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ABSTRACT  

Schistosomiasis is a debilitating neglected tropical disease, caused by flatworms of Schistosoma 

genus. The treatment relies on a single drug, praziquantel (PZQ), making the discovery of new 

compounds extremely urgent. In this work, we integrated QSAR-based Virtual Screening (VS) 

of S. mansoni thioredoxin glutathione reductase (SmTGR) inhibitors and high content screening 

(HCS) aiming to discover new antischistosomal agents. Initially, binary QSAR models for 

inhibition of SmTGR were developed and validated using the Organization for Economic Co-

operation and Development (OECD) guidance. Using these models, we prioritized 29 

compounds for further testing in two HCS platforms based on image analysis of assay plates. 

Among them, 2-[2-(3-methyl-4-nitro-5-isoxazolyl)vinyl]pyridine and 2-(benzylsulfonyl)-1,3-

benzothiazole, two compounds representing new chemical scaffolds, have activity against 

schistosomula and adult worms at low micromolar concentrations and therefore, represent 

promising antischistosomal hits for further hit-to-lead optimization. 

  

KEYWORDS: schistosomiasis, thioredoxin glutathione reductase, quantitative structure-activity 

relationships, computer-assisted drug design, whole-organism phenotypic assay, high-content 

screening. 
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INTRODUCTION 

Schistosomiasis is a neglected tropical disease caused by flatworms of the genus Schistosoma. 

These worms cause a chronic and often debilitating infection that impairs development and 

productivity, and exposure to these worms is strongly linked to extreme poverty.1–4 Recent 

estimates of World Health Organization suggest that around 258 million people are infected 

resulting up to 200,000 deaths annually. Currently, schistosomiasis is endemic in 78 countries 

worldwide, mainly in sub-Saharan Africa, the Middle East, the Caribbean, and South America, 

where infections are mediated through poor knowledge about the disease, poor sanitation, and 

lack of effective health policies.5  

In the absence of a vaccine, the control of schistosomiasis relies on a single drug, praziquantel 

(PZQ), which has been used in clinical practice for almost four decades.6  However, because of 

high incidence of reinfection, the widespread and repeated use of this drug in endemic areas 

raises concerns about the development of drug resistance by the parasite.7–11 This problem is 

further emphasized by the known lack of efficacy of PZQ against juvenile worms,12 which is a 

potential cause of treatment failure in endemic areas. Hence, there is an urgent need for new anti-

schistosomal drugs with novel mechanisms of action. 

The complete genome sequencing of S. mansoni,13,14 S. japonicum,15 and S. haematobium16 has 

provided new information on their biological pathways, identifying potentially relevant targets 

for therapeutic intervention.17 Thioredoxin glutathione reductase (TGR) is one of these targets; it 

plays a crucial role in the redox homeostasis of the parasite.18 TGR is a multifunctional enzyme 

that acts in the detoxification of reactive oxygen species (ROS) generated by digestion of red 

blood cells19,20 and by the host immune system.21,22 In mammalian cells there are two major 

systems to detoxify ROS, one is based on glutathione (GSH) and the other is based on 
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thioredoxin (Trx). In both systems, NADPH provides reducing equivalents via two specialized 

oxidoreductase flavoenzymes. Glutathione reductase (GR) reduces glutathione disulfide (GSSG) 

and drives the GSH-dependent systems, whereas Trx reductases (TR) are pivotal in the Trx-

dependent system. On the other hand, in schistosomes, thiol redox homeostasis is completely 

dependent on TGR, which controls the NADPH reduction of GSSG and Trx in both systems.23–25 

Given these characteristics, it is expected that the maintenance of the homeostatic levels of Trx 

and GSH in schistosomes play a key role in a variety of cellular processes, such as defense 

against oxidative stress, DNA synthesis, detoxification, protein folding and repair.26 Moreover, 

RNA interference studies have showed that inactivation of TGR of S. mansoni (SmTGR)18 and 

TGR of S. japonicum (SjTGR)27,28 has profound effects on worm survival rates both in culture 

medium and infected mice.  

Due to the importance of TGR in parasite's redox balance, we hypothesized that known 

SmTGR inhibitors listed on publicly available databases may serve as the chemical basis to 

discover new anti-schistosomal compounds by Virtual Screening (VS). Docking-based and 

pharmacophore-based approaches are the most popular VS strategies to identify putative hits in 

chemical libraries. However, in recent years, quantitative structure activity relationships (QSAR) 

models have been used widely in VS applications as well.29–35  

The main goal of this study was the identification of new structurally dissimilar compounds 

with high anti-schistosomal activity. To achieve this goal, we designed a study with the 

following steps: (i) collection, rigorously curation, and integration of the largest possible dataset 

of SmTGR inhibitors; (ii) development of rigorously validated and mechanistically interpretable 

binary QSAR models; (iii) application of generated models for VS of 3 subsets from 

ChemBridge library (~ 150,000 compounds); (iv) interpretation of developed models to derive 
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structural rules useful for targeted design of new inhibitors; and (v) experimental validation of 

prioritized/designed hits on live schistosomula and adult worms in two distinct HCS platforms. 

As a result of this study, we found that the QSAR models were efficient for prediction of new 

SmTGR inhibitors and identified six novel anti-schistosomal hit compounds active against 

schistosomula and three hits active against adult worms. Among them, two hits, 2-[2-(3-methyl-

4-nitro-5-isoxazolyl)vinyl]pyridine (3) and 2-(benzylsulfonyl)-1,3-benzothiazole (4), 

representing new chemical scaffolds structurally dissimilar to known inhibitors of S. mansoni, 

could be considered as promising anti-schistosomal agents. 

