic performance, an issue which is easily

bypassed by the worst-case analysis, which makes no probabilistic assumptions on

the input.

It is not in our scope to further discuss on the advantages and disadvantages

of these two approaches. We shall only emphasize on the fact that it is the worst-case

analysis that has become the predominant approach of examining the performance

of online algorithms and it is known as competitive analysis (Karlin et al. [1988]);

however, the study of online algorithms in the framework of competitive analysis

had already been initiated several years before the influential publication of Karlin

et al. [1988].

More specifically, the first implicit result of competitive analysis is considered

7

to be the paper of Graham [1969], dealing with a simple greedy algorithm for the

LOAD BALANCING problem, when all processors are assumed to have the same

processing speed. The competitive analysis started to evolve significantly during

the 1980’s after the publication of the seminal paper of Yao [1980] about the online

BIN PACKING problem and, especially, after the publication of Sleator and Tarjan

[1985] about two of the most important online problems, the PAGING and the LIST

UPDATE problem. Borodin and El-Yaniv [1998] and Fiat and Woeginger [1998]

provide excellent surveys regarding the evolution of the competitive analysis.

A question that, again, naturally arises is how the quality of an online algo-

rithm ONL is measured in terms of the competitive analysis. For this, let costALG(I)

denote the cost of any algorithm ALG for a cost minimization online problem P,

when provided with a legal input I and let OPT denote an optimal offline algorithm

for P. Then, we have the next definition.

Definition 1.4. The competitive ratio of ONL is defined as inf{c|costONL(I) ≤

c · costOPT(I)}, for all legal inputs I to P.

It holds c ≥ 1, since the cost was defined as a positive real number and

because no algorithm may give an objective function value smaller than the one

that an optimal offline algorithm outputs, for the same input. We say that the

online algorithm ONL is ĉ-competitive for a ĉ ≥ 1, if the competitive ratio of ONL is

equal to c ≤ ĉ. If ĉ = c, we say that ONL is an exactly c-competitive algorithm.

Finally, if the infimum in the above definition is infinity, we shall say that ONL is a

non-competitive algorithm.

In the case of a profit maximization online problem P ′, we can similarly

denote as profitALG(I) the profit of any algorithm ALG for this problem, when

provided with a legal input I and as OPT an optimal offline algorithm for P ′. Then,

we have the next definition.

Definition 1.5. The competitive ratio of an online algorithm ONL′ for P ′ is equal

8

to sup{p|profitONL′(I) ≥ p · profitOPT(I)}, for all legal inputs I to P ′.

It holds 0 < p ≤ 1, since the profit was defined as a positive real number

and because no algorithm may give a profit function value, greater than the one

that an optimal offline algorithm outputs for the same input. In a similar way

as for the case of a cost minimization problem, we say that the online algorithm

ONL′ is p̂-competitive for a positive p̂ ≤ 1 if the competitive ratio of ONL′ is equal to

p ≥ p̂. If p̂ = p, then we shall say that ONL′ is an exactly p-competitive algorithm.

Finally, if the supremum in the above definition is 0, we shall say that ONL′ is a

non-competitive algorithm.

We shall only employ competitive analysis on any result related to online

computation, throughout this thesis.

For the cases of those online problems where we want to study the perfor-

mance of an online algorithm for a cost minimization problem, only for inputs for

which the optimal cost is very large, we have the definition of the asymptotic com-

petitive ratio. Hence, assuming that P is a cost minimization online problem, that

OPT denotes an optimal offline algorithm for this problem and ALG(I) the cost of

any algorithm ALG for an input I, we have the following definition:

Definition 1.6. The asymptotic competitive ratio of an online algorithm ONL for

P is defined as C∞ONL = lim sup
n→∞

supI{ONL(I)
OPT(I) |OPT(I) = n}, where I ranges over all

legal inputs to P.

We may refer to the competitive ratio as established in Definition 1.4, as

absolute competitive ratio, in order to distinguish it from the asymptotic competitive

ratio.

It is worth mentioning that an idea of time progression is inherent in the

online problems. To make this more perceivable, a sequence of requests is made

by the adversary which have to be answered (served) one at a time by the online

algorithm (Ben-David et al. [1990]). The procedure of answering the requests of the

9

adversary continues in a repetitive manner until the last request has been served

and the online computation completes.

In the case of deterministic online algorithms, this usually leads us in visu-

alizing the online problem as a game between an online player and an adversary

who has the power of generating the input sequence. The online player, who is

provided with no information on the remaining part of the input at any point in

time, runs the online algorithm and outputs a partial solution. The adversary who

controls the remaining part of the input, modifies it in such a way that the overall

ratio of the performance of the online algorithm to the performance of the optimal

offline algorithm, deteriorates for the side of the online player. Fairly enough, the

adversary is usually referred to as malicious in the literature of online computation

(Borodin and El-Yaniv [1998]; Fiat and Woeginger [1998]).

In the case of randomized online algorithms and in order to make a similar

discussion to that of the previous paragraph, we have to first define what kind of

information the adversary is given about the online algorithm. For this, we shall

distinguish between the following two different types of adversaries (Raghavan and

Snir [1989]; Ben-David et al. [1990]).

The first type of adversary fixes the request sequence based on the description

of the online algorithm. However, the sequence has to be fixed before the online

algorithm starts its computation. It follows that this model of adversary has no

information on any of the random choices made by the online algorithm. This

model of adversary is called oblivious.

For this, let P denote a cost minimization online problem and OPT(σ) be

the cost of an optimal offline algorithm serving an input sequence σ for P. Then,

assuming that RALG is a randomized online algorithm for P, distributed over a set

{ALGy} of deterministic online algorithms for P, we obtain the next definition.

Definition 1.7. The randomized online algorithm RALG is c-competitive against

an oblivious adversary, if EY [ALGy(σ)] ≤ c · OPT(σ) + γ for any input sequence σ

10

to P, where γ is an additive constant independent of the input.

We note that EY [ALGy(σ)] in Definition 1.7, denotes the expectation with

respect to the distribution Y , over the set of deterministic online algorithms {ALGy}

which defines the randomized online algorithm RALG. Finally, since the online prob-

lem P is a cost minimization problem, we have c ≥ 1, by the same reasoning as the

one which follows Definition 1.4.

Definition 1.7 can be easily modified to hold for the case of a profit maxi-

mization online problem P ′. More specifically, assuming that OPT(σ) denotes the

profit of an optimal offline algorithm serving the input sequence σ for P ′, we have

the following definition.

Definition 1.8. The randomized online algorithm RALG′ (distributed over a set

{ALGx} of deterministic online algorithms for P ′) is p-competitive against an obliv-

ious adversary, if EX [ALGx(σ)] + δ ≥ p · OPT(σ) for any input sequence σ to P ′,

where δ is an additive constant independent of the input.

By the same reasoning as the one which follows Definition 1.5, it holds that

0 < p ≤ 1. We note that EX [ALGx(σ)] denotes the expectation with respect to the

distribution X, over the set of deterministic online algorithms {ALGx} that defines

the randomized online algorithm RALG′.

The second type of adversary that is considered in the relevant literature, is

called adaptive. Though we shall not deal with adaptive adversaries in this thesis,

we proceed towards defining this model of adversary, for consistency.

We distinguish between two types of adaptive adversaries, the adaptive-online

and the adaptive-offline adversary.

The adaptive-online adversary is aware of the random choices made so far by

the online algorithm, at any point in time. Based on this information, the adaptive-

online adversary serves immediately the current request and modifies the remaining

part of the request sequence. For the case of deterministic online algorithms, the

11

adaptive-online adversary has the same power as the oblivious adversary since the

behaviour of the deterministic algorithm is known in advance (Ben-David et al.

[1990]).

The adaptive-offline adversary, also, modifies the remaining part of the se-

quence based on the random choices made so far by the online algorithm but serves

it optimally when the online algorithm has completed its computation. It follows

that an adaptive-offline adversary is aware of any random choice made by the online

algorithm, contrary to the case of the adaptive-online adversary.

The cost (or profit, respectively) of an adaptive adversary for serving a se-

quence of requests is a random variable, since an adaptive adversary is aware of

random choices made by the online algorithm during its computation. This is an

important difference compared to the case of an oblivious adversary, who has to fix

the sequence in advance having no knowledge on any of the random choices made

by the online algorithm.

This complete lack of information regarding any random choice made by

the online algorithm is a source of weakness for an oblivious adversary. To state

this in a different way, randomization can be exploited to a greater extent by the

online player, when he plays against an oblivious adversary rather than against

an adaptive-online adversary. On the other side, the adaptive-offline adversary

is certainly stronger than the adaptive-online adversary; in fact, it can be shown

that randomization cannot be used against an adaptive-offline adversary (Ben-David

et al. [1990]).

Concluding, there exist online problems for which randomized online algo-

rithms against oblivious adversaries perform better in expectation, compared to the

optimal deterministic online algorithms that we have for these problems. The LIST

UPDATE problem, to which we referred to before, is one of these problems (Albers

et al. [1995]).

12

1.1 Our Contribution

Before describing the results obtained in this thesis, we need to state some defini-

tions.

A linear program is an optimization problem which asks for either the maxi-

mization or the minimization of an objective function of d ∈ Z+ variables, subject to

a set of inequalities or equalities, which are called constraints. The objective func-

tion and all constraints have to be linear functions of the given d variables. Since any

equality constraint can be substituted by inequality constraints, we usually assume

that all constraints of the linear program are inequalities.

A maximization linear program of d variables has the following standard

form:

max b0x0 + . . .+ bd−1xd−1

subject to A

x0

...

xd−1

 ≤

c0

...

cm−1

x0, . . . , xd−1 ≥ 0

All components of the vectors b = (b0,. . . , bd−1) and c = (c0,. . . , cm−1), as

well as all entries of the matrix A are assumed to be real numbers. A minimization

linear program has an analogous standard form, where the first m inequalities are

reversed and the objective is the minimization of the given linear function.

In case all components of the vectors b and c as well as all entries of the matrix

A are non-negative, then the maximization linear program is called as packing linear

program and the minimization linear program is called as covering linear program.

Apart from this and most importantly, there exists a systematic way to obtain a

covering (or packing) linear program from a given packing (or, respectively, covering)

13

linear program, where the newly obtained linear program is called as dual linear

program and the initial linear program is called as primal linear program.

Any solution of a linear program which does not violate a constraint, is called

feasible solution. The feasible region is the set of all feasible solutions. The optimal

solution of the linear program is a point in the feasible region for which the value of

the objective function is maximized or minimized, depending on whether the linear

program is a maximization or, respectively, a minimization linear program. Finally,

a linear program is infeasible if it has no feasible solution, that is the feasible region

is empty.

Many NP-hard optimization problems can be formulated as integer linear

programs, that is linear programs with the additional constraint that variables may

take only integer values. As a consequence, many offline approximation algorithms

are based on linear programming, since even though solving an integer linear pro-

gram is, in general, an NP-hard problem, solving a linear program admits computa-

tionally efficient exact algorithms. Hence, taking the relaxation of an integer linear

program where the aforementioned restriction on the variable values is dropped,

can be used in obtaining computationally efficient approximation algorithms for a

great number of NP-hard optimization problems. For this, the primal-dual schema

that we previously referred to is widely used, due to some very useful properties

which hold for the feasible solutions of the dual linear program (Vazirani [2001];

Williamson and Shmoys [2011]).

Apart from this, quite recently there has been observed a research interest

into solving linear programs in an online manner, as well (Buchbinder and Naor

[2009b]). This was mainly in order to facilitate the development of improved online

algorithms for some central online programs, such as one of the most well-studied

and important problems in the area of online computation, the k-server problem

(Bansal et al. [2010, 2011]).

Hence, in Chapter 2 we study the competitiveness of online algorithms for

14

the problem that we describe in the following two paragraphs.

First of all, we suppose that we have a packing linear program in the standard

form that was described before. We assume that the vector b and all entries of A are

initially revealed to the online algorithm by the adversary. However, the adversary

gradually reveals the components of the vector c to the online player, i.e., at any

point in time t a vector `t is revealed to the online player for which it has to hold

`t ≤ c component wise. The vector `t may be viewed as the current right-hand

side values of the linear program. The online player responds at the current point

in time, by increasing the values of variables of his choice whilst ensuring that a

feasible solution is maintained. The goal of the online player is to maximize the

value of the objective function, when no variable value can be further increased.

A parameter α > 1, which is initially revealed to the online player, plays a

central role in this online problem, since the adversary is required to ensure at any

point in time t that it holds (c−Ax) ≤ α · (`t−Ax), where x is the vector denoting

the current online solution.

This problem is introduced by Ochel et al. [2012] as an application of lifetime

optimization in wireless sensor networks. As we shall see, the right-hand sides of

the constraints of the packing linear program may be viewed as lifetimes of batteries

that power sensors in wireless networks. Assuming that we can only estimate each

remaining battery lifetime within some fixed α > 1 approximation of its actual

remaining lifetime, the objective of an online algorithm is to choose amongst a set

of broadcasting scenarios, so that the number of sensor broadcasts is maximized,

until the point in time when the first battery becomes exhausted.

Ochel et al. give a Θ(lnα
α)-competitive deterministic algorithm for this online

problem and prove that the competitive ratio of any deterministic or randomized

online algorithm for it, is O(1√
α

).

We improve the upper bound on the competitive ratio of any online algo-

rithm, whether deterministic or randomized, for this problem, to O(ln2 α
α). We, also,

15

provide an optimal deterministic Θ(1√
α

)-competitive online algorithm for linear pro-

grams that involve two variables.

In Chapter 3 we turn our attention to another packing problem. More specif-

ically, we study a variant of the offline BIN PACKING problem which is called COL-

ORFUL BIN PACKING problem. Recall from our previous discussion on this problem,

that the offline BIN PACKING problem has been extensively studied in the relevant

literature; one of the reasons is that many of its different settings have a number of

practical applications.

Hence, in the COLORFUL BIN PACKING problem each item is additionally

associated with a color and two items packed consecutively into the same bin cannot

share the same color. This problem was introduced by Balogh et al. [2012] for

the special case of two colors, called BLACK AND WHITE BIN PACKING problem.

The COLORFUL BIN PACKING problem has been mainly studied from an online

perspective (Dósa and Epstein [2014]; Böhm et al. [2014]; Balogh et al. [2015b]).

A motivating application of the BLACK AND WHITE BIN PACKING problem

is the optimized distribution of advertisement breaks in television or radio station

programs (Balogh et al. [2012]). To see that, note that the bins may be viewed as

the program blocks (these usually correspond to one-hour intervals, for the case of

radio station programs), the white items correspond to the advertisement breaks

and the black items correspond to the actual broadcasted program. The goal is to

assign advertisement breaks into the program minimizing the program blocks used.

We provide a 2-approximate algorithm for the offline COLORFUL BIN PACK-

ING problem, which runs in time O(n log n), where n ∈ Z+ denotes the number of

items of the input.

This thesis concludes with the study of an online buffering problem. First of

all, it should be acknowledged that the area of packet transmission management is

strongly related to that of online computation. This is due to the unpredictability

16

of transmission requests that is observed in networks, giving the related problems

an inherently online character. More specifically, due to the high volume of packet

transmissions, some packets have to be discarded; hence, the objective of an online

algorithm has to be the minimization of the number of lost packets when the in-

formation given in advance regarding the remaining sequence of arriving packets is

incomplete.

Therefore, in Chapter 4 we study the Longest Queue Drop (LQD) online

algorithm for shared-memory switches with three and two output ports. A shared-

memory switch is a device equipped with a buffer and a number of input and output

ports. The switches are widely used in directing the packet flow of various networks

and the Longest Queue Drop algorithm is a well-known online algorithm used in

directing the packet flow of switches (Aiello et al. [2008]).

Each arriving packet to the switch is destined to a single output port of it

and can be either accepted or be irreversibly rejected by the switch, upon its arrival

time. Assuming that time is divided into time steps, one packet is transmitted by

each output port of the switch to which at least one packet stored in the buffer is

destined, at the current time step.

According to the Longest Queue Drop online algorithm, any arriving packet

is accepted by the buffer if there exists free buffer space at the time step of its arrival.

On the contrary, if the buffer is full at the time step when the packet arrives, a packet

destined to the output port to which the most packets currently stored in the buffer

are destined, is irrevocably rejected from the switch (or it is preempted, as we shall

say). The preempted packet releases buffer space for the arriving packet, which is

immediately accepted by the buffer. After all packet acceptances and preemptions

take place, at each time step, one packet is forwarded from the buffer to its destined

output port, so that it is transmitted.

We show that LQD is 1.5-competitive for shared-memory switches equipped

with three output ports, improving the previously established best upper bound

17

(Kobayashi et al. [2007]) of 5/3, for three-port switches. We, also, show a tight

upper bound of 4/3 for the competitive ratio of LQD for shared-memory switches

equipped with two output ports. This corrects upon a previously published result

claiming a tight upper bound of 4M−4
3M−2 < 4/3 for the competitive ratio of LQD for

two-port shared-memory switches, where M ∈ Z+ denotes the buffer size.

18

Chapter 2

Online Packing Linear Programs

2.1 Introduction

During the recent years there has been observed an interest into solving linear pro-

grams in an online manner. Without doubt, the influential paper of Buchbinder and

Naor [2009a] has been the most important work in this area. In this publication,

Buchbinder and Naor study a range of online problems via a primal-dual schema

that they introduce. Their techniques have triggered applications on subsequent

papers, dealing with a variety of central online problems, including one of the most

important problems in the field of online computation, the k-server problem (Bansal

et al. [2011]).

Let us proceed towards describing briefly one of the online problems that

have been studied by Buchbinder and Naor [2009a]. The introduced primal-dual

schema along with some of its applications on various online problems, is described

in detail by its authors in Buchbinder and Naor [2009b].

Buchbinder and Naor assume that incomplete information about the follow-

ing packing linear program is given to the online player by the adversary:

19

max b0x0 + . . .+ bd−1xd−1

subject to A

x0

...

xd−1

 ≤

c0

...

cm−1

x0, . . . , xd−1 ≥ 0

More specifically, all components of the vector c are assumed to be initially revealed

to the online player by the adversary but the components of the vector b and the

entries of the matrix A are gradually revealed to the online player in the following

way: The adversary reveals all coefficients of a variable xj at a time of his choice,

i.e., assuming that time is divided into rounds, at round j the coefficient bj and the

j-th column of the matrix A are revealed to the online player.

