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Abstract—As the rate of annual data generation grows
exponentially, there is a demand to aggregate and summarise
vast amounts of information quickly. In the past, frequency
scaling was relied upon to push application throughput. Today,
Dennard scaling has ceased and further performance must
come from exploiting parallelism. Single instruction-multiple
data (SIMD) instruction sets offer a highly efficient and
scalable way of exploiting data-level parallelism (DLP). While
microprocessors originally offered very simple SIMD support
targeted at multimedia applications, these extensions have
been growing both in width and functionality. Observing this
trend, we use a simulation framework to model future SIMD
support and then propose and evaluate five different ways
of vectorising data aggregation. We find that although data
aggregation is abundant in DLP, it is often too irregular to be
expressed efficiently using typical SIMD instructions. Based
on this observation, we propose a set of novel algorithms
and SIMD instructions to better capture this irregular DLP.
Furthermore, we discover that the best algorithm is highly
dependent on the characteristics of the input. Our proposed
solution can dynamically choose the optimal algorithm in the
majority of cases and achieves speedups between 2.7x and 7.6 x
over a scalar baseline.

I. INTRODUCTION

The rate of data generation is growing exponentially each
year [1]. Since this has led to enormous volumes of data
to manage and query, there is pressure on both software
and hardware developers to create solutions that can cope
with the increasing requirements. Aggregation is a very
useful operation when summarising considerable amounts
of data and is a cornerstone of important technologies such
as SQL, MapReduce, OLAP cubes, pivot tables and statis-
tical languages. In the TPC-H decision support benchmark,
aggregations can dominate eight of the twenty-two queries
[2]. A simple aggregation is shown in Figure 1; earnings
per persons are grouped together and averaged by age. A
summary like this may help the user uncover trends not
immediately apparent from the raw data, e.g. if there is a
correlation between earnings and age.

For many years, frequency scaling was relied upon to
achieve better performance and higher throughput in ap-
plications. This technique was generally transparent to the
programmer and algorithms were expected to execute faster
with every new generation of microprocessor. Due to thermal
and power issues, frequency scaling came to an end and

name age earnings
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Williams 40 €8,000 50-59 €16,000
Parrott 51 €9,000

Doherty 45 €6,000

Figure 1. Example of an aggregation operation. The input table on the
left is summarised on the right. Earnings are grouped by age range and
averaged.

application performance became something more explicit to
the programmer [3]. The clearest way to tackle this is to
exploit various forms of parallelism to gain further speedups.
Recent developments in microprocessor architectures have
pushed a focus on multi-core acceleration. While this is an
effective technique to exploit thread-level parallelism (TLP),
single instruction-multiple data (SIMD) instruction sets offer
a way to accelerate data-level parallelism (DLP), a more
efficient form of parallelism [4], [5].

There has typically been some level of support
for SIMD instructions in general-purpose microproces-
sors—commonly dubbed multimedia extensions, e.g. MAX-
1, Altivec and SSE. Although these ISA extensions started
out relatively simple, successive generations have become
more sophisticated and offer wider SIMD registers to pro-
cess more elements per instruction as well as more intricate
instructions to operate on them. For example, Intel’s AVX-
512 [6] increases the width of the registers to 512 bits and
includes mask registers, full gather/scatter support and many
non-trivial SIMD instructions. This trend is anticipated to
continue in the future, and the SIMD register width and
instruction sets are expected to grow further. We predict
that the SIMD support found in commodity microprocessors
will eventually resemble the instruction sets of classic vector
architectures traditionally found in supercomputers [7]. As
current SIMD support is still quite restrictive, and the
transformation from multimedia extensions to true vector
support is still incomplete, the exact potential of exploiting
the DLP found in data aggregations is hitherto unknown.

This work makes three principal contributions. (1) We
propose and implement several vectorised algorithms for
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data aggregation using common vector SIMD instructions
and evaluate them using a cycle-accurate simulation frame-
work with true vector support. (2) In order to determine
the sensitivity of the input to performance, we assess the
behaviour of these algorithms for a range of data distribu-
tions and cardinalities. (3) Leveraging a recent proposal for
irregular DLP [8], we augment the simulation framework
with new vector instructions and hardware then assess
their contribution to data aggregation. We then extend this
hardware with minimal additions to create new instructions
useful for data aggregations.

There are several notable outcomes of this work. Firstly,
we find that the performance of vectorised data aggregation
is immensely dependent on the distribution and cardinality
of the input. As a consequence, there is not a single
vectorised algorithm that provides the best performance
in every case. Secondly, we discover that vectorising the
algorithms is not trivial due the irregularity of the DLP.
We propose two distinctly different types of solutions—the
first, evasion, attempts to avoid this irregularity through
transformation whereas the second, confrontation, tackles it
head on. The evasion techniques—relying on typical vector
SIMD instructions—yield speedups only in a subset of the
cardinalities/distributions with significant slowdowns over
the scalar baseline in other cases. On the other hand, the
confrontation techniques—embracing the irregularity with
new SIMD instructions—achieve speedup for all cardinal-
ities/distributions, even when in some cases results are
surpassed by an evasion technique. Finally, since cardinality
can be determined at runtime, we introduce an adaptive near-
optimal implementation that selects the most appropriate
algorithm. Our proposed vector implementations exhibit
speedups between 2.7x and 7.6x over a scalar baseline for
a maximum vector length of 64 and four lockstepped lanes.

Section II introduces our custom simulation framework.
Section III outlines our experimental setup, the scalar base-
line and discusses the obstacles related to vectorising data
aggregations. We propose and evaluate vectorised evasion
techniques in Section IV and vectorised confrontation tech-
niques in Section V. Related work is discussed in Section
VI and Section VII concludes the article.

II. SIMULATION FRAMEWORK

Our goals are to look at the performance characteristics
of vectorised aggregation algorithms running on microarchi-
tectures with true vector support as well as proposing new
instructions and hardware to facilitate innovative algorithms.
Achieving these goals would be impossible if using only
existing architectures. Accordingly, we have created a sim-
ulation environment to conduct the necessary experiments.

At its heart we use PTLsim [9]—a cycle-accurate x86-64
simulator. PTLsim models many features of modern out-
of-order superscalar processors including pop translation,

multistage pipelines, speculation and recovery, and a multi-
tiered cache hierarchy. We have configured the simulator to
behave as close as possible to Intel’s Westmere microar-
chitecture [10]. Table I contains various microarchitectural
parameters used in our setup. There are six execution unit
clusters in total—a load address generation cluster; a store
address generation cluster; a store data cluster; and three
arithmetic (non-memory) clusters.