RESULTS AND DISCUSSIONS 

Dataset Balancing. Initially, thousands compounds with SmTGR inhibition data were 

retrieved from the PubChem Bioassay database (AID: 485364) and used to build binary QSAR 

models. Further, un-curated chemical structures were standardized, duplicates were removed, 

and 2,854 compounds with reproducible potency (IC50) ≤ 10 μM were considered as inhibitors, 

whereas the remaining 337,327 compounds were considered as non-inhibitors. Because the 

original dataset was highly unbalanced, i.e., 2,854 inhibitors and 337,327 non-inhibitors (1:118 

ratio), it is not recommended building binary QSAR models for the entire data set. During model 

building, most machine learning methods need equal weighting of the classes in terms of both 

the number of instances and the level of importance (i.e., active class has the same importance as 

inactive class). Consequently, when trying to predict a minority class in an unbalanced dataset, 

machine learning methods are prone to assign most samples to the majority class, resulting in a 

large number of erroneous predictions for minority class.36 



 6 

To reduce the number of the non-inhibitors and ideally maintain the “chemical space” of the 

original dataset, we evaluated the optimal number of representative compounds. To accomplish 

this task, we developed an under-sampling workflow based on k-nearest neighbors (kNN) 

distances of the each non-inhibitor to all inhibitors using the public available 166 substructures 

MACCS keys. We tested different sizes of the dataset by removing non-inhibitors, and changing 

the inhibitors-to-non-inhibitors ratios of 1:1 (balanced), 1:2, and 1:3.  

In order to visualize the structural diversity of our dataset before and after balancing, we 

performed a principal component analysis (PCA). PCA transforms the original measured 

variables into new orthogonal variables called principal components, which are a linear 

combination of the original variables. Detailed results of structural diversity investigation are 

shown in Figure S1 (Supporting Information). The top two principal components retained 20% 

of the original information. Figure S1A represents the PCA plot of 2,854 inhibitors (blue dots) 

vs. all 337,327 non-inhibitors (grey dots). As we can see, the inhibitors are widely distributed 

across chemical space, reflecting significant chemical diversity. Figures S1B-D show the non-

inhibitors selected with different ratios: 1:1 or 2,854 non-inhibitors, Figure S1B; 1:2 or 5,705 

non-inhibitors, Figure S1C; and 1:3 or 8,562 non-inhibitors, Figure S1D. As we can see from the 

distribution of these dots, the most representative compounds were chosen that allowed minimal 

reduction of the original chemical space.  

Performance of Individual QSAR Models. The balanced (ratio of 1:1) and unbalanced 

datasets (ratios of 1:2 and 1:3) were modeled by a combination of AtomPair,37,38 MACCS39–41 

and Morgan fingerprints,38,42 chemistry development kit (CDK)43, and Dragon descriptors44,45 

along with eight machine learning methods leading to 120 different binary QSAR models 

(Tables S1, S2, and S3, Supporting Information). According to the statistical results of an 5-fold 
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external cross-validation procedure, we could draw three general conclusions: (i) random forest 

(RF), support vector machine (SVM), and gradient boosting machine (GBM) methods showed 

the best prediction ability among the eight tested machine learning methods; (ii) QSAR models 

built on balanced datasets are better than unbalanced (1:2 and 1:3 ratios) due to discrepant values 

between sensitivity (SE) and specificity (SP); the latter are prone to assign most samples as non-

inhibitors, resulting in a large number of erroneous predictions; and (iii) the QSAR models 

which were built from the balanced dataset showed a high level of agreement between correct 

classification rate (CCR), SP, and SE values. Table 1 shows the detailed performances of the 

more predictive QSAR models derived from the balanced dataset. 

Table 1.  Summarized statistical characteristics of QSAR models developed with balanced 

dataset. 

Model CCR k SE SP Coverage 

Morgan–RF 0.85 0.71 0.85 0.86 0.62 

MACCS–RF 0.83 0.66 0.83 0.83 0.67 

AtomPair–SVM 0.81 0.62 0.81 0.81 0.65 

AtomPair–GBM 0.81 0.62 0.81 0.81 0.65 

Dragon–SVM 0.85 0.70 0.85 0.84 0.69 

Dragon–GBM 0.85 0.70 0.85 0.84 0.69 

CDK–SVM 0.84 0.69 0.85 0.84 0.77 

Consensus 0.87 0.74 0.87 0.88 1.00 

Consensus rigor 0.91 0.81 0.96 0.87 0.38 

RF: Random Forest; SVM: Support Vector Machine; GBM: Gradient Boosting Machine; CCR: 

correct classification rate; k: Cohen’s kappa coefficient; SE: sensitivity; SP: specificity. 

Consensus and consensus rigor models were built by averaging the predicted values from the 

individual model for each machine learning technique (Morgan–RF, MACCS–RF, AtomPair–

SVM, Dragon–SVM, and CDK–SVM). 

 

The combination of Morgan fingerprints with RF (Morgan–RF), MACCS key with RF 

(MACCS–RF), AtomPair fingerprints with SVM (AtomPair–SVM) and GBM (AtomPair–

GBM), Dragon descriptors with SVM (Dragon–SVM) and GBM (Dragon–GBM), and CDK 
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descriptors with SVM (CDK–SVM) led to more predictive QSAR models, with correct 

classification rate (CCR) ranging between 0.81–0.85 and coverage of 0.62–0.77 (Table 1). The 

best individual model was built using the combination of Morgan–RF (CCR = 0.85, SE = 0.85, 

and SP = 0.86).  

To assure that the accuracy of the models was not due to chance correlation, 10 rounds of Y-

randomization were performed for each dataset (Table S4). The results from this analysis (CCR 

values around 0.50) indicate that our models built using balanced dataset are statistically robust.  

Performance of Consensus Models. Several individual QSAR models were generated using 

multiple machine learning algorithms and descriptors/fingerprints. However, our previous 

experience suggests that consensus models that combine individual QSAR models are 

advantageous46–49 and naturally minimize prediction errors during a VS campaign. Therefore, 

consensus models were built by averaging the predicted values obtained after combining the 

individual models built using the balanced dataset. The detailed performances of 12 consensus 

models are given in Table S5. Among them, the consensus model built by combining the 

Morgan–RF, MACCS–RF, AtomPair–SVM, Dragon–SVM, and CDK–SVM (Tables 1 and S5, 

Supplementary Information) showed the best performance among all constructed consensus 

models (CCR = 0.87, SE = 0.87, and SP = 0.88). This consensus model discriminates inhibitors 

and non-inhibitors better than any of the individual QSAR models, with a 2% of increase in 

CCR, SE, and SP when compared with the best individual model (Morgan–RF).  

In addition, the most rigorous consensus model (consensus rigor)46 was built by combining 

five individual models with more restrictive conditions. A consensus rigor model only considers 

the outcome to be reliable when a compound was inside the applicability domain (AD) for the 

five models. If the compound was outside the AD for any model, then the outcome was specified 
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as unreliable. Expectedly, the combination of Morgan–RF, MACCS–RF, AtomPair–SVM, 

Dragon–SVM, and CDK–SVM models (Tables 1 and S5) also showed the best performance 

among all built consensus rigor models (CCR = 0.91, SE = 0.96, and SP = 0.87). In summary, 

the best consensus rigor model demonstrated better statistical results, with a 5% of increase in 

CCR, and 11% of increase in SE when compared with the best individual model (Morgan–RF). 

