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Abstract. Uncertainty is one of the most important concept in financial mathematics ap-

plications. In this paper we review some important aspects related to the application of

entropy-related concepts to option pricing. The Kullback-Leibler information divergence and
the informational energy introduced by Onicescu are the main tools investigated in this pa-

per. We highlight a necessary condition that must be verified when obtaining the probability

distribution minimising the Kullback-Leibler information divergence. Deriving a probability
distribution by optimising the information energy has some pitfalls that are discussed in this

paper.
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1. Motivation

1.1. Entropy Probabilistic Concepts in Finance. In probability and statistics,
several entropy-related concepts have been successfully defined and applied, start-
ing with the Shannon entropy as described in [Shannon, 1948], then the Kullback-
Leibler information divergence measure, introduced by [Kullback and Leibler, 1951]
and [Kullback, 1959]. The principle of maximum entropy has been used to define
a new family of estimators that can be applied with limited dependent data, when
the usual estimation principles like maximum likelihood and least squares fail, see
[Csiszar, 1991], [A. Golan and Miller, 1996]. Quite often entropy optimisation meth-
ods are designed in conjunction with moment matching conditions. A modern ap-
proach to inference problems, including stochastic inverse problems, can be found in
[Judge and Mittelhammer, 2012].

In Economics and Finance the entropy related concepts found a natural bedrock of
applications and problems for which they offered an elegant solution. Early consider-
ations were described in [Theil, 1967], arguable the first one to draw a line between
economics and information theory and [Georgescu-Roegen, 1971], who made a link be-
tween economics and physics for environmental economics. [Buchen and Kelly, 1996]
and [Stutzer, 1996], who were among the first to derive thew maximum entropy dis-
tribution of an asset inferred from option prices.

[Avellaneda et al., 1997], [Avellaneda, 1998] advocated calibrating volatility sur-
faces using the relative-entropy minimization principle. [Bariviera et al., 2016] used
the complexity-entropy causality plane to detect an abnormal movement of LIBOR
series around the 2007 crisis.
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In a series of papers, [Gulko, 1999a, Gulko, 1999b, Gulko, 2002], Les Gulko refor-
mulated some of the most important ideas related to efficient market hypothesis, bond
option pricing and stock option pricing. He showed that Black-Scholes-type formulae
reappear under a new set of assumptions based on maximum-entropy formalism.

This paper is structured as follows. In section 2 we describe the modelling set-up
for option pricing and the mathematical problem that must be solved in order to
derive the probability distribution to be used for option pricing. Our contribution is
discussed in section 3. The section 4 contains the main conclusions and some relevant
ideas of further research in this area.

2. Modelling set-up

2.1. The Kullback-Leibler Information Divergence. One of the most famous
measures of discrimination of information between two probability measures, or more
applied, two probability density functions, is the Kullback-Leibler information di-
vergence defined in [Kullback, 1959] and [Kullback and Leibler, 1951]. An axiomatic
derivation of this measure has been proposed by [Tunaru, 1992].

For a continuous random variable X that may be associated with two probability
distributions P and Q, the Kullback-Leibler information divergence is defined by the
formula

I(P ;Q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx (1)

where p and q are the probability densities of the probability measures P and Q with
respect to the Lebesgue measure1.

2.2. The Optimisation Problem. From a financial mathematics point of view we
consider a traded asset with the price process denoted generically by S. Since we
are mainly concern with one-period modelling we consider that S0 is the value of the
asset now2 at time t0 and we need to evaluate the price of a contingent claim contract
paying only at fixed maturity T > 0 the payoff Ψ(ST ). We assume that we are in
a competitive Arrow-Debreu economy and we consider that there is a sequence of
values St1 , St2 . . . , Stn observed in the past, so tn < tn−1 < . . . t1 < t0. Hence, today
the analyst has an empirical probability density distribution g constructed from the

observed returns series given by Ri = ln
(
Sti−1

Sti

)
for all i ∈ {1, . . . n}. We can assume

without loss of generality that t0 ≡ 0 and that the frequency interval of observation
ti−ti−1 = T . This is necessary such that information scaling effects on the probability
distributions are captured correctly.

The investor is interested in finding out the probability distribution f of ST in
order to determine the price of the payoff Ψ(ST ) now, at time t0 ≡ 0. Since the party
in the financial contract that is selling, i.e. that will have to make the payment Ψ(ST )
at maturity T , will need to take into consideration a wide range of possible scenarios,
the density f should reflect the maximum degree of uncertainty.