Table 1
MICROARCHITECTURE PARAMETERS
superscalar and out of order
parameter value | parameter value
fetch width 4 fetch queue 28
frontend width 4 frontend stages 17
dispatch width 4 writeback width 4
commit width 4 reorder buffer 128
issue width per cluster 1 total issue width 6
issue queue per cluster 8 total issue queue 48
load queue 48 store queue 32
L1-d misses 10 L2 misses 16
cache hierarchy
level size latency line size | ways sets
L1-i 32 KB 1 64 4 128
L1-d 32 KB 4 64 8 64
L2 256 KB 10 64 8 512

By default, PTLsim uses a fixed latency memory system
that does not model bandwidth and contention issues. Recent
work on vector processors [11] has shown that they have
the ability to saturate a system’s available bandwidth, thus
making it crucial to model the memory system accurately
when executing vectorised algorithms, otherwise the results
may be inaccurate and misleading. For this reason, we
have integrated DRAMSim?2 [12]—a cycle-accurate memory
system simulator—into PTLsim and replaced the default
memory model. Having an accurate memory model allows
the vectorised algorithms to work within a realistic band-
width envelope and thus enforces a fairer comparison to
non-vectorised algorithms. Table II shows various memory
system parameters used in our setup. The simulated pro-
cessor has a frequency of 2.67 GHz so—as a result—the
memory controller is clocked every four processor cycles.
Additionally, the following address layout scheme is used
as it was found to work well with all of our experiments:
row:rank:bank:column:burst.

Table 11
MEMORY SYSTEM PARAMETERS

parameter value parameter value
type DDR3-1333 transaction queue | 64
clock 1.5 ns command queue 256
policy open page TOW accesses 8
queue per rank per bank | banks 8
scheduling rank then bank ranks 4
TOwWSs 32,768 columns 2,048
burst length | 64 bytes device width 4




A. Vector SIMD Support

We have modified the simulation framework substantially
to give it extensive vector SIMD support. For brevity,
we provide a high-level overview that captures the most
important features of these additions.

We have extended the x86-64 ISA with sixteen logi-
cal vector registers and four logical mask registers. The
width of these registers is a configurable parameter of the
simulator in order to experiment with different maximum
vector lengths (MVL). As the baseline microarchitecture
uses register renaming, we also apply this technique to
the new vector registers. It has been shown that renaming
vector registers is beneficial when the number of physical
registers is double the number of logical registers [13] hence
we provide thirty-two physical vector registers and eight
physical mask registers. There is also an additional vector
length register that controls the number of elements operated
on by any given vector instruction. We manage this register
explicitly using get/set instructions.

The vector capabilities are tightly integrated into the
microarchitecture. We have added two new clusters—one
to perform the address generation of vector memory instruc-
tions and another to execute non-memory vector instructions.
The latter contains two functional units which can execute
independent non-memory vector instructions in parallel.

We have defined and implemented three classes of vector
memory instructions. Each class corresponds to an access
pattern and supports load, store and prefetch instructions.
(1) unit-stride: memory is accessed contiguously. This is
the most efficient access pattern due to the spatial locality of
the elements accessed. (2) strided: memory instructions use
a base address and a parameter that refers to the increment
in memory between elements. (3) indexed: also known as
gather/scatter, these instructions use a base address and an
additional vector register of offsets.

Unit-stride and strided instructions calculate their ad-
dresses formulaically. The number of cycles spent perform-
ing the address generation depends on the number of cache
lines needed to fulfil the request, e.g. four cache lines
accessed would require four cycles in the functional unit.
Indexed memory instructions require adding an offset to a
base address and need la‘:és cycles to perform address gen-
eration where V'L is the vector length of the instruction. The
number of cycles needed to complete a memory instruction
depends on how many individual cache lines are requested
and whether or not these are already resident in the cache
hierarchy.

Bulding upon an existing technique [14], [15], we con-
figure the vector register file to bypass the L1-d cache and
go directly to the L2 cache. This way more bandwidth can
be provided at the expense of higher latency. It has been
shown in the cited work that this extra latency is easily
amortised due the high number of elements operated on per

individual instruction. We interleave the L2 cache sets using
a simple mapping scheme based on irreducible polynomials
suggested in [16], [17]. This scheme eliminates pathological
behaviour where a particular strided memory access uses the
same cache set for all its requests.

To operate on the vector registers, we have added a suite
of non-memory vector instructions which is summarised
in Table III. Mask instructions require just one cycle to
complete. Most vector instructions require la‘%ﬁs cycles
to pass through a functional unit. Reduction instructions
are calculated slightly differently; there is a partial reduc-
tion local to each lane requiring l(xLLeS—l cycles and then
logalanes additional cycles needed for interlane reduction.
Comparison instructions produce a result to a mask register.
The permutative instructions—which rearrange the order
of the input vector’s elements—require a mask operand,
whereas most other instructions can use masks optionally.

iota is an instruction found in the CRAY-1.

Table III
NON-MEMORY VECTOR INSTRUCTIONS

class instructions

initialisation set all, clear all, iota

arithmetic maximum, add, subtract, multiply
bitwise logical | and, shift left, shift right
comparison not equal, not equal to zero
mask popcount

permutative compress, expand

reduction maximum, minimum, sum

other get/set element, get/set vlen

III. EXPERIMENTAL SETUP

Here we describe the experimental setup. Our goal is
to define a representative data-intensive aggregation query,
implement it in a variety of ways and evaluate the imple-
mentations with a diverse range of parameters. This will help
expose the strengths and weaknesses of different algorithm
designs. Additionally, we present a scalar aggregation algo-
rithm which we use as a common baseline in subsequent
experiments. Finally, we discuss the obstacles to vectorising
data aggregation and propose two possible solution paths.

A. Query and Input Data

In our experiments, we evaluate the SQL query in Figure
2. This type of query has been successfully used in prior
work to evaluate data aggregations [18]-[20]; its perfor-
mance depends highly both on the underlying implemen-
tation as well as the characteristics of the input data. r
is a two-column table with n rows consisting of a 32-bit
integer group key g and a 32-bit integer value v. The result
is a three-column output table where each row contains a
group, the frequency of that group count and the sum of
all values corresponding to that group sum. We emulate
the behaviour of a column-oriented database management
system (DBMS) in which columns are stored contiguously



as arrays in memory. These types of DBMS are becoming
prevalent in large datacentres used for online analytical
processing [21].