Although the AD of consensus rigor is limited only for certain chemical classes (coverage of 

0.38), it has very high predictive power (CCR = 0.91). 

Model interpretation. The Morgan-RF model exhibited the best predictive performance, and, 

consequently, it possesses the features that are best correlated with SmTGR inhibition activity. 

Therefore, we translated its features (fingerprints) into predicted probability maps (PPMs) and 

visualized the atomic and fragment contributions predicted by the QSAR model (Figures 1 and 

2). Atoms and fragments promoting the inhibition are highlighted by green (Figure 1); atoms and 

fragments decreasing the inhibitory potential are highlighted by purple (Figure 2) and gray lines 

(Figures 1 and 2) delimit the region of split between the favorable and the unfavorable 

contributions.50  
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Figure 1. Favorable fragments (green) for SmTGR inhibition predicted by the best individual 

QSAR model and their respective frequencies in inhibitors and non-inhibitors sets.  
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Figure 2. Unfavorable fragments (purple) for SmTGR inhibition predicted by the best individual 

QSAR model and their respective frequencies in inhibitors and non-inhibitors sets.  
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Analyzing the fragments with favorable contributions highlighted by PPMs, we noticed that 14 

fragments were more frequent in the inhibitors set and absent in the non-inhibitors set (Figure 1). 

Examples of favorable fragments for SmTGR inhibition activity are nitrofuran, 2-ethenylfuran, 

(ethanesulfonyl) benzene, 2-(sulfonylmethyl) furan, carbonyl thiourea, and 4-methanesulfonyl-

1,3-oxazole. By analyzing the fragments with unfavorable contribution into SmTGR inhibition 

activity (Figure 2), several fragments such as benzylsulfonamide, methylurea, morpholine-4-

carbonyl, piperidine-4-carboxamide, 1-methanesulfonylpiperidine, and cyclohexanecarbonyl, 

were more frequent in the non-inhibitors set. Compounds that contain these fragments may show 

a decreased SmTGR inhibitory activity. This information could be useful for designing or 

optimizing new SmTGR inhibitors by replacing unfavorable fragments by favorable fragments. 

Reaction Mechanism of SmTGR Inhibition. Although the inhibition mechanisms of most of 

the SmTGR inhibitors are not well understood at the molecular level, the reaction mechanisms by 

which oxadiazole-2-oxides and cephalosporins operate could be identified according to a 

graphical interpretation of PPMs. However, for the best understanding of molecular inhibition 

mechanisms, it is important to highlight that the active site of SmTGR is composed by a cysteine 

pair (Cys28/Cys31) in the glutharedoxin domain, a cysteine pair (Cys154/Cys159) in the 

thioredoxin domain, and a redox-active cysteine/selenocysteine pair (Cys596/Sec597) in the C-

terminal tail. The latter should be highly mobile to accept electrons from the Cys154/Cys159 pair 

and to donate electron pairs to Cys28/Cys31 pair.24 These amino acids provide the perfect 

chemical environment for covalent inhibition. The higher nucleophilicity and low pKa of the 

selenol group of Sec are thought to confer Sec a catalytic advantage over Cys at the attacking 

position.51–53 Nonetheless, the thioredoxin domain contains His571 and Glu576, a catalytic dyad 
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that can facilitate proton abstraction of Cys159 thus impacting the catalytic efficiency of the 

thioredoxin domain of SmTGR.24  

We observed that the carbons 3 and 4 of the oxadiazole-2-oxide core presented the most 

important contributions for SmTGR inhibition activity (Figure 3A−C). With PPMs information 

for this chemotype, a mechanistic rationale for inhibition was initiated through nucleophilic 

attack (presumably by a thiolate or selenoate of Cys or Sec, respectively) at either the position 3 

or 4 of the oxadiazole ring and subsequent rearrangement of the heterocycle in a manner that 

allows release of the nitroxyl anion. An enzymatic oxidation is posited to transform this agent to 

nitric oxide (Figure 3D). These pieces of information corroborate with mechanism of inhibition 

proposed by Rai and colleagues54 and mechanism of nitric oxide release in physiological solution 

under the action of thiols studied by Gasco and colleagues55 In addition, PPMs indicated that the 

presence of amine-oxide group in core and electron-withdrawing substituents, such as carbonyl, 

at R1 and R2 positions  are favorable for SmTGR inhibition (Figure 3A), while removal of the 

amine-oxide group (Figure 3B) and presence of electron deficient substituents at R1 and R2 

positions (Figure 3C) leads to modest potencies in terms of SmTGR inhibition. These pieces of 

information corroborate with structure-activity relationships rules established by Rai and 

colleagues.54 
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Figure 3. Predicted probability maps generated for oxadiazoles (A, B, and C) and their proposed 

reaction mechanism in the SmTGR active site (D). 

The reaction mechanism by which cephalosporins exert their SmTGR inhibition activity was 

also proposed using the PPMs information (Figure S2A, Supporting Information). For both 

compounds, the PPMs picked up the positive contributions of the basic core structure of 

cephalosporines, more specifically carbon 8 and nitrogen 5 of β-lactam ring, and partially 

positive contribution of 1-methyl-5-tetrazolethione core for inhibition of SmTGR. Based on these 

results, we suggest that inhibition of SmTGR by cephalosporins may occur via a mechanism 

similar to proposed by Triboulet and colleagues,56 i.e., a nucleophilic attack of Cys or Sec on β-

lactam carbonyl carbon, with formation of a tetrahedral intermediate, which collapses with β-

lactam ring opening by N5-C8 bond fission. Then, the acyl-enzyme intermediate could hydrolyze 

or react further, with expulsion of the 1-Methyl-5-tetrazolethione from carbon 3, generating a 

reactive methylene that could be trapped by other thiolate or selenoate (Figure S2B, Supporting 

Information). 
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QSAR-Based Virtual Screening. The QSAR-based VS was carried out following the 

workflow presented in Figure 4. Initially, 150,000 compounds available on PremiumSet, 