On the other side, the online player may increase the value of any variable

at any point in time but never decrease the value of any variable, ensuring that a

feasible online solution is always maintained. The goal of the online player is to

maximize the value of the objective function bTx.

We focus on a related online problem which has been introduced by Ochel

et al. [2012]. The linear program is the packing linear program which has the

standard form described above.

We assume that the components of the vector b and the entries of the matrix

A (which we shall call as constraint matrix from now) are initially revealed to the

online player, but the components of the vector c (which we shall call as capacity

vector) are gradually revealed to the online player by the adversary, in a way that

we describe in the next paragraph.

Time is assumed to be discrete. At time t the adversary reveals to the online

player a vector `t, the components of which can be seen as the current right-hand

20

sides of the constraints of the linear program. On the other side, the online player

responds at t, by increasing the values of variables of his choice. The online player

may never decrease any variable value and has to additionally ensure that each of

the constraints of the linear program is satisfied, i.e., that a feasible online solution

is always maintained. The goal of the online player remains the same as in the

model of Buchbinder and Naor, that is the maximization of the objective function

value.

Finally, the adversary ensures that the following two conditions hold:

• Each component of the revealed vector `t lower-bounds the respective compo-

nent of the capacity vector c = (c0, ..., cm−1) and

• Assuming that x is the current online solution, it holds (c−Ax) ≤ α ·(`t−Ax)

where α > 1 is a parameter which is initially revealed to the online player.

We shall denote as revealed remaining slack at t the quantity (`t −Ax) and

as true remaining slack at t, the quantity (c−Ax).

We shall study the competitiveness of deterministic and randomized online

algorithms in dependence of the parameter α > 1, for the aforementioned online

problem.

The fact that no variable value may decrease is what makes this problem

interesting from an online perspective. This is because, otherwise, the online player

would be able to obtain full information about the underlying linear program and

hence identify the point of the feasible region which maximizes the value of the

objective function.

An interesting application of this online problem, as noted by Ochel et al.,

refers to the lifetime optimization of wireless sensor networks. A wireless sensor

network consists of a number of sensors each of which is powered by its own battery

and which broadcasts information wirelessly to neighbour sensors, within its range.

All such information is collected wirelessly by a base sensor. The lifetime of such a

21

(
√
α, 0)

(0,
√
α)

(α, 0) (α, 0)

x0

x1 x1

x0

Figure 2.1: In the above example for linear programs with two variables, we assume
that the objective function is x0 +x1. The two constraints initially presented to the
online algorithm are x0 +

√
αx1 ≤ α and

√
αx0 + x1 ≤ α (on the left). However the

actual constraints of the linear program are x0 +
√
αx1 ≤ α and

√
αx0 + x1 ≤ α

√
α

(on the right). The optimal point (α, 0) is on the x0 axis, hence an optimal offline
algorithm will only increase the value of variable x0 and leave the value of x1 equal
to 0.

network is defined as the time from the first broadcast performed anywhere in the

network, until the first battery becomes exhausted.

In this case and assuming that all entries of the matrix A are positive, each

component of the right-hand sides of the constraints of the linear program corre-

sponds to the lifetime of one battery powering a network sensor. We assume that

we are aware of the lower bounds of the remaining battery lifetimes, but the actual

remaining battery lifetimes are supposed to be within a fixed factor α > 1 of the

revealed battery lifetime values. Given this information, our objective is to choose

amongst a set of broadcasting scenarios so that the number of performed network

broadcasts is maximized, before a battery becomes exhausted.

Ochel at al. provide a Θ(lnα
α)-competitive deterministic online algorithm

for this problem and prove that any online algorithm, whether deterministic or

randomized, is O(1√
α

)-competitive.

Our first result (Englert et al. [2014]) is an improvement of the deterministic

22

upper bound to O(d
2α1/d

α) for linear programs, having at least d variables. It is

important to note here that our upper bound is, also, dependent on the number of

variables of the linear program and not only on the parameter α.

Our second result (Englert et al. [2014]) is an upper bound of O(m
2α1/m

α)

on the competitive ratio of any randomized online algorithm against an oblivious

adversary for this problem, for linear programs that involve mdm! lnαe variables,

where there also exists a dependence between the achieved upper bound and the

number of variables of the linear program.

Both of the these upper bounds become O(ln2 α/α) for a sufficiently large

number of variables.

Finally, we give a simple deterministic Θ(1√
α

)-competitive algorithm for lin-

ear programs that have d = 2 variables (Englert et al. [2014]). This algorithm is

optimal for the special case of linear programs involving exactly two variables since

its competitive ratio matches the upper bound of O(1√
α

) that has been established

by Ochel et al.

2.2 The upper bound for deterministic online algorithms

In the current section, we shall prove the next theorem.

Theorem 2.1. The competitive ratio of any deterministic online algorithm for the

problem of packing linear programs with at least d ≥ 2 variables, is O(d
2α1/d

α).

Since the bound of Theorem 2.1 is minimized for a number of variables equal

to d = Θ(lnα), we have the next corollary.

Corollary 2.2. The competitive ratio of any deterministic online algorithm for the

problem of packing linear programs, is O(ln2 α
α).

We proceed with the construction of the adversary to prove Theorem 2.1. As

a high-level approach, a completely symmetric linear program is initially presented

23

to the online player by the adversary. Once the online player has increased a variable

so much that the revealed remaining slacks of some constraints become sufficiently

small, the adversary decides that these constraints are exactly those constraints for

which the revealed right-hand sides were already quite close to the true right-hand

sides, i.e., to the respective components of the capacity vector c. As a consequence,

the value of this variable cannot be increased much further in the future and the

online algorithm is left, more or less, with a similarly constructed linear program,

but for the remaining variables.

Hence, the initial linear program presented to the online algorithm is the

following:

max

d−1∑
i=0

xi

∀ permutations π :

d−1∑
i=0

αi/d · xπ(i) ≤ α

x0, x1, . . . , xd−1 ≥ 0

Our construction uses exactly d variables. Theorem 2.1 follows, since any

additional variables xd, xd+1, . . . can be made irrelevant by adding to the linear

program constraints of the form xd+1 ≤ 0, xd+2 ≤ 0, etc.

The adversary maintains a set of active constraints and a set of active vari-

ables. Initially all d! constraints and all d variables are considered to be active.

From the point in time when a constraint or a variable becomes inactive, this con-

straint or variable, respectively, will never become active until the online algorithm

terminates.

The adversary proceeds in d rounds, which are numbered downwards as

d− 1, d− 2, . . . , 0. The round r ∈ {0, . . . , d− 1} ends in the first point in time when

there exists an active constraint with a revealed remaining slack at most equal to

24

αr/d. At the end of round r each of the next steps takes place in the following order:

• The adversary determines the index kr of the active variable which has the

maximum value among all variables that are currently active, breaking ties

arbitrarily.

• The adversary increases the right-hand side (i.e., the respective component

of `t) of all active constraints that do not correspond to permutations with

π(r) = kr, to α · αr/d. Note that this does not violate the condition that

revealed remaining slacks always have to be an α-approximation of the true

remaining slacks, since all these constraints have a revealed remaining slack

which is at least equal to αr/d.

• The adversary removes from the set of active constraints all the constraints

that their right-hand side was increased in the previous step of the current

round.

• The adversary removes the variable with index kr from the set of active vari-

ables and the current round completes.

Before continuing, we note that we may assume that the online algorithm

ends its computation after all d rounds are completed, i.e., when no variable is active

any more. This is because, for any online algorithm that terminates before round 0

is complete, there exists an other online algorithm that acts exactly as the former

online algorithm until the point in time that this former algorithm terminates and

which obtains at least the same online profit, since no variable value may decrease.

We start our proof with two easy observations. First of all, recall that at

round r we increase the right-hand sides of all active constraints that do not corre-

spond to permutations for which it holds π(r) = kr and we, subsequently, remove

these constraints from the set of active constraints. Taking into consideration the

fact that the round numbers are decreasing, we obtain the following observation.

25

Observation 2.3. A permutation π corresponds to a constraint active in round r

if and only if it holds π(s) = ks for all s > r.

Now, let xri be the value of the variable xi at the end of round r, for i, r ∈

{0, . . . , d − 1}. Since for non-negative numbers α0 ≥ α1 ≥ . . . and non-negative

numbers bi, we have that the quantity
∑

i αi ·bπ(i) is maximized if bπ(0) ≥ bπ(1) ≥ . . .,

we obtain the next observation.

Observation 2.4. Let r = 0, . . . , d − 1 be a round. Also, let π be a permutation

corresponding to a constraint active in round r, such that it holds

xrπ(r) ≥ xrπ(r−1) ≥ . . . ≥ xrπ(0).

Note that such a permutation exists due to Observation 2.3. Then, the constraint

corresponding to π has the smallest revealed remaining slack among all permutations

active in round r.

Now, for any round r = 0, . . . , d − 1, let πr denote the permutation corre-

sponding to the constraint that causes round r to end. According to Observation 2.4

we obtain:

xrπr(r) ≥ x
r
πr(r−1) ≥ . . . ≥ xrπr(0) (2.5)

and, therefore, we may assume from now, without loss of generality, that it holds

πr(r) = kr.

Lemma 2.6. For any round r < d− 1 we have

xrπr(i) ≥ x
r+1
πr+1(i)

for any i = 0, . . . , d− 1.

Proof. We distinguish between the cases that i ≥ r + 1 and i ≤ r. We begin with

the case that i ≥ r + 1.

26

Due to Observation 2.3, we have πr(i) = πr+1(i) = ki for any i > r+ 1 since

the constraints corresponding to πr and πr+1 are both active in rounds d−1, . . . , r+1.

Since πr(i) is, also, active in round r and it holds πr+1(r+1) = kr+1 as already argued

after (2.5), we have πr(i) = πr+1(i) = ki for i = r+1. Taking into consideration the

fact that variable values can only increase, this implies for i ≥ r + 1 that it holds

xrπr(i) = xrki ≥ x
r+1
ki

= xr+1
πr+1(i). This completes the proof for the case that i ≥ r+ 1.

Now, assume that i ≤ r. Since πr(i) = πr+1(i) = ki for i > r + 1, the

sequence πr+1(r + 1), πr+1(r), . . . , πr+1(0) is a permutation of the sequence πr(r +

1), πr(r), . . . , πr(0). Therefore, the sets of variables {xπr+1(r+1), . . . , xπr+1(0)} and

{xπr(r+1), . . . , xπr(0)} are identical. Hence, since variable values can only increase,

the sequence

xrπr(r+1) ≥ xrπr(r) ≥ . . . ≥ x
r
πr(0)

is obtained from the sequence

xr+1
πr+1(r+1) ≥ x

r+1
πr+1(r) ≥ . . . ≥ x

r+1
πr+1(0)

by increasing the values of one or more variables and rearranging the sequence so

that it becomes sorted. Hence, the claim follows for the case that i ≤ r, completing

the proof.

We can now show the next key lemma.

Lemma 2.7. For any round r ∈ {0, . . . , d−1} and i ≤ r, it is xrπr(i) ≤ (d−r) ·α1/d.

Proof. We shall use downward induction on r. The claim is clear for r = d−1, since

during round d− 1 all constraints still have right-hand sides equal to α and for any

variable xi there is a constraint that contains this variable with a coefficient equal

to α1−1/d.

Consider, now, any round r < d − 1. We can, easily, obtain the following

equality:

27

d−1∑
i=0

αi/d · xrπr(i) =
d−1∑
i=0

αi/d · xr+1
πr+1(i) +

d−1∑
i=0

αi/d ·
(
xrπr(i) − x

r+1
πr+1(i)

)
(2.8)

The first sum of the right-hand side of (2.8) is lower-bounded by α−α(r+1)/d

by the definition of permutation πr+1. Moreover, by Lemma 2.6 we have xrπr(i) ≥

xr+1
πr+1(i) for any i = 0, . . . , d− 1. Therefore we have the next inequality:

d−1∑
i=0

αi/d · xrπr(i) ≥ α− α
(r+1)/d +

d−1∑
i=0

αi/d ·
(
xrπr(i) − x

r+1
πr+1(i)

)

with all the terms in the sum of its right-hand side, being non-negative. Since the

constraint corresponding to πr is active and feasible in round r, the left-hand side

of the last inequality is upper-bounded by α. By ignoring all terms except the one

corresponding to i = r in the sum of its right-hand side we obtain:

xrπr(r) ≤ x
r+1
πr+1(r) +

α(r+1)/d

αr/d
= xr+1

πr+1(r) + α1/d ≤ (d− r)α1/d (2.9)

where the last inequality of (2.9) follows from induction.

Overall, we have xrπr(r) ≤ (d−r)α1/d. By this and (2.5), we obtain the lemma

for xrπr(i) when i < r.

Now, let us denote as x′i (where i = 0, . . . , d − 1) the final value of variable

xi, that is the value of xi when the online algorithm terminates. Due to the next

lemma, we can upper-bound the online profit which equals ‖x′‖1, where ‖.‖1 denotes

the L1-norm and x′ denotes the vector (x′0, ..., x
′
d−1).

Lemma 2.10. It holds x′i = O(dα1/d) for any i = 0, . . . , d− 1.

Proof. The last round performed is round r = 0, which means that there exists a

constraint for which the right-hand side is set equal to α ·α0/d = α at the end of this

round, i.e., this constraint stays as is. Let π denote the permutation corresponding

28

to this constraint.

Note that no variable is active at the end of round 0 and each variable has

an index kj = πj(j) = π(j) for some j ≥ 0. We have:

d−1∑
i=0

αi/d · x′π(i) =
d−1∑
i=0

αi/d · xjπj(i) +
d−1∑
i=0

αi/d ·
(
x′π(i) − x

j
πj(i)

)
(2.11)

According to the definition of π, we obtain the next inequality as in the proof

of Lemma 2.7:

d−1∑
i=0

αi/d · xjπj(i) ≥ α− α
j/d (2.12)

Taking into consideration the fact that the sum in the left-hand side of (2.11)

is at most α, since the right-hand side of this constraint is not altered and stays

equal to α, we have from (2.11) and (2.12), similarly to the reasoning in the proof

of Lemma 2.7:

x′kj ≤ x
j
kj

+
αj/d

αj/d
≤ (d− j)α1/d + 1.

where we used Lemma 2.7 in order to upper-bound xjkj in the last inequality. This

completes the proof.

In the next lemma, we bound the profit that an optimal offline algorithm

can achieve.

Lemma 2.13. An optimal offline algorithm can obtain a profit of α.

Proof. An offline algorithm can set the value of the variable xk0 equal to α and each

of the other variable values equal to 0. We shall now show that this is a feasible

solution.

For any i ≥ 1, consider any of the (d − 1)! constraints in which xk0 has a

coefficient equal to αi/d. In other words, a constraint corresponding to a permutation

with π(i) = k0. Such a constraint becomes inactive by the end of round i the latest,

29

since π(i) = k0 6= ki. Due to the strategy of the adversary, this means that, once the

constraint becomes inactive, the right-hand side increases to α · αi/d and therefore

the constraint is satisfied.

The constraints in which the coefficient of xk0 is 1 are clearly satisfied as

well, since the right-hand side of all constraints is at least α.

By combining Lemmas 2.10 and 2.13 we obtain Theorem 2.1. This completes

the analysis for the competitive ratio upper bound for the case of deterministic online

algorithms.

2.3 The upper bound for randomized online algorithms

The upper bound on the competitive ratio of randomized online algorithms against

oblivious adversaries is based on the construction from Section 2.2. Recall that,

according to the adversary construction from this section, each round ends when

the revealed remaining slack of at least one active constraint drops below a certain

threshold value. Then, the adversary identifies the active variable having the great-

est value and increases appropriately the right-hand sides of specific constraints.

The identified variable becomes inactive from this point and on and, hence, its

value cannot be further increased much, until the online algorithm completes its

computation.

To obtain our upper bound on randomized algorithms, we shall use Yao’s

principle, which is an elegant and very useful tool in obtaining bounds for the

competitive ratio of any randomized online algorithm against oblivious adversaries.

Since an oblivious adversary is weaker than any adaptive adversary, as already

mentioned in Chapter 1, these bounds hold for randomized online algorithms against

any type of adversary.

The first application of Yao’s principle, related to theoretical computer sci-

ence, was, quite reasonably, due to Yao [1977]. However, the origin of this principle

30

is, in fact, much older and can be traced back to the Minimax Theorem of von

Neumann [1928].

Assuming that P is a cost minimization online problem, letting {ALGn}

denote the set of deterministic online algorithms for P (where n ∈ N) and assuming

that OPT is an optimal offline algorithm for P, then Yao’s principle states the

following:

Theorem 2.14. If Z is a probability distribution over a set of input instances σx to

P and there exists a c ≥ 1 such that it holds infn∈N EZ [ALGn(σx)] ≥ c·EZ [OPT(σx)],

then c lower-bounds the competitive ratio of any randomized online algorithm against

an oblivious adversary, for P.

For the case of a profit maximization online problem P ′ and assuming that

{ALGl} (where l ∈ L) denotes the set of deterministic online algorithms for this

problem whilst OPT denotes an optimal offline algorithm for it, Yao’s principle can

be stated as in the following:

Theorem 2.15. If Z is a probability distribution over a set of input instances σx

to P ′ and there exists a positive p ≤ 1 such that it holds supl∈L EZ [ALGl(σx)] ≤

p ·EZ [OPT(σx)], then p upper-bounds the competitive ratio of any randomized online

algorithm against an oblivious adversary, for P ′.

In simple words, Yao’s principle enables us instead of proving bounds for

randomized online algorithms, to construct an input distribution which, in expec-

tation, foils any deterministic online algorithm for the same online problem. Since

for the case of randomized algorithms, it is usually more difficult to bound the ex-

pected cost (or, respectively, profit) compared to the case of deterministic online

algorithms, Yao’s principle simplifies analyses substantially.

Now, let us turn to our problem of packing linear programs. The analysis of

the previous section involves a constant interaction between the online player and

the adversary, since a value increment of any variable by the online player is followed

31

by an update of the right-hand sides of specific constraints of the linear program,

by the adversary.

Recall from the introductory Chapter 1 that in order to define oblivious

adversaries, we need to allow the adversary to fix his complete behavior in advance;

it follows that we have to remove this interaction between the adversary and the

online player.