1: SELECT g, COUNT(*), SUM(v)
2: FROM r GROUP BY g

Figure 2. SQL code used in experiments

In all the experiments, we fix the number of input rows n
at 10,000,000. This value is sufficient to represent behaviour
indicative of non-cache resident datasets while also being
small enough to simulate to completion in a reasonable time
frame. The value column v is a uniform distribution in the
interval [0, 9]; since this column does not directly affect the
performance of the different algorithms, it remains constant
in all experiments. We generate 110 variations of the group
column g by varying the distribution and cardinality ¢ of
the data.

We use five unique data distributions similar to the ones
used by Cieslewicz et al. [18]. (1) uniform: a pseudo-random
selection in the interval [0,¢) with equal probability. (2)
sorted: a presorted uniform distribution. (3) sequential: a repeat-
ing sequence {0, 1,2,...,c—1}. (4) hhitter: similar to uniform
however 50% of the data is a single heavy hitting value. (5)
zipf: a pseudo-random selection in the interval [0, c) with a
Zipfian probability.

There are 22 possible cardinalities ¢ € {10,000, 000,
5,000,000, 2,500,000, ..., 38, 19, 9, 4}. Due to the na-
ture of each distribution, ¢ represents a maximum possible
cardinality rather than a guaranteed cardinality. For example,
it is not always possible to generate a Zipfian distribution
where |g| = ¢, therefore—for zipf—c represents the upper
bound of the domain in which we sample from rather than
a strict cardinality. sequential is the only distribution where
c guarantees both a maximum and an actual cardinality in
every case. Unless otherwise stated, cardinality refers to this
upper bound.

For the sake of discussion, we group the cardinalities into
four divisions. (1) low cardinalities [4, ..., 152], e.g. gender
of a person. (2) low-normal cardinalities [305, ..., 9, 765],
e.g. date of birth of a client. (3) high-normal cardinalities
[19,531, ..., 312,500], e.g. a zip or postal code. (4) high
cardinalities [625,000, ..., 10,000,000], e.g. a passport
number.

We assume that the application has a priori knowledge
that the sorted datasets are already ordered and thus avoids
the overhead of resorting. This is normal in DBMSs in
which similar metadata is used to choose between alternative
algorithms and make optimisations. This assumption also
helps identify performance trends independent of a sorting
phase.

In some aggregation techniques, it is useful to detect the
maximum group key and use it to improve the algorithm’s
runtime behaviour. In algorithms with a sorting phase—or

if the input is presorted—the maximum group key is simply
the last value in the array. In algorithms without a sorting
phase—excluding presorted input—we locate an exact max-
imum group key by scanning the entire array g. We find
that this adds little overhead compared to the aggregation
itself, however, it could be replaced with sampling and some
additional checks.

Since we are already looking at many variables, we fix
the vector parameters at MV L = 64 and lanes = 4. These
parameters were shown to be reasonable in recent vector
work [8], [11]. They also represent a configuration that
we anticipate could eventually appear on the market given
current trends. We report all our results using cycles per
tuple (CPT)—the total number of cycles needed to execute
the algorithm divided by the total number of input tuples n.

B. Scalar Baseline

Here we introduce the baseline algorithm scalar, designed
without any vector SIMD instructions. We divide its imple-
mentation into four steps. (1) Find the highest value, maxg,
stored in the array g. (2) Clear maxg+ 1 cells of the output
tables count and sum. (3) Aggregate the input arrays g
and v to output tables count and sum. Pseudocode for
this step is shown in Figure 3. (4) Compress the tuples to
remove absent groups with NULL results.

1: for each i in n do

2: count[g[i]]++;

3: sum[g[i]] += V[i];
4: end for

Figure 3. Pseudocode for step 3 of scalar

The results are shown in Figure 4. For all datasets, the
performance is similar in low and low-normal but then
changes drastically entering high-normal. When ¢ = 9, 765,
the L1-d cache capacity of 32 KB is exceeded. At this point
hhitter, uniform and zipf increase their CPT intensely; uniform
alone exhibits a dramatic 8x increase in CPT. This behaviour
is not surprising as a uniform distribution exhibits poor
locality when the bookkeeping structures exceed the cache
size. In contrast, sorted does not take any significant hit in
performance in high-normal as having the tuples presorted
introduces a lot more locality. This effect wears off in high
and sorted experiences a steep slope in its CPT as well.

sequential follows a similar pattern to sorted although
slightly increases its CPT in high-normal. After processing
the first 9,765 tuples out of n, the L1-d cache will be filled
and processing subsequent tuples causes dirty line evictions
thus reducing the memory system’s performance. These
evictions can occur with sorted as well, but unlike sequential,
there will be repeated values stored adjacently causing more
locality. This behaviour would suggest that sorting all the
datasets will lead to better performance, however, the cost of
doing this with a scalar ISA would be very high—especially
for a large n.
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Figure 4. Results for scalar baseline

C. DLP and Vectorisation

Data-level parallelism (DLP) is accomplished when the
same operations are applied to multiple elements of homo-
geneous data, i.e. a vector of data. DLP can be achieved
by leveraging a vector SIMD instruction set such as the
one described in Section II-A. We further categorise DLP
as either regular or irregular.

Regular DLP is a form of DLP in which result i of a
vector procedure depends only on element i of its input
vectors’ operands, i.e. every element is independent. A
typical vector SIMD instruction set is generally geared
towards regular DLP.

Irregular DLP can be defined as DLP where result i of a
vector procedure depends on element i of its input vectors’
operands and may additionally depend on other results of
the vector procedure. It is still DLP as the same operations
are applied uniformly on all data, however, the result of one
action may depend on the outcome of another action within
the same unit of work, e.g. SIMD instruction.

Our reference scalar baseline is a relatively straightfor-
ward algorithm that makes use of tables. Nevertheless—due
to the irregularity of the DLP—there are numerous obstacles
when vectorising the code. Updating a table is accomplished
by—(a) an indexed load to the table (b) modifying the
value (c) an indexed store to the table. In a SIMD model
of computation, this translates to—(a) gathering multiple
table entries to a vector register (b) modifying the vector
of loaded values (c) scattering the modified values back to
the table. If the indices used in the gather/scatter operations
are not unique, i.e. conflicting, the behaviour is undefined
and updates can be lost causing erroneous output. We refer
to this as a gather-modify-scatter (GMS) conflict.

