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Abstract—The parasagittal (PS) plane is a 2-D diagnostic plane
used routinely in cranial ultrasonography of the neonatal brain.
This paper develops a novel approach to find the PS plane in a
3-D fetal ultrasound scan to allow image-based biomarkers to be
tracked from prebirth through the first weeks of postbirth life.
We propose an accurate plane-finding solution based on regression
forests (RF). The method initially localizes the fetal brain and its
midline automatically. The midline on several axial slices is used
to detect the midsagittal plane, which is used as a constraint in
the proposed RF framework to detect the PS plane. The proposed
learning algorithm guides the RF learning method in a novel way
by: 1) using informative voxels and voxel informative strength as
a weighting within the training stage objective function, and 2)
introducing regularization of the RF by proposing a geometrical
feature within the training stage. Results on clinical data indicate
that the new automated method is more reproducible than manual
plane finding obtained by two clinicians.

Index Terms—Fetal brain, monogenic signal, plane localization,
regression forests, ultrasound.

I. INTRODUCTION

LONGITUDINAL analysis of the developing brain is an
emerging area linking medical image computing and neu-

rology. In the future, this may have impact on clinical man-
agement of premature infants and neonates with neurological
conditions. Clinicians are exploring tools to track the changes
in image-based biomarkers from the womb to the postnatal
period [1], [2]. However, promoting and monitoring neuro-
development remains a significant challenge in the care of
premature infants. Recent studies on cohorts of ex-premature

Manuscript received January 15, 2015; revised April 15, 2015; accepted
May 11, 2015. Date of publication; date of current version. The work of
M. Yaqub, S. Rueda, A. Kopuri, P. Melo, and J. A. Noble was supported by the
Wellcome/EPSRC Centre of Excellence in Medical Engineering—Personalised
Healthcare, under Grant WT 088877/Z/09/Z.

M. Yaqub, S. Rueda, P. Melo, and J. A. Noble are with the Insti-
tute of Biomedical Engineering, Department of Engineering Science, Uni-
versity of Oxford, Oxford OX3 7DQ, U.K. (e-mail: mohammad.yaqub@
eng.ox.ac.uk; sylvia.rueda@eng.ox.ac.uk; pedro.melo@eng.ox.ac.uk; alison.
noble@eng.ox.ac.uk).

A. Kopuri and K. McCormick are with the Department of Paedi-
atrics, University of Oxford, Oxford OX3 9DU, U.K., and also with the
Neonatal Unit, John Radcliffe Hospital, Oxford OX3 9DU, U.K. (e-mail:
anil.kopuri@wolfson.ox.ac.uk; Kenny.McCormick@ouh.nhs.uk).

A. T. Papageorghiou is with the Nuffield Department of Obstetrics
and Gynaecology, University of Oxford, Oxford OX3 9DU, U.K. (e-mail:
aris.papageorghiou@obs-gyn.ox.ac.uk).

P. B. Sullivan is with the Department of Paediatrics, University of Oxford,
Oxford OX3 9DU, U.K. (e-mail: peter.sullivan@paediatrics.ox.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JBHI.2015.2435651

infants have shown improved survival but long term neurodevel-
opmental outcomes have remained unchanged [3]. Volpe pos-
tulated that brain injury in premature infants is an amalgam
of both destructive and developmental disturbances [4]. “De-
structive” pathologies are currently diagnosed and monitored
using cranial ultrasonography by identifying conditions such as
intraventricular hemorrhages, infarctions, and hydrocephalus.
However, developmental disturbances are more difficult to di-
agnose using cranial sonography. Current practice of assessment
of brain ultrasound images for structural development is at best,
subjective.

In a recent study [1], prematurity was shown to have a signif-
icant effect on thalamocortical development, specifically, lower
gestation being associated with thalamic volume reduction. This
volume depletion has been shown to be associated with lower
cortical volume, decreased hippocampal volume and reduced
fractional anisotropy of the corticospinal tracts [2]. This is there-
fore our clinical motivation for measuring thalamic size serially,
which could potentially help identification of disordered brain
development in premature infants. Serial MR imaging in pre-
mature infants is clinically impractical and expensive. Cranial
ultrasonography is a more practical alternative to finding tha-
lamic size with the benefit of being applicable cot-side. Fur-
thermore, the thalamic shadow can be easily identified in the
parasagittal plane on ultrasound images. Motivating this paper,
a recent study [1] published preliminary findings suggesting a
correlation between neonatal gestational age and the thalamic
area measured manually on standard 2-D neonatal cranial ultra-
sound images acquired at the parasagittal plane. Thalamic area
measurements were compared with equivalent fetal markers of
a normal population as a reference, suggesting that this might
provide a clinically useful way to monitor neuro-development of
a neonate. Therefore, to derive normative data, PS planes were
manually identified from 3-D ultrasound fetal brain volumes of
healthy fetuses [5]. Associations with gestation and fetal thala-
mic cross-sectional area measurements were however weaker.
To strengthen this association, automation of PS plane detection
was envisaged. Furthermore, in fetal neurosonography, manual
assessment of orthogonal planes is important to ensure a proper
diagnosis of brain structures.