For this, the input will consist, as before, of a packing linear program, whose

constraints are given by Ax ≤ c. Additionally, for each constraint i ∈ {0, . . . ,m−1},

the adversary specifies a monotonically increasing function `i(λi) of the left-hand

side of the constraint λi := (Ax)i. This function models the right-hand side of the

constraint in dependence of the current value of the left-hand side. This function

has to satisfy equality `i(λi) = ci for λi ≥ ci and inequality ci−λi ≤ α · (`i(λi)−λi)

for λi < ci.

If λi is the current value of the left-hand side of the i-th constraint, then the

online player is aware of all values of `i(z) for z ≤ λi but is not aware of any values

for z > λi.

Note that we only need basic threshold functions to construct the determin-

istic upper bound from the previous section. For this, we define functions fj(λ), for

j ∈ {0, 1, . . . , d− 1}, as

fj(λ) :=

α , λ < α− αj/d

α1+j/d , λ ≥ α− αj/d

The linear program is the same as the one in the previous section. The

monotonically increasing function assigned to a constraint that corresponds to per-

mutation π, is fr if r is the largest integer such that π(r) 6= kr, where kr is the index

of the largest active variable at the end of round r.

This way we can set up a predefined behavior of the adversary, as required

32

in order to apply Yao’s principle.

Now, in the construction of the adversary of the previous section, the order in

which the variables become inactive defines a permutation πo of the set {0, . . . , d−1}.

In other words, if the variable with index kr becomes inactive in round r we have

πo(r) = kr. Consider an adversary that acts in exactly the same way as before,

but he guesses the permutation πo and proceeds as if the variables would actually

become inactive in this order.

If the adversary guesses correctly, the construction works as intended and

the algorithm can only obtain a value of O(d2α1/d), while the optimal value is α.

If, however, the adversary chooses the permutation uniformly at random, then the

success probability is 1/(d!), that is with this probability, the same upper bound as

in the previous section is achieved. However, if the adversary guesses incorrectly the

algorithm can perform better than O(d2α1/d) and even obtain a value of α, while

the optimal value remains α.

We are not going to analyze the average performance of an algorithm in the

setting described in the previous paragraph. Instead, we will increase the success

probability for the adversary from 1/(d!) to almost 1 − 1/α. This is done in a

similar way to the one that Ochel et al. provide their upper bound for randomized

online algorithms against oblivious adversaries. More specifically, we work as in the

following.

We assume that we have K adversaries with random πo sequences working

in parallel and require the online algorithm to beat all of them, for some sufficiently

largeK. Hence, suppose we want to haveK d-dimensional adversaries. We construct

a packing linear program with dK variables {xi1,...,iK |0 ≤ i1, . . . , iK ≤ d − 1}. The

objective function is the sum of all variables.

For the k-th adversary, we add d! constraints to the linear program. The

constraints have the same form as the ones in the previous section but instead of

variables xj the variables are:

33

xkj :=
∑

(i1,...,iK):ik=j

xi1,...,iK (2.16)

For each adversary k ∈ {1, . . . ,K}, a permutation πk of the set {0, . . . , d−1}

is chosen independently and uniformly at random and the functions fr are randomly

assigned to constraints based on this permutation, as described earlier.

For any adversary k, the objective function is:

∑
0≤i1,...,iK≤d−1

xi1,...,iK =
d−1∑
j=0

xkj (2.17)

Therefore, the objective function is also equal to mink
∑d−1

j=0 x
k
j .

We allow the online player to increase the value of xkj directly instead of

increasing the values of the underlying xi1,...,iK variables. Note that, in reality, an

algorithm cannot increase the xkj variables completely independently of each other,

since increasing one of the underlying xi1,...,iK variables always affects multiple xkj

variables. However, allowing the online player to directly and individually increase

xkj variables can only provide him with more power.

This completes the construction of an input that combines K adversaries

from the previous section, each of them independently guessing a random order in

which variables become inactive. The profit of the online algorithm against one of

the adversaries is bounded by O(d2α1/d) with probability 1
d! (that is, if the adversary

guessed the correct permutation) and by α with probability (1− 1
d!).

The total profit of the online algorithm is bounded by the minimum profit

the algorithm achieves against any of the K adversaries, since the objective function

equals mink
∑d−1

j=0 x
k
j . Hence, by choosing K = dd! lnαe we get that the expected

overall profit of the online algorithm is bounded by:

(
1− 1

d!

)K
α+

(
1−

(
1− 1

d!

)K)
O(d2α1/d) = O(d2α1/d) (2.18)

34

At the same time, the optimal profit is always α. To see this set xπ1(0),...,πK(0) =

α and all other variables to 0. Consider the constraints that belong to the k-th ad-

versary. Then xkj is equal to α for j = πk(0) and 0 otherwise. This is exactly the

feasible solution from Lemma 2.13, applied to the constraints of the k-th adver-

sary. Taking into consideration the fact that the constructed linear program has dK

variables, this gives us the next theorem.

Theorem 2.19. The competitive ratio of any randomized online algorithm against

an oblivious adversary is O(m
2α1/m

α) for linear programs involving mdm! lnαe vari-

ables.

By the same reasoning as the one following Theorem 2.1, we have the next

corollary.

Corollary 2.20. The competitive ratio of any randomized online algorithm against

an oblivious adversary for the problem of packing linear programs, is O(ln
2α
α).

This completes the analysis for the competitive ratio upper bound, for the

case of randomized online algorithms.

2.4 An optimal online algorithm for linear programs

with two variables

In this section, we give a deterministic Θ(1√
α

)-competitive algorithm for packing

linear programs involving two variables, x0 and x1. As ALG we shall denote this

algorithm and as OPT an optimal offline algorithm for this problem, until the end

of Chapter 2. We shall, also, use ALG and OPT to refer to the total profit of these

algorithms, respectively.

The algorithm ALG is optimal for the special case of linear programs involving

two variables, since its competitive ratio matches the competitive ratio upper bound

of O(1√
α

).

35

First of all, it would be easier for the analysis to concentrate solely on the

objective function x0+x1, instead of the more general form b0x0+b1x1, with positive

b0 and b1. For this, the algorithm initially normalizes the variables by dividing each

entry aij of the matrix A by bj , where j ∈ {0, 1}. This does not change the profit

of an optimal solution. To see that, note that an increment of the value of xi by an

amount ε > 0 in the normalized linear program, corresponds to exactly an increment

of the value of xi by ε/bi in the initial linear program and both of these increments,

only increase the objective function value of the respective linear program, by the

same amount, which is ε.

Now, let x∗(z) = (x∗0(z), x∗1(z)) denote an optimal solution of the linear

program where the right-hand sides of the constraints are given by the vector z. Let

(x0, x1) be the current online solution and let `tj denote the j-th component of the

vector `t at t, where j ∈ {0, . . . ,m− 1}.

At this time t, ALG does the following:

1. If any constraint is tight then ALG stops, else

2. If x∗0(`t) > x0 · γ, then ALG increases variable x0 for an infinitesimal amount,
else

3. If x∗1(`t) > x1 · γ, then ALG increases variable x1 for an infinitesimal amount,
else

4. ALG stops.

We, now, proceed towards establishing the competitiveness of ALG.

Lemma 2.21. For γ = 1 + 1/
√
α, it holds ALG ≥ 1√

α+1
· OPT.

Proof. Let x′ = (x′0, x
′
1) indicate the point on the plane, where ALG stops. Since

ALG will either stop due to Step 1 or due to Step 4, we distinguish between the

following two cases:

36

ALG stops due to Step 1.

In this case, there has to exist at least one tight constraint, by the definition

of the algorithm. Let us pick arbitrarily one of these tight constraints and write it

as a0x0 + a1x1 ≤ `tk, where k ∈ {0, . . . ,m− 1}. Since (c−Ax) ≤ α · (`t −Ax), this

implies that it holds:

a0x
′
0 + a1x

′
1 = ck (2.22)

Assume, without loss of generality, that it is a0 ≥ a1. Then, the optimal

profit can be at most ck/a1.

For every t, x∗(`t) has to satisfy a0x
∗
0(`t) + a1x

∗
1(`t) ≤ `tk ≤ ck. Therefore,

we obtain x∗0(`t) ≤ ck/a0. Additionally, since ALG increases variable x0 only if

x0 · γ < x∗0(`t) ≤ ck/a0, it has to hold x′0 ≤ ck/(a0 · γ). By this and due to (2.22),

we obtain that a1x
′
1 = ck − a0x

′
0 ≥ (1− 1/γ) · ck.

Therefore, the profit of ALG has to be at least equal to (1−1/γ) ·ck/a1. Since

the optimal profit is at most ck/a1 (as already argued) and with γ = 1 + 1/
√
α, we

obtain ALG ≥ 1√
α+1
· OPT .

ALG stops due to Step 4.

In this case and due to the choice of the stopping condition, we have x∗0(`t) ≤

x′0 ·γ and x∗1(`t) ≤ x′1 ·γ. Adding these two inequalities together, we have ‖x′ ·γ‖1 ≥

‖x∗(`t)‖1.

Since it holds (c− Ax) ≤ α · (`t − Ax), we obtain `t ≥ ((α− 1) · Ax+ c)/α.

Hence, this gives us the following:

37

‖x′ · γ‖1 ≥ ‖x∗(`t)‖1

≥
∥∥∥x∗((α− 1)Ax′ + c

α

)∥∥∥
1

≥
(

1− 1

α

)
‖x∗(Ax′)‖1 +

‖x∗(c)‖1
α

≥
(

1− 1

α

)
‖x′‖1 +

‖x∗(c)‖1
α

.

The second inequality, above, follows from the fact that `t ≥ ((α − 1)Ax +

c)/α; therefore the feasible region that is defined by setting the capacity vector to

((α− 1)Ax+ c)/α is enclosed by the feasible region defined by setting the capacity

vector to `t. The last inequality follows from the fact that the point x′ is a feasible

solution if the capacity vector is set equal to Ax′.

Solving for x′ gives ‖x′‖1 ≥ ‖x∗(c)‖1/(αγ−α+1) where the right-hand side is

equal to ‖x∗(c)‖1/(
√
α+1) for γ = 1+1/

√
α, showing again that ALG ≥ 1√

α+1
·OPT.

This completes the proof.

By Lemma 2.21, it follows that our algorithm is Θ(1√
α

)-competitive and,

therefore, is optimal for linear programs involving two variables.

2.5 Open Problems

We significantly narrowed the gap between the upper bound of O(ln2 α
α) and the

lower bound of Ω(lnα
α) for the competitive ratio of any (deterministic or randomized)

online algorithm for the problem of packing linear programs. However, it remains an

open question to further narrow this gap, by establishing better online algorithms or

by providing improved upper bounds. At this point, we conjecture that the simple

greedy algorithm which we describe next, is better than Θ(lnα
α)-competitive.

Let zts = minj
`tj
Aj,s

for a variable s ∈ {0, . . . , d − 1} for which the respective

entry Aj,s is non-zero. Then, the aforementioned deterministic online algorithm,

38

does the following:

1. Let t be the current point in time. Choose the variable i at t, for which it
holds zti = maxs z

t
s > 0 (breaking ties arbitrarily) else if maxs z

t
s = 0 then

Stop.

2. Increase the value of variable i for an infinitesimal amount.

3. Repeat Step 1 for the next point in time.

Our established bounds for deterministic and randomized online algorithms

suggest that it is interesting to study the influence of the number of variables of

the linear program, on the achievable competitive ratio. We would be interested

in bounds that are tight for any fixed number of variables and not just when the

number of variables of the linear program is very large.

This is further emphasized by the fact that when the number of variables d is

very large, there seems to be little difference in the power of randomized and deter-

ministic online algorithms. However, taking d into consideration for the particular

interesting case of moderately large values of d, randomization has the potential to

improve performance, compared to determinism.

It is, for instance, easy to verify that the simple randomized online algorithm

that picks uniformly at random one of the d variables and increases the value of this

variable until a constraint becomes tight is (1
d)-competitive. Taking, for example,

a number of variables d = 2, this gives an improvement over the Θ(1√
α

) competi-

tive ratio that deterministic algorithms can achieve for the case of linear programs

involving two variables.

39

Chapter 3

The COLORFUL BIN PACKING

problem

3.1 Introduction

The BIN PACKING problem is one of the most well-studied optimization problems,

from both an offline and an online perspective. This is mainly due to the large

number of practical applications that many of the variant problems of BIN PACK-

ING have. Another reason is, perhaps, that many well-performing algorithms for

this problem, being quite natural and simple to implement, gained the attention

of the scientific community, already from the very beginning when the areas of ap-

proximation algorithms for NP-hard optimization problems and that of competitive

analysis, started to form.

In the current chapter we start with a brief overview of the research, for both

the offline and the online BIN PACKING problem. We continue discussing about a

variant of BIN PACKING, the COLORFUL BIN PACKING problem, for which we

design a fast 2-approximate algorithm. Concluding, we give an overview of the open

problems related to the offline and the online COLORFUL BIN PACKING problem.

Let us first concentrate on the offline BIN PACKING problem, providing the

40

definition of an asymptotic polynomial-time approximation scheme for a cost mini-

mization offline problem P:

Definition 3.1. An asymptotic polynomial-time approximation scheme (or asymp-

totic PTAS) for P is a family of computationally efficient algorithms {Aε}, such

that for each fixed positive constant ε, the algorithm Aε outputs a solution of cost at

most equal to (1 + ε) · OPT(I) + c, for any input I.

In Definition 3.1, it is assumed that c is a positive constant independent

of the input. In case it is c = 0, then we refer to the family of algorithms Aε as

polynomial-time approximation scheme (or PTAS, in short). Finally, in the case

the running time of an asymptotic PTAS is polynomial in (1/ε) as well, then we

shall refer to the respective family of algorithms as asymptotic fully polynomial-time

approximation scheme (or AFPTAS, in short).

Recall the definition of the offline (one-dimensional) BIN PACKING problem:

Definition 3.2. Given a set of items, each of which has a size in (0, 1], we are asking

what is the minimum number of unit-capacity bins, that we can pack all items into.

As already stated, there exist many variant problems of BIN PACKING. A

straightforward generalization are the multidimensional bin packing problems, such

as the two-dimensional BIN PACKING problem (Bansal and Khan [2014]) where we

assume that each item corresponds to a rectangle of a width and a height, each being

at most equal to 1 and the three-dimensional BIN PACKING problem where an item

depth in (0, 1] is additionally introduced (Martello et al. [2000]). In the latter case,

a bin corresponds to a rectangular solid of unit volume and an item corresponds to

a rectangular solid of height, width and length, each at most 1.

A few other variants include the BIN PACKING with cardinality constrains

where the number of items in each bin should be bounded (Epstein and Levin [2010])

and the BIN PACKING with color constraints where each item has a color and where

the number of different colors in a bin must not exceed a given number (Dawande

41

et al. [2001]). Also, the BIN PACKING with conflicts where conflicts are introduced

between packed items (Jansen and Öhring [1997]) and the BIN PACKING with re-

jection where a rejection penalty is associated with each item, which contributes to

the total algorithmic cost in case the specific item is chosen not to be packed into

any bin (Epstein [2006]).

It is straightforward to show that some natural heuristics perform quite well

for the one-dimensional BIN PACKING problem. As an example, consider the simple

algorithm First-Fit, which packs an item into any already opened bin that the item

fits into, otherwise it opens a new bin to pack this item.

For any input of items, it holds that at most one bin may be packed with

a total item size at most 1/2, in the output of First-Fit. This is because, otherwise

First-Fit due to its design, would be able to pack all items placed into any pair of bins

each of which is packed with a total item size at most 1/2, into a single bin. Taking

into consideration the next observation, it follows that First-Fit is a 2-approximate

algorithm:

Observation 3.3. Let ` ≥ 1 be the number of bins that are packed with a total item

size strictly greater than 1/2, in the output of First-Fit. Then, the number of bins

of an optimal packing is at least (`+ 1)/2.

Proof. If First-Fit packs ` bins with a total item size strictly greater than 1/2, then

the total item size should be strictly greater than `/2. Since any algorithm can pack

items of total size at most 1 in each bin, then an optimal algorithm has to use more

than `/2 bins. Taking into consideration the fact that the number of packed bins

must be an integer number, we obtain the observation.

The algorithm First-Fit has been shown to have an approximation ratio equal

to 1.7 (Dósa and Sgall [2013]). The variant of this heuristic, called First-Fit Decreas-

ing, which first sorts the items in descending order of sizes and then applies First-Fit

on it, has been shown to have an approximation ratio equal to 1.5 (Simchi-Levi

42

[1994]). This is the best possible approximation ratio that any computationally ef-

ficient algorithm for the BIN PACKING problem can have, unless it holds P = NP .

To see that, we state the following definition of PARTITION which is a well known

NP-complete problem:

Definition 3.4. We are given a set S of n ≥ 2 positive integers s1, ..., sn, where∑n
j=1 sj = 2 · k, for some k ∈ N and we are asking whether it holds

∑
j∈S′ sj =∑

j∈S\S′ sj for any S′ ⊆ S.

If a polynomial-time algorithm for BIN PACKING with an approximation ratio

(3/2)− ε (for any constant ε > 0) were possible, then we could decide PARTITION

in polynomial time. This is because we could reduce PARTITION to an instance of

BIN PACKING, where for each integer si (i ∈ {1, . . . , n}) we have an item of a size

equal to 2 · si/
∑n

j=1 sj . This gives us the next observation:

Observation 3.5. There does not exist a PTAS for the BIN PACKING problem,

unless P = NP .

The question on whether there exists an asymptotic PTAS for BIN PACKING

was answered affirmatively by Fernandez de la Vega and Lueker [1981]. They gave

an approximation algorithm for the BIN PACKING problem that always outputs a

solution of a number of bins upper-bounded by (1 + ε)·OPT+O(ε−2), for any fixed

ε > 0. We note that a variant of the algorithm presented by Fernandez de la

Vega and Lueker [1981], gives a solution of a number of bins upper-bounded by

(1 + ε)·OPT+1. The idea behind this can be, roughly, described as in the following:

• Each item having a size at most equal to the fixed ε > 0 is excluded from the

input I, so that we obtain a subset of items I ′ ⊆ I.

• The sizes of the items in I ′ are adjusted so that a constant number of different

item sizes is obtained. Also, an optimal packing for this modified set of items

is obtained, in polynomial time in the number of different item sizes.

43

• The optimal packing of the previous step is modified so that a packing of the

items in I ′ is derived and, finally, First-Fit is applied for the excluded items of

the first step.