DIVERSetTM-CL, and DIVERSetTM-EXP libraries of ChemBridge were downloaded and 

prepared for VS. As drug-like ligands are highly desirable for the development of new leads with 

good oral bioavailability, we first filtered these libraries and excluded 1,285 compounds that 

violated Veber57 and Lipinski’s rules.58 The remaining compounds were predicted by the 

consensus and consensus rigor models. To narrow down the compounds list and to obtain the 

highest level of confidence for each prediction, we took both the consensus score (average class 

prediction) and consensus model coverage into consideration. Consensus model coverage was 

defined as a fraction of individual models for which a compound was found to fall within the 

respective ADs. In that sense, introducing probability cutoffs can lead to predictions with higher 

confidence. Therefore, only putative hits with an average class number prediction of 1.0 and 

consensus model coverage over 50% were selected (470 putative hits). In addition, we removed 

compounds with previous bioactivity data reported against SmTGR or S. mansoni and pan-assay 

interference compounds (PAINs)59,60 so that selected compounds would be novel SmTGR 

inhibitors and contain no PAINs structures. Finally, the compounds were evaluated by predicting 

a panel of properties including high aqueous solubility (CIQPlogS),61 acceptable binding to 

human serum albumin (QPlogKhsa),61 acceptable brain/blood partition coefficient (QPlogBB),61 

non-blocking or weak blocking of hERG channel,46,47 absence of carcinogenicity and 

hepatotoxicity.32 At the end of the VS workflow, 29 putative hits were visually inspected and 

acquired for biological evaluation (Table S6, Supporting Information). 
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Figure 4. QSAR-based VS workflow used for identifying new compounds active against S. 

mansoni. 

Ex vivo Activity Against Schistosomula. Compared to target-based VS approaches, the 

traditional whole-organism schistosome screening approach (phenotypic screening) is an old but 

indispensable method to discover new anti-schistosomal agents. This phenotypic approach may 

be used to validate if the predicted SmTGR-inhibitor interaction has anti-schistosomal activity. 

Moreover, a validated compound from a phenotypic assay must have been able to reach its target 

within the assayed organism only after crossing several biological membranes and resisting to 

degradation by detoxification enzymes. Hence, a hit coming from a phenotypic screen has much 

more biological value than one coming from a simple biochemical assay. Advances in automated 



 17 

microscopes, liquid handling systems and computer-based image analysis programs have 

enabled the development of high-throughput phenotypic assays with cells or small whole 

organisms, a technique known as high-content screening (HCS).62,63 HCS microscopes are able 

to capture high resolution images of live organisms in quick succession, a feature that has been 

explored to evaluate phenotypic and motility changes in schistosomula64 or adult worms.65,66 

Therefore, we employed a HCS assay to evaluate the biological activity of the selected 

compounds from virtual screening against the S. mansoni schistosomula. Assaying against this 

larval stage is commonly used as an initial screening step in antischistosomal drug discovery 

campaigns67–72 since schistosomula are easier to obtain in larger numbers than adult worms. Of 

the 29 compounds tested against schistosomula, six were declared confirmed actives based on 

motility and phenotype scores at 20 µM after 48h of exposure (Table S6). The chemical 

structures of the six primary hits are shown in Figure 5.  

 

Figure 5. Chemical structures of six priority hits selected for further follow up. 
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Following the initial screening on schistosomula, the six primary hits were selected for 

determining half-maximal motility concentration (EC50) at 0.31–20 µM range (Table 2 and 

Figure S3). Among primary hits, 1,2-dimethoxy-4-(2-nitrovinyl)benzene (1), 1-(4-iodophenyl)-

3-(4H-1,2,4-triazol-3-ylthio)-2,5-pyrrolidinedione (2), 3-[(4-acetylphenyl)amino]-1-(2-thienyl)-

1-propanone (5), and 3-(2-furyl)-1-phenyl-1H-pyrazole-4-carbonitrile (6) only showed inhibition 

activity at the highest tested concentration (>20 µM). On the other hand, 2-[2-(3-methyl-4-nitro-

5-isoxazolyl)vinyl]pyridine (3) and 2-(benzylsulfonyl)-1,3-benzothiazole (4) showed efficacy in 

the same range of activity of the reference drug PZQ (EC50 = 1.90 µM), with EC50 values of 3.23 

µM and 2.62 µM, respectively. This is an important feature for a new anti-schistosomal drug 

since modern lead discovery pipelines prioritizes compounds that possess bioactivity across the 

entire developmental cycle of the parasite in the mammalian host.73,74 

Table 2. Biological activity data for hits of interest.  

Compound 
Schistosomula 

EC50 (µM) 

Adult EC50 (µM) 
WSS-1 CC50 (µM) Papain IC50 (µM) 

Male Female 

1 >20 29.8 5.77 17.48 >100 

2 >20 10.2 17.9 133.40 >100 

3 3.23 6.43 5.68 16.38 >100 

4 2.62 21.1 4.91 28.49 >100 

5 >20 N.D. N.D. N.D. N.D. 

6 >20 N.D. N.D. N.D. N.D. 

PZQ 1.90 0.22* 0.64 >400 N.D. 

N.D. – not determined. * EC50 values produced for adult male after 72 h of exposure. WSS-1 

human kidney epithelial cells were used to evaluate cytotoxicity. 
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Analysis of Phenotypic Profile. Compounds 3 and 4 promoted the internal disruption of 

larvae as evidenced by the appearance of multiple vacuoles as well as the rounding and 

darkening of the schistosomula (Figure 6). In order to evaluate if schistosomula response profile 

towards hits resemble those observed in the presence of known anti-schistosomal drugs (OLT, 

PZQ, dihydro-artemisinin, methyl-clonazepam, Ro15-5458, and oxamniquine), we applied a 

Bayesian treatment class model using phenotype scores.64 This analysis indicated a shared target 

and/or mechanism of action between OLT and hits, and therefore, all six hits were classified as 

OLT-like compounds. At least in part, these results could be related to SmTGR inhibition since 

OLT has already been identified as a noncompetitive inhibitor of this enzyme. It is also 

important to note that these phenotypic profile has been also observed after SmTGR gene 

knockout.18 

 

Figure 6. Phenotypes of schistosomula exposed for 48h to 0.625 % DMSO (control, A), 20 µM 

of 4 (B), and 10 µM of PZQ (C) and OLT (D). The outlines represent the position of each 

parasite over 5 time points (11s interval). 
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Ex vivo Activity on Adult Worms. Our next step was to investigate if the compounds 

identified as hits for schistosomula also had an effect on adult S. mansoni worms.65,66 Therefore, 

we employed a new HCS platform recently developed by our group that allows for systematic 

evaluation of gender-, dose-, and time-dependent drug effects on individual male and female 

parasites by measuring over 100 image features related to worm motility and morphology. 