There are two possible ways to tackle this. One is to evade
the irregularity by transforming the problem into something
more regular and then vectorising it. The other is to confront
the irregularity directly through the use of novel instructions.
In Section IV we evaluate our evasion solutions and in
Section V we evaluate our confrontation solutions.

IV. EVASION TECHNIQUES

In this section, we propose and evaluate two alternative
vectorisable solutions using typical vector SIMD instruc-
tions.

A. Standard Sorted Reduce

Historically, vector architectures have offered some sup-
port for aggregating vectors to scalars in the form of reduc-
tion instructions [22]. A reduction instruction takes a single
vector register as input, applies an associative/commutative
operation to all its elements, and outputs a single reduced
scalar value. Figure 5 shows an example of a sum re-
duction operation performed on a vector register of eight
elements. There are two parallel lockstepped lanes that each
processes four elements in three cycles followed by one
extra (logalanes) cycle of interlane reduction. We classify
reductions as semi-regular DLP instructions. They are not
completely regular because the output element depends on
more than input element i, yet, they are not irregular either
as there is a single output value and, therefore, output
element i does not depend on any other output element.

[1]2]3[4afs][6[7]8]

Figure 5. Sum reduction when VL = 8 and lanes = 2

We evaluate the benefit of using these types of instructions
in data aggregation. If the input is sorted, vector reduction
instructions can be used directly. If not, the input must be
sorted first. Our algorithm is as follows. (1) If not already
sorted, g is sorted using v as the associated payload. (2) The
sorted g is scanned for runs of repeated keys. Runs can be
found by first comparing g[1i] with g[i+1] to generate
vector masks. The distance between set bits in these vector
masks corresponds to the length of a run. These lengths also
correspond to the elements of the output column count. (3)
The run lengths are used to load and reduce segments of v.
Run lengths that exceed the MVL are stripmined.

To sort the input arrays in step 1 we choose radix sort
[23]. It is a good match for this algorithm for several
reasons. Firstly, it is vectorisable using typical vector SIMD
instructions. Secondly, recent work [8] demonstrated that it
outperforms quicksort and bitonic mergesort when MV L =
64 and lanes = 4—the same configuration used in this
work. Thirdly, it has an equal CPT for any input size n,
hence making it scalable for larger datasets. Finally, it can
be optimised for a particular maximum group key thereby
reducing the cost of sorting any particular cardinality.

The results of standard sorted reduce evaluated with all
data distributions and cardinalities are shown in Figure 6. To



make comparisons easier, we keep the scale of the y-axis the
same as the scalar baseline for all vector experiments. In
Table IV, a summary is given of the overall performance
by taking the average speedup (and standard deviation)
over scalar for each cardinality division. Highlighted cells
indicate that this is the best average performance so far
for that particular combination of dataset and cardinality
division.

sorted is the only dataset that does not cause additional
sorting overhead, as such, we see the cost of the aggregation
step itself. Its performance is consistent for low, low-normal
and high-normal but then diminishes in high. The increasing
cardinality causes the average run length to decrease and
serialises the algorithm thereby underutilising the vector
unit. In most cases, it can be seen that hhitter, sequential,
uniform and zipf show slowdowns over scalar; only uniform
exhibits a 1.1x average speedup for high. These slowdowns
are due to the overhead of sorting the input which often
exceeds the total cost of scalar.

Although being the most efficient SIMD sorting algo-
rithm, radix sort must undergo significant transformations
to be vectorised. The vectorised algorithm suffers from two
major bottlenecks. (1) In order to avoid GMS conflicts, its
internal bookkeeping structures need to be replicated by the
number of elements in a vector register. (2) To ensure sorting
stability, each element of a vector register must process a
contiguous portion of the input. To achieve this effect, the
input must be loaded into a vector register using a strided
memory access pattern in lieu of a unit-stride one.
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Figure 6. Results for standard sorted reduce

Table IV
AVERAGE SPEEDUPS (STDEV) OF standard sorted reduce OVER
BASELINE. HIGHLIGHTED CELLS MARK BEST RESULT SO FAR.

low low-normal  high-normal high
hhitter 0.7x (0.1)  0.3x (0) 0.6x (0.2) 0.8x (0.1)
sequential  0.6x (0.1)  0.3x (0) 0.4x (0.1) 0.3x (0)
sorted 5.1x (0) 5.1x (0) 5.2x (0.1) 2.7x (1)
uniform 0.6x (0.1) 0.3x (0) 0.8x (0.4) 1.1x (0.1)
zipf 0.6x (0.1) 0.3x (0) 0.5x (0.1) 0.7x (0.1)

B. Polytable

It is also possible to make a vectorised translation of
scalar using vector SIMD instructions. Steps 1, 2 and 4
can be vectorised directly using typical SIMD instructions,
however, in a similar vein to radix sort, the third step requires
transformation.

To circumvent GMS conflicts, we must replicate the
output tables count and sum for every element of a
vector register, i.e. there are MV L independent versions of
each table. Figure 7 shows the process of incrementing the
count table when MV L = 4. In the figure, input array g
is arranged in blocks of consecutive MV L elements. The
elements with dotted patterns have already been processed.
The highlighted values are currently being used to update
the table. In this case it can be seen that there are multiple
instances of the value 3 in the vector register (vreg). This
duplication would cause a GMS conflict if a single table
were used, however, since each vector element accesses a
local copy, we avoid conflicts entirely.

of rz]3
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o 1 0| 0 [0
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0 1 2 3
count copy

Figure 7. Table replication used to avoid GMS conflicts

After the input has been processed, the local copies
of count and sum must be reduced to singular global
tables. MV L consecutive elements—which form a single
group—are loaded into the vector register (vreg) that is
then summed together using a reduction instruction. This
local to global reduction is illustrated in Figure 8.

of: o2
5L 0 2
i 2 ‘gz;:z:;
830 {11 833
%4 0 q 2
5 0 5
7 2
count copy
Slof1[0]1]
Figure 8. Local tables are reduced to a single global table

The results of polytable are shown in Figure 9 and Table
V. For low, all datasets exhibit a positive speedup. Due
to the arrangement of the table structures, sorted shows



the biggest improvement and sequential exhibits the least
improvement. This is due to the layout of the MV L table
copies. Replications are stored contiguously in memory, i.e.
the cell for group k’s local copy i is adjacent in memory to
copy i+1. Since sorted contains long runs of the same group,
the number of cache lines accessed is minimal. In contrast,
sequential has the opposite behaviour. The datasets have runs
of ascending groups which causes a strided memory access
pattern where the stride is MV L+1 elements, i.e. a diagonal
access through the structure. Since the MV L is larger than
the number of elements in a cache line, MV L cache lines
will be accessed with every memory instruction. All other
datasets exhibit performance between these two extremes.

