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Kinetic modeling of Nernst effect in magnetized hohlraums
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We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport

and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent

experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment

of the heat flow equation and Ohm’s law, including Nernst advection of magnetic fields. In addition to showing the

prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse

bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into

the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster

than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results

in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

DOI: 10.1103/PhysRevE.93.043206

There has been recent interest in the role of applied mag-

netic fields in high-energy-density plasmas [1–3] for inertial

fusion energy applications [4]. The Magneto-Inertial Fusion

Electric Discharge System has been developed to provide

steady-state magnetic fields for long time scales relative to the

experiments. An experiment at the Omega Laser Facility with a

7.5-T external axial magnetic field imposed on an Omega-scale

hohlraum measured a rise in observed temperature along the

hohlraum axis [5] and modeling showed that external fields can

guide hot electrons from laser-plasma interactions [6] through

the hohlraum, rather than the capsule [7].

From Ohm’s law, it has been shown that electron heat trans-

port advects such magnetic fields through the Nernst effect [8–

14] in addition to well-known processes such as frozen-in flow

and resistive diffusion. Dimensionless numbers comparing the

ratio of the magnitudes of the Nernst term to the bulk plasma

flow term RN ≫ 1 [10] and the Hall term HN ≫ 1 [13] suggest

that Nernst convection should be the dominant mechanism for

magnetic field transport in a hohlraum. Such a hot and semi-

collisional environment is, however, rich in nonequilibrium

effects that may complicate the magnetic field dynamics.
Laser heating of the plasma results in steep temperature

gradients, typically O(3 keV/50 μm). The collisional mean
free path of a 3-keV electron is O(10 μm), depending on
the plasma density. Since λmfp/L < 100, nonlocality can
be expected to be important [15]. The steep temperature
gradients caused by intense laser heating in a hohlraum have
been shown to result in nonlocal heat flow [16,17]. Careful
consideration of the electron population with 2vth < v < 4vth

is required as these carry most of the heat. Additionally,
inverse-bremsstrahlung heating of a plasma [18,19] leads
to not only deviations from Braginskii transport [20], but
also new transport terms [21,22]. Both nonlocality and laser
heating result in modifications to the distribution function
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and nonequilibrium behavior that result in a breakdown of
the classical transport approximations. In order to avoid
those approximations, a kinetic approach is necessary. This
allows for modeling of magnetic field dynamics through a
self-consistent and generalized Ohm law derived without
distribution function approximations.

Using a Vlasov-Fokker-Planck-Maxwell formulation, we
show simulations of magnetized, two-dimensional (2D)
hohlraum-scale plasma including ray tracing of an Omega-like
laser configuration over a nanosecond time scale. Therefore,
this simulation includes self-consistent treatment of the fully
kinetic Ohm law and nonlocal effects in heat flow. The
hohlraum is considered without a fuel capsule but with a gas
fill throughout. Note that radiation transport and laser-plasma
interactions are neglected in these calculations. While these
may modify the magnitude of the electron temperature near the
high-density plasma, the conclusions presented here primarily
arise as a result of the nonlocal dynamics prevalent within
the low-density optically thin gas fill where the radiation
effects will be negligible [23]. With the use of IMPACTA

[24,25], we studied the effect of nonequilibrium electron
kinetics on thermal energetic and magnetic field dynamics
of a Omega-scale hohlraum with an externally imposed 7.5 T
magnetic field. We found that significant proportions of the
total heat flow are nonlocal. Additionally, the presence of
inverse-bremsstrahlung heating resulted in anomalous heat
flow towards the overdense plasma of the hohlraum wall.
Therefore, the diffusive heat flow from the laser-heated regions
is not an adequate description of the thermal energetics. Heat
flow from the laser heating moves the externally imposed
magnetic field through Nernst advection. To examine the
effects of Nernst advection in relation to plasma bulk flow,
we show modeling without an electron contribution to the
transport of the magnetic field in Ohm’s law for comparison.

We find that magnetic field transport due to Nernst flow

results in significantly faster field cavitation than via frozen-in

flux. The field cavitation occurs due to nonlocal heat flow

towards the hohlraum axis. Retention of the distribution

function allows for accurate modeling of the magnetic field

pileup because the local approximation of the Nernst velocity

underestimates the true velocity by a factor of 2. Nernst flow

2470-0045/2016/93(4)/043206(5) 043206-1 ©2016 American Physical Society
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into the overdense region causes a flux pileup at the walls and

results in magnetic field amplification by a factor of 3.

The Vlasov-Fokker-Planck equation for electrons given by
[

∂

∂t
+ v ·

∂

∂x
+

e

me

(E + v × B) ·
∂

∂v

]

f (v,r,t)

= −
∂
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· {f (v,r,t)〈�v〉} +

1

2

∂

∂v

∂

∂v
: {f (v,r,t)〈�v�v〉}

(1)

is coupled with Ampere’s and Faraday’s laws and a hydro-

dynamic ion fluid model to describe the plasma. The code

we use, IMPACTA [24,25], uses a Cartesian tensor expansion,

with the distribution function expanded as f (t,r,v) = f0 + f1 ·
v̂ + f

2
: v̂v̂ + · · · , where v̂(θ,φ) is a unit velocity vector. This

expansion can be truncated in collisional plasma, as collisions

smooth out angular variations resulting in a nearly isotropic

distribution, represented by f0. Higher orders are successively

smaller perturbations f0 ≫ f1 ≫ f
2
, etc. In the classical

limit that f0 is a Maxwell-Boltzmann velocity distribution,

IMPACTA has been shown to agree with Braginskii’s transport

equations [24]. These simulations, however, are collisional

enough such that f
2

is neglected to an error O(λmfp/L)2.

A two-dimensional slice of a hohlraum is modeled in

the x-y plane where the y axis represents the longitudinal

axis of the hohlraum and the fuel pellet would sit at the

origin. The hohlraum walls are represented by dense high-Z

plasma located at approximately x = ±800 μm and the gas

fill is represented by low-Z plasma, with the overall Z dis-

tribution described by Z(x,y) = 59.25 + 19.75 tanh( x−750
40

).

The electron number density is described by ne(x,y) =
[2.98 + 2.93 tanh( x−750

40
)] × 1022 cm−3. The initial uniform

temperature is kBTe0 = 160 eV. The initial uniform magnetic

field is B0(ŷ) = 7.5 T and ln �ei = 5.4. To convert from the

normalized units, ne0 = 5 × 1020 cm−3 and vth0/c = 0.025 are

used. The laser parameters resemble those of Ref. [5]. The ray

tracing package tracks the three beam cones that enter at 21◦,

42◦, and 59◦ from the axis, to their respective refraction points.

The rays and initial heating profile are shown in Fig. 1(a).

Figure 1(b) shows the temperature profile after 300 ps of laser

heating. Figure 1(c) shows the cavitation and amplification

in the in-plane magnetic field profile caused by intense laser

heating. The Nernst velocity, shown in Fig. 1(d), is directed

towards the hohlraum axis in the low-density gas fill and into

the hohlraum wall in the Au plasma. In the rest of this paper, we

show that Nernst flow is primarily responsible for the magnetic

field profile shown in Fig. 1(c).

Inverse-bremsstrahlung heating of plasma results in a

super-Gaussian electron distribution [18], which modifies the

transport coefficients [21,26,27] and introduces new terms

including an anomalous heat