Recent advances in ultrasound techniques allow accurate
measurement of anatomical structures within the fetal and
preterm infant brain raising the prospect of identifying and track-
ing regions of interest correlating to maturational change at the
cot-side. While standardized manual image acquisition has been
adopted in neonatal cranial ultrasound practice [6], the ability to
examine changes over time and correlate them with a reference
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Fig. 1. Standard planes for fetal and neonatal neurosonography. Schematic
of the midsagittal plane (blue), parasagittal plane (red), the transthalamic plane
(green), and the typical probe orientation for the acquisition of the correct
anatomical planes on fetuses and neonates.

healthy fetus at the same gestational age is crucially dependent
on accurate and reproducible plane localization. Automation
of this process would enable reproducible characterization of
structural changes within the developing brain and may allow
for assessing the effects of therapeutic intervention on brain
growth and maturation.

Ultrasound-based longitudinal analysis across the perinatal
period to allow correlation between clinical scans taken before
and after birth remains a challenge. Antenatal scans (for the
basic examination at midpregnancy) are acquired in utero with
either a 2-D or a 3-D transducer positioned to obtain axial slices
of the fetal brain. However, advanced fetal neurosonography
examines the fetal brain in three planes (axial, sagittal, and
coronal) to allow better understanding of brain development [7],
[8]. Direct visualization of sagittal planes on fetuses is possible.
However, it does not only require a lot of experience but also
some luck to have the fetus in a perfect position to be able to
acquire acceptable sagittal images. Therefore, finding a sagittal
plane in a 3-D fetal image that is acquired on the axial view
can provide a solution to this issue. Neonatal scans are taken
ex-utero, with a different transducer normally limited to 2-D
scans acquired through the anterior fontanelle (AF) to provide
angled coronal and sagittal planes (cf., Fig. 1). The question we
seek to answer in this paper is how fetal and neonatal scans are
correlated. The approach outlined in this paper automatically
finds, in a 3-D fetal scan, the equivalent (and nonconventional)
2-D plane, called the parasagittal plane (PS), used in neonatal
neurosonography, via a machine-learning approach. Detecting
such a plane reliably would allow neurological information to
be obtained in theory from around 14 weeks gestational age
up to at least eight weeks post birth or potentially six months
depending on when the AF closes.

In fetal neurosonography, clinicians usually diagnose not only
from the axial view of the brain but also the sagittal and coronal
views. This assessment is done manually and more importantly,

it typically does not assess oblique planes of the brain. In an
interesting work by Rizzo et al. [9], the authors investigated
the visualization of standard sagittal and coronal planes in 3-
D ultrasound of the fetal brain. They studied the agreement
rate of two manual reviewers in finding such planes. Therefore,
to reduce subjectivity of finding planes manually and to allow
oblique plane localization, it is important to develop automatic
methods that can potentially detect planes in 3-D ultrasound.

There have been a small number of publications addressing
automatic plane or view localization for clinical workflow im-
provement. On the other hand, [10] proposes a supervised learn-
ing method based on marginal space learning to detect several
planes in 3-D echocardiography. A boosting framework [11]
and regression forest (RF) [12] have been proposed to locate
two, three, and four chamber views in 3-D echocardiography.
A machine learning method based on the integrated detection
network has been developed to detect several fetal brain planes
in 3-D ultrasound volumes and estimate the standard clinical
2-D fetal biometric parameters [13]. In our previous work [14],
we developed a semiautomatic method to localize the PS plane
on 3-D ultrasound scans of the fetal brain. The method builds on
a RF framework to estimate the PS plane parameters relying on
only “informative” voxels during training and testing. One issue
in [14] was the high intraobserver variability on manual local-
ization of the PS plane. To address this issue, we have defined
in this paper an objective protocol to find the PS plane.