After low, the performance begins to decrease. Similar
to the scalar baseline, the tables grow larger than what
the cache can accommodate and performance drops. In this
case, replicating the tables causes the deterioration to happen
sooner. In the scalar baseline, this transition occurs when
¢ = 9,765 whereas here it happens when ¢ = 152 which
is sixty-four—the MVL—times smaller than the former.
For hhitter, sequential, uniform and zipf the results are always
worse than scalar. sorted continues to outperform scalar in
low-normal and high-normal due to the spatial locality of
its accesses, however, in high, it deteriorates and becomes
worse than scalar. A slightly surprising result here is that for
sorted, low and low-normal outperform their counterparts in
standard sorted reduce. This due to an unignorable overhead
incurred when scanning the input to build the array of run
lengths.

C. Summary

We have evaluated two distinct techniques that vectorise
data aggregations through algorithm transformation. If the
input is already sorted, there are positive speedups to be
gained using polytable for lower cardinalities and standard
sorted reduce for higher cardinalities. For non-sorted data
distributions, it is beneficial to use polytable if the cardinality
is very low. For other combinations of distribution and cardi-
nality, neither of these techniques suffice. These limitations
arise due to the transformations necessary to vectorise data
aggregation using a typical vector SIMD ISA. These findings
motivate us to explore other techniques using novel vector
SIMD instructions which will allow us to vectorise the
algorithms without these detrimental transformations.

V. CONFRONTATION TECHNIQUES

In this section we look at alternative solutions that attempt
to confront the irregular DLP head on rather than evade it.

A. Advanced Sorted Reduce

The vectorised radix sort used in Section IV-A suffers
from performance bottlenecks caused by algorithm trans-
formation. Recent work on vectorised sorting algorithms
proposed VSR sort [8]. VSR sort is a novel vectorised im-
plementation of radix sort that avoids replicating its internal
table structures and processes the input arrays sequentially.
Contiguous portions of the input are read into vector regis-
ters using an efficient unit-stride memory access pattern; the
algorithm then searches for elements that may cause GMS
conflicts and corrects them accordingly before accessing
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Figure 9. Results for polytable

Table V
AVERAGE SPEEDUPS (STDEV) OF polytable OVER BASELINE.
HIGHLIGHTED CELLS MARK BEST RESULT SO FAR.

low low-normal ~ high-normal high
hhitter 3.7x (04)  0.9x (1) 0.8x (0.2) 0.5x (0.2)
sequential  2.9x (0.4)  0.8x (1) 0.3x (0) 0.2x (0.1)
sorted 7.6x (0) 7x (0.6) 2.9% (1.6) 0.4x (0.2)
uniform 3x (0.6) 0.7x (0.9) 0.6x (0.3) 0.6x (0.2)
zipf 3.3x (0.6) 0.9x (0.7) 0.5x (0.1) 0.4x (0.2)

Vector Prior Instances (VPI) uses a single
vector register as input, processes it serially, and outputs
another vector register as a result. Each element of the
output asserts exactly how many instances of a value in the
corresponding element of the input register have been seen
before in the register. An example is given in Figure 10a
(elements are processed from left to right). In each pass of
VSR sort, a histogram of the input is first created. Using
the values of the histogram as offsets, the input is scattered
to an auxiliary array where its order becomes partially or
fully sorted depending on the pass. Since it is possible



that multiple input values within a SIMD operation may
correspond to the same histogram bin, scattering these values
would go to the same location in the auxiliary array. To
circumvent this, VPI is used to correct the offsets going
to conflicting locations by transforming them to adjacent
locations instead.

Vector Last Unique (VLU) also uses a single
vector register as input but produces a vector mask as a
result. The idea is to mark the last instance of any particular
value found. An example is given in Figure 10b (elements
are processed from left to right). A bit in the output mask
register is set if the corresponding value in the input vector
is not seen afterwards. In VSR sort, VLU is used to select
a non-conflicting subset of indices to the histogram and
increment them based on the number of corrections made by
VPI. Thus, VPT and VLU together can be used to increment
a histogram structure without GMS conflicts.

VPI and VLU are implemented using a CAM structure
with MV L entries. Figure 11 illustrates such a setup where
MV L = 8. An input vector register is processed from the
least significant element (idx = 0) to the most significant
element (¢dx = 7). The diagram shows that six of the eight
elements have already been processed with the seventh in
progress. Processing each input element requires two cycles;
activity in the first cycle is shown with solid lines and
activity in the second is shown with broken lines. In the
first cycle, the input value 9 is used as a key and a valid
entry in the CAM is found. The count field of the CAM
entry is copied to the corresponding element of the output
vector and also routed to an increment unit. In the second
cycle, the result of the increment is written back to the
count field. Simultaneously, the last idx field of the
CAM entry is updated with the value 6—the index of the
input/output entry being processed at that moment. When all
input elements have been processed, the output vector will
contain the results of VPI whereas VLU can be generated
by converting the 1ast idx field of all valid CAM entries
to a bitmask. To reduce instruction latency, the CAM is
given p ports. The CAM structure can be updated in parallel
provided that a slice of p adjacent elements of the input
vector has no conflicts. For more details the reader is referred
to [8].

__________

vector element idx H

valid Y N N N N
key 1] 9 X X X X
last idx 4 | Oer-x-f-x-1-x-1-%x-F--
count 1 @4—
|
out [-05507]
Figure 11. Hardware implementation of VPI and VLU

We now evaluate the same algorithm used in standard
sorted reduce but replace radix sort with VSR sort while
keeping all other steps equal. The results are shown in
Figure 12 and Table VI. Since the sorted dataset can skip the
sorting step, its behaviour and performance remain equal to
standard sorted reduce; these cases are marked with a =
symbol.

