Zinc isotopic compositions of breast cancer tissue

Electronic Supplementary Information

Fiona Larner*a,b, Laura N. Woodley^c, Sami Shousha^d, Ashley Moyes^e,

Emma Humphreys-Williams^f, Stanislav Strekopytov^f, Alex N. Halliday^a,

Mark Rehkämper^{b,f}, R. Charles Coombes^g

^aDepartment of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK

^bDepartment of Earth Science & Engineering, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK

^cExperimental Cancer Medicine Centre Network, Imperial College, Fulham Palace Road, London W6 8RF, UK

^dDepartment of Histopathology, Charing Cross Hospital, Imperial College, Fulham Palace Road, London W6 8RF, UK

^eMedical Oncology, Charing Cross Hospital, Imperial College NHS Trust, Fulham Palace Road, London W6 8RF, UK

^fDepartment of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK

^gDepartment of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK

*corresponding author: Dr Fiona Larner, Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK. +44 (0)1865 282117; fiona.larner@earth.ox.ac.uk

Isotope Mixing Calculations

The isotope composition of a pool, which is formed by mixing of two separate reservoirs (denoted as A and B), is defined by:

$$\partial^{66} Zn_{\rm C} = (\partial^{66} Zn_{\rm A} \times F_{\rm A}) + (\partial^{66} Zn_{\rm B} \times F_{\rm B}) \tag{S1}$$

where C denotes the mixture of the two pools, ∂^{66} Zn is the isotopic composition of the reservoirs, and F_X stands for the molar fraction of Zn in reservoir A or B.

As $F_A + F_B = 1$, equation S1 can be simplified to:

$$\partial^{66} Zn_{\rm C} = (\partial^{66} Zn_{\rm A} \ge F_{\rm A}) + (\partial^{66} Zn_{\rm B} \ge (1 - F_{\rm A}))$$
(S2)

A change or fractionation in isotopic composition is reported relative to the starting composition by:

$$\Delta^{66} Zn = \partial^{66} Zn_{\rm C} - \partial^{66} Zn_{\rm A} \tag{S3}$$

Equations S1 and S2 can be rearranged to determine the isotopic composition that results for a reservoir, if some fraction of Zn with a distinct isotope composition is sequestered from this pool. In our case, Zn is taken up by the tumour from the blood $(\partial^{66}Zn_{in})$, sequestered within the tumour $(\partial^{66}Zn_{seq})$, and the tumour also expels residual 'tumour-derived' Zn $(\partial^{66}Zn_{out})$:

$$\partial^{66} Zn_{out} = \left(\partial^{66} Zn_{in} - \left(\partial^{66} Zn_{seq} \times F_{seq}\right)\right) / (1 - F_{seq})$$
(S4)

As an additional complication, the initial uptake of Zn from blood into tumorous cells may occur either with or without isotope fractionation $\Delta^{66}Zn_{uptake}$.

$$\Delta^{66} Zn_{uptake} = \partial^{66} Zn_{in} - \partial^{66} Zn_{blood}$$
(S5)

If there is no isotope fractionation during Zn uptake, then $\Delta^{66}Zn_{uptake} = 0$, so that $\partial^{66}Zn_{in} = \partial^{66}Zn_{blood} \approx +0.1$ ‰.

If Zn isotope fractionation occurs during uptake, the heavy isotopes of Zn are likely transferred into the cells preferentially (see text), so that $\Delta^{66}Zn_{uptake} > 0$. This implies that $\partial^{66}Zn_{in} > +0.1$ ‰.

Once released, tumour-derived Zn (with $\partial^{66}Zn_{out}$) is subsequently mixed with the Zn already present in the reservoir to which it is expelled (e.g., white blood cells, $\partial^{66}Zn_{res}$). The isotopic composition of the resulting mixture $\partial^{66}Zn_{mix}$ can be determined by applying equation S1:

$$\partial^{66} Zn_{mix} = (\partial^{66} Zn_{out} \times F_{out}) + (\partial^{66} Zn_{res} \times F_{res})$$
(S6)

The addition of tumour-derived Zn thus produces a change in isotope composition for this reservoir, denoted $\Delta^{66}Zn_{mix}$

$$\Delta^{66} Zn_{mix} = \partial^{66} Zn_{mix} - \partial^{66} Zn_{res}$$
(S7)

Detection of tumour-derived Zn in this pool then requires that the change in isotopic composition Δ^{66} Zn_{mix}, exceeds the precision of the analytical method. In our case, this analytical threshold is conservatively estimated to be ±0.20 ‰.