Notice that, to-date, machine learning methods have been the
most popular approach for plane finding in medical imaging,
especially ultrasound. Regression forests [12], [14]–[18] has
gained a lot of interest in medical imaging recently in applica-
tions such as object detection and view localization. RF consists
of several trees trained on a set of training examples and possible
features. Each split node in a tree optimizes an objective func-
tion to create a weak learner, which splits the training examples
into two branches. Leaves contain the list of training examples,
which traverse all the way from the root. Training examples at
a specific leaf node are used to create a distribution from their
continuous variable(s). The distribution at a leaf node on each
tree is used during testing to vote for the continuous label for an
unseen example. More details about RF can be found in [16].

In this paper, we propose a machine learning technique based
on RF to provide accurate parasagittal plane localization. The
technique constrains the RF method by: 1) forcing the model
to use informative voxels and voxel informative strength as
a weight when optimizing the objective function used in the
training stage, and 2) introducing regularization of the RF by
proposing a geometrical feature within the training stage. This
new feature is based on the distance between each voxel and
the midsagittal (MS) plane. We propose an automatic method
to first localize the MS plane, which is then fed to the RF as
a constraint feature. We demonstrate that our approach leads
to plane detection accuracies, which are as good as manual
plane finding and which show promise for their intended use of
standardizing the parasagittal plane acquisition.

This study is an extension of our previous semiautomatic
approach [14] with a number of important improvements out-
lined in the following. First, from a technical perspective, the
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new method is fully automatic whereas [14] is semiautomatic.
Second, the evaluation is more thorough: We have doubled our
dataset size, increased the range of fetal gestation, and evalua-
tion is performed by two manual observers to investigate intra
and interobserver variability. The reproducibility of manually
selecting the parasagittal plane has never been studied before,
as these planes are normally acquired as 2-D images in clinical
practice. Therefore, the quantitative evaluation also includes the
manual segmentation of the thalamus on a subset of the planes
to investigate the sensitivity of the plane finder for thalamic area
estimation.

The rest of the paper is organized as follows. In Section II,
we present a framework to detect the midsagittal plane, used as
a constraint to automatically find the parasagittal plane. Section
III introduces the constrained RF for parasagittal plane finding.
Section IV outlines the experimental setup used within this
framework and Section V reports the quantitative evaluation.
Discussion and conclusions are given in Sections VI and VII,
respectively.

II. MIDSAGITTAL PLANE FINDING

One new contribution of the paper is to fully automate the
PS plane localization by first localizing the MS plane automati-
cally and using it as a constraint in the PS plane finding learning
algorithm. The MS plane is clinically important to assess as it
contains several structures which are typically assessed in neu-
rosonographic examination (e.g., corpus callosum and cavum
septum pellucidum). In addition, localizing the MS plane is
useful itself as it facilitates the study of midline diseases, such
as agenesis of corpus callosum or posterior fossa anomalies.

To find the MS plane, we first identify the skull in several
2-D slices of the volume to locate the brain region only (skull
stripping). We then localize the midline on these slices since
it is the separator between left and right hemispheres. Finally,
the MS plane is then constructed as the best plane crossing the
correctly detected midlines.

A. Acquisition Protocol of 3-D Fetal Ultrasound Images

According to the acquisition protocol used within this study,
all fetal brain volumes were obtained approximately perpendic-
ular to the left or right side of the fetal head. The acquisition
aims at locating and measuring the biparietal diameter, found
on the transthalamic plane in the middle of the volume. Fig. 1
shows a schematic of the acquisition protocol used, as well
as the location of the midsagittal (MS), parasagittal (PS), and
transthalamic planes.

B. Preprocessing

The process of skull localization starts by identifying several
axial slices in the fetal head. These slices are those forming
the middle region of the volume (above and below the middle
slice, i.e., the transthalamic plane). We then process each slice
independently to find the skull as described in Section II-C. We
then check if the detected 2-D skull contours on the selected
slices are consistent (i.e., long enough and with similar angles).

Fig. 2. Preprocessing, skull detection and brain region extraction (skull strip-
ing). (a) List of 2-D axial slices forming a fetal 3-D volume. (b) Generic axial
slice of a fetal brain at 23 weeks. (c) Output of the amplitude on the axial slice in
Fig. 2(b). (d) Output of the local phase for Fig. 2(b). (e) Skull template example.
(e) Extracted brain region using the template in Fig. 2(e) on Fig. 2(b).

Fig. 2(a) and (b) shows a stack of slices and a representative
slice, respectively.