As it is common in finance we assume that we know S0, the volatility parameter
σ > 0 that is the standard deviation of RT and p(0, T ) the price of a zero-coupon

1Given the applied nature of this paper we can safely assume that for all practical purposes all
probability spaces are endowed with the Lebesgue measure.

2Without reduction of complexity we can assume that t0 = 0.
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bond price with maturity T . Moreover, we shall assume that the market representative
agent’s belief of the distribution of feasible values of the final asset price ST is fully
characterised by maximum uncertainty.

Thus, here we generalise the entropy pricing theory proposed by [Gulko, 1999b]
and we shall assume that the market agent’s beliefs on ST are encapsulated into the
probability density f(RT ) with the support of all states given by D, that can be either
the entire line R or a smaller interval. [Gulko, 1999b] uses the Shannon entropy H(f)
as a measure of market pricing uncertainty. One criticism that can be brought about
this measure is that it ignores completely valuable information from the past about
the asset price returns R. We would like to identify the probability density f of the
future return/state price ST given the current knowledge of the empirical distribution
g(RT ). Our proposed solution is to use the Kullback-Leibler information divergence to
define an improved measure of market uncertainty. Therefore, extending the entropy
option pricing principle in [Gulko, 1999b], we propose

Assumption 2.1. The market uncertainty index at a future time T > 0 about RT
is given by

J(f ; g) = −
∫ ∞
−∞

f(RT ) ln
f(RT )

g(RT )
dRT (2)

Clearly J(f ; g) = −I(f ; g). Since I(f ; g) has been used to define the Principle of
Minimum Discrimination Information (MDI) which in few words works like this: based
on the arrival of new information, a new distribution f is selected such that is the
closest possible to the original distribution g. In order to maintain a parallel approach
with [Gulko, 1999b] we would like to maximize J(f ; g) which is equivalent to minimize
I(f ; g). We are searching for the probability density f that maximizes J(f ; g), or
equivalently minimize I(f ; g), subject to some externally imposed conditions provided
by Finance theory. The problem we would like to solve is given in the following
proposition.
Problem: At time zero assuming that we know S0, r, p(0, T ), σ2 the minimum infor-
mation deviance probability density f(RT ) solves the problem

min
f
I(f ; g) (3)

subject to ∫ ∞
−∞

f(RT )dRT = 1 (4)

f(RT ) > 0 ∀RT > 0 (5)

Ef (RT ) = µ (6)

varf (RT ) = σ2 (7)

The optimisation problem above has the objective
∫∞
−∞ f(RT ) ln f(RT )

g(RT )dRT which is

a convex functional on the convex set of probability densities defined over (−∞,∞).
In order to solve this problem one can use use calculus of variations for optimisa-

tion of functionals as described in [Luenberger, 1969]. [Friedman et al., 2010] applied
the above framework to distribution identification from a large family of skewed gen-
eralized t distribution proposed in finance by [Theodossiou, 1998].
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3. Financial Applications of Informational Measures

3.1. Option Pricing by minimisation of the Kullback-Leibler divergence
measure.

Proposition 3.1. The distribution minimizing the information divergence given by
the Kullback-Leibler functional I(f;g), and that satisfies the conditions∫ ∞

−∞
f(RT )dRT = 1 (8)

f(RT ) > 0 ∀RT (9)

Ef (RT ) = µ (10)

Ef (R2
T ) = σ2 − µ2 (11)

has a gaussian kernel.

The proof is based on the calculus of variations for optimisation of function-
als described in [Luenberger, 1969]. To this end, as in [Avellaneda, 1998], see also
[Borwein et al., 2003], consider the dual problem described by the Lagrangian opera-
tor

L(f(RT ), λ1, λ2) = I(f ; g) + λ1

(
µ−

∫ ∞
−∞

RT f(RT )dRT

)
+

+ λ2

(
σ2 − µ2 −

∫ ∞
−∞

R2
T f(RT )dRT

)
+ λ0

(∫ ∞
−∞

f(RT )dRT − 1

)
+

∫ ∞
−∞

f(RT )ψ(RT )dRT

that has the Lagrange multipliers λ1, λ2, λ0, ψ. The dual problem is

max
λ,λ0,ψ

min
f
L(f(RT ), λ1, λ2) (12)

which is a concave problem in parameters λ1, λ2 and ψ.
The solution to our optimisation problem is given by those values of parameters