For hhitter, sequential, uniform and zipf the results are always
better than standard sorted reduce. There are still some
slowdowns over scalar for low and low-normal. Despite the
performance of VSR sort being better than radix sort, the
overhead is still too high to surpass the CPT of scalar for
lower cardinalities. For high-normal, this overhead becomes
less significant and we achieve speedups in all cases.

For high, hhitter, uniform and zipf continue to exhibit
speedups whereas sequential shows a slowdown. The reason
for this is twofold: (1) sequential exhibits good locality in
high for scalar thereby having better performance relative
to the other three datasets. (2) The average vector length
is reduced to values below the MVL in high. For example,
when ¢ = 10,000, 000 the vector length of every reduction
is 1 and this reduces performance considerably. This second
point also affects hhitter, uniform and zipf for high, but to a
lesser extreme than sequential.
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Figure 12. Results for advanced sorted reduce

Table VI
AVERAGE SPEEDUPS (STDEV) OF advanced sorted reduce OVER
BASELINE. HIGHLIGHTED CELLS MARK BEST RESULT SO FAR.

low low-normal high-normal high
hhitter 1x (0) 0.9x (0) 2x (0.7) 1.8x (0.4)
sequential 1x (0) 0.9x (0.1) 1.2x (0.1) 0.7x (0.2)
sorted 51x (002  5.1x (0)= 52x (0.H)E 2.7x (1) =
uniform 0.9x (0.1) 0.8x (0) 2.7x (1.4) 2.7x (0.7)
zipf 1x (0.1) 0.8x (0) 1.5x (0.4) 1.6x (0.2)

B. Monotable

One problem with the polytable approach of Section IV-B
is that the table replication destroys any locality that may
otherwise be present in the scalar baseline. Here we propose



an alternative implementation called monotable that draws
from the novel instructions used in advanced sorted reduce.

VPI and VLU use a hardware implementation based on a
CAM and adder. We propose reusing this hardware structure
and building new functionality on top. We define a new
set of instructions called Vector Group Aggregate
(VGAx) that can aid us further when vectorising data
aggregation. There are three operations supported which
form new instructions: sum (VGAsum), minimum (VGAmin)
and maximum (VGAmax). Each VGAx instruction uses two
registers as input—a vector of groups ing and a vector
of values inv. The instructions produce a vector out of
running partial aggregates among values of the same group.

We can implement these instructions with relatively minor
additions to the hardware already in place for VPI and VLU.
As an example, we describe VGAsum. The semantics are
illustrated in Figure 13 and the implementation is shown in
Figure 14. For each input element, instead of incrementing
its CAM entry by one as would be done with VPI, the
entry is summed with the corresponding value in inv. The
semantics resemble VP I where its values would be a vector
of 1s, however, an important difference is that the output
of VPI comes from the CAM entry’s value before the
increment whereas the output of VGAsum is taken after the
increment.

Z[6[3]4af9f15][2]3]4]

- 1 1 1 1 1 1 1

3l6[3]7[16]15]2]5]19]
Figure 13. Semantics of the VGAsum instruction

vector element idx |

1

0 1 2 3 4 5@7!
- o 0

1

valid
key
last idx

Figure 14. Hardware implementation of VGAsum

We use VGAsum to build a vectorised version of scalar
using non-replicated tables with no GMS conflicts. Combin-
ing VGAsum with VLU allows us to update a single table in
parallel. Figure 15 shows the pseudocode of this step. The
masked scatter instruction could optionally be replaced
with a compress followed by a non-masked scatter.

D2 vgasum(vb, vl) > groups in 00 & values in vl
:m0 Vlu(vb)

D U3 gather(base=table, idx=00, mask=m0)

D vd vadd(v_Q, v_f%)

. scatter(base=table, idx=00, vals=vd, mask=m0)

AW N =

Figure 15. Pseudocode for updating a table using VGAsum

Figure 16 and Table VII show the results of monotable.
The graph resembles the trends found in scalar (see Figure
4) but with lower CPTs. For low, monotable exhibits good
performance for hhitter, sequential, uniform and zipf and outper-
forms polytable—the only evasion method that was useful
for this cardinality division. sorted is not as fast as polytable
for low and low normal, which is understandable since the
majority of the VGAsum instruction’s input will cause CAM
port conflicts and, therefore, pay the maximum latency. In
contrast, monotable outperforms polytable in all cases for
sorted in high-normal and high.

It can be seen that monotable has consistent performance
for lower cardinalities, but for higher cardinalities hhitter,
sequential and uniform become worse whereas sequential and
sorted remain relatively stable. This behaviour is related to
the locality of memory accesses. When ¢ < 9,765, the
data structures can reside fully in the L2 cache. When
this cardinality is exceeded—depending on the distribution
of the data—it may destroy the locality. Despite this be-
haviour, all the datasets in the higher cardinalities exhibit
a positive speedup and beat the polytable method in every
case. Compared with advanced sorted reduce, sometimes
the performance is better and sometimes worse.
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Figure 16. Results for monotable

C. PFartially Sorted Monotable

We observe that monotable works particularly well for
the lower cardinalities. For higher cardinalities, some of the
datasets lose their cache locality and exhibit rapid increases
in CPT. sorted and sequentia—the datasets that do not
lose their locality—maintain more consistent behaviour. We
estimate that to achieve the optimal behaviour of monotable,



Table VII
AVERAGE SPEEDUPS (STDEV) OF monotable OVER BASELINE.
HIGHLIGHTED CELLS MARK BEST RESULT SO FAR.

low low-normal ~ high-normal high
hhitter 3.9x (0.1)  3.5x (0.1) 1.8x (0.8) 1.3x (0.1)
sequential  4.1x (0) 4.1x (0.1) 2.9x (0) 2.7x (0.2)
sorted 4.6x (0) 4.6x (0) 4.7x (0) 4.5x (0.2)
uniform 3.8x (0.1) 2.9x (0.3) 1.5x (0.7) 1.2x (0.1)
zipf 4x (0.1) 3.5x (0.2) 2x (0.4) 1.4x (0)

the input does not necessarily have to be fully sorted but
instead be partitioned in such a way that maximises temporal
locality.

In advanced sorted reduce, we use VSR sort to fully sort
the input before reducing it. Each pass of VSR sort orders
the input according to a subset of bits of each value, building
from the order already found by previous passes. By default,
VSR sort finishes after the last pass processes the most
significant bits of the values resulting in a completely sorted
input. Each pass contributes to the algorithm’s overhead. If
only sorting on a subset of each value’s bits is necessary,
the number of passes could be significantly reduced. In
monotable, it is not paramount that all group keys be stored
together contiguously like in the sorfed reduce methods.
Instead, it should be sufficient to position repeated groups
keys just close enough to one another that nothing in
between will evict that group key’s line from the cache.
Accordingly, we propose partially sorting the inputs with
higher cardinalities before executing monotable.