Prior to extracting the skull (and hence the midline), we derive
the 3-D monogenic signal [19] representation for each volume.
Using the monogenic signal is a powerful tool to deal with the
appearance inhomogeneities inherent to ultrasound data, which
make relying on intensities a hard problem [20]. The monogenic
signal of an image I(x, y, z) is defined as

IM (x, y, z) = (
Ib (x, y, z) , h1 (x, y, z) ⊗ Ib (x, y, z) ,

h2 (x, y, z) ⊗ Ib (x, y, z) ,

h3 (x, y, z) ⊗ Ib (x, y, z)
)

, (1)

where Ib (x, y, z) = b (x, y, z) ⊗ I (x, y, z) is the band-passed-
filtered image by the Gaussian derivative filter b (x, y, z) [21]
and ⊗ denotes the convolution operation. From the monogenic
signal, local energy (or amplitude) A (x, y, z) and local phase
ϕ (x, y, z) can be derived as

A =
√

I2
b + (h1 ⊗ Ib)

2 + (h2 ⊗ Ib)
2 + (h3 ⊗ Ib)

2 (2)
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Fig. 3. Brain (red) and midline (green) localization. (a) 2-D fetal brain axial
slice of a fetus at 27 weeks. (b) Detection of the brain region and the midline
for Fig. 3(a).

and

ϕ = arctan
(

Ib/

√
(h1 ⊗ Ib)

2 + (h2 ⊗ Ib)
2 + (h3 ⊗ Ib)

2
)

.

(3)
The local energy provides a filtered version of the original

image, resulting in a visible reduction of the speckle pattern and
a clearer edge definition (i.e., skull). The local phase represents
structural image information and one of its key properties is
that it is invariant to contrast. Hence, local phase determines the
type of a feature, whereas local energy determines that there is
a feature at one particular pixel. A feature is defined for points
of local phase congruency [22]. Fig. 2(c) shows the output of
the amplitude on one 2-D slice and Fig. 2(d) shows the local
phase corresponding to the same image. The local phase is used
to enhance the visibility of the midline inside the brain as a long
approximately straight line.

C. Skull and Brain Localization

To find the skull on a 2-D axial brain image, several skull
templates were constructed at different sizes to cover a range of
fetal gestational ages. Fig. 2(e) illustrates one of the templates
used within the framework. We then compute the normalized
cross-correlation (NCC) between the output of the amplitude
[see Fig. 2(c)] of the 2-D image and each skull template. The
template which has the maximum NCC response is used to
localize the brain region by masking the 2-D original ultrasound
image, amplitude image and local phase image by the best-
matched template of the brain. An extracted brain region is
shown in Fig. 2(f) after skull stripping.

Note that the masking does not have to be exact, since we
want to retain only the midregion of each slice containing the
midline. In further processing, voxels outside the brain regions
are neglected and the ones inside the skull are only used for MS
and PS plane localization.

D. Midline Localization

Having found the brain region, the next task is to locate the
midline. The midline or falx is a structure that appears in the
middle of the brain separating the left and right hemispheres.
It is typically seen as a bright line in the middle of each brain
ultrasound axial slice as in Fig. 3. To find the MS plane, one
needs to locate the midline on several slices and then find the
plane matching the midline on these slices.

We used the Hough transform to locate the midline on each
axial slice of an enhanced amplitude image, called AE , and
defined as AE = A × ϕ, where A and ϕ are defined as in (3) and
(4), respectively. We enhanced the amplitude image with local
phase information because we found that due to the low contrast
of ultrasound, speckle, shadows and attenuation of signal, the
midline does not always have a strong signal but is locally
ridge-like. This corresponds to local phase values of π/2 and
3π/2, for ridges going up or down, respectively. Multiplying the
amplitude image by the local phase image enhances the structure
of interest and the visualization of the midline is clearer.

The output of this step is the longest line found on every 2-D
slice within the brain volume as illustrated in Fig. 3. However,
the longest line on some slices does not necessarily represent the
midline since some slices contain several structures that appear
bright within the region of interest. This might lead to finding
incorrect lines on some slices. To handle this, we select lines as
follows. We first keep the longest 12 lines from all slices (this
number was experimentally chosen). We then find the median
angle amongst these lines. The lines whose angles have a small
difference with respect to the median angle are retained and the
others rejected. The output of this step is a line on a few brain
slices corresponding to the brain midlines. An example of the
detected midline is shown in Fig. 3(b) as a green line.

E. Midsagittal Plane Detection

Having found one line on each of the axial slices in a subset
of the volume, we compute all points on every line as p_line(x,
y, z). We then fit a plane to pass through all the line points on
the retained axial slices. We use least-squares-fitting to compute
the plane normal to these points. The output of this step is an
MS plane normal and a location on the plane. This is used
later within the RF technique to compute distance features from
voxels to the MS plane in each volume.