λ1, λ2 and ψ coming out of the Euler-Lagrange equation

∂L
∂f

+
d

dRT

(
∂L
∂f ′

)
= 0 (13)

Remarking that the operator L(f,RT ) is independent3 of the derivative f ′ =
df(RT )
dRT

, the Euler-Lagrange equation is

ln f + 1− ln g − λ1RT − λR2
T + λ0 + ψ(RT ) = 0 (14)

Using now the Karush-Kuhn-Tucker conditions leads to set ψ(RT ) = 0 and after the
probability density normalising condition we get the solution

f(RT ) =
g(RT ) exp

[
λ0 − 1 + λ1RT + λR2

T

]∫∞
−∞ g(x) exp [λ0 − 1 + λ1x+ λx2]dx

(15)

This solution by design also satisfies the positivity constraint (9) and probability
density normalisation (8). Furthermore, since for any fixed g the functional I(f ; g) is

3Tacitly we are assuming that the probability density f is smooth enough such that f ′ does exist
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a convex functional over the convex set of probability densities defined over the real
set R, it follows that the probability density given in (15) is a global optimiser.

The family of distributions described by (15) encompasses the family of gaussian
distributions, for example when g is a constant, but it is much more general. While
the case of entropy maximization subject to moment constraints has been well-studied
in the literature such that we know that if only the first moment is fixed then the
distribution that maximizes the entropy is the exponential distribution, and when
the first two moments are fixed is the gaussian distribution, one cannot draw simi-
lar conclusions when trying to minimize the Kullback-Leibler information divergence
measure. The reference probability distribution g is complicating things.

Given the general form arrived at in (15) we can try to prove the existence of a so-
lution and study the uniqueness of this solution. Based on (15) the conditions (8),(10)
and (11) are written as

H0(λ0, λ1, λ2) ≡
∫ ∞
−∞

g(x)eλ0−1+λ1x+λ2x
2

dx = 1 (16)

H1(λ0, λ1, λ2) ≡
∫ ∞
−∞

xg(x)eλ0−1+λ1x+λ2x
2

dx = µ (17)

H2(λ0, λ1, λ2) ≡
∫ ∞
−∞

x2g(x)eλ0−1+λ1x+λ2x
2

dx = σ2 − µ2 (18)

For reasons that will become clear immediately we assume that the distribution
we are searching for has finite moments up to order four, that is m3 and m4 exists
and they are finite. Following an idea from [Calin and Udriste, 2014], denoting by ∆

the determinant det
(
∂Hi

∂λj

)
i,j∈{0,1,2}

, by Inverse Function Theorem, the system (16)

has a unique solution when ∆ 6= 0. Observe now that

∂H0

∂λ0
=

∫ ∞
−∞

g(x)eλ0−1+λ1x+λ2x
2

dx = 1 (19)

∂H0

∂λ1
=

∫ ∞
−∞

xg(x)eλ0−1+λ1x+λ2x
2

dx = µ

∂H0

∂λ2
=

∫ ∞
−∞

x2g(x)eλ0−1+λ1x+λ2x
2

dx = σ2 − µ2

∂H1

∂λ0
=

∫ ∞
−∞

xg(x)eλ0−1+λ1x+λ2x
2

dx = µ

∂H1

∂λ1
=

∫ ∞
−∞

x2g(x)eλ0−1+λ1x+λ2x
2

dx = σ2 − µ2

∂H1

∂λ2
=

∫ ∞
−∞

x3g(x)eλ0−1+λ1x+λ2x
2

dx = m3

∂H2

∂λ0
=

∫ ∞
−∞

x2g(x)eλ0−1+λ1x+λ2x
2

dx = σ2 − µ2

∂H2

∂λ1
=

∫ ∞
−∞

x3g(x)eλ0−1+λ1x+λ2x
2

dx = m3
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∂H2

∂λ2
=

∫ ∞
−∞

x4g(x)eλ0−1+λ1x+λ2x
2

dx = m4

Thus, the condition ∆ 6= 0 is equivalent to the condition

(σ2 − µ2)[(σ2 − µ2)2 − 2µm3] 6= m4σ
2 −m2

3 (20)

This condition is a necessary condition for the existence and uniqueness of the distri-
bution with minimum Kullback-Leibler divergence and it is less known in the option
pricing and calibration financial mathematics literature.