Previously, we have demonstrated the successful application of this platform in identification of 

potent antischistosomal hit compounds.65,66 In this study, four compounds (1−4) were screened at 

0.1−100 µM concentrations for incubation times varying from 0h (immediately after compound 

addition to culture medium) to 72h.  

Inspection of the measured features suggested that at least three features were able to 

distinguish active from inactive compound concentrations or the DMSO control: the 

Overlap_RandIndex feature, which is related to motility, the intensity and the area of the 

identified worm object. Figure 7 shows a 3D plot of these relevant features for individual female 

worms exposed to the investigated compounds at 20 µM concentration as well as for the PZQ 

and negative control (treated with 0.1% DMSO) after 48h incubation. The sample images are 

shown to exemplify the phenotypes that can be captured by these features. In general, the feature 

most correlated to the antischistosomal activity of these compounds was the Overlap_RandIndex, 

which roughly measures the difference in worm position from one time-lapse frame to the next 

and is inversely proportional to worm motility in a scale varying from 0 to 1. For simplicity, we 

hereafter refer to this feature as the “motility score”. 
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Figure 7. 3D scatter plot of the top three image features correlated to antischistosomal activity of 

the investigated compounds on female S. mansoni worms after 48 drug exposure. Each point in 

the graph represent a well/condition in the assay. Sample images are shown for selected wells to 

illustrate the different phenotypes captured by these three parameters (Object Area; Mobility 

Score; and Pixel Intensity of the worm object). The green outlines represent the position of each 

parasite over 5 time points (3s interval) overlaid on the initial position (red outline). 

In order to determine the potency of the hit compounds against adult worms with the reference 

drug PZQ, we have determined EC50 values from dose response curves against male and female 

worms with varying incubation times (Table S7 and Figure S7, Supporting information). 

Compounds showed motility inhibition potencies against adult worms ranging from 4.91 to 35 

M, depending on incubation time and gender (Table 2). Overall, inhibition was fully achieved 

after 48h of incubation (Table 2). Compound 3 was the most active with EC50 around 6.00 M 
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for both genders. Compounds 1 and 4 showed satisfactory potencies (<10 µM) for females 

worms, with EC50 = 5.77 M and 4.91 M, respectively, but not for male worms. Compound 2 

was the less potent with EC50 values of 10.2 and 17.9 for male and female, respectively. Despite 

the satisfactory potencies displayed, all compounds had a less pronounced effect on adult worms 

than PZQ at all incubation times (EC50 values ≤ 0.66 μM, see Table S2). Results also indicated 

that female worms and schistosomula are slightly more sensitive to compounds action since they 

showed on EC50 values up to 5−8 times lower than those determined in males. In part, this could 

be due to a gender-specific expression pattern of SmTGR and immature antioxidant system of the 

schistosomula. In fact, schistosomula express lower levels of SmTGR than adults, which make 

them more susceptible to oxidative damage caused by inhibitors.75,76 

Cytotoxicity Against Human Cells. Compounds 1−4 and PZQ were further evaluated for its 

cytotoxicity against human epithelial cells (WSS-1) from human kidney using a resazurin-based 

viability assay (Table 2). PZQ showed the lowest cytotoxicity, exhibiting half-maximal cytotoxic 

concentration (CC50) above 400 µM. Compounds 2, 3, and 4 only were cytotoxic in 

concentrations higher than those necessary for antischistosomal activity. Compound 2 was the 

least cytotoxic compound (CC50 = 133.40 µM), followed by 4 (CC50 = 28.49 µM), 1 (CC50 = 

17.48 µM), and 3 (CC50 = 16.38 µM). 

Controls for Non-specific Inhibition and Off-Target Effects. Colloidal aggregates have 

long plagued early drug discovery. When a colloid is formed, membrane and soluble proteins 

adsorb to its surface and are partially denatured, leading to nonspecific inhibition and 

occasionally activation.77,78 Therefore, adult worms were co-incubated with investigated 

compounds (at 20 µM and 100 µM) and detergent Triton X-100 (0.01%) and their 

antischistosomal effect was compared with activities obtained without detergent for excluding a 
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possible promiscuous colloidal aggregate effect. No significant differences were observed after 

comparison of inhibition activities of both groups, showing that antischistosomal activity of the 

hit compounds is related with specific inhibition (Figure S5). Further, we also investigated 

possible off-target effects of the hit compounds towards nucleophilic thiols in a papain inhibition 

assay. Again, none of the anti-schistosomal hits showed significant inhibition of papain at 100 

μM while positive control E-64 fully inhibits this enzyme at 20 µM concentration (Table 2 and 

Figure S6). 

 CONCLUSIONS 

To the best of our knowledge, this is the first study integrating QSAR-based VS and HCS 

methods to discover new anti-schistosomal agents. We have developed robust and predictive 

QSAR models for anti-schistosomal activity. Developed models were used in the most 

conservative way, i.e., in consensus fashion with the strictest AD criteria, for virtual screening of 

three ChemBrigde datasets: DIVERSetTM-CL, DIVERSetTM-EXP, and PremiumSet. As a result, 

470 putative SmTGR inhibitors were identified. Then, 29 compounds were selected and tested 

against S. mansoni schistosomula using a HCS platform and six of them showed significant 

inhibition activities at 20 µM. Among them, compounds 3 and 4 showed inhibitory effect 

equivalent to PZQ, with EC50 values around 2.50 µM. Both hits were also classified as OLT-like 

compounds, indicating a shared target with OLT, which has already been identified as an 

inhibitor of SmTGR.79 The results of gender-, dose-, and time-dependent inhibitory effect 

indicated that adult female worms of S. mansoni are slightly more sensitive than males to 

compounds action. Compounds 3 and 4 showed satisfactory potencies for female worms, with 

EC50 values around 6.00 M. Both compounds also demonstrated low cytotoxicity to WSS-1 
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mammalian cells (CC50 > 16 µM) and inhibition of papain only in concentrations >100 µM. 