III. CONSTRAINED RF FOR PARASAGITTAL PLANE FINDING

A. Problem Description

Given a 3-D fetal ultrasound scan, the midsagittal plane is
detected as described in Section II. The goal now is to use
the fetal brain volume and the midsagittal plane to locate the
parasagittal plane. We propose a machine learning method to
solve this problem. The method is based on the RF technique.
In the training stage, a set of 3-D training images with their
corresponding manual planes are used to build the forest. In our
formulation, we can generate a training example for each voxel.
A training example for voxel vi has the following form:

vi → {f1 , f2 , f3 , . . . , fn} , d = (dx, dy , dz ) .

Here, fj is a feature computed for the voxel vi . n is the total
number of possible features. d = (dx, dy, dz) is a distance vec-
tor which represents the continuous class label for the training
example. d is the perpendicular distance between vi and the
manual PS plane. The PS plane is represented as three param-
eters for the normal vector and three parameters to represent a
point on the plane. We compute d as in [12].



2168-2194 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/JBHI.2015.2435651, IEEE Journal of Biomedical and Health Informatics

YAQUB et al.: PLANE LOCALIZATION IN 3-D FETAL NEUROSONOGRAPHY FOR LONGITUDINAL ANALYSIS OF THE DEVELOPING BRAIN 5

The list of training examples from several ultrasound volumes
alongside their continuous class labels are used to train an RF
model. The forest is then used to test unseen ultrasound volumes.

B. Sampling Informative Voxels

During the RF training on image volumes, millions of features
need to be computed on typically millions of examples (voxels
in our case). RF is responsible for finding the best set of features
to build each tree. Although many of the training examples are
noninformative, RF treats all training examples equally during
training. During a node split in the forest, an objective function
is optimized over all training examples which reached that node.
If several of these examples are noninformative, the objective
function could fail to find a good split. As a result, this could
create weaker trees and hence a weaker forest which means
lower regression accuracy. Additionally during testing of an
unseen volume, relying on all testing examples (voxels) to vote
for plane parameters could potentially yield erroneous results
because many voxels are noninformative.

We only sample voxels from inside the brain since we extract
the brain region (see Section II). This allows us to exclude all
voxels from outside the brain that do not necessarily contain
meaningful information. In fact, due to the existence of mater-
nal tissues and the appearance heterogeneity outside the fetal
brain region, voxels from outside the brain are misleading to the
learning algorithm. Therefore, we restrict the learning algorithm
to utilize brain voxels only to locate the PS plane.

We also propose a technique which finds the informative
voxels within the fetal brain and uses their strength to weigh
their influence during tree training and testing. We present
a solution to overcome a common problem observed in ma-
chine learning in ultrasound of otherwise generating a sub-
optimal RF because of the existence of many noninformative
voxels.

An informative voxel is a voxel that is discriminative within its
neighborhood. Here, we use feature asymmetry (FA) to highlight
informative voxels motivated by its successful application to 3-
D echo feature enhancement and detection, such as [23], [24].
FA is computed as

FA =
1
N

∑
s

�|odds | − |evens | − Ts�√
odd2

s + even2
s + ε

(4)

where even = Ib , odd = (h1 ⊗ Ib , h2 ⊗ Ib , h3 ⊗ Ib), �.� sets
to zero the negative values, s represents the scale, N is the
total number of scales considered, ε is a constant used to avoid
division by zero (typically ε = 0.01), and Ts is an orientation
independent threshold that controls the spurious responses to
noise at scale s [22]. FA computes the step edge strength at
a specific voxel and provides a value in the range [0, 1], thus
providing a direct measure of the strength at a specific voxel.
The region-of-interest (ROI) highlighted in red in Fig. 4 shows
an area with speckle texture while the ROI highlighted in green
shows an area containing fetal brain structures (part of the falx).
Most importantly, even within areas of apparent weak image
appearance (red ROI in Fig. 4); FA identifies the voxels which

Fig. 4. Localization of informative voxels. Blue ellipse represents the brain
region which we sample from. Red is an ROI with less informative voxels while
green is an ROI with highly informative voxels. Ultrasound slice of a fetal brain.
Corresponding FA image. Corresponding magnified regions from the 2-D slices.

may be discriminative. Fig. 4 motivates the choice of using FA
measure to represent voxels informative strength.

We use FA to create stronger trees during training by: 1)
masking out all voxels which have FA measure below a specific
threshold and 2) using the FA value to weight the importance
of each training example when finding a splitting score in a tree
node.

The traditional function that is optimized is

arg min err =
∑
v∈S

(z − z̄)2 −
∑

i∈{L,R}

∑
v∈S i

(z − z̄)2 (5)

where z is the variable that defines the optimal split of a training
set. Instead, we normalize the traditional variable by the FA
measure, i.e., z′ = z

FA . Note that we divide rather than multiply
since we are minimizing an objective function. We find the best
split of a training set S (v is a training example) to left (L) and
right (R), denoted (SL and SR ). z̄ is the mean value of z for all
training points reaching a specific tree node.