We modify VSR sort to perform a single pass of the
algorithm on a subset of bits between the most significant bit
of the maximum group key and a user-specified offset. As
the L2 cache in our experiments is 256 KB and each group
key requires 4 bytes, up to 16 bits of each value could be
ignored when sorting. Using a configuration that considers
the remaining 16 bits would divide the input into partitions
with a maximum of 65,536 unique groups. In practice, we
need only sort the most significant 8 bits of high-normal
cardinalities and increase this gradually all the way to 11
bits for the largest cardinality in high. We do not need to
partially sort any datasets in low and low-normal as these
exhibit good temporal locality already.

Figure 17 and Table VIII show the results. Since we need
not partially sort the lower cardinalities or the sorted dataset,
their behaviour and performance remain equal to monotable;
these cases are marked with a = symbol. For high-normal
and high there is a significant increase in performance for
hhitter, uniform and zipf. These results are considerably better
than polytable, monotable and either sorted reduce methods.
sequential is the only dataset that takes a hit in performance
over monotable for the higher cardinalities. This degradation
is because sequential already exhibits enough spatial locality
to compensate for a lack of temporal locality and partially
sorting the input only adds to its CPT.
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Figure 17. Results for partially sorted monotable
Table VIII
AVERAGE SPEEDUPS (STDEV) OF partially sorted monotable OVER
BASELINE. HIGHLIGHTED CELLS MARK BEST RESULT SO FAR.

low low-normal high-normal high
hhitter 3.9x (0.)E 35x O.)E 3.5x (06)  3.9x (0.3)
sequential  4.1x (0) = 4.1x (0.DE 2.4x (0.2) 2x (0.2)
sorted 4.6x (0) = 4.6x (0) = 4.7x ()2 4.5x (02) =
uniform 3.8x (0.)E 2.9x (03)E  4.8x (1.8) 5.9x (0.8)
zipt 4x (0.1) E 3.5x (02) = 2.8x (0.4) 3.4x (0.3)
D. Summary

We have evaluated a broad range of datasets using five
vectorised data aggregation techniques—each with varying
success—that either evade or confront the irregular DLP
inherent to aggregation. In the majority of cases, using an
evasion technique adds too much overhead to be useful
whereas our proposed confrontation techniques show more
promising results. Table IX summarises the best results for
all data distributions and cardinality divisions. Each cell
provides an average speedup over scalar. The I symbol
indicates it may not be practical to detect this configuration
at runtime in order to apply the most suitable algorithm.

Table IX
BEST AVERAGE SPEEDUP (ALGORITHM) OVER BASELINE

low low-normal high-normal high
hhitter 3.9x (mono) 3.5x (mono) 3.5x (psm) 3.9x (psm)
sequential 4.1x (mono) 4.1x (mono) 2.9% (mono) } 2.7x (mono) I
sorted 7.6x (poly) 7.0x (poly) 5.2x (sr) 4.5 % (mono)
uniform 3.9x (mono) 2.9x (mono) 4.8x (psm) 6.0x (psm)
zipf 4.0x (mono) 3.5x (mono) 2.8x (psm) 3.4x (psm)

In all cases the results are positive although there is no
single algorithm that matches all of the configurations. The
best speedup is achieved using a variety of different tech-
niques. For low and low-normal, the non-sorted datasets fare
best using monotable whereas sorted achieves the highest
speedup using polytable. For hhitter, uniform and zipf the best
method for high-normal and high is partially sorted mono-
table and for sequential the best choice is monotable. sorted



performs best using either of the sorted reduce methods for
high-normal and monotable for high.

In most situations, we have enough information to choose
the best method for that particular combination of dataset
and cardinality dynamically. In general, the rule is to apply
monotable to non-sorted datasets for lower cardinalities and
partially sorted monotable for higher cardinalities; for sorted
datasets, polytable can be used for lower cardinalities and
sorted reduce and monotable for higher cardinalities. Only
detecting the case of sequential with higher cardinalities
would prove difficult, however, the difference between par-
tially sorted monotable and monotable for these two cases
is not overly significant. Using the ideal algorithm selection
yields a 4.21x total average speedup whereas a realistic al-
gorithm selection—where sequential with higher cardinalities
is evaluated using partially sorted monotable—yields 4.15x.
This slowdown is a mere 1.3%.

VI. RELATED WORK

Here we discuss the related work. We separate this section
into two subsections. The first looks at work related to
parallel data aggregation acceleration. The second looks
at alternative hardware proposals that attempt to tackle
irregular DLP vectorisation.

A. Parallel Aggregation Acceleration

Zhou and Ross [24] explore the implementation of DBMS
algorithms with basic SIMD multimedia instruction ex-
tensions. They only mention GROUP BY aggregation in
passing and do not find a way to implement it with SIMD
instructions unless first sorting the input. We have seen that
fully sorting the input has major overhead for radix sort—an
evasion algorithm—and even a significant overhead for VSR
sort—a fast confrontation algorithm.

Ye et al. [19] evaluate how various aggregation methods
scale with multiple threads. Although multithreading and
SIMD are not completely comparable, they do observe some
similar behaviour found in our experiments. We implement
table replication to avoid GMS conflicts between vector
register elements; Ye et al. do the same for read-modify-
write conflicts that can occur between threads. Similar to
our observations, they observe a massive loss in performance
when cardinalities exceed the L1-d cache size. In general,
our motivation is such that vector SIMD acceleration is more
efficient than multithreading. We achieve 7.6x speedup in
some cases using a single vector unit whereas to achieve
this result using multithreading would require—at mini-
mum—eight cores. That said, vector SIMD and multithread-
ing are not mutually exclusive and can complement each
other nicely with the right algorithm design.