Finally, both compounds represent new chemical scaffolds, which are structurally dissimilar to 

known inhibitors of S. mansoni, and thus can be considered as new hit compounds for further 

chemical optimization.  

EXPERIMENTAL SECTION 

Computational 

Dataset. The QSAR models were developed according to best practices of predictive QSAR 

modeling,80,81 which is fully compliant to Organization for Economic Co-operation and 

Development (OECD) guidance on development and validation of QSAR models, such as (i) a 

defined end point, (ii) an unambiguous algorithm, (iii) a defined domain of applicability, (iv) 

appropriate measures of goodness-of-fit, robustness, and predictivity, and (v) mechanistic 

interpretation.82 All in silico steps developed in this study were implemented in a publicly 

available KSAR workflow (http://labmol.farmacia.ufg.br/ksar). The KSAR workflow is tightly 

integrated with R and KNIME and includes many modules, such as the module for preparing the 

data, PCA, building of QSAR models, and VS.46,83 We first retrieved 359,841 compounds 

containing half maximal inhibitory concentration (IC50) data for the SmTGR enzyme from the 

PubChem BioAssay database (AID: 485364). Compounds with inconclusive IC50 results were 

considered experimental errors and thus were not included in this study to avoid noise in model 

building. A total of 2,854 out of these 359,841 compounds had reproducible potency (IC50 ≤ 10 

μM) and were considered as inhibitors, whereas the remaining 356,987 compounds were 

considered as non-inhibitors.  
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Dataset Curation. Each compound of dataset was carefully standardized according to the 

protocol proposed by Fourches and colleagues.84,85 Briefly, explicit hydrogens were added, salts 

were removed, whereas specific chemotypes such as aromatic and nitro groups were normalized 

using ChemAxon Standardizer (v.6.1.2, ChemAxon, Budapest, Hungary, 

http://www.chemaxon.com). Polymers, inorganic salts, organometallic compounds, and mixtures 

were also removed. In addition, 4,437 compounds with multiple SmTGR measurements were 

identified during analyses of duplicates. Further analysis showed high concordance (99.9%) of 

duplicated records. In addition, 345 compounds with molecular weight greater than 700 Daltons 

were removed. In the end, the prepared dataset contained 2,854 inhibitors and 337,327 non-

inhibitors. 

Molecular Fingerprints and Descriptors. Three different types of fingerprints were used in 

this study: the Morgan fingerprint, a RDKit implementation38 of the extended-connectivity 

fingerprints,42 with radius of 2 and bit vector of 1024 bits; the molecular access system 

(MACCS) structural key fingerprints;39–41 and the AtomPair fingerprints (RDKit 

implementation38 of the Carhart’s atom pairs)37 with bit vector of 1024 bits. All the fingerprints 

were calculated by the open-source cheminformatics toolkit RDKit v.2.4.0.86 A brief description 

of Morgan, AtomPair and MACCS fingerprints is available in Supporting Information. 

The Chemistry Development Kit (CDK, v.1.4.19, GNU Lesser General Public License) 

descriptors and 0-2D descriptors were calculated using the PaDEL-Descriptor program43 and 

DRAGON (v.5.5, Talete SRL, Milan, Italy) programs, respectively. The complete list of CDK 

descriptors and a detailed discussion for DRAGON descriptors can be found elsewhere.44,45 The 

descriptors matrix was then normalized and constant/near constant and highly correlated (r ≥ 0.9) 

descriptors were removed. 
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Dataset analysis and under-sampling. Because the original library was highly unbalanced 

(2,854 inhibitors and 337,327 non-inhibitors), it is not recommended building binary QSAR 

models for the entire data set. Thus, we decided to balance the dataset. Unlike the traditional 

under-sampling methods which randomly balance the dataset, our linear under-sampling strategy 

retains most of the representative structures of the non-inhibitors set, thus ensuring as high as 

possible coverage of original chemical space. The basic principle here is to measure the whole 

inhibitors matrix represented by the MACCS key fingerprints evaluating the Euclidean distance 

to the MACCS key fingerprints of each non-inhibitor using a kNN method,87 implemented in R 

software v.3.0.3.88  Then, the samples on non-inhibitors set were linearly extracted over the 

whole set by using k-distances and were used to generate balanced and partially balanced 

datasets. Finally, we generated three under-sampled datasets with inhibitor-to-non-inhibitor 

ratios of 1:1 (2,854 inhibitors and 2,854 non-inhibitors), 1:2 (2,854 inhibitors and 5,705 non-

inhibitors), and 1:3 (2,854 inhibitors and 8,562 non-inhibitors). 

Machine Learning Implementation. The building and optimization of statistically acceptable 

QSAR models requires a close combination between chemical information (i.e., fingerprints or 

descriptors) and several machine learning classifiers. For this reason, eight different machine 

learning classifiers, including the SVM with the radial basis Kernel function,89 the RF,90 GBM,91 

and partial least squares discriminant analysis (PLS-DA)92 approaches, classification and 

regression trees (CART),93 kNN with Euclidean distance,87 multi-layer perceptron (MLP),94 and 

multivariate adaptive regression splines (MARS)95 were used. All machine learning classifiers 

were implemented using the R v.3.0.3.88 A brief description about the theory of each machine 

learning method is described in Supporting Information. 
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5-fold external cross-validation.  The full dataset of compounds with known inhibition 

activities is randomly divided into five subsets of equal size; then one of these subsets (20% of 

all compounds) is set aside as an external validation set and the remaining four sets together form 

the modeling set (80% of the full set). This procedure is repeated five times allowing each of the 

five subsets to be used as external validation set. Models are built using the modeling set only, 

and it is important to emphasize that the compounds in momentary external set (fold) are not 

employed either to build or select the models. 

Applicability Domain. The AD for each descriptor or fingerprint type was estimated based on 

the Euclidean distances among the training set of each QSAR model generated in the external 5-

fold cross-validation procedure. The distance of a test compound to its nearest neighbor in the 

training set was compared to the predefined AD threshold level. If the distance was greater than 

this threshold level, the prediction was considered to be less trustworthy.96 In this study, we 

defined AD as a distance threshold DT between a compound under prediction and its closest 

nearest neighbors of the training set. It was calculated as follows: 

 

DT =  y̅ + Zσ                                                                                       (1) 

 

Here, ӯ is the average Euclidean distance of the k nearest neighbors of each compound within 

the training set, σ is the standard deviation of these Euclidean distances, and Z is an arbitrary 

parameter to control the significance level. We set the default value of this parameter Z at 0.5. 