A celebrated approximation algorithm was derived in the seminal paper of

Karmarkar and Karp [1982], producing a number of bins upper-bounded by OPT+

O(log2(OPT)). Recently, Rothvoß [2013] gave an improved approximation algo-

rithm, which produces an output that has a number of bins at most equal to OPT+

O(log(OPT)· log(log(OPT))).

Let us, now, focus on the online BIN PACKING problem. The (one-dimensional)

online BIN PACKING problem may be viewed as a variant of the LOAD BALANCING

problem, where we have an infinite number of processors each of unit processing

speed (corresponding to the bins) and a sequence of tasks each of which has a pro-

cessing time requirement at most equal to 1 (corresponding to the items), which

must be irrevocably assigned to the processors. The goal in this case is the mini-

mization of the used processors.

As in the case of the offline BIN PACKING, there exist many variant problems

of the online BIN PACKING problem, the most notable of which are, perhaps, its

multidimensional variants.

One of the first results regarding the competitiviness of online algorithms

for the online BIN PACKING, was that First-Fit has an asymptotic competitive ratio

equal to 1.7 (Ullman [1971]). Apart from this, First-Fit is an exactly 1.7-competitive

algorithm, that is the asymptotic competitive ratio of First-Fit matches the absolute

competitive ratio of this algorithm. This follows by Dósa and Sgall [2013] since First-

Fit needs no information on the remaining part of the input. The online algorithm

with the best asymptotic competitive ratio that we currently have for the online BIN

PACKING problem has an asymptotic competitive ratio upper-bounded by 1.58889

and it is due to Seiden [2002]. The latter result involves several complex arguments,

generalizing upon a simple though clever idea that appeared several years before, in

44

Lee and Lee [1985].

Recently, a (5/3)-competitive algorithm was derived (Balogh et al. [2015c])

for the online BIN PACKING problem and this algorithm is optimal, since its com-

petitive ratio matches the universal lower bound for the competitive ratio of any

deterministic algorithm for the online BIN PACKING problem. Finally, it has been

shown by Balogh et al. [2010] that no online algorithm with an asymptotic com-

petitive ratio smaller than 1.54037 may exist for this problem, improving upon the

lower bound of 1.54014 that had been established several years before by van Vliet

[1992]. Closing the gap between the universal lower bound of 1.54037 and the upper

bound of 1.58889, for the asymptotic competitive ratio of the online BIN PACKING,

is an important open problem.

From this point and until the end of Chapter 3, we shall turn our attention

solely on a recently introduced variant problem of the BIN PACKING problem, the

COLORFUL BIN PACKING problem.

In the COLORFUL BIN PACKING problem each item has a color and for the

packing to be valid, two consecutive items packed into the same bin (i.e., one item

above the other, in the same bin) cannot have the same color. As it is the case

for the one-dimensional BIN PACKING problem, each bin is assumed to have a unit

capacity.

The offline COLORFUL BIN PACKING problem becomes equivalent to the

one-dimensional BIN PACKING problem, if no two items in the input have the same

color and this, also, shows that this problem is NP-hard. The special case in which

there are only two different colors is known as BLACK AND WHITE BIN PACKING

and has been introduced by Balogh et al. [2012].

Balogh et al. [2012], also, point out that three different settings can be con-

sidered for the BLACK AND WHITE BIN PACKING problem and, consequently, for

the COLORFUL BIN PACKING problem. The first setting is the online setting in

which items arrive one by one and an online algorithm has to pack them into bins

45

in their arriving order, without having any information about items arriving in the

future. The second setting is the offline setting in which items, again, arrive one by

one and have to be packed into bins in that order, but decisions can be based on the

entire input. This setting is called “restricted offline”. The third setting is, also, an

offline setting, but items are presented as an unordered set. This setting is called

“unrestricted offline”.

The difference between the restricted offline and the unrestricted offline set-

ting is that in the former, the items in a bin, from bottom to top, have to form a

subsequence of the input sequence, whereas the latter setting does not have such a

restriction. Note that in the COLORFUL BIN PACKING problem, the order in which

items are packed into a bin, i.e., in what order they are stacked on top of each other,

matters. For this reason the two offline settings are not equivalent. We shall only

consider the latter offline setting for our approximation algorithm.

Another way of formulating this problem is that the input consists of a set

of items and that the algorithm produces a partition of this set into subsets such

that, for each of these subsets both of the following conditions have to hold:

• The sum of the item sizes in the subset does not exceed 1 and

• If the subset contains w ∈ Z+ items, then at most (w + 1)/2 of them may

share the same color.

A motivating application of the BLACK AND WHITE BIN PACKING problem,

as mentioned by Balogh et al., is the optimized distribution of advertisement breaks

in television or radio station programs. In this case, the bins may be viewed as

the program blocks (these usually correspond to one-hour intervals, for the case of

radio stations), the white items correspond to the advertisement breaks and the

black items correspond to the actual broadcasted television or radio program. The

objective is the broadcasting of a given set of advertisements into as few program

blocks as possible.

46

Balogh et al. [2015b] study the BLACK AND WHITE BIN PACKING problem

in the online setting. They give a 3-competitive algorithm and show that the stan-

dard heuristics of the BIN PACKING problem First-Fit, Best-Fit (which packs an item

into any bin that the item fits, leaving the least empty space) and Worst-Fit (which

packs an item into any bin that the item fits, leaving the most empty space) have

a competitive ratio which is lower-bounded by 3. Of course these algorithms are

modified in the case of the BLACK AND WHITE BIN PACKING problem, so that

each packing follows the color restriction.

Böhm et al. [2014] show that the competitive ratio of First-Fit, Best-Fit and

Worst-Fit is exactly 3. Balogh et al. [2015b], also, show a lower bound of 1.7213 on

the competitive ratio for any deterministic online algorithm for the BLACK AND

WHITE BIN PACKING problem. Dósa and Epstein [2014] improve this universal

lower bound to 2.

Balogh et al. [2015a] investigate the unrestricted offline version of BLACK

AND WHITE BIN PACKING and provide a O(n log n)-time 2-approximate algorithm,

where n denotes the number of items of the input. Our algorithm matches this run-

ning time and approximation ratio but works for any number of colors. In this paper,

Balogh et al., also provide an asymptotic PTAS for the unrestricted offline BLACK

ANDWHITE BIN PACKING and improve this further to get a fully asymptotic PTAS,

which has a worse additive error but an improved running time dependency on ε.

The asymptotic PTAS can also be used to get an approximation ratio of 3/2, but

at the cost of a significantly worse running time than the 2-approximate algorithm.

The COLORFUL BIN PACKING problem with more than two colors has only

been studied in the online setting. Dósa and Epstein [2014] give a 4-competitive

online algorithm for this problem. Böhm et al. [2014] improve on this, providing a

3.5-competitive online algorithm as well as a lower bound of 2.5 on the competitive

ratio of any deterministic algorithm.

Dósa and Epstein [2014], also, note that going from two to three or more

47

colors makes the problem harder in a certain sense. For inputs in which all items

have a zero size, there exists an optimal (1-competitive) online algorithm for two

colors, whereas no such algorithm exists if the input contains three colors or more.

Concluding, for an arbitrary number of colors, but with all items having a zero size,

Böhm et al. [2014] give a (5/3)-competitive algorithm, which is optimal for the case

that all items have a zero size.

We provide a 2-approximate algorithm for the COLORFUL BIN PACKING

problem, running in time O(n log n), where n ∈ Z+ denotes the number of items of

the input.

3.2 An approximation algorithm for the COLORFUL BIN

PACKING problem

3.2.1 Preliminaries

For our analysis, we shall call an item that has a size which is at most equal to 1/2

as small and an item which has a size strictly greater than 1/2 as large. We shall

call a bin of a total packed item size at most equal to 1/2 as light and a bin of a

total packed item size strictly greater than 1/2 as heavy bin.

Let c denote the color of which we have the greatest number of small items

in the input breaking ties arbitrarily. Let c′ denote the color of which we have the

second greatest number of small items in the input breaking ties arbitrarily. Here

and in the remainder, we shall assume some arbitrary fixed tie-breaking rule between

colors.

In the first step of the algorithm we try to pair large items with small items of

color c and pack these pairs together into bins. In the second step of the algorithm,

we place all remaining large items into separate bins. More precisely, the first two

steps of our algorithm are the following:

48

1. We compute a maximum matching between small items each of which has

color c and large items each of which has a color other than c. Two such items

may be matched, if their combined size is at most 1. Let m ∈ Z+ denote the

size of this matching. Also, let d ≥ 0 denote the difference between the number

of items of color c and the number of items of color c′. We open min{m, d}

bins and pack a matched pair into each of these bins. The small item of each

pair becomes the bottom item in the bin and the large item is packed on top

of it.

2. We open a new bin for each of the remaining large items, i.e., for all large

items of color c and (possible) unassigned large items of different colors.

The third step of our algorithm proceeds in rounds numbered 1, 2, In

each of these rounds we pack a remaining (small) item into a bin. For this, no

previously opened bins are used. For the description of this third step, it would be

convenient to use the following notation:

• Let ni(x) denote the number of small items each of which has color x, that

are not yet packed at the start of round i.

• Let αi := arg maxx ni(x) denote the color of which we have the greatest number

of small items left unpacked at the start of round i.

• Let βi := arg maxx6=αi ni(x) denote the color of which we have the second

greatest number of small items left unpacked at the beginning of round i.

The following gives a precise description of a round i in the third step of

the algorithm. Note that we only start a new round i if there are still items left

unassigned and hence it is ni(αi) > 0:

3. At every point in time, there is one active bin. Initially in round 1, this is a

new empty bin.

49

• If the top item in the active bin is not of color αi (or the bin is empty),

we add an item of color αi if there is one such item that fits into the

bin. If no item of color αi fits into the bin then we open a new bin which

becomes the new active bin and we add an item of color αi to this new

bin.

• Otherwise, if the top item in the active bin is of color αi, we add an item

of color βi if there is one that fits into the bin. If no item of color βi fits

into the bin, then we open a new bin which becomes the new active bin

and we add an item of color αi to it.

In the fourth and final step of the algorithm, we try to merge some of the

bins:

4. We compute a maximum matching between all bins that have an item of color

c at the bottom and an item of a color other than c at the top and all light

bins that have items of color c at both the bottom and top. A pair of these

bins may be matched if their total size is at most 1, that is if they fit into the

bin together. We merge the matched bins by putting the items from the light

bin that has both items of color c at its top and bottom, on top of the items

of the other bin.

We shall denote our algorithm as ALG. Before continuing, we proceed to-

wards establishing the running time of ALG: Each matching can be computed in

O(n log n) time. To see that, for the matching of Step 1, assume that both sets of

small items of color c and large items of a color other than c, are ordered according

to the item size. If a small item of color c matches with a large item of a different

color, any large item of a color other than c of a smaller size than the latter item,

also, matches with the former item. Hence, selecting pairs of items in a greedy way,

no augmenting paths are obtained in the resulting matching1. The same idea works

1By Berge’s Lemma (Berge [1957]), it follows that the matching is maximum.

50

for each computed matching of the algorithm.

Regarding the third step of the algorithm, we arrange all small items that

have not been packed at the end of Step 2, in descending order of n1(x), where

our arbitrary fixed tie-breaking rule between colors is used. We define the quantity

γi = arg maxx 6=αi,x 6=βi ni(x) and maintain a priority queue at each round i ≤ n of

the third step, according to ni(x), for all colors. The priority queue is modified at

round i ≥ 2 if ni(αi−1) < ni(βi−1) (or ni(βi−1) < ni(γi−1)), by deleting element

corresponding to color αi−1 (or βi−1) from the queue and reinserting it back into it,

with its new priority which can be efficiently found using binary search, in O(log n)

time.

Finally, all other computations performed during any step of the algorithm

require O(n log n) time, as it can be easily verified; therefore the algorithm performs

in O(n log n) time.

3.2.2 Analysis

We denote an optimal algorithm for the COLORFUL BIN PACKING problem as OPT.

We shall, also, use OPT and ALG to refer to the total cost of an optimal algorithm

and of our algorithm, respectively.

We start by formally proving a rather intuitive lemma about the bins opened

in the third step of the algorithm.

Lemma 3.6. If nt(αt) = nt(βt) at some round t of the third step of ALG, then from

the active bin in round t and all bins opened afterwards, at most one will remain a

light bin in ALG’s final output.

Proof. We will frequently use the fact that for two different colors x and x′, we

always have that ni(βi) ≥ min{ni(x), ni(x
′)}, for any round i.

We show that the following two invariants hold, for any i ≥ t, using induction:

1. ni(αi)− ni(βi) ≤ 1 and

51

2. If ni(αi)− ni(βi) = 1 then the item packed at round i− 1 does not have color

αi.

Clearly, since nt(αt) = nt(βt), both invariants hold at i = t. Now, suppose

that they hold for some i ≥ t. We shall show that they, also, hold for i + 1 by

distinguishing between the following four cases.

Case 1: It holds ni(αi)− ni(βi) = 1 and in round i we pack an item of color αi.

Note that it is ni(αi) 6= ni(βi). That is, there is only one color of which we have

ni(αi) small items and the number of small items of any other color is strictly less.

Therefore, we obtain ni+1(αi+1) = ni(αi)− 1 = ni(βi).

Since αi and βi are two different colors, this gives us that ni+1(βi+1) ≥

min{ni+1(αi), ni+1(βi)} = min{ni(αi) − 1, ni(βi)} = ni(βi). Combining these two

facts, we get ni+1(αi+1)−ni+1(βi+1) ≤ 0. It follows that both invariants are satisfied

for i+ 1.

Case 2: It holds ni(αi) − ni(βi) = 1 and in round i we pack an item which has

color βi.

Due to the second invariant, ALG would be able to pack an item of color αi

in round i. But, by design, ALG would have done so. Therefore this case cannot

occur.

Case 3: It holds ni(αi) − ni(βi) = 0 and in round i we pack an item of color αi.

We have αi+1 = βi 6= αi and therefore the second invariant is satisfied for i+ 1.

On one hand, it holds ni+1(αi+1) = ni+1(βi) = ni(βi). On the other hand, it

is ni+1(βi+1) ≥ min{ni+1(αi), ni+1(βi)} = min{ni(αi) − 1, ni(βi)} = min{ni(βi) −

1, ni(βi)} = ni(βi)− 1. Combining these two facts, we obtain the first invariant for

i+ 1.

Case 4: It holds ni(αi) − ni(βi) = 0 and in round i we pack an item of color βi.

We have αi+1 = αi but we pack an item of a different color, namely βi. Therefore

52

the second invariant is satisfied for i+ 1.

On one hand, it holds ni+1(αi+1) = ni+1(αi) = ni(αi). On the other hand,

it is ni+1(βi+1) ≥ min{ni+1(αi), ni+1(βi)} = min{ni(αi), ni(βi) − 1} = min{ni(αi),

ni(αi) − 1} = ni(αi) − 1. Combining these two facts, we obtain the first invariant

for i+ 1.

At this point, we have established our two invariants and we can proceed

towards showing the lemma. Suppose that ALG has opened a bin. In round i, there

are three possible reasons why ALG would leave a bin light and either terminate

Step 3 or open a new bin:

1. None of the unpacked items fits into the bin because the total size of the bin

would exceed one.

2. There are no unpacked items left.

3. Some items are still left, but all of them have the same color (as the top item

in the bin), i.e., it is ni(βi) = 0.

In the first case, the bin cannot be light, since we only have unpacked small

items at this point. But if the bin was light then all of these items would fit.

The second case can only happen once, in the last round and therefore can

only contribute one light bin in total.

Finally, the third case cannot happen. Due to our two invariants we know

that in this case it is ni(αi) = 1 and the item packed at round i − 1 (which is the

current top item of the bin) does not have color αi. Therefore, ALG could pack the

last item of color αi into the bin.

We, now, strengthen the result obtained by the previous lemma:

Lemma 3.7. If nt(αt) = nt(βt) for a round t of Step 3 of ALG, then from all bins

opened during Step 3 of the algorithm, at most one will remain a light bin in ALG’s

final output.

53

Proof. We first argue that any bin that becomes inactive before the first round

t for which it holds nt(αt) = nt(βt) is heavy in ALG’s final output. Assume for

contradiction that there is a bin B that is not heavy. Consider the round i < t when

B was active but no item could be added to it and a new bin is opened. We know

that it holds ni(αi) > ni(βi) > 0. But ALG could neither place a (small) item of

color αi nor a (small) item of color βi into the bin although one of these two colors

must be different than the current top item color in the bin. Hence, the total size

of the packed items in the bin must exceed 1/2 and the bin should be heavy.

Due to Lemma 3.6, any bin, apart from possibly one, that becomes inactive

after the first round t for which it holds nt(αt) = nt(βt), is heavy as well.

We now distinguish between two cases.

Case 1: nt(αt) = nt(βt) for some round t in Step 3.

Due to Lemma 3.7, at most one light bin is created in the third step of ALG.

All bins from the first two steps contain a large item and are, therefore, heavy as

well. From these two facts, combined with Observation 3.3 which is easy to see that

it holds for ALG in this case, we have that ALG ≤ 2· OPT which completes analysis

for Case 1.

Case 2: For all rounds t in Step 3, it holds nt(αt) > nt(βt).

Note that in this case, the most frequent color c for small items remains the

most frequent color throughout all rounds t, i.e., it is αi = c for all rounds i. We

begin with an easy observation.

Observation 3.8. All bins in the output of ALG either start with an item of color

c or consist of a single large item having a different color than c.

Proof. All bins created in the first step and the third step of ALG start with an item

of color c. All bins created in the second step of ALG only contain a single large

54

item. In the fourth step of ALG, only bins created in the first step and the third

step are merged, all of which start with an item of color c. Therefore, the merged

bin still starts with an item of color c.

According to Observation 3.8, we can categorize the bins in the final output

of ALG into the following four different types:

• X1: bins containing no item of color c.

• X2: bins with a bottom item of color c and a top item not of color c.

• X3: heavy bins with a bottom and a top item of color c.

• X4: light bins with a bottom and a top item of color c.

In fact, it is easy to see that only bins of type X4 can be light:

Observation 3.9. X1 and X2 bins are heavy.

Proof. By Observation 3.8, we have that each X1 bin has to be heavy.

Now, regarding the X2 bins, assume for contradiction that there exists some

X2 bin B that is not heavy. The bin B must have been created during the third

step of ALG, since each bin created in the first and the second step of ALG contains

a large item and, hence, it is a heavy bin.