Polychroniou and Ross [20] propose SIMD optimisations
when aggregating datasets similar to the zipf and hhitter
datasets. Their approach uses multimedia SIMD extensions,
although in a very different way to our vector SIMD

instructions. Where we use a struct-of-arrays model and
completely vectorise our algorithms, they use an array-of-
structs model and partially vectorise their algorithm in an
orthogonal direction. In all of our vector implementations,
we vectorise with n, i.e. along the output arrays count and
sum. Polychroniou and Ross instead pack each count [1]
and sum[1i] adjacently in SIMD registers to process both
together. Although this approach offers some benefits, it has
limited applicability and little scalability since the amount of
parallelism depends on the number of aggregation operations
in the query. In many cases this will be one and, therefore,
offers no advantage over a scalar algorithm. Additionally,
the number of aggregations and their datatypes in a query
may not be available until runtime time thereby adding an
obstacle when defining the appropriate memory structures.
This scrutiny is not a criticism of their work, but instead
an observation on the limitations when using simple multi-
media extensions to vectorise complex algorithms like data
aggregation. Our work uses a true vector SIMD ISA and
we vectorise our algorithms in the direction of the arrays.
This type of vectorisation is very beneficial for column-store
databases—typically used in analytical processing—which
favour a struct-of-arrays model over an array-of-struct model
[21].

Power et al. [25] utilise GPGPUs to perform data aggre-
gation. They argue that when using discrete off-chip GPUs,
there is a high overhead associated with data movement
as well as the coordination between the CPU/OS and the
GPU. They motivate using integrated GPUs, i.e. GPUs on
the same die as the CPU. They present two techniques. The
first approach uses a replicated table for each GPU thread.
The second approach uses a single lock-free table with
the GPU threads repeatedly trying to perform atomic read-
modify-write updates. The first technique shows benefits for
very low cardinalities whereas the second approach proves
to be good for very high cardinalities. For middle/normal
cardinalities, neither approach works very well. While GPU
and vector hardware organisations are not directly compara-
ble, we do see some commonalities between the techniques
used to parallelise aggregation. Their first technique is very
similar to our polytable method, and, congruous to our
observations, they also find table replication causes rapid
performance deterioration as cardinality increases. Their
second technique is similar to our monotable approach in
that we both try to update a single table with potential GMS
conflicts. Power et al. propose using atomic memory in-
structions, however, they find that contention is too frequent
to achieve good performance if the cardinality is not very
high. Our monotable method does not use such instructions;
instead, we rectify any conflicting operations that would
cause GMS conflicts in the registers before even making the
memory access. We show experimentally that this is useful
for a variety of data distributions and cardinalities.



B. Hardware Support for Irregular DLP

Scatter-add [26] is a proposal for streaming architectures
that allows a conflict-free gather-modify-scatter operation on
an array using one instruction. There are several significant
differences with our proposal. The first and foremost is that
scatter-add cannot be used to implement VSR sort. There
are two reasons for this—(1) It lacks a return path for
original values in the array before the modifications, and (2)
it lacks the deterministic ordering semantics found in VPI
and VLU. Scatter-add, therefore, has limited applicability
to our proposed algorithms in which partially sorting is a
major component. Secondly, scatter-add is an extension to
the processor’s memory hierarchy. Adding a major feature
to memory can be less modular, highly intrusive and more
difficult to verify. In contrast, the VGAx instructions use
only vector registers as input and output. Thirdly, although
scatter-add is beneficial in the sense that a single instruction
expresses a lot of work, the same behaviour can be emulated
by VGAsum. Since the VGAx instructions generate a running
cumulative for each group in a vector register, this could
have uses beyond aggregation, e.g. a customised prefix sum
operation. Finally, we are building upon hardware that is
already in place for the instructions VPI and VLU. The
addition required to implement the VGAx instructions are
minor.

Atomic vectors operations [27], and more recently,
AVX512-CDI [6], are both solutions from Intel that attempt
to solve the problem of GMS conflicts. Both of these
proposals operate with a best-effort mechanism as follows.
A mask register with all its bits set is coupled with the
vector GMS procedure. The processor attempts to execute as
many non-conflicting elements of the procedure as it can and
clears the associated mask bits of successful outcomes. The
programmer is responsible for placing the GMS procedure
inside a loop that is dependent on the state of the mask
register. This means in the worst case scenario the operation
will be completely serialised inside a loop with a difficult
to predict exit condition. Since each retry requires loading,
modifying and storing the data again, it could even lead to
more operations than its scalar counterpart. We anticipate
that for datasets with low cardinalities and skewed distribu-
tions, the number of retries will be high and thus impede
performance. This problem will be exacerbated further as
vector SIMD register widths increase. VPI, VLU and the
VGAx instructions are different because they exist as self-
contained non-memory instructions. This difference means
GMS conflicts are resolved completely and deterministi-
cally before committing to the memory hierarchy. We have
shown experimentally that datasets with low cardinalities
and skewed distributions perform well with a large MVL.
Furthermore, it is not obvious how VSR sort could be
constructed from either the atomic vector operations or
AVX512-CDI. We have demonstrated that partially sorting

the input using VSR sort for high cardinalities provides ma-
jor performance improvements and, consequently, remains
an important part of this work.

VII. CONCLUSIONS

As the amount of data increases exponentially each year
it is important that data aggregation algorithms can scale
accordingly. In this work, we have looked at vector SIMD
instructions as a means to accelerate GROUP BY data
aggregations. We have found that this is not a trivial target
due to the irregularity of the DLP.

We have made experiments with a sophisticated vector
SIMD ISA that we anticipate appearing in future micropro-
cessor generations. We have found that this ISA has limi-
tations since it only permits us to evade the irregular DLP
through performance-degrading algorithm transformations.
Based on this realisation, we have proposed the use of novel
vector instructions which directly confront this irregularity
and allow us to vectorise the algorithms directly without
alteration. We have made detailed evaluations using multi-
ple algorithms taken from both evasion and confrontation
techniques.

We have observed that the evasion techniques have limited
applicability unless the input is presorted, otherwise, the
confrontation techniques prove to be more advantageous.
The latter draws heavily from recent work on vectorised
sorting algorithms that tackles irregular DLP through novel
vector instructions. We have discovered that these novel
instructions—and their associated sorting algorithm—can
aid data aggregation, especially with the realisation that the
input need not be fully sorted. With minimal modifications,
we have extended the base hardware used in this proposal
to accommodate data aggregation further by defining a suite
of new instructions called VGAx.

We have found that the best algorithm depends highly on
both the distribution and cardinality of the input. In most
cases, this can be detected at runtime to make a choice
dynamically. Using a combination of these techniques, we
have achieved speedups over a scalar baseline between 2.7 x
and 7.6x for a maximum vector length of 64 and four
lockstepped lanes.
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