Another important observation regarding the solution (15) is that, when g ≡ 1,
the solution obtained belongs to the gaussian family. Given that the mean and vari-
ance are fixed from conditions (10) and (11), it follows that the Kullback-Leibler
uncertainty maximised, or minimum divergence, distribution is N(µ, σ2). This will
automatically imply a lognormal distribution for the underlying variable ST given by
the parameters µ and σ. Hence E(ST ) = exp

(
µ+ σ2/2

)
.

Hence, we were able to arrive at a solution describing a Black-Scholes world, with-
out the assumptions of a Black-Scholes model, no continuous-time model for the
underlying asset, no requirement of a complete market [Bjork, 2009]. This approach
may prove very useful in the context of real options where the underlying asset is
only observable but no tradeable. For example, if ST is the value of a real-estate
index, one can observe the values for ST but will not be able to buy and sell that
index. Similarly, ST could be a weather index difference– again not tradable but only
observable–, or it could be the GDP of a country.

In addition, it works similarly in a multidimensional set-up, preserving the gaussian
distribution that is closed under marginalisation and conditioning. Hence, the solu-
tions found under the Kullback-Leibler uncertainty maximization will be consistent
across different dimensions.

When the underlying index is tradeable some identifications or comparisons can be
made. Notice that the mean condition over the returns space RT will lead to the the
well-known martingale condition Ef [ST p(0, T )] = S0 for asset pricing [Bjork, 2009],

only when µ = ln(1/p(0, T ))− σ2

2 . Then the Kullback-Leibler uncertainty maximised
distribution will coincide with the risk-neutral distribution derived under a complete
market defined by the Black-Scholes model. In that case, σ2 = σ2

BS(T − t).

3.2. Multivariate set-up. Furthermore, if now RT ∈ Rd, that is we work in a
multivariate set-up, with d underlying asset having the vector of returns RT =

(R
(1)
T , . . . , R

(d)
T ) then our problem to recover the distribution f(RT ) that minimizes

the Kullback-Leibler divergence measure

min I(f ; g) = min

∫
Rd

f(RT ) ln
f(RT )

g(RT )
dRT (21)

subject to the conditions ∫
Rd

f(RT )dRT = 1 (22)

f(RT ) > 0 ∀RT (23)

Ef (RT ) = µ (24)

COV ARf (RT ) = Σ (25)
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again has a solution given by the multivariate gaussian distribution

f(Rd) ∝
1√

det(Σ)
exp

[
−1

2
(RT − µ)>Σ−1(RT − µ)

]
(26)

as proved by [Kapur, 1989].

3.3. Option Pricing by Minimising the informational energy. An informa-
tional energy concept was introduced by [Onicescu, 1966], see also [Perez, 1966]. The
information energy associated with a probability density p is defined by the functional

IE(p) =

∫ ∞
−∞

p2(x)dx (27)

It is known that IE is a convex functional and it is invariant under measure preserving
transformations. Overall it has similar properties to the Shannon entropy and it has
been introduced as a measure of randomness of a probability system. A discussion
based on an axiomatic approach is discussed in [Theodorescu, 1977].

For the purposes of applications to finance one can assume without reduction of
generality that the probability density behind the model is continuous. Furthermore,
if one is also prepared to accept that the tails of the distribution given by p decay to
zero asymptotically one can prove, see [Calin and Udriste, 2014], the following result:

Proposition 3.2. If p is a probability density function on R such that it satisfied
both conditions:
(1) p is continuous
(2) limx→±∞ p(x) = 0

then IE(p) =
∫∞
−∞ p2(x)dx <∞.

[Gulko, 1999b] suggested that one may aim to work with the information energy
functional defined in (27), although he has not called it on its name, as an alternative
to entropy optimisation. In this case the problem we need to solve is

min
f

∫ ∞
−∞

f2(RT )dRT (28)

subject to ∫ ∞
−∞

f(RT )dRT = 1 (29)

f(RT ) > 0 ∀RT (30)

Ef (RT ) = µ (31)

Ef (R2
T ) = σ2 − µ2 (32)

One can proceed again by Lagrangian optimisation.