C. Feature Sets

Careful selection of features is an important part in any ma-
chine learning algorithm. In the medical image analysis litera-
ture, several types of features have been used [11], [17], [18],
[25]–[29]. In this study, we use traditional appearance features
which have shown promising results in other medical imaging
domains [17], [29]. However, because of the complexity of our
problem, we propose a constrained distance feature set to aid
appearance features when localizing the PS plane.

1) Appearance Features: Appearance features are computed
within a neighborhood of each voxel. We deploy features like
voxel intensity, mean intensity within a cuboid and difference of
mean intensity of two cuboids. These types of features have been
successfully used in related classification and RF applications
and showed promising results [17], [29].

2) Constrained Distance Features: The use of appearance
features within RF creates a learner which works well if image
appearance is clear and not ambiguous. However, in ultrasound
imaging this is not always the case as previously discussed. To
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Fig. 5. Number of volumes used for each gestational age considered within
this study.

address this issue we introduce a geometric constraint expressed
as a distance feature to help constrain the RF training. This type
of feature embeds the perpendicular distance between the voxel
of interest and the midsagittal plane. Given the midsagittal plane
normal n = (nx , ny , nz ), a point on the plane p = (px ,py ,pz )
and a point in space v = (vx , vy , vz ), the perpendicular distance
D between v and the plane parameterized by n and p can be
expressed as

D = |n · w| / |n| where w = v − p. (6)

This feature clusters training examples depending on their
distance from the midsagittal plane. However, this distance fea-
ture alone is not sufficient to capture the variability of plane
appearance in different fetuses especially when dealing with
different gestational ages. Therefore, it is important to incorpo-
rate both appearance and distance features inside the RF and to
let the optimization of the objective function choose a feature
at a specific depth depending on its ability to split the training
points properly.

D. Localizing the Parasagittal Plane

In the testing stage, the informative voxels in a test image
traverse the trees until each voxel ends up in a leaf. Only voxels
that reach confident leaves are allowed to vote for the output
plane parameters. The confidence level is measured using the
variance of the training examples that reached a specific leaf
during training. The mean parameters of all informative voxels
reaching confident leaves are used to output the final plane pa-
rameters by fitting a mean plane which represents the estimated
parasagittal plane position.

IV. EXPERIMENTAL SETUP

A. Dataset and Manual Annotation

161 3-D fetal brain ultrasounds between 23 and 33 weeks
of gestation from normal fetuses were acquired with a Philips
HD9 ultrasound machine [5]. These fetal brain volumes were
not acquired specifically for our study but for standard fetal
biometry, and hence were not optimized to our application. The
number of volumes used in each gestational week is presented
in Fig. 5. Volumes vary in size but they are approximately (250
× 250 × 200) voxels. There were no specific settings used to
acquire the 3-D images because these images were acquired for

a clinical study [5] and before the start of our analysis study. We
did not use volumes for fetuses older than 33 weeks because this
study was set up to correlate to neonatal scans of preterm babies,
and the age range of interest was until 33 weeks of gestation, as
these are defined to be more critical than later on.

The quantitative evaluation reported in this paper is more ex-
tensive than in our earlier work [14]. Two clinicians participated
in the evaluation by manually selecting the PS and MS planes.
Clinician 1 manually localized the PS plane twice to derive in-
traobserver variability. Clinician 2 manually localized the PS
plane once to investigate interobserver variability. Our model
was trained by the second manual localization of the PS planes
performed by the clinician 1. A strict protocol to find the PS
plane was defined prior to manual selection of planes. Manual
localization of the MS plane was carried out once to allow us to
investigate the accuracy of detecting this plane automatically.

B. Evaluation Measures

To evaluate the accuracy of plane-finding, two evaluation
metrics were used. The first is the angular distance between the
manual and the detected planes defined as

θ = cos−1 nm .nd

|nm | |nd |
(7)

where nm is the normal to the manually defined plane and nd

is the normal to the automatically found plane. The angular dis-
tance provides insight into how close two planes are in the 3-D
space but does not take into consideration their line of intersec-
tion - two planes may have a small angle between them but their
intersection can be far outside the brain which means the error
in diagnostic plane finding is large. To circumvent this problem,
we include, as a second evaluation metric, the Euclidian distance
between the centers of the manual and the automatic PS planes.
Since the fetal brain appears approximately in the middle of the
volume in most cases (given this requirement is part of the scan-
ning protocol), the distance metric expresses how far the center
of the two planes are from each other. The smaller the distance
and angle, the higher the accuracy. In addition, we measured the
angle between the manual and automatic MS planes as well as
the distance between the center of the MS plane to the center of
the volume.