Thus, if the distance of the external compound from all of its nearest neighbors in the training set 

exceeds this threshold, the prediction is considered unreliable.  
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Evaluation of Performance and Robustness. To access the predictive performance of the 

binary QSAR models, SE, SP, and CCR were used. These statistic metrics are calculated by the 

following equations: 

 

SE =  
TP

TP + FN
                                                                                     (2) 

 

SP =  
TN

TN + FP
                                                                                     (3) 

 

CCR =   
SE + SP

2
                                                                                  (4) 

 

Here, N denotes the total number of compounds, TP and TN represent the number of true 

positives (correct classifications of inhibitors) and true negatives (correct classifications of non-

inhibitors), respectively, while FP and FN represent the number of false positives (incorrect 

classifications of inhibitors) and false negatives (incorrect classifications of non-inhibitors), 

respectively.  

In addition to the above model evaluation metrics, Cohen’s kappa (k) was used to measure the 

agreement between model predictions and experimental data.97 This statistical parameter is 

calculated by the following equations: 

 

Pr(𝑎) =  
TP + TN

N
                                                                               (5) 

 

Pr (e) =  
(TP + FP) x (TP + FN) +  (TN + FN) x (TN + FP)

N
  (6) 
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𝑘 =  
Pr(𝑎) −  Pr (𝑒)

1 − Pr (𝑒)
                                                                            (7) 

 

Here, Pr(a) represents the relative observed agreement between the predicted classification of 

the model and the known classification, and Pr(e) is the hypothetical probability of chance 

agreement. In the end, k analysis returns values between −1.0 (no agreement) and 1.0 (complete 

agreement), but values between 0.6 and 1.0 denote that the model is predictive. Finally, to further 

assure that the robustness of the models was not due to chance correlation, 10 rounds of Y-

randomization were performed for each constructed model.  

Consensus Modeling. After the building of QSAR models using all pairwise combinations of 

different types of chemical descriptors/fingerprints and various machine learning methods, the 

best models were used for consensus modeling, which can be derived by calculating an average 

for individual models. In consensus modeling, the final predicted value for each compound is 

estimated by including an average of the predicted values from the set of QSAR models. Thus, 

the averaged predicted activity for each compound is in the [0, 1] range. Formally, compounds 

with the predicted activity higher than 0.5 are classified as inhibitors, and those with the 

predicted activity lower than 0.5 are classified as non-inhibitors. Obviously, the closer the 

average predicted value is to 1 or 0, the higher the concordance among all models and the higher 

our confidence is in the classification of compounds as inhibitors or non-inhibitors, respectively. 

Mechanistic Interpretation. To explore favorable or unfavorable structural fragments for 

SmTGR inhibition, the PPMs were generated to visualize the atomic and fragment contributions 

predicted by the best QSAR model.50  
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Virtual Screening. The purpose of VS is to identify in a library of chemicals a subset of 

compounds with the desired properties based on computational calculations. Here the 

DIVERSetTM-CL, DIVERSetTM-EXP, and PremiumSet diversity datasets taken from the 

ChemBridge database were screened to identify inhibitors of SmTGR. Prior to screening, the 

datasets were curated in the same way as modeling set (see Data Curation section) and filtered 

using the Veber57 and  Lipinski’s rules58 to obtain drug-like compounds.  Fingerprints and 

molecular descriptors were generated for all compounds and normalized (except fingerprints) 

based on the minimum and maximum values of each descriptor of the modeling set. Then, best 

consensus and consensus rigor models were used to predict the SmTGR inhibition activity of 

compounds. The prediction results were accepted only when the compound was found within the 

applicability domains of more than 50% of all models used in consensus prediction. In addition, 

to estimate the structural novelty of putative hits, we calculated the pairwise Tanimoto 

coefficients (using MACCS key fingerprints) between each screened putative hit and compounds 

in the full dataset of SmTGR inhibitors. Then, putative hits with previous bioactivity data against 

SmTGR or S. mansoni were identified and PAINS were removed using a workflow developed by 

Saubern and colleagues.98 Finally, hits were imported into Maestro workspace v.9.3 and their 

aqueous solubility (CIQPlogS), binding to human serum albumin (QPlogKhsa), brain/blood 

partition coefficient (QPlogBB) properties were predicted using QikProp v.3.461 and hERG 

inhibition, carcinogenicity and hepatotoxicity were predicted using the Pred-hERG server,46,47,99  

admetSAR server,100,101 and PaDEL-DDPredictor program,102,103 respectively. 

Experimental 

Materials. Investigated compounds were purchased from ChemBridge (San Diego-CA, USA), 

resuspended in 100% DMSO and used immediately in the assays. It is important to mention that 
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all chemical structures were confirmed using proton (1H) NMR spectra at 300/400 MHz and 

Liquid Chromatography–Mass Spectrometry (LC-MS) analysis with evaporative light scattering 

and ultraviolet detectors confirmed a minimum purity of 95% for all compounds (spectrums of 

compounds are listed in Supporting Information). DMEM and M169 media were purchased from 

Vitrocell Embriolife (Campinas-SP, Brazil). All other reagents were purchased from Sigma-

Aldrich (St. Louis-MO, USA). 

Automated ex vivo Larval S. mansoni HCS Assay. Cercarie (S. mansoni, BH strain) were 

vortexed at maximum speed for 5 minutes for tail shedding and transformation into 

schistosomula by an adapted method from literature.104,105 Briefly, schistosomula were 

resuspended in Medium 169, placed in 384 well plates (120 per well) and maintained in an 

incubator with 5% CO2 overnight before compound addition. The worms were then incubated 

with investigated compounds and PZQ at 0.31–20 µM concentrations or DMSO (0.625%). The 

effect of the compounds on schistosomula motility and phenotypes was assessed at 48h after 

compound addition using an automated Bright-field ImageXpressMicro HCS microscope (IXM; 