Therefore, consider the round i whenB was active but no item could be added

to this bin, so that a new bin was opened by ALG. Since a new bin was opened, it

follows that there existed an unpacked item, that is it has to be ni(αi) > 0. Also,

the top item in B did not have color c = αi, otherwise the bin would not be of type

X2.

Hence, the reason why we could not place a (small) item of color c into bin

B must be that the size of such an item combined with the items already packed

into the bin would exceed 1. Therefore the bin should be heavy.

55

Next we argue that due to the design of our algorithm and the fact that we

are in the Case 2, in which throughout all rounds of the third step of ALG it holds

c = αt, we have that every other item in a bin must be of color c:

Observation 3.10. The X2, X3 and X4 bins have the property that every other

item in the bin is of color c.

Proof. Due to Observation 3.8 all X2, X3, and X4 bins start with color c. Bins

created in the first and the second step of ALG contain at most two items and

therefore every other item has color c.

In the third step, it holds αt = c for all rounds t. Therefore, whenever the

top item in the active bin is not of color c, ALG places an item of color c next. Hence,

all bins created during the third step, also have the property that every other item

in each of them, has color c.

In the fourth step, two bins are merged that both start with color c and in

which every other item is of color c. Therefore, it follows that the new merged bin

also has every other item of color c.

The following observation is an easy consequence from Observation 3.10 and

the definitions of X2, X3 and X4 types of bins.

Observation 3.11. Regarding the X2 bins, the number of c-colored items in the bin

is equal to the number of items not of color c. For the X3 and X4 bins, the number

of c-colored items in the bin is equal to the number of items not of color c, plus 1.

Let x1, x2, x3, and x4 be the number of bins of type X1, X2, X3, and X4,

respectively. We distinguish between the following two sub-cases of Case 2:

Case 2.1: x4 ≤ x2.

If we combine any X2 and any X4 bin, we have that their total size together

must be greater than 1. This is because otherwise it would have been feasible to

combine the two bins in the fourth step of the algorithm.

56

Therefore, any subset of size x4 of the bins of type X2 combined with all bins

of type X4 must have items of total size greater than x4. Due to Observation 3.9, all

remaining bins, i.e., all X3 and X1 bins and x2 − x4 of the X2 bins, are heavy and

therefore have a total size which is at least equal to (x3 +x1 +(x2−x4))/2. In total,

the sum of the sizes of all items must be more than x4 + (x3 + x1 + (x2 − x4))/2 =

(x3 + x2 + x1 + x4)/2 = ALG/2. Since OPT can pack items of total size at most 1

in each bin, we have ALG ≤ 2 · OPT which completes the analysis for sub-case 2.1.

Case 2.2: x4 > x2.

Say OPT uses g ≥ 0 bins that do not contain any item of color c and h ≥ 0

bins that contain at least one item of color c.

First, note that in the first step of our algorithm it holds m ≤ d. This is

because since otherwise, at the beginning of the third step, it should have been

n1(α1) = n1(β1) which cannot happen for Case 2.

Second, we observe that g ≥ x1. Suppose for contradiction that this is not

true and let y denote the total number of large items that do not have color c. Then

y − g > y − x1 of these items must be together in a bin with a small item that has

color c. Therefore, in the first step, ALG would be able to construct a matching of

size greater than y − x1. However, the size of the maximum matching is at most

y − x1; to see this, note that due to Observation 3.8 all bins in the output of ALG

which have no item of color c have to be packed with only one large item (of color

other than c). This is a contradiction.

Finally, we turn our attention towards the bins created by OPT that do

contain items of color c. Suppose that a bin contains i items of color c and j items

of a color different than c. Then, if this bin is validly packed, it has to be i ≤ j + 1.

Now, consider the h bins of OPT that do contain an item of color c. Taking the sum

over all these h bins we get that the total number k of items of color c must be at

most h plus the total number r of items not of color c in these bins. In other words,

we have h ≥ k − r. Overall, we obtain that OPT = g + h ≥ x1 + k − r.

57

We, now, need a final observation to complete the analysis for sub-case 2.2:

Observation 3.12. If k is the number of items of color c, then the number of items

not of color c is k − x3 − x4 + x1.

Proof. This follows from the fact that (i) all X1 bins contain exactly one item not

of color c, (ii) X2 bins contain an equal number of items of color c and items not of

color c, and (iii) X3 and X4 bins each contain one more item of color c than items

not of color c. Here (i) follows from Observation 3.8 and (ii) and (iii) follow from

Observation 3.11.

Since OPT ≥ x1 +k−r and the total number of items not of color c is at least

r + x1, i.e., items not of color c that share a bin with an item of color c and items

not of color c that do not, Observation 3.12 gives us OPT ≥ x1 +k− (k−x3−x4) =

x1 + x3 + x4 > x3 + (x2 + x4)/2 + x1 ≥ (x3 + x2 + x4 + x1)/2 = ALG/2, which

completes the analysis for sub-case 2.2 and, therefore, for Case 2, giving us the

following theorem.

Theorem 3.13. ALG is a 2-approximate algorithm for the COLORFUL BIN PACK-

ING problem.

3.3 Open Problems

Starting from the offline COLORFUL BIN PACKING problem, an open problem is

the design of an approximation scheme. Recall that there exists a fully asymptotic

PTAS for the special case of two colors, i.e., for the offline BLACK AND WHITE BIN

PACKING problem, from Balogh et al. [2015a].

Regarding the online COLORFUL BIN PACKING problem, the main open

problem is to obtain an online algorithm which will be better than 3.5-competitive,

improving upon the online algorithm that we have from Böhm et al. [2014] or to

improve upon the universal lower bound of 2.5, that we, also, have from Böhm et al.

58

[2014]. However, even for the case of two colors, the 3-competitive algorithm of

Balogh et al. [2012] remains the best deterministic online algorithm that we have

for this problem, since the introduction of the BLACK AND WHITE BIN PACK-

ING problem in this publication.

59

Chapter 4

Online Buffer Management

4.1 Introduction

The area of buffer management is strongly related to that of online computation

due to the unpredictability of future requests that naturally arises in related prob-

lems. Therefore, the fact that a great deal of research has been dedicated to online

algorithms which improve the performance of networking devices that incorporate

buffers, comes as no surprise.

A switch is a networking device which is equipped with a set of input ports

and a set of output ports. Assuming that time proceeds in discrete time steps,

packets arrive at any time step to the input ports of the switch. Each arriving

packet is labelled with an output port through which it may be only transmitted,

assuming that the packet is accepted by the switch first. Each accepted packet has

to be buffered until its transmission time step in the input ports, in the output ports

or in some internal part of the switch, depending on the model of the switch that

we consider.

An online algorithm has no knowledge of the future packet arrivals, contrary

to an optimal offline algorithm which is aware of the entire incoming packet sequence

upfront. The objective of an online algorithm is to maximize the total number of

60

transmitted packets or the total value of the transmitted packets in the case the

packets are assigned with values, which correspond to their transmission priorities.

In the case the packets are assigned with values then we say that the network

considers Quality of Service (QoS), a term that refers to the overall quality of the

provided services to the users of the network such as packet loss rate due to the

increasing traffic that a network may encounter (Aiello et al. [2000]; Kesselman

et al. [2001]; Lotker and Patt-Shamir [2002]). For this, the packets assigned with

higher values are considered more important for transmission and, therefore, are

prioritized in order to be transmitted before packets assigned with lower values.

There exists a great variety of different switch models and a large number of

different online policies that are used to improve their performance. For an excellent

survey on the topic of buffer management policies for network switches, the reader

may be referred to a survey by Goldwasser [2010].

The algorithms for network switch problems can be categorized as being

either, preemptive, in which case an eviction of an already accepted packet by the

switch is possible or as non-preemptive in which case each accepted packet has to

be transmitted by the switch at some point in time.

In the current chapter we shall specifically focus on shared-memory switches

with multiple input and multiple output ports. A shared-memory switch is com-

prised by a buffer of size M ∈ Z+, a number of N input ports and a number of

N output ports, where N ≥ 2. Any arriving packet may be either immediately

accepted by the switch or be immediately rejected by it upon its arrival time. Each

arriving packet is designated a single output port through which it may be only

transmitted. Any rejected packet is irreversibly lost and any accepted packet is

stored in the buffer. At any time step, one packet is transmitted by each output

port of the switch, to which at least one packet currently stored in the buffer is

destined.

Since there may exist at most N different types of packets stored in the buffer

61

of the shared-memory switch at any time, we may assume that the packets stored

in the buffer which are labelled with the same output port, are arranged in their

own queue; that is we may have at most N queues in the buffer at any time step.

Finally, we may assume for ease of analysis, that instead of N input ports there

exists a single input port of a very large capacity, capable of storing any arriving

packet at each arrival time step, before the decision is made on whether the arriving

packet will be accepted by the buffer or will be rejected.

Kesselman and Mansour [2004] give a (ln(N)+2)-competitive non-preemptive

online algorithm for the problem of maximizing the number of transmitted packets

from a shared-memory switch with N output ports. Their algorithm, which is called

Harmonic, sorts the queues at any time in order of decreasing length and divides the

buffer size according to fractions that are proportional to (1/i), where i refers to the

i-th longest queue in the buffer. Kesselman and Mansour, also, show a lower bound

of Ω(logN
log logN) on the competitive ratio of any online deterministic non-preemptive

algorithm for this problem, assuming all arriving packets have unit values.

On the other side, a preemptive online algorithm for the same problem is

the Longest Queue Drop (LQD) algorithm. According to LQD, any incoming packet

is accepted by the buffer if there exists free buffer space at the time step when

this packet arrives. If the buffer is full, however, at the packet arrival time step

then a packet is preempted from the longest queue in the buffer at this point in

time, releasing buffer space for the incoming packet which is accepted. After all

packet acceptances, preemptions and rejections take place at each time step, one

packet from each queue is being sent to the output ports of the switch in order to

be transmitted. The same procedure is followed at every time step until the last

packet stored in the buffer is transmitted.

The LQD algorithm has been introduced by Wei et al. [1991]. Hahne et al.

[2001] show a lower bound of 4/3 for the competitive ratio of any deterministic online

algorithm, for the problem of maximizing the number of transmitted packets from

62

a shared-memory switch equipped with an arbitrary number of output ports. It has

been, also, shown (Hahne et al. [2001]; Aiello et al. [2008]) that LQD is 2-competitive

and at least
√

2-competitive.

Let us focus on the LQD competitive ratio upper bound of 2 for a while,

since we shall follow a similar technique for our analysis as the one that Hahne et al.

[2001] employ. The way that the LQD competitive ratio is upper-bounded by 2 is by

assigning connections between packets accepted by the buffer of an optimal offline

algorithm OPT and packets accepted by the buffer of the LQD algorithm, for the

same incoming packet sequence. More specifically, Hahne et al. [2001] show that for

each packet transmitted by a queue in the OPT buffer at a time step when this queue

has no packets in the LQD buffer, the LQD algorithm has, already, transmitted one

packet at some previous time step. After establishing the fact that each transmitted

packet from the LQD buffer is never connected with two or more transmitted packets

from the OPT buffer, it follows that the number of additional packets that OPT may

transmit, compared to LQD, is upper-bounded by the number of packets that LQD

transmits. Hence, LQD is a 2-competitive algorithm.

Kobayashi et al. [2007] claim a tight upper bound of 4M−4
3M−2 < 4

3 for the

LQD competitive ratio for two-port shared-memory switches, though the correct

tight upper bound when N = 2 is 4/3 as we prove in Section 4.2.4. In Kobayashi

et al. [2007] an upper bound of (2 − 1
M · bM/Nc − N

M) is, also, shown for the LQD

competitive ratio. For the case of three-port switches, this bound is larger than 3/2

when M ≥ 19 and tends to 5/3 when M →∞.

All the aforementioned results assume that the incoming packet sequence is

comprised solely by packets of the same value. Apart from this, they assume that

each packet has a unit processing cycle in the buffer; if this latter restriction is

dropped and we assume that the packet processing times are heterogeneous then a

non-constant lower bound for the competitiviness of LQD has been shown (Eugster

et al. [2014, 2015]).

63

We show that LQD is (3/2)-competitive for three-port shared-memory switches

(Matsakis [2016], to appear) when each arriving packet has the same value. This

improves upon the previously established best upper bound of 5/3 for three-port

switches. Many of the techniques that we shall employ as well as many of the lem-

mas and corollaries that we shall later derive, still hold for shared-memory switches

equipped with an arbitrary number of output ports N ≤ M . Hence, part of our

analysis could be used in order to improve the LQD competitive ratio upper bound

of 2− o(1) for shared-memory switches equipped with any number of output ports

N ≤ M ; in fact, we conjecture that LQD is a (2 − ε)-competitive algorithm for a

positive constant ε.

We, also, provide a tight upper bound of 4/3 for the competitive ratio of

LQD for two-port shared-memory switches, when each arriving packet has the same

value. The latter result has been, already, studied in the past by Kobayashi et al.

[2007], as already mentioned.

4.2 The LQD algorithm

We assume that the number of output ports N is either 2 or 3 and that M ≥ N ,

throughout the following analysis of Chapter 4. All results derived in Sections 4.2.1

and 4.2.2, however, hold for shared-memory switches equipped with any number of

output ports N ≤ M , starting from the optimal offline algorithm that we define in

Section 4.2.1.

4.2.1 Preliminaries

The Optimal Offline Algorithm

Let ALG denote any (offline or online) algorithm for the problem of maximizing the

number of transmitted packets from a shared-memory switch, from this point and

until the end of Chapter 4. Also, let OPT denote an optimal offline algorithm for

64

the same problem.

Both LQD and OPT are assumed to use their own buffers, each of size M .

Time proceeds in discrete time steps and T ≥ 1 will denote the latest time step

when a packet exists in any buffer. Analysis will proceed by comparing the two

buffer contents at the same time steps. As [n] we shall denote the set of positive

integers {1, ..., n} for a n ∈ Z+.

A packet accepted by the ALG buffer will be called ALG packet, in short. All

definitions that follow in the next paragraph, refer to the buffer content of ALG,

after all packet acceptances, rejections, preemptions and transmissions have taken

place at a time step t ∈ [T].

We denote as pti,ALG the length of a queue i ∈ [N] in the ALG buffer at a time

step t ∈ [T]. A queue i ∈ [N] is said to be active in the ALG buffer at a time step

t ∈ [T] if pti,ALG > 0 else if pti,ALG = 0 then i is inactive in the ALG buffer at t. As

`tALG(q) ∈ [M], we denote the queue position of a packet q in the ALG buffer, at a

time step t ∈ [T].

Let t1 ∈ [T] and t2 ∈ [T] be two time steps such that t1 ≤ t2. As period

we call the set of consecutive time steps from t1 (inclusive) to t2 (inclusive) and we

denote the period as [t1, t2].

If a packet labelled with a queue i ∈ [N], is rejected or preempted from the

LQD buffer at a time step t ∈ [T], we say that i overflows in the LQD buffer at t.

At any time step when the LQD buffer overflows, this buffer is full, according to the

definition of the LQD algorithm.

Observation 4.1. The lengths of two queues in the LQD buffer that overflow in

this buffer at the same time step t ∈ [T], may differ by at most 1 at t.

We denote as hσ(ALG) ≥ 0 the number of packets that ALG transmits in the

period [1, T], where σ denotes the incoming packet sequence.

We define as T ′-balanced any algorithm ALG′ for this problem, for which it

holds that if pti,LQD ≥ 1 then pt
i,ALG′ ≥ 1, for each queue i ∈ [N] and at each time

65

step t of the period [1, T ′] (where T ′ ≤ T).

Since M ≥ N , no (offline or online) algorithm can keep active at time step

t = 1, strictly more queues than the number of active queues of LQD at t = 1, for

any incoming packet sequence σ. Hence, no algorithm can transmit strictly more

packets at t = 1 than the number of packets that LQD transmits at t = 1, for the

same incoming packet sequence σ. Taking into consideration the fact that LQD is,

trivially, an 1-balanced algorithm, we have Observation 4.2:

Observation 4.2. Let ALG0b denote any algorithm that keeps inactive at t = 1 an

active queue in the LQD buffer at t = 1, for an incoming sequence σ. Then, there

exists an 1-balanced algorithm ALG1b such that hσ(ALG1b) ≥ hσ(ALG0b).

Lemma 4.3. There exists an optimal offline algorithm which is T -balanced and

which never preempts any packet.

Proof. Let ALG1 be an offline algorithm which is t′-balanced but not (t′ + 1)-

balanced, for some time step t′ ∈ [T −1]. We assume that ALG1 never preempts any

packet, since otherwise we can modify ALG1 so that this algorithm never preempts

any packet without decreasing hσ(ALG1), where σ denotes the incoming packet se-

quence.

It follows that pt
′+1
j,ALG1

= 0 and pt
′+1
j,LQD > 0 for a queue j ∈ [N]. But then,

there has to exist a queue k 6= j and a time step t′′ ≤ t′ + 1 so that:

• It holds pt
′′
k,LQD < pt

′′
k,ALG1

or

• The sum of the empty ALG1 buffer space at t′′ and pt
′′
k,ALG1

is greater than

pt
′′
k,LQD.

In case two or more different pairs of queues and time steps {k, t′′} exist, as

defined above, then we choose the latest time step t′′ in the period [1, t′+ 1] and we

break ties arbitrarily for choosing the queue k, at this chosen time step t′′.

66

We modify ALG1 so that one more packet for j is accepted in the period

[1, t′ + 1]. For this, one packet less for k (if pt
′′
k,LQD < pt

′′
k,ALG1

) may need to be

accepted by the modified algorithm, at the latest overflow time step in the LQD

buffer of k, in the period [1, t′′]. This gives us a t̂-balanced algorithm ALG2 (for

some time step t̂ ∈ [t′, T]) for which it holds hσ(ALG2) ≥ hσ(ALG1), because j

becomes active in the ALG2 buffer at time step t′ + 1.

Working as above, we obtain a sequence of algorithms ALG1,...,ALGv (for a

v ∈ Z+), where ALG1, ...,ALGv−1 are not T -balanced, ALGv is T -balanced and it

holds hσ(ALGl) ≥ hσ(ALGl−1) for each l ∈ [v]. Note that none of these algorithms

preempts any packet, by design. It follows that hσ(ALGv) ≥ hσ(ALG1) which by

Observation 4.2, completes the proof.