L(f(RT ), λ1, λ2) = IE(f) + λ1

(
µ−

∫ ∞
−∞

RT f(RT )dRT

)
+ λ2

(
σ2 − µ2 −

∫ ∞
−∞

R2
T f(RT )dRT

)
+ λ0

(∫ ∞
−∞

f(RT )dRT − 1

)
+

∫ ∞
−∞

f(RT )ψ(RT )dRT
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that has the Lagrange multipliers λ1, λ2, λ0, ψ. The dual problem is

max
λ,λ0,ψ

min
f
L(f(RT ), λ1, λ2) (33)

which is a concave problem in parameters λ1, λ2 and ψ.
We need to solve out the Euler-Lagrange equation

∂L
∂f

+
d

dRT

(
∂L
∂f ′

)
= 0 (34)

The operator L(f,RT ) is independent of the derivative f ′ = df(RT )
dRT

, the Euler-
Lagrange equation is

2f + 1− λ1RT − λ2R2
T + λ0 + ψ(RT ) = 0 (35)

From the Karush-Kuhn-Tucker conditions we can impose ψ(RT ) = 0. Then the
probability density function, up to a normalising constant, is given by

f(RT ) ∝ 1

2

[
λ1RT + λ2R

2
T − 1

]
(36)

The problem here is that conditions (29) and (30) would be impossible to be
satisfied given that the support of the sought probability distributions is R. The
solution comes from a more accurate interpretation, from a theoretical point of view
of the underlying random variable RT . Since this variable represents the percentage
return of the underlying stock price ST , the minimum value of this variable is clearly
-1. The maximum value is mathematically infinite but financially it is also upper
bounded, albeit the exact value of the upper bound B may not be known. Therefore,
we should search for distributions having support in an interval [−1, B], where B > 0
is a very large number. Then

f(RT ) ∝
1
2

[
λ1RT + λ2R

2
T − λ0

]∫ B
−1

1
2 [λ1x+ λ2x2 − λ0] dx

(37)

This is achieved by considering the Lagrangian operator

f(x) →
∫ B

−1
L(f(x), x)dx

=

∫ B

−1
f2(x)dx− λ0

[∫ B

−1
f(x)dx− 1

]

−λ1

[∫ B

−1
xf(x)dx− µ

]

−λ2

[∫ B

−1
x2f(x)dx− (σ2 − µ2)

]

Denoting by δ2 ≡ σ2 − µ2, in short notation the Lagrangian operator is given by

L(f, x) = f2 − λ0(f − 1)− λ1(xf − µ)− λ(x2f − δ2)

Hence, requiring that ∂L
∂f = 0 leads to the equation

2f − λ0 − λ1x− λ2x2 = 0
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from which one obtains the solution (37).
The λ parameters are obtained from the moment conditions. Thus, the parameters

λ are the solution to the following system of linear equations
λ0(B + 1) + λ1

2 (B2 − 1) + λ2

3 (B3 + 1) = 2

λ0
B2−1

2 + λ1

3 (B3 + 1) + λ2

4 (B4 − 1) = 2µ

λ0
B3+1

2 + λ1

4 (B4 − 1) + λ2

5 (B5 + 1) = 2δ2

This solution will have a unique solution if and only if the following determinant is
different from zero ∣∣∣∣∣∣

B + 1 1
2 (B2 − 1) 1

3 (B3 + 1)
1
2 (B2 − 1) 1

3 (B3 + 1) 1
4 (B4 − 1)

1
3 (B3 + 1) 1

4 (B4 − 1) 1
5 (B5 + 1)

∣∣∣∣∣∣ (38)

Since the coefficient of the highest order B9 of this determinant is 0.0004629 we can
conclude that for large enough B the above determinant is positive. However, how
large B should be depends on a case by case basis.

4. Conclusions and Further Research

One of the main challenges linked to the entropy methods describing maximization
of uncertainty is to work with a dynamic stochastic process rather than a one-period
probability distribution. One possibility would be to maximize the uncertainty along
a path, obtain a price, and then average all prices similarly to a Monte Carlo approach.

The multi-dimensional case also needs to be revisited. An equivalent condition
to (20) should be derived for the multi-dimensional case.

Onicescu’s information energy is also used to define a dependency concept that
considers the similarity between the probability distributions of two random variables.
This concept has not been used in financial mathematics so far and it should be
researched in the future.
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