Molecular Devices, Wokingham, UK). For motility analysis 5 x 11 sec interval time-lapse 

images were collected using a 4x objective. For detailed morphology, a 10x objective was used 

to collect 4 adjacent images fields from within a well in order to increase the number of 

schistosomula for phenotype analysis. Analysis of both the larval phenotype and motility was 

then carried out in Pipeline Pilot 9 as described by Paveley and colleagues.64 Phenotype analysis 

of individual parasites was carried out by a two class Laplacian-modified Bayesian 

categorization analysis of 80 image descriptors which constituted shape, size, image intensity, 

and texture statistics and compared to a training set of data comprising 20,000 parasites. Motility 

analysis of individual parasites was also carried out by the average object displacement from the 
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origin point in subsequent 4x image across the time-frame series. Both the Bayesian phenotype 

and motility scores were subsequently adjusted to the control wells (DMSO treated) on each 

plate.64 

Automated ex vivo Adult S. mansoni HCS Assay. After 42-49 days post percutaneously 

infection of infant Swiss mice with 150 ± 10 S. mansoni cercariae (BH strain), animals were 

euthanized, and worms perfused from portal hepatic and mesenteric veins. Male and female 

parasites were rinsed and individually transferred into 96 well plates with complete DMEM 

media (i.e. DMEM plus 10% fetal calf serum, 2mM L-glutamine, 100 µM/ml penicillin, 100 

µg/ml streptomycin). The plates were maintained overnight at 37 °C in a humidified atmosphere 

of 5% CO2. Further, worms were then incubated up to 72h with 0.10−100 µM of selected 

compounds and PZQ or negative control DMSO at 0.1%. The effect of the compounds on adult 

worm motility or phenotype was assessed either immediately 24, 48 or 72h after compound 

addition using a newly developed HCS assay. Our method uses 100 time-lapse images captured 

every 250-300 ms with an automated bright-field microscope using a 2x objective lens 

(ImageXpress Micro XLS, Molecular Devices, CA). Subsequent quantitative image analysis 

used a custom-developed pipeline for detecting changes in parasite motility and morphology 

using the open-source CellProfiler software v. 2.1.2.106 The pipeline along with its validation will 

be thoroughly described in a subsequent publication and the pipeline itself is freely available 

(www.cellprofiler.org/published_pipelines.shtml). Briefly, our strategy for motility measurement 

was based on sequential pairwise comparison of the 100 captured time-lapse images. The 

motility measurement called “AdjustedRandIndex” is calculated by comparing worm objects 

identified on images captured at times tn and tn-1 with CellProfiler’s CalculateImageOverlap 

module. This measure ranges from 0 to 1, with 1 meaning two objects are perfectly aligned (no 

file:///C:/Users/Rafael/Desktop/Paper%20SmTGR/www.cellprofiler.org/published_pipelines.shtml
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movement). In addition to the “Overlap” mobility score, over 100 features related to size, shape, 

intensity, texture, and granularity are calculated for worm objects identified in the image analysis 

pipeline and saved in a database. These features are expected to describe different parasite 

phenotypes in response to drug exposure. 

 Cytotoxicity Assay. WSS-1 [WS-1](ATCC®CRL-2029™) epithelial cells derived from human 

kidney were grown in DMEM medium, supplemented with 4.5 g/L glucose, 50 µg/mL 

gentamicin and 10% fetal bovine serum, and seeded into 96-well microplates at 5 x 104 cells/mL. 

Twenty hours later, cells were exposed to 0.2 - 400 µM of PZQ, OLT, and LabMol compounds 

and kept under a humidified atmosphere (37°C, 5% CO2) for 48h. In order to evaluate the 

cytotoxic effects of the compounds, the fluorescent viability dye resazurin was added to each 

well at a final concentration of 0.01 mg/mL 4 hours before the end of the incubation. Resorufin 

fluorescence readings (λex = 560 nm, λem = 590 nm) were performed immediately and 4 hours 

after resazurin addition in a FlexStation 3 Benchtop Multi-Mode Microplate Reader (Molecular 

Devices, Sunnyvale, CA). The percentage of viable cell was calculated using cells treated only 

with DMSO (0.2 – 0.8%) as controls. 

Colloidal aggregation assay. Adult worms were co-incubated with compounds (at 20 µM and 

100 µM) and detergent Triton X-100 (0.01%). The, motility measurements were performed after 

48h and 72h and their antischistosomal effect was compared with activities obtained without 

detergent.  

Papain inhibition assay. Enzymatic assay was performed at 37oC in 100 mM sodium acetate 

buffer, pH 3.5. Positive control E-64 and compounds were incubated at 20 µM and 100 µM 

concentrations for 5 min with papain (5 µg/mL) and the reaction was initiated with the addition 

of 50 µM Z-FR-AMC fluorogenic peptide substrate. 
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Statistical analysis. One-way ANOVA followed by Tukey’s multiple comparisons test was 

performed using GraphPad Prism v.5.00 (GraphPad Software, La Jolla California USA, 

www.graphpad.com). The EC50 and CC50 values were determined by four parameter logist curve 

function using the same software. EC50 values obtained for adult worms were calculated using 

TIBCO Spotfire software (Boston, MA). 

Ethics Statement. Animal’s maintenance and experiments were carried out in accordance with 

the Institutional Ethics Committee for Laboratory Animal Use at the Oswaldo Cruz Foundation 

(CEUA/FIOCRUZ, Brazil; license number, L-044/15). 
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ABBREVIATIONS 

AD, applicability domain; CART, classification and regression trees; CC50, half-maximal 

cytotoxic concentration;  CDK, chemistry development kit; EC50, half-maximal motility 

concentration; FN, false negatives; FP, false positives; GBM, gradient boosting machine; GR, 

glutathione reductase; GSH, glutathione; GSSG, glutathione disulfide; HCS, high content 

screening; IC50, half maximal inhibitory concentration; kNN, k-nearest neighbors; MACCS, 

Molecular ACCess System (MACCS) keys; MARS, multivariate adaptive regression splines; 

MLP, multi-layer perceptron; NADPH, nicotinamide adenine dinucleotide phosphate; OECD, 

Organization for Economic Cooperation and Development; OLT, oltipraz; PCA, principal 

component analysis; PLS-DA, partial least squares discriminant analysis; PPMs, predicted 

probability maps; PZQ, praziquantel; QSAR, quantitative structure-activity relationships; RF, 

random forest; S. mansoni, Schistosoma mansoni; SAR, structure-activity relationships; SE, 

sensitivity; SMARTS, SMILES arbitrary target specification; SmTGR, S. mansoni TGR; SP, 

specificity; SVM, support vector machine; TGR, thioredoxin glutathione reductase; TN, true 

negatives; TP, true positives; TR, thioredoxin reductase; Trx, thioredoxin; and VS, virtual 

screening. 
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