A plot of Δ^{66} Zn_{mix} relative to F_{out} can be used to determine the minimum value of F_{out} that is required, so that the expelled 'tumour-derived' Zn may be detected in the diagnostic pool.

In our case, the mass balance of the system is only poorly constrained. Therefore, we calculate $\Delta^{66}Zn_{mix}$ (using equations S4 to S7) by considering a reasonable range of values for (i) the fraction of Zn sequestered by the tumour, F_{seq} (equation S4), (ii) the Zn isotope fractionation $\Delta^{66}Zn_{uptake}$ that is associated with Zn uptake by the tumour cells prior to sequestration (equation S5), and (iii) the initial isotope composition $\partial^{66}Zn_{res}$ of the diagnostic pool (equations S6, S7). The results of these model calculations are summarized in Fig. S1.

In detail, the ∂^{66} Zn for Zn in blood and sequestered in tumours is constrained by our analytical results (Fig. 1, main text) and values of +0.1 ‰ and -0.9 ‰, respectively, were used for the modelling. The isotope fractionation Δ^{66} Zn_{uptake} for transfer of Zn from blood to tumour cells (before sequestration) was varied between 0 ‰ and +1 ‰. The (molar) fraction of Zn sequestered by the tumour (F_{seq}) was assumed to be between 40 % and 80 %. Finally, values of +0.1 ‰ (equivalent ∂^{66} Zn_{blood}) and +1 ‰ were chosen for the initial isotope composition ∂^{66} Zn_{res} of the diagnostic pool.

Depending on the combination of these factors, about 3 to 35% of the Zn in the diagnostic pool must be tumour-derived Zn to enable detection (Fig. S1).

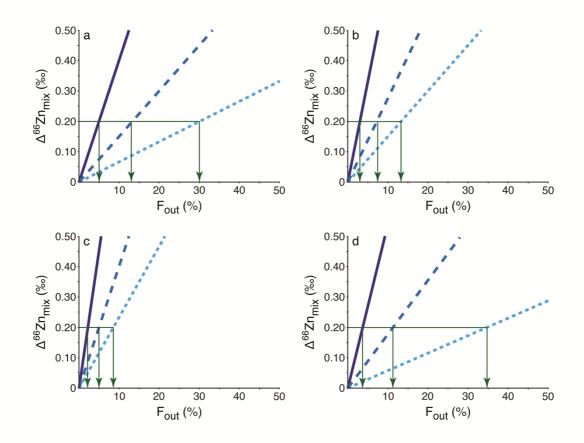


Figure S1. Estimated diagnostic sensitivity based on available isotopic constraints. Tumour-derived Zn is detectable in a diagnostic pool if this generates an isotopic difference $\Delta^{66}Zn_{mix}$ exceeding ±0.2 ‰ (green lines). This condition is achieved if the (molar) fraction of tumour-derived Zn present in the diagnostic pool (F_{out}) is equivalent to about 3 to 35%.

All scenarios assume that the tumour sequesters 40 % (dotted line), 60 % (dashed line) or 80% (solid line) of the input Zn flux, and the sequestered Zn is characterized by $\partial^{66}Zn_{seq} = -0.9\%$. Cases **A**, **B** and **C** presume that the original Zn isotope composition of the diagnostic pool (prior to addition of tumour-derived Zn) is identical to blood and serum, so that $\partial^{66}Zn_{res} = +0.1$ %. In this case $\Delta^{66}Zn_{mix} = \partial^{66}Zn_{mix} - 0.1$ % (see equation S7). No isotope fractionation occurs during Zn transfer to the tumour cells in Case **A** ($\Delta^{66}Zn_{uptake} = 0$; equation S5). Isotope fractionation during initial Zn uptake by the tumour occurs for Case **B** ($\Delta^{66}Zn_{uptake} = +0.5$ %) and **C** ($\Delta^{66}Zn_{uptake} = +1$ %). Case **D** assumes $\partial^{66}Zn_{res} = +1$ %, and $\Delta^{66}Zn_{uptake} = +0.5$ %).