Classifying the queues and packets

A queue i ∈ [N] is called as established queue at time step t ∈ [T], if pti,LQD = 0 and

pti,OPT > 0. If pti,LQD > pti,OPT ≥ 1 then i is a free queue at t, else if 1 ≤ pti,LQD ≤

pti,OPT then i is a dominating queue at t. We denote as Dt, Et, F t, the sets of

dominating, established and free queues, respectively, at t ∈ [T].

An OPT packet q of a queue i ∈ Dt at a time step t ∈ [T], for which it

holds `tOPT(q) > pti,LQD, is called extra packet at t. An OPT packet of an established

queue at a time step t ∈ [T] is, also, called extra packet at t. An LQD packet of a

queue i ∈ F t at a time step t ∈ [T], is called free packet at t. An LQD packet of a

dominating queue at a time step t ∈ [T] is called common packet, at t.

We denote as e(t) the number of extra packets in the OPT buffer at time

step t ∈ [T]. Also, we denote as f(t) the number of free packets in the LQD buffer,

at t.

By Lemma 4.3, a queue cannot be inactive in the OPT buffer and active in

the LQD buffer at the same time step. This gives us the next corollary:

67

Corollary 4.4. Any queue at any time step t ∈ [T] can either belong to set Dt or

to set F t or to set Et or be inactive in both buffers at t.

By Corollary 4.4, the ratio of transmitted packets between OPT and LQD,

for an incoming packet sequence σ, is defined as:

rσ =
hσ(OPT)

hσ(LQD)
= 1 +

∑t=T
t=1 |Et|

hσ(LQD)
≥ 1 (4.5)

The quantity
∑T

t=1 |Et| in (4.5) equals the total number of transmitted ex-

tra packets by all queues in the period [1, T], i.e., it equals the total number of

OPT packets that are extra packets when transmitted by the OPT buffer.

Observation 4.6. Since M ≥ N , if a queue i ∈ [N] is inactive in the LQD buffer

at a time step t ∈ [T − 1] and at least one packet arrives destined to i at t+ 1, then

i will be active in the LQD buffer at t+ 1.

Lemma 4.7. If i ∈ Et+1 for any queue i ∈ [N] where t ∈ [T − 1], then it holds

i ∈ Dt ∪ Et.

Proof. First, we show that if i ∈ Et+1 then pti,OPT > 0: Assume that pti,OPT = 0

and, therefore, that it holds pti,LQD = 0 due to Lemma 4.3. If no packet arrives to i

at t + 1, then i /∈ Et+1 by the definition of an established queue. Otherwise, if at

least one packet arrives destined to i at t + 1 then i has to be active in the LQD

buffer at t+ 1, by Observation 4.6; therefore it is i /∈ Et+1.

We, now, show that if i ∈ Et+1 then i /∈ F t: Assume that i ∈ F t. The length

of a free queue in the LQD buffer at any time step is at least 2, by the definition of

a free queue and Lemma 4.3; hence since i ∈ F t then i has to be active in the LQD

buffer at t+ 1 and, therefore, it has to be i /∈ Et+1.

By Corollary 4.4 and the arguments of the first two paragraphs of this proof,

the lemma follows.

68

Lemma 4.8. If i ∈ F t for any queue i ∈ [N] at any time step t ∈ [T − 1], then it

holds i ∈ F t+1 ∪Dt+1.

Proof. The length of a free queue in the LQD buffer is at least 2 at any time step,

by the definition of a free queue and Lemma 4.3. It follows that pti,LQD ≥ 2. But

then, i has to be active in the LQD buffer at t+1, which by Corollary 4.4, completes

the proof.

The next lemma will be used extensively.

Lemma 4.9. It holds f(t) ≥ e(t) +
∑

i∈F t p
t
i,OPT at any time step t ∈ [T].

Proof. First, let us say that at least one queue overflows in the LQD buffer at t.

Assume for contradiction that f(t) < e(t) +
∑

i∈F t p
t
i,OPT, that is

∑
i∈F t p

t
i,LQD <∑

i∈Dt∪Et(p
t
i,OPT − pti,LQD) +

∑
i∈F t p

t
i,OPT, which gives us the next inequality:

∑
i∈F t

pti,LQD +
∑
i∈Dt

pti,LQD <
∑
i∈Dt

pti,OPT +
∑
i∈Et

pti,OPT +
∑
i∈F t

pti,OPT (4.10)

The left-hand side of (4.10) equals M , since the LQD buffer becomes full

at t. But the right-hand side of (4.10) lower-bounds the OPT buffer size which

has to be equal to M . Therefore, we obtain a contradiction and it holds f(t) ≥

e(t) +
∑

i∈F t p
t
i,OPT.

Now, assume that no queue overflows at t in the LQD buffer and let t′ < t be

the latest time step before t when a queue overflowed in the LQD buffer (if time step

t′ < t does not exist, then the lemma holds trivially at t, since no extra packets may

exist in the OPT buffer at t). By the argument of the first two paragraphs of this

proof, it holds f(t′)−∑i∈F t′ p
t′
i,OPT ≥ e(t′). Also, it holds e(t′) ≥ e(t), since no new

extra packets are obtained in the period [t′+ 1, t], according to our assumption that

no queue overflows in the LQD buffer, in this period. By the last two inequalities,

we have:

69

f(t′)−
∑
i∈F t′

pt
′
i,OPT ≥ e(t) (4.11)

Since no queue overflows in the LQD buffer in the period [t′+ 1, t], it follows

by Lemma 4.8 that any queue that is a free queue at t′ will stay a free queue at

every time step of the period [t′ + 1, t] and that any arriving packet destined to a

free queue in [t′ + 1, t] will be accepted by the LQD buffer. This gives us the next

inequality:

∑
i∈F t

pti,LQD −
∑
i∈F t

pti,OPT ≥
∑
i∈F t′

pt
′
i,LQD −

∑
i∈F t′

pt
′
i,OPT (4.12)

By (4.12) and since f(t) =
∑

i∈F t p
t
i,LQD and f(t′) =

∑
i∈F t′ p

t′
i,LQD, we have:

f(t)−
∑
i∈F t

pti,OPT ≥ f(t′)−
∑
i∈F t′

pt
′
i,OPT (4.13)

By (4.11) and (4.13), we have f(t)−∑i∈F t p
t
i,OPT ≥ e(t), completing the proof.

Assume, now, that i ∈ Et at a time step t ∈ [T] for a queue i ∈ [N]. We

denote as tλi2,i ∈ [T] the first time step before t such that i is an established queue at

each time step of the period [tλi2,i, t], where the superscript λi ∈ Z+ will be defined

shortly. Also, as tλi1,i we denote the latest time step before tλi2,i when i overflowed as

a dominating queue in the LQD buffer and we know that such a time step exists by

Observation 4.6 and Lemma 4.7.

This gives us a strict total order: t11,i < t12,i < t21,i < t22,i < ..., where the su-

perscript denotes each pair of two consecutive time steps in the total order, starting

from pair {t11,i, t12,i}, then pair {t21,i, t22,i} etc, with the only possible exception of the

last tλi1,i time step in the total order that may not be paired with a time step tλi2,i. Fi-

nally, let us say that λi ∈ [Λi] where Λi ∈ Z+, i.e., it holds t11,i < t12,i < ... < tΛi1,i < tΛi2,i

70

OPT

LQD OPT

OPT

LQD

OPT

tλi1,i tλi2,i tλi+1
2,itλi+1

1,i

Figure 4.1: Left : A queue i that becomes an established queue at time step tλi2,i has
to overflow as a dominating queue in the LQD buffer, for at least one time step in
the past and we denote the latest such time step as tλi1,i (λi ∈ Z+). Right: The next

time step after tλi2,i when i overflows as a dominating queue in the LQD buffer (if

such time step exists) is a lower bound of tλi+1
1,i and, consequently, of tλi+1

2,i . We have
identified the extra packets of i in color.

or t11,i < t12,i < ... < tΛi1,i, depending on whether time step tΛi2,i exists or not, as already

mentioned (see Figure 4.1).

For example, assume that a queue i ∈ [N] becomes established for the first

time in [1, T] at time step 10. Then, it is t12,i = 10 (note that time step 10 may be

equal to t
λj
1,j or t

λj
2,j for another queue j 6= i and for a λj ∈ [Λj]). By Observation 4.6

and Lemma 4.7, it follows that i has overflowed in the LQD buffer as a dominating

queue, for at least one time step before time step 10 and assume that the latest time

step in the period [1,10] of such an overflow is time step 7, i.e., t11,i = 7. Assume,

also, that the first time step after t12,i = 10 when i overflows as a dominating queue

in the LQD buffer (if such time step exists) is time step 30 and the first time step

after time step 30 when i becomes an established queue (if such time step exists)

is time step 40. It follows that t22,i = 40 and that t21,i is the latest time step in the

period [30, 39] when i overflows as a dominating queue in the LQD buffer, due to

Lemma 4.7. Continuing in the same way, we construct the aforementioned strict

total order of time steps. This concludes our example.

We continue the proof, with the rather intuitive Lemmas 4.14 and 4.15.

71

Lemma 4.14. Any queue i ∈ [N] is a dominating queue at each time step of the

period [tλi1,i, t
λi
2,i − 1], for any λi ∈ [Λi].

Proof. Assume that there exists a time step t ∈ [tλi1,i, t
λi
2,i−1], when i is an established

queue. But this contradicts the selection of time step tλi2,i.

Assume that there exists a time step t ∈ [tλi1,i, t
λi
2,i − 1] when i is a free queue.

But then, i has to overflow in the LQD buffer as a dominating queue at a time step

of the period [t + 1, tλi2,i − 1], due to Lemmas 4.7 and 4.8. But this contradicts the

selection of time step tλi1,i.

Similarly, i cannot become an inactive queue in both buffers at a time step

t ∈ [tλi1,i, t
λi
2,i− 1], since i has to overflow in the LQD buffer as a dominating queue in

at least one time step of the period [t+ 1, tλi2,i], due to Observation 4.6 and Lemma

4.7.

By the arguments of the first three paragraphs of this proof and Corollary

4.4, the lemma follows.

Lemma 4.15. The number of extra packets of any queue i ∈ [N] cannot strictly

increase between any two consecutive time steps of the period [tλi1,i, t
λi
2,i], for any

λi ∈ [Λi], i.e., it holds pti,OPT − pti,LQD ≥ pt+1
i,OPT − pt+1

i,LQD where t ∈ [tλi1,i, t
λi
2,i − 1].

Proof. For the number of extra packets of i to strictly increase between two consec-

utive time steps t and t+ 1 both of which belonging to a period [tλi1,i, t
λi
2,i], the queue

i has to overflow in the LQD buffer at time step t+ 1 as a dominating queue.

But this contradicts the selection of time step tλi1,i (if (t+1) ∈ [tλi1,i+1, tλi2,i−1])

or the selection of time step tλi2,i (if (t+ 1) = tλi2,i).

We conclude this part of the proof, with the following lemma.

Lemma 4.16. The number of extra packets that any queue i ∈ [N] has at time step

tλi2,i (for any λi ∈ [Λi − 1]) upper-bounds the number of transmitted extra packets

of i in the period [tλi2,i, t
λi+1
1,i − 1]. Also, the number of extra packets that any queue

72

i ∈ [N] has at time step tΛi2,i (if such time step exists) upper-bounds the number of

transmitted extra packets of i in the period [tΛi2,i, T].

Proof. Assume that the number of transmitted extra packets of i in the period

[tλi2,i, t
λi+1
1,i − 1] (for a λi ∈ [Λi − 1]) is strictly greater than p

t
λi
2,i

i,OPT (which equals the

number of extra packets that i has at tλi2,i, since i is an established queue at this

time step). But this means that:

• The queue i has overflowed in the LQD buffer as a dominating queue in at

least one time step of the period [tλi2,i, t
λi+1
1,i − 1] and

• The queue i is an established queue in at least one time step of the period

[t′ + 1, tλi+1
1,i − 1], where t′ denotes the first time step in [tλi2,i, t

λi+1
1,i − 1] when i

overflows as a dominating queue in the LQD buffer.

But the second argument, above, implies that tλi+1
2,i < tλi+1

1,i which cannot

happen for the strict total order defined before. This completes the proof for the

first statement of the lemma.

Working in the same way, we prove the second statement, i.e., that the

number of extra packets that i ∈ [N] has at time step tΛi2,i, upper-bounds the number

of transmitted extra packets of i in the period [tΛi2,i, T].

Introducing the packet connections

As already mentioned in the introduction of the current chapter, the way that Hahne

et al. [2001] upper-bound by 2 the competitive ratio of LQD, for the general case of

shared-memory switches equipped with any number of output ports, is by assigning

connections between OPT packets and LQD packets. We shall work in a similar way.

Definition 4.17. A connection between an extra packet e and an LQD packet e′

which is assigned at a time step t ∈ [T] when both packets are in their respective

buffers, will be called valid if `tLQD(e′) ≤ `tOPT(e).

73

All connections will be valid, hence a valid connection will be usually called

from now as, simply, connection. We say that an extra packet u is connected with

an LQD packet u′ at a time step t ∈ [T], if:

• These two packets were assigned the connection between them at a time step

t′ of the period [1, t] and

• These two packets remain connected together at each time step of the period

[t′, t] and

• These two packets are in their respective buffers at t, i.e., packet u is not

transmitted in the period [t′, t] and u′ is not preempted or transmitted in the

same period.

Fact 4.18. From the time step tc ∈ [T] when an extra packet p (destined to a queue

i ∈ [N]) is assigned a connection with an LQD packet y, these two packets are

assumed to stay connected at each later time step, until any of the following takes

place, in any order:

1. The LQD packet y is transmitted, or

2. The LQD packet y is preempted, or

3. The extra packet p becomes a non-extra packet at a time step t′c > tc, i.e., p is

still in the OPT buffer at t′c but it is not an extra packet at t′c.

In the first case of Fact 4.18, that is if the LQD packet y is transmitted1 at

a time step ts > tc, we delete the connection between p and y at ts, i.e., p and y are

no more connected in the period [ts, T]. Finally, we shall say that p is associated

with the transmitted LQD packet y in the period [ts, T] (or, equivalently, that there

exists an association between p and y in the period [ts, T]) .

1Note that by Definition 4.17, a validly connected LQD packet cannot be transmitted at a later
time step after the extra packet that it is connected with, is transmitted.

74

i j

OPT

LQD LQD

p

OPT

LQD
LQD

p′

p

i j i j

OPT
p′

p

Figure 4.2: In the figure we have two queues (i and j 6= i) and in color we identify
the extra packets of i. Left : At time step t′c − 1 the extra packet p is connected
with an LQD packet (bold line segment) and associated with a transmitted LQD
packet (dotted line segment). Center : At t′c the OPT packet p becomes a non-extra
packet because i accepts packets in the LQD buffer; therefore we assign (on the right,
again at time step t′c) to an extra packet p′ of the same queue i the connection and
association that p had at t− 1, after deleting the single connection that p′ had.

In the second case of Fact 4.18, that is in the case the LQD packet y is

preempted at a time step tl > tc, we delete the connection between p and y at tl and

we assign at tl, a new connection between p and the newly accepted LQD packet

that takes the buffer space of y at tl. Since the newly accepted LQD packet cannot

be located at a greater queue position than that of the preempted LQD packet y at

the preemption time step tl, this new connection is valid.

Finally, in the third case of Fact 4.18, that is if p is an extra packet at each

time step of the period [tc, t
′
c − 1] but not an extra packet at t′c, then (see Figure

4.2):

• If there exists a non-empty set X of extra packets belonging to the same queue

with the OPT packet p at t′c (i.e., belonging to queue i), each member of which

has a strictly smaller sum of connections and associations compared to the sum

of connections and associations that p has at t′c then:

1. We choose the extra packet p′ ∈ X that has the smallest queue position

among all members of X at t′c and for which it holds `
t′c
OPT(p′) > `

t′c
OPT(p)

75

and

2. We delete all connections and associations of both p and p′ at t′c and

3. We assign to p′ at t′c all connections2 and associations that we just deleted

from p (in the second step) at t′c.

• Else if X = ∅ then we delete all connections and associations of p at t′c.

This concludes analysis for Fact 4.18.

4.2.2 Analysis

By Observation 4.1 and Definition 4.17 we have Observation 4.19.

Observation 4.19. A connection that is assigned to any extra packet of a queue

i ∈ [N] at any of its tλi1,i time steps (λi ∈ [Λi]) is valid.

Lemma 4.20. Let c be a common packet of a queue i ∈ [N] at a tλi1,i time step

(λi ∈ [Λi]). Then, c will never be preempted by the LQD buffer and will never

become a free packet until its transmission.

Proof. By the definition of time step tλi1,i and Lemma 4.14, we have that the packet

c will never be preempted by the LQD buffer, i.e., it will be transmitted by the LQD

buffer at a time step of the period [tλi1,i, t
λi
2,i] since i becomes inactive in the LQD

buffer at tλi2,i.

Also, the packet c will stay a common packet at each time step until its

transmission from the LQD buffer. This is because i cannot become a free queue at

any time step of the period [tλi1,i, t
λi
2,i− 1], by Lemma 4.14. Since the free packets are

kept only by free queues in the LQD buffer and because any LQD packet can be either

a free packet or a common packet at the same time step, the lemma follows.

We shall, now, need some definitions in order to proceed.

2Each connection assigned to the extra packet p′ at t′c is valid since `
t′c
OPT(p′) > `

t′c
OPT(p) and due

to Definition 4.17.

76

Definition 4.21. Assume that i ∈ Dt at a time step t ∈ [T]. Then, the upmost h

extra packets of i at t (where h ∈ Z+) are the h extra packets of i that occupy the h

greatest queue positions of i at t.

Definition 4.22. An extra packet s of a queue i ∈ [N] for which it holds `tOPT(s) >

2 · pti,LQD at a time step t ∈ [T], is called upper extra packet of i at t. Any other

extra packet of i at t is called lower extra packet of i at t.

Let lti ≥ 0 and uti ≥ 0 denote the numbers of lower and upper extra packets,

respectively, that a queue i ∈ [N] has at a time step t ∈ [T].

Definition 4.23. If 2 · pti,LQD < pti,OPT at a time step t ∈ [T] for a queue i ∈ [N],

then i is called primary dominating queue at t else if 2 · pti,LQD ≥ pti,OPT then i is

called secondary dominating queue at t.

By Observation 4.1 and since M ≥ N , we have Observation 4.24:

Observation 4.24. At any time step t ∈ [T] when a packet of a queue i ∈ [N] is

preempted or rejected by the LQD buffer, it holds pti,LQD ≥ bM/Nc.