To evaluate the PS plane localization, we report six compar-
isons: 1) manual-to-manual plane agreement, which includes
intra and interexpert plane comparison; 2) manual-to-automatic
plane agreement with the RF trained on appearance features
only; 3) manual-to-automatic plane agreement using the RF
trained on appearance features only but constrained by the
use of informative voxels (CRF-FA); 4) manual-to-automatic
plane agreement using RF trained on all examples but con-
strained by automatic MS plane distance features (CRF-Dist);
5) manual-to-automatic plane agreement using RF constrained
by the use of informative voxels and automatic MS plane
distance features (CRF-FA-Dist-A); and finally, 6) manual-to-
semiautomatic plane agreement using RF constrained by the use
of informative voxels and manual MS plane distance features
(CRF-FA-Dist-M).



2168-2194 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE
permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information:
DOI 10.1109/JBHI.2015.2435651, IEEE Journal of Biomedical and Health Informatics

YAQUB et al.: PLANE LOCALIZATION IN 3-D FETAL NEUROSONOGRAPHY FOR LONGITUDINAL ANALYSIS OF THE DEVELOPING BRAIN 7

Fig. 6. Distribution of distances for the manual MS planes (x-axis) and the
automatic MS planes. The distance is measured as the distance between the
center of the volume to the center of the plane.

C. Implementation Details

We performed three-fold cross-validation to ensure that every
volume is included in testing. In all experiments we optimized
the method parameters on the classic RF and fixed them for the
proposed RFs to allow a fair comparison. We used 15 trees with
a maximum depth of 20. We optimized 300 candidate features
during node creation. We set the FA threshold to 0.2 to allow, as
much as possible, informative voxels during the training stage.
In addition, when comparing multiple FA thresholds, visual
inspection showed that the chosen threshold provides a suitable
spread of voxels in different images. This implies informative
voxels from inside the brain were selected during the training
and testing stages. We used the 3-D Gaussian derivative [21] of
scaleσ, as a filter to compute FA [see (4)] and we experimentally
set the scales to σ = 4 Finally, we used the C# language to build
the methods in a parallel fashion.

V. RESULTS

A. MS Plane Localization

We compared the manual MS planes to the automatically
generated ones. The mean angle between the two was found to
be 5.6 ± 2.6 °. Although the angle between two planes provides
an insight on how close they are to each other, it does not pro-
vide a physical distance between them. Therefore, we measured
the distance between the center of the volume and the center of
the manual and automatic MS planes. Fig. 6 shows the corre-
lation between the manual and automatic distances. The mean
of the absolute difference between the manual and automatic
distances is 2.1 ± 1.9 mm. The correlation coefficient between
the distances is 0.83 (p-value < 0.005).

B. Manual to Manual PS Plane Localization

The first two rows in Table I show the mean angle and distance
between the manual planes localized by the same clinician (M-
M intra) and by two clinicians (M-M inter), respectively. M-M
intra reflects the intraobserver variability in detecting the PS
plane while M-M inter evaluates the interobserver variability.

C. Automatic PS Plane Localization

Table I presents the mean and standard deviation of angles
and distances between different PS plane localization methods.

TABLE I
MEAN ± STANDARD DEVIATION OF ANGLES AND DISTANCES

BETWEEN PLANES

Angle (°) Distance (mm)

M-M Intra 6.8◦ ± 2.6 8.6 ± 4.5
M-M Inter 10.7◦ ± 4.1 11.0 ± 4.4
M-RF 16.9◦ ± 7.8 12.5 ± 4.1
M-CRF-FA 11.2◦ ± 4.0 11.1 ± 3.9
M-CRF-Dist 11.1◦ ± 4.2 11.1 ± 3.6
M-CRF-FA-Dist-M 9.3◦ ± 3.3 9.5 ± 3.8
M- CRF-FA-Dist-A 10.3◦ ± 3.7 10.2 ± 4.0

M-M intra is manual to manual planes localized by the same clinician. M-M
inter is manual to manual planes localized by two clinicians. M-RF is manual
to automatic planes (localized by the traditional RF method). M-CRF-FA is
manual to automatic planes (localized by the RF method that is trained using
informative examples). M-CRF-Dist is manual to automatic planes (localized
by the RF method that is constrained by the automatic MS plane). M-CRF-
FA-Dist-M is manual to automatic planes (localized by the RF method that is
trained on informative examples and constrained by the manual MS plane).
M-CRF-FA-Dist-A is manual to automatic planes (localized by the RF method
that is trained on informative examples and constrained by the automatic MS
plane).