Lemma 4.25. If a queue i ∈ [N] overflows in the LQD buffer at a time step t ∈ [T]

and i is a primary dominating queue at t, then it has to be |F t| ≥ 2.

Proof. First of all, it cannot be |F t| = 0, because at least one extra packet of i exists

in the OPT buffer at t; therefore at least one free packet has to exist in the LQD

buffer at t due to Lemma 4.9.

Assume for contradiction that |F t| = 1. The number of extra packets of

i at t is at least pti,LQD + 1, by Definition 4.23. Therefore, by Lemma 4.9, we

have f(t) ≥ (pti,LQD + 1) + |F t| = pti,LQD + 2, since the free queue will be active in

the OPT buffer at t (due to Lemma 4.3). But a single free queue at t cannot have

pti,LQD+2 free packets, since i overflows at t in the LQD buffer and due to Observation

4.1. Hence, it cannot be |F t| = 1 and, therefore, it has to be |F t| ≥ 2.

77

The next lemma follows easily.

Lemma 4.26. If i ∈ F t and a dominating queue overflows in the LQD buffer at t,

then it holds pti,LQD ≤ dM/2e.

Proof. Assume for contradiction that pti,LQD ≥ M/2 + 1. By Observation 4.1, the

length of the dominating queue that overflows in the LQD buffer at t, is at least

equal to the length of i in the LQD buffer at t, minus 1. Taking the sum of the

packet numbers for these two queues at t in the LQD buffer, it follows that at least

M + 1 packets exist in the LQD buffer at t, which cannot happen.

Lemma 4.27. If |F t| = 1 then it is e(t) ≤ dM/2e, at any time step t ∈ [T].

Proof. If a dominating queue overflows in the LQD buffer at t, the lemma follows

from Lemmas 4.9 and 4.26. If no dominating queue overflows at t, then let t′ be

the latest time step before t > t′ when a dominating queue overflowed in the LQD

buffer; hence we have e(t′) ≥ e(t) since no new extra packets are obtained in the

period [t′ + 1, t], according to our assumption that no dominating queue overflows

in the LQD buffer in [t′ + 1, t].

By Lemma 4.9, at any time step when at least one extra packet exists in the

OPT buffer, at least one free packet has to exist in the LQD buffer; therefore it is

|F t′ | ≥ 1. But it cannot be |F t′ | ≥ 2, since a free queue has to become dominating

at a time step of the period [t′ + 1, t] so that it holds |F t| = 1. To see that, note

that in order for a free queue at any time step tf ∈ [T −1] to become dominating at

tf + 1, this queue has to overflow in the LQD buffer at tf + 1, due to the definitions

of a free queue and of a dominating queue. This contradicts our assumption that

no dominating queue overflows in [t′ + 1, t]. Therefore, it has to be |F t′ | = 1. By

Lemmas 4.9 and 4.26 and since e(t′) ≥ e(t), the proof is complete.

According to the connection assignment procedure that we describe in Sec-

tion 4.2.3 for the case of three-port switches and in Section 4.2.4 for two-port

78

switches, any extra packet of any queue i ∈ [N] may be connected with at most

two LQD packets at the same time step and if an extra packet is connected with

two LQD packets at the same time step then one of its connections has to be with a

common packet of the same queue i and assigned at a tλi1,i time step (for a λi ∈ [Λi]).

This gives us the next lemma.

Lemma 4.28. Each extra packet belonging to any queue i ∈ [N] at any time step

t ∈ [T], may be connected with at most one LQD packet of a queue other than i.

Proof. The lemma follows by Fact 4.18 and due to Lemma 4.20. To see that, note

that if an extra packet has two connections, at least one of its connections has to be

with a common packet of the same queue that the extra packet belongs to, which

will never be preempted by the LQD buffer.

Lemma 4.29. Any extra packet may be connected with at most one free packet, at

any time step of the period [1, T].

Proof. The lemma follows by Lemma 4.28 and because according to the definition

of a free packet, a queue that has at least one extra packet in the OPT buffer at any

time step, cannot have a free packet at the same time step in the LQD buffer.

4.2.3 The LQD algorithm for three-port switches

Throughout Section 4.2.3, we assume that N = 3. We shall, now, assign valid

connections between extra packets and LQD packets, proving that the next invariant

holds at every time step t ∈ [1, T]:

Invariant 4.30. No LQD packet is connected with two or more extra packets at t.

Hence, assume that a queue i ∈ [N] overflows in the LQD buffer at a tλi1,i

time step (for a λi ∈ [Λi]). For simplicity, let t1,i = tλi1,i and t2,i = tλi2,i for this given

λi. We distinguish between the cases that i is primary dominating or secondary

79

dominating, at t1,i:

Case 1: The queue i is primary dominating at t1,i

By Lemma 4.25, since N = 3 and because i is a dominating queue at t1,i,

it holds |F t1,i | = 2. Hence, we assign one connection to each lower extra packet of

i at t1,i with a different common packet of i. The number of common packets of

i at t1,i suffices so that each lower extra packet of i is assigned one connection, by

Definition 4.22. We, also, assign one connection to every extra packet of i with a

different free packet at t1,i. The number of free packets at t1,i suffices to assign one

connection to each extra packet of i with a different free packet, due to Lemma 4.9.

Any connection assigned at t1,i is valid, by Observation 4.19.

Wrapping up, we assigned two connections to each lower extra packet of i at

t1,i and one connection to each upper extra packet of i again at t1,i (see Figure 4.3,

on the left). Invariant 4.30 holds at t1,i since each LQD packet that is assigned a

connection at this time step, is different. Before continuing, we prove the following

lemma:

Lemma 4.31. No packet in the LQD buffer at time step t2,i > t1,i may be connected

with a connection which was assigned at time step t1,i.

Proof. It suffices to show that the maximum queue position at t1,i of any LQD

packet that is assigned a connection at t1,i is p
t1,i
i,LQD. This is because it will take

at least p
t1,i
i,LQD time steps for i to become an established queue after t1,i, i.e., t2,i ≥

t1,i+p
t1,i
i,LQD, since i is a dominating queue at each time step of the period [t1,i, t2,i−1]

(by Lemma 4.14) and i does not overflow in the LQD buffer in this period (by the

definition of time step t1,i = tλi1,i).

Therefore, since p
t1,i
i,LQD is the length of i at t1,i in the LQD buffer, the maxi-

mum queue position of any common packet that is assigned a connection at t1,i is,

trivially, p
t1,i
i,LQD.

80

OPT

LQD

`
t1,i
i

u
t1,i
i

LQD

i F t1,i i

LQD

OPT

j

LQD

LQD

OPT

w

Figure 4.3: An example of the connection assignment of Case 1. Left : The queue i
overflows at t1,i. Each lower extra packet of i is assigned two connections and each
upper extra packet of i, one connection. Right : At t2,i all connected LQD packets
from t1,i have left the buffer by Lemma 4.31 (dotted line segments) and we assign

one connection to each of the (p
t2,i
i,OPT − l

t1,i
i) upmost extra packets of i. Even if

another dominating queue j exists at t2,i and each of j’s extra packets is connected
with one free packet, Invariant 4.30 holds at t2,i, as we show in sub-case (A2).

Now, for the free packets that are assigned connections at t1,i, we have the

following: By Lemmas 4.9 and 4.25, the number of free packets in the LQD buffer

at t1,i is at least equal to the number of extra packets of i at t1,i, plus 2. Therefore,

we do not need to assign connections to the (at most two) free packets that may be

located at a queue position equal to p
t1,i
i,LQD + 1 at t1,i (by Observation 4.1, p

t1,i
i,LQD + 1

is the maximum queue position of any LQD packet at t1,i). It follows that the

maximum queue position at t1,i of any free packet which is assigned a connection at

t1,i is p
t1,i
i,LQD, which completes the proof.

If l
t1,i
i ≥ pt2,ii,OPT then the connection assignment for Case 1 is complete. Oth-

erwise, if l
t1,i
i < p

t2,i
i,OPT then we distinguish between the following sub-cases (A1),

(A2) and (A3):

81

(A1) If |F t2,i | = 2, then it is only queue i that has extra packet(s) at t2,i,

in the OPT buffer. By this and Lemma 4.31, we assign a connection at t2,i to each

of the upmost (p
t2,i
i,OPT − l

t1,i
i) extra packets of i at t2,i, with a different free packet

so that Invariant 4.30 holds at this time step. Note that due to Lemma 4.9, the

number of free packets suffices for these connections to be assigned at t2,i.

(A2) If |F t2,i | = 1, then it is e(t2,i) ≤ dM/2e, by Lemma 4.27. We denote

the single free queue we have at t2,i as w 6= i and the third queue that we may have

at t2,i (which can be dominating or established) as j 6= {i, w} (see Figure 4.3, on

the right). By Observation 4.24 it is p
t1,i
i,LQD ≥ bM/3c, which by Definition 4.22 gives

us l
t1,i
i ≥ bM/3c. By the last inequality and since e(t2,i) ≤ dM/2e, it is:

2 · lt1,ii ≥ e(t2,i)− 1 (4.32)

But the number of extra packets in the OPT buffer at t2,i is equal to the

number of extra packets of i at t2,i (which is an established queue at this time step)

plus the number of extra packets of j at t2,i:

e(t2,i) = (p
t2,i
j,OPT − p

t2,i
j,LQD) + p

t2,i
i,OPT (4.33)

By (4.32), (4.33) and since we have assumed that l
t1,i
i < p

t2,i
i,OPT, it holds:

l
t1,i
i ≥ pt2,ij,OPT − p

t2,i
j,LQD (4.34)

Therefore, we assign at t2,i a valid connection to each of the upmost (p
t2,i
i,OPT−

l
t1,i
i) extra packets of i at t2,i, without making a connection to a free packet which

is already connected with an extra packet of j. This is because each of the upmost

(p
t2,i
i,OPT − l

t1,i
i) extra packets of i at t2,i, is located at a queue position at t2,i which

is at least equal to l
t1,i
i , since i is an established queue at t2,i. But, by (4.34) and

due to Lemma 4.29, the number of free packets that may be already connected with

82

i w j

OPT

LQD

LQD

OPT

Figure 4.4: An example of the connection assignment of Case 2: One connection to
each extra packet of i is assigned with a free packet at t1,i, by Lemma 4.9. A second
connection to each extra packet of i is assigned with a common packet of i, at t1,i.
Invariant 4.30 is not violated at t1,i as we show in the analysis of Case 2.

extra packets of j at t2,i is at most l
t1,i
i . By this and due to Lemma 4.31 it follows

that Invariant 4.30 is not violated by any connection assigned at t2,i.

(A3) It cannot be |F t2,i | = 0, since at least one extra packet of i exists in

the OPT buffer, at t2,i. Therefore, by Lemma 4.9, it has to be |F t2,i | ≥ 1.

The analysis for Case 1 is complete.

Case 2: The queue i is secondary dominating at t1,i

We distinguish between sub-cases (B1), (B2) and (B3), for the first connec-

tion to each extra packet of i at t1,i:

(B1) If |F t1,i | = 2 then the only extra packets in the OPT buffer at t1,i

belong to queue i. Hence, we assign at t1,i one connection to each extra packet of

i with a different common packet of i. The number of extra packets of i at t1,i is

at most equal to the number of common packets of i at t1,i, by Definition 4.23. It

83

follows that the number of common packets of i suffices for these connections to be

assigned at t1,i and, therefore, Invariant 4.30 holds at t1,i. Finally, each connection

is valid, due to Observation 4.19.

(B2) If |F t1,i | = 1, then one other dominating (or established) queue j 6= i

may exist at t1,i. Let us denote as w 6= {i, j} the single free queue we have at t1,i.

By Lemma 4.9 it is e(t1,i) ≤ f(t1,i)− 1. Also, it is f(t1,i) = p
t1,i
w,LQD ≤ p

t1,i
i,LQD + 1 due

to Observation 4.1. By the last two inequalities, we get:

e(t1,i) ≤ pt1,ii,LQD (4.35)

By (4.35) and Lemma 4.28, the number of common packets of i that are not

connected at t1,i with extra packets of j, is at least equal to the number of extra

packets that the queue i has at time step t1,i. Hence, we assign a connection to

each extra packet of i with a different common packet of i at t1,i, without violating

Invariant 4.30 at t1,i.

(B3) It cannot be |F t1,i | = 0, for the same reason as in sub-case (A3).

Finally, by Lemmas 4.9 and 4.29, we assign a second connection to each extra

packet of i with a different free packet at t1,i, without violating Invariant 4.30 at

this time step. This second connection is, also, valid by Observation 4.19.

The analysis for Case 2 is complete.

Upper-bounding the LQD competitive ratio, when N = 3

The connection assignment procedure that we described in Cases 1 and 2, is applied

for every queue k ∈ [N] and at each tλk1,k time step (that is, for each λk ∈ [Λk]). This

84

gives us the next lemma.

Lemma 4.36. Invariant 4.30 holds at every time step of [1, T].

Proof. Invariant 4.30 may be violated only at a time step when a connection between

an extra packet and an already connected LQD packet is assigned. But we showed in

both Cases 1 and 2 that at any time step when a connection is assigned to an extra

packet of i ∈ [N] (either time step t1,i or t2,i), Invariant 4.30 is not violated.

We, now, proceed towards proving the key lemma of Section 4.2.3:

Lemma 4.37. Each transmitted extra packet e is connected or associated with two

LQD packets, at its transmission time step.

Proof. The extra packet e that is transmitted at a time step t ∈ [T] belongs to a

queue i ∈ [N] which was either primary dominating or secondary dominating at the

latest time step before t, when i overflowed in the LQD buffer, due to Observation

4.6 and Lemma 4.7. Hence, we distinguish between the cases that i was secondary

dominating or primary dominating at this tλi1,i time step (λi ∈ [Λi]):

Let us start with the case that i was secondary dominating at tλi1,i: Each

extra packet of i is assigned two connections at tλi1,i, as we describe in the analysis

of Case 2. But, due to Lemmas 4.15 and 4.16 we have:

• If λi ∈ [Λi−1], then the number of transmitted extra packets of i in the period

[tλi2,i, t
λi+1
1,i − 1] is at most equal to the number of extra packets that i has at

tλi1,i, else

• If λi = Λi and time step tΛi2,i exists, then the number of transmitted extra

packets of i in the period [tΛi2,i, T] is at most equal to the number of extra

packets that i has at tΛi1,i (if time step tΛi2,i does not exist, then the number of

transmitted extra packets of i in the period [tΛi1,i, T] is, trivially, 0).

Therefore, by Fact 4.18, it follows that each transmitted extra packet of i

has a sum of two connections and associations at its transmission time step. To see

85

that, note that each transmitted extra packet of i was either an extra packet at tλi1,i

and was assigned two connections at this time step or it was accepted by queue i

after time step tλi1,i and a sum of two connections and associations were assigned to

this packet according to the third case of Fact 4.18.

Assume, now, that i was primary dominating at tλi1,i. At tλi1,i we assigned two

connections to each of the l
t1,i
i lower extra packets of i and one connection to each

of the upper u
t1,i
i extra packets of i. At tλi2,i we assigned one connection to each of

the (p
t2,i
i,OPT − l

t1,i
i) upmost extra packets of i (if p

t2,i
i,OPT > l

t1,i
i) or no connection (if

p
t2,i
i,OPT ≤ l

t1,i
i). In any of these two cases, by Lemma 4.14 and due to the third case of

Fact 4.18, it follows that each of the p
t
λi
2,i

i,OPT extra packets that i has at time step tλi2,i,

has a sum of two connections and associations at tλi2,i (that is, after all connections

of time step t2,i have been assigned). But, by Lemma 4.16, we have:

• If λi ∈ [Λi−1], then the number of transmitted extra packets of i in the period

[tλi2,i, t
λi+1
1,i − 1] is at most equal to the number of extra packets that i has at

tλi2,i, else

• If λi = Λi and time step tΛi2,i exists, then the number of transmitted extra

packets of i in the period [tΛi2,i, T] is at most equal to the number of extra

packets that i has at time step tΛi2,i (if time step tΛi2,i does not exist, then the

number of transmitted extra packets of i in [tΛi1,i, T] is, trivially, 0).

Therefore, by the third case of Fact 4.18 and since each extra packet of i has

a sum of two connections and associations at tλi2,i, each transmitted extra packet of

i has a sum of two connections and associations at its transmission time step.

By Lemmas 4.36 and 4.37 and because the total number of transmitted extra

packets by all queues in the period [1, T] is
∑T

t=1 |Et|, it follows that 2 ·∑T
t=1 |Et| ≤

hσ(LQD), for any incoming packet sequence σ.

Now, let Σ denote the set of all inputs to three-port switches and c ≥ 1

denote the LQD competitive ratio for three-port switches. Then, it holds:

86

OPT

LQD
LQD

OPT

OPT

LQD

OPT
1 2 1 2

Figure 4.5: An example of the two buffer contents for the lower bound of the LQD
competitive ratio for two-port switches, assuming that M = 2k + 1 for k = 6. Left:
The OPT buffer accepts at time step t = 1 one packet for queue 2 and all arriving
packets for queue 1 whilst LQD accepts k + 1 packets for queue 2 and k packets for
queue 1. Right: At time step k+1, the OPT buffer continues to forward two packets
to the output ports whilst LQD drops to one packet; the same transmission pattern
holds until each extra packet has been transmitted by OPT.

c = sup
σ∈Σ
{rOPT
σ } (4.38)

By (4.5) and due to (4.38), we obtain the following theorem, completing

analysis for the case of three-port shared-memory switches:

Theorem 4.39. LQD is (3/2)-competitive for three-port shared-memory switches.

4.2.4 The LQD algorithm for two-port switches

Throughout Section 4.2.4, we assume that N = 2. We shall show that LQD is

exactly (4/3)-competitive for two-port shared-memory switches.

Let us start with the lower bound of the LQD competitive ratio for two-

port switches. We describe the following sequence of incoming packet flow σ, for

a buffer of size M = 2k + 1 (where k ∈ Z+). There exists a number of M − 1

arriving packets destined to each of the two output ports of the switch at time

step t = 1. By Observation 4.6 and without loss of generality, we assume that

87

p1
1,LQD = k and p1

2,LQD = k + 1. On the other side, OPT accepts all packets arriving

to queue 1 at t = 1 and only one packet for queue 2 at t = 1. Hence, it holds that

p1
1,OPT = 2k = M − 1 and p1

2,OPT = 1.