Fig. 7. Distribution of angles and distances on all fetal volumes for the dif-
ferent RFs with respect to the fetal gestational age.

The best result is achieved using the semiautomatic technique
CRF-FA-Dist-M; this is the constrained RF which is trained on
informative examples and distance features from the manual MS
planes. The automatic version of this (CRF-FA-Dist-A) achieves
comparable results while being automatic. To investigate the
effect of gestational age on the localization of the PS plane,
Fig. 7(a) shows the distribution of angles between manual and
automatic methods at all gestational ages we have. We also
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Fig. 8. Visual comparison between the three manual PS planes (a)–(c) and
the automatic ones (d)–(h) on one fetal brain volume. Manual 1 and manual 2
were localized by clinician 1 while manual 3 was generated by clinician 2. (a)
Manual 1. (b) Manual 2. (c) Manual 3. (d) RF. (e) CRF-FA. (f) CRF-Dist. (g)
CRF-FA-Dist-M. (h) CRF-FA-Dist-A.

present in Fig. 7(b) the distribution of distances for the proposed
methods. Finally, Fig. 8 shows the PS planes localized manually
and by the proposed methods for visual comparison.

VI. DISCUSSION

A. Importance of the Preprocessing

Since the quality of the ultrasound images suffers from several
issues like shadowing, weak edges, speckle, we have employed
the monogenic signal to create suitable features for analysis.
This is not a major new contribution to this paper as this form of
preprocessing has been done before. However, it is an important
step which contributes to the success of our method.

B. MS Plane Localization

We presented an automatic method to detect the MS plane
in 3-D ultrasound images of the fetal brain. We first locate the
skull and extract the brain region. We then localize the midline
at several slices. Midlines at several brain slices are then used
to fit the best plane which represents the estimated MS plane.
Evaluation results confirm that we can detect the MS plane with
high accuracy.

C. Automatic PS Plane Localization

As shown in Table I and Fig. 7, the classic RF struggles to
perform well especially at later gestations. The use of informa-

tive voxels and voxels within the brain (CRF-FA) improves the
PS plane localization results compared to the conventional RF.
Adding the newly proposed MS plane distance feature (CRF-
Dist) also improves localization over the classic RF. However,
both CRF-FA and CRF-Dist are still less accurate than the
interobserver manual planes agreement. On the other hand,
combining both ideas (CRF-FA-Dist-A) not only improves the
localization accuracy but also provides better localization than
the interobserver variability obtained by two clinicians.

The best proposed method is CRF-FA-Dist-M; however, it
is semiautomatic. In addition, it is marginally better than its
automatic equivalent (CRF-FA-Dist-A). Therefore, taking into
account its accuracy and no need for user interaction, CRF-FA-
Dist-A is the most promising method of all.

Note that in Fig. 7, the accuracy of the localization of the PS
plane decreases with increased gestational age. This is mainly
because fetal brains of later gestation are bigger and therefore
the thalamus and its surrounding structures are larger in size and
hence present more room for localization errors. In fact, if we
compare our previous work in [14] with our current study, we
find that the localization accuracy in [14] using CRF-FA-Dist-M
is better than here since that paper used a smaller gestational age
range (23–27 weeks) and smaller number of fetal brain volumes
(87 volumes).

VII. CONCLUSION AND FUTURE WORK

This paper introduces for the first time an automatic method
to localize the PS plane in 3-D ultrasound volumes of the fetal
brain. This is a very difficult task for a sonographer to do well.
Results show that the automatic method provides more precise
and reproducible PS planes than the interexpert variability be-
tween two clinicians.

One way to possibly improve the MS plane localization would
be to detect the midline on axial and coronal slices and then fit
the best plane between these. This could provide a more accurate
orientation of the MS plane since it is detected using different
views. The improvement on the MS plane detection could also
improve the PS plane detection as suggested by Table I where
best results were obtained with manual MS plane detection in
the main algorithm.

Although we showed that finding the PS plane is important
to facilitate the measurement of the thalamus, the PS plane
contains several other structures which would be interesting to
assess in the future, such as the lateral ventricle wall and choroid
plexus. In addition, we applied our method to volumes from one
ultrasound machine, but the method is generalizable to images
from other ultrasound machines and potentially other imaging
modalities (e.g., MRI). Finally, to validate the utility as a tool for
biomarker assessment, a thalamic area comparison on manual
and automatic planes needs to be investigated. This is the subject
of future clinical work.
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