No packet arrives to queue 1 in the period [2,M−1] and one packet per time

step arrives to queue 2 at each time step of the same period, which is accepted by

both LQD and OPT. It follows that queue 1 is active in the OPT buffer at each time

step of the period [1,M − 2], that queue 2 is active in both buffers at each time

step of the period [1,M − 1] and that queue 1 is active in the LQD buffer at each

time step of the period [1, k− 1] but inactive in the LQD buffer at each time step of

[k,M − 1] (see Figure 4.5).

The same pattern of incoming packet flow is repeated at t = M , then at

t = 2M and so on at each time step t = µ ·M , where µ ∈ Z+. More specifically,

the OPT buffer accepts all arriving M − 1 packets destined to the queue which LQD

chooses to have the smaller length at the same time step, among the two active

queues in the LQD buffer at each t = µ ·M time step. For µ → ∞, it follows that

hσ(OPT)/hσ(LQD) = 4/3.

We, now, proceed towards deriving the upper bound of 4/3 for the LQD

competitive ratio, for two-port switches. We shall assign valid connections to extra

packets, as in the case of three-port shared-memory switches: Assume that i ∈ [N]

overflows in the LQD buffer at a time step t1,i = tλi1,i (for a λi ∈ [Λi]) and that i

becomes established for the first time after t1,i at t2,i = tλi2,i.

Due to Lemma 4.9 and since N = 2 it holds |F t1,i | = 1. Each extra packet

of i is assigned two valid connections at t1,i: The first connection to each extra

packet of i is with a different common packet of the same queue i. The number of

common packets suffices for these connections to be assigned, since i is a secondary

dominating queue at t1,i due to Lemma 4.25 (note that a dominating queue that is

not primary, can only be secondary dominating). The second connection to each

88

LQD OPT

i F t1,i

LQD

OPT

i

LQD

F t2,i

Figure 4.6: Left: Two connections are assigned to each extra packet of i at t1,i,
one of which is with a common packet of i and the other with a free packet. All
connections are assigned with different LQD packets so that Invariant 4.30 holds at
t1,i. Right: A connection to each extra packet of i is assigned at t2,i > t1,i with a
free packet.

extra packet of i is with a different free packet at t1,i. All connections assigned are

valid due to Observation 4.19.

Wrapping up, we assigned two valid connections to each extra packet of i at

t1,i, so that Invariant 4.30 holds at this time step (see Figure 4.6).

Before continuing, we need the following lemma:

Lemma 4.40. No packet in the LQD buffer at time step t2,i > t1,i may be connected

with a connection which was assigned at time step t1,i.

Proof. As in the proof of Lemma 4.31, it suffices to show that the maximum queue

position at t1,i of any LQD packet that is assigned a connection at t1,i is p
t1,i
i,LQD.

This, obviously, holds for each common packet of i that is assigned a connection at

t1,i, as in the proof of Lemma 4.31.

Now, for the free packets that are assigned connections at t1,i, it suffices to

show that we do not need to assign a connection at t1,i to the free packet that may

be located at a queue position equal to p
t1,i
i,LQD + 1 at this time step. Note that no

89

free packet may be located at a queue position strictly greater than p
t1,i
i,LQD + 1 at

t1,i, since i overflows at t1,i in the LQD buffer and due to Observation 4.1. But, by

Lemma 4.9 and since |F t1,i | = 1, the number of free packets in the LQD buffer at t1,i

is at least equal to the number of extra packets of i at t1,i, plus 1. Therefore, we do

not need to assign a connection to the free packet that may be located at a queue

position equal to p
t1,i
i,LQD + 1 at t1,i. It follows that the maximum queue position at

t1,i of any free packet which is assigned a connection at t1,i is p
t1,i
i,LQD, completing the

proof.

Therefore, at t2,i we assign one valid connection to each extra packet of i at

this time step, with a different free packet. The number of free packets suffices, due

to Lemma 4.9. By Lemma 4.40, Invariant 4.30 is not violated by any connection

assigned at time step t2,i.

Upper-bounding the LQD competitive ratio when N = 2

Our analysis for the case of two-port switches, is similar to the analysis for the case

of three-port switches.

Lemma 4.41. Invariant 4.30 holds at every time step of [1, T].

Proof. As in the case of the proof of Lemma 4.36, Invariant 4.30 may be violated

only at a time step when a connection between an extra packet and an already

connected LQD packet is assigned. But we showed that at any time step when a

connection is assigned to an extra packet of i ∈ [N] (either t1,i or t2,i), Invariant

4.30 holds.

Lemma 4.42. Each transmitted extra packet in the period [1, T] has a sum of three

connections and associations at its transmission time step.

Proof. An extra packet that is transmitted at a time step t ∈ [T] belongs to a queue

i ∈ [N] that was dominating at the latest time step before t, when i overflowed in

90

the LQD buffer, due to Observation 4.6 and Lemma 4.7, i.e., this time step is tλi1,i

for some λi ∈ [Λi].

Each extra packet of i at tλi1,i is assigned two connections at this time step and

each extra packet of i at tλi2,i is assigned one connection at this time step, according to

the connection assignment procedure that we described in Section 4.2.4. By Lemma

4.15 and due to Fact 4.18, it follows that each extra packet of i at tλi2,i should have

a sum of three connections and associations at this time step (that is, after the

connections of time step t2,i have been assigned). By Lemma 4.16, the proof is

complete.

By Lemmas 4.41 and 4.42, it follows that 3 ·∑T
t=1 |Et| ≤ hσ(LQD), for any

incoming packet sequence σ. Therefore, by (4.5) and since the LQD competitive

ratio for two-port shared-memory switches equals supσ∈Σ{rOPT
σ }, where Σ denotes

here the set of all inputs to two-port shared-memory switches, we have that LQD is

(4/3)-competitive when N = 2.

Taking into consideration the lower bound of (4/3) for two-port switches

that we described in the beginning of Section 4.2.4, we have the following theorem,

completing analysis for Chapter 4.

Theorem 4.43. LQD is exactly (4/3)-competitive for two-port shared-memory switches.

4.3 Open Problems

There exists a significant gap between the upper bound of 2 and the lower bound of
√

2 for the competitive ratio of LQD, for shared-memory switches equipped with an

arbitrary number of output ports N ≥ 2. Therefore, an interesting open problem is

to show a (2−ε) upper bound for the LQD competitive ratio for a positive constant ε

or to improve the lower bound of
√

2. We conjecture that LQD is (2−ε)-competitive,

for a constant ε > 0.

91

Regarding the special case of N = 3 output ports, an open problem is to

improve on the LQD competitive ratio upper bound of 3/2 that we showed here or

the lower bound of 4/3 which already holds for the special case of N = 2 output

ports and, therefore, for N = 3.

92

Bibliography

W. Aiello, Y. Mansour, S. Rajagopolan, and A. Rosén. Competitive Queue Poli-

cies for Differentiated Services. In Proceedings of the 19th IEEE International

Conference on Computer Communications (INFOCOM), pages 431–440, 2000.

W. Aiello, A. Kesselman, and Y. Mansour. Competitive Buffer Management for

Shared-Memory Switches. ACM Transactions on Algorithms (TALG), 5(1), 2008.

S. Albers. Better Bounds for Online Scheduling. SIAM Journal on Computing

(SICOMP), 29(2):459–473, 1999.

S. Albers, B. von Stengel, and R. Werchner. A Combined BIT and TIMESTAMP

Algorithm for the List Update Problem. Information Processing Letters (IPL),

56(3):135–139, 1995.

Y. Azar, A. Z. Broder, and A. R. Karlin. On-line Load Balancing. Theoretical

Computer Science, 130(1):73–84, 1994.

Y. Azar, J. Naor, and R. Rom. The Competitiveness of On-Line Assignments.

Journal of Algorithms (JALG), 18(2):221–237, 1995.

J. Balogh, J. Békési, and G. Galambos. New Lower Bounds for Certain Classes of

Bin Packing Algorithms. In Proceedings of the 8th Workshop on Approximation

and Online Algorithms (WAOA), pages 25–36, 2010.

93

J. Balogh, J. Békési, G. Dósa, H. Kellerer, and Z. Tuza. Black and White Bin

Packing. In Proceedings of the 10th Workshop on Approximation and Online

Algorithms (WAOA), pages 131–144, 2012.

J. Balogh, J. Békési, G. Dósa, L. Epstein, H. Kellerer, A. Levin, and Z. Tuza. Offline

black and white bin packing. Theoretical Computer Science, 596:92–101, 2015a.

J. Balogh, J. Békési, G. Dósa, L. Epstein, H. Kellerer, and Z. Tuza. Online Results

for Black and White Bin Packing. Theory of Computing Systems, 56(1):137–155,

2015b.

J. Balogh, J. Békési, G. Dósa, J. Sgall, and R. van Stee. The optimal absolute

ratio for online bin packing. In Proceedings of the 26th ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 1425–1438, 2015c.

N. Bansal and A. Khan. Improved Approximation Algorithm for Two-Dimensional

Bin Packing. In Proceedings of the 25th ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 13–25, 2014.

N. Bansal, N. Buchbinder, and J. Naor. Towards the Randomized k-Server Conjec-

ture: A Primal-Dual Approach. In Proceedings of the 21st ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 40–55, 2010.

N. Bansal, N. Buchbinder, A. Madry, and J. Naor. A Polylogarithmic-Competitive

Algorithm for the k-Server Problem. In Proceedings of the 52nd IEEE Symposium

on Foundations of Computer Science (FOCS), pages 267–276, 2011.

Y. Bartal, A. Fiat, H. J. Karloff, and R. Vohra. New Algorithms for an Ancient

Scheduling Problem. Journal of Computer and System Sciences (JCSS), 51(3):

359–366, 1995.

S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On the Power

94

of Randomization in Online Algorithms (extended abstract). In Proceedings of the

22nd ACM Symposium on Theory of Computing (STOC), pages 379–386, 1990.

C. Berge. Two Theorems in Graph Theory. Proceedings of the National Academy

of Sciences of the United States of America (PNAS), 43(9):842–844, 1957.

M. Böhm, J. Sgall, and P. Veselý. Online Colored Bin Packing. In Proceedings of the

12th Workshop on Approximation and Online Algorithms (WAOA), pages 35–46,

2014.

A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-

bridge University Press, 1998.

N. Buchbinder and J. Naor. Online Primal-Dual Algorithms for Covering and Pack-

ing. Mathematics of Operations Research (MOR), 34(2):270–286, 2009a.

N. Buchbinder and J. Naor. The Design of Competitive Online Algorithms via a

Primal-Dual Approach. Foundations and Trends in Theoretical Computer Science

(FnT-TCS), 3(2-3):93–263, 2009b.

H. J. Chao and X. Guo. Quality of Service Control in High-Speed Networks. Wiley-

IEEE Press, 2001.

H. J. Chao and B. Liu. High Performance Switches and Routers. Wiley-IEEE Press,

2007.

S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings of the

3rd ACM Symposium on Theory of Computing (STOC), pages 151–158, 1971.

M. Dawande, J. Kalagnanam, and J. Sethuraman. Variable Sized Bin Packing With

Color Constraints. Electronic Notes in Discrete Mathematics (ENDM), 7:154–157,

2001.

W. Fernandez de la Vega and G. S. Lueker. Bin Packing can be Solved within 1+ε

in Linear Time. Combinatorica, 1(4):349–355, 1981.

95

G. Dósa and L. Epstein. Colorful bin packing. In Proceedings of the 14th Scandina-

vian Symposium and Workshops on Algorithm Theory (SWAT), pages 170–181,

2014.

G. Dósa and J. Sgall. First Fit bin packing: A tight analysis. In Proceedings of

the 30th Symposium on Theoretical Aspects of Computer Science (STACS), pages

538–549, 2013.

M. Englert, N. Matsakis, and M. Mucha. New Bounds for Online Packing LPs.

In Proceedings of the 11th Latin American Theoretical Informatics Symposium

(LATIN), pages 318–329, 2014.

L. Epstein. Bin packing with rejection revisited. In Proceedings of the 4th Workshop

on Approximation and Online Algorithms (WAOA), pages 146–159, 2006.

L. Epstein and A. Levin. AFPTAS results for common variants of bin packing:

A new method for handling the small items. SIAM Journal on Optimization

(SIOPT), 20(6):3121–3145, 2010.

P. Eugster, K. Kogan, S. Nikolenko, and A. Sirotkin. Shared Memory Buffer Man-

agement for Heterogeneous Packet Processing. In Proceedings of the 34th IEEE

International Conference on Distributed Computing Systems (ICDCS), pages 471–

480, 2014.

P. Eugster, A. Kesselman, K. Kogan, S. Nikolenko, and A. Sirotkin. Essential

Traffic Parameters for Shared Memory Switch Performance. In Proceedings of the

22nd International Colloquium on Structural Information and Communication

Complexity (SIROCCO), pages 61–75, 2015.

A. Fiat and G. J. Woeginger. Online Algorithms, The State of the Art. Springer,

1998.

96

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

M. H. Goldwasser. A Survey of Buffer Management Policies for Packet Switches.

Special Interest Group on Algorithms and Computation Theory (SIGACT) News,

41(1):100–128, 2010.

R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal of

Applied Mathematics (SIAP), 17(2):416–429, 1969.

E. L. Hahne, A. Kesselman, and Y. Mansour. Competitive Buffer Management

for Shared-Memory Switches. In Proceedings of the 13th ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), pages 53–58, 2001.

K. Jansen and S. R. Öhring. Approximation Algorithms for Time Constrained

Scheduling. Information and Computation, 132(2):85–108, 1997.

D. S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Massachusetts

Institute of Technology, 1973.

A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive Snoopy

Caching. Algorithmica, 3:77–119, 1988.

N. Karmarkar and R. M. Karp. An Efficient Approximation Scheme For The One-

Dimensional Bin-Packing Problem. In Proceedings of the 23rd IEEE Symposium

on Foundations of Computer Science (FOCS), pages 312–320, 1982.

R. M. Karp. Reducibility Among Combinatorial Problems. In Proceedings of a

Symposium on the Complexity of Computer Computations at the IBM Thomas J.

Watson Research Center, Yorktown Heights, New York, pages 85–103, 1972.

A. Kesselman and Y. Mansour. Harmonic buffer management policy for shared

memory switches. Theoretical Computer Science, 324(2-3):161–182, 2004.

97

A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber, and M. Sviri-

denko. Buffer Overflow Management in QoS Switches. In Proceedings of the 33rd

ACM Symposium on Theory of Computing (STOC), pages 520–529, 2001.

K. M. Kobayashi, S. Miyazaki, and Y. Okabe. A Tight Bound on Online Buffer

Management for Two-port Shared-Memory Switches. In Proceedings of the 19th

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages

358–364, 2007.

S. O. Krumke. Online Optimization. Optimization and its Applications in Learning

and Industry (OptALI) notes, Auckland, 2011.

C. C. Lee and D. T. Lee. A Simple On-Line Bin-Packing Algorithm. Journal of the

ACM (JACM), 32(3):562–572, 1985.

F. M. Liang. A Lower Bound for On-line Bin Packing. Information Processing

Letters (IPL), 10(2):76–79, 1980.

Z. Lotker and B. Patt-Shamir. Nearly optimal FIFO buffer management for Diff-

Serv. In Proceedings of the 21st ACM Symposium on Principles of Distributed

Computing (PODC), pages 134–142, 2002.

S. Martello, D. Pisinger, and D. Vigo. The Three-Dimensional Bin Packing Problem.

Operations Research, 48(2):256–267, 2000.

N. Matsakis. LQD is 1.5-competitive for 3-port Shared-Memory Switches. In Pro-

ceedings of the 42nd International Conference on Current Trends in Theory and

Practice of Computer Science (SOFSEM) - Student Research Forum, 2016.

M. Ochel, K. Radke, and B. Vöcking. Online Packing with Gradually Improving

Capacity Estimations and Applications to Network Lifetime Maximization. In

Proceedings of the 39th International Colloquium on Automata, Languages and

Programming (ICALP), pages 648–659, 2012.

98

P. Raghavan and M. Snir. Memory Versus Randomization in On-line Algorithms

(extended abstract). In Proceedings of the 16th International Colloquium on Au-

tomata, Languages and Programming (ICALP), pages 687–703, 1989.

P. V. Ramanan, D. J. Brown, C. C. Lee, and D. T. Lee. On-Line Bin Packing in

Linear Time. Journal of Algorithms (JALG), 10(3):305–326, 1989.

T. Rothvoß. Approximating Bin Packing within O(logOPT · log logOPT) bins. In

Proceedings of the 54th IEEE Symposium on Foundations of Computer Science

(FOCS), pages 20–29, 2013.

S. S. Seiden. On the Online Bin Packing Problem. Journal of the ACM (JACM),

49(5):640–671, 2002.

D. Simchi-Levi. New Worst-Case Results for the Bin-Packing Problem. Naval

Research Logistics (NRL), 41(4):579–585, 1994.

D. D. Sleator and R. E. Tarjan. Amortized Efficiency of List Update and Paging

Rules. Communications of the ACM (CACM), 28(2):202–208, 1985.

J. D. Ullman. The Performance of a Memory Allocation Algorithm. Technical

Report 100, Princeton University, page 78, 1971.

A. van Vliet. An Improved Lower Bound for On-line Bin Packing Algorithms.

Information Processing Letters (IPL), 43(5):277–284, 1992.

V. V. Vazirani. Approximation Algorithms. Springer, 2001.

V. G. Vizing. On an Estimate of the Chromatic Class of a p-Graph. Diskret. Analiz.,

3:25–30, 1964.

J. von Neumann. Zur Theorie der Gesellschaftsspiele (in German). Mathematische

Annalen, 100:295–300, 1928.

99

I. Wegener. Complexity Theory - Exploring the Limits of Efficient Algorithms.

Springer, 2005.

S. X. Wei, E. J. Coyle, and M. T. Hsiao. An Optimal Buffer Management Policy for

High-Performance Packet Switching. In Proceedings of the Global Communication

Conference (GLOBECOM), pages 924–928, 1991.

D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms.

Cambridge University Press, 2011.

A. C. Yao. Probabilistic Computations: Toward a Unified Measure of Complexity.

In Proceedings of the 18th IEEE Symposium on Foundations of Computer Science

(FOCS), pages 222–227, 1977.

A. C. Yao. New Algorithms for Bin Packing. Journal of ACM (JACM), 27(2):

207–227, 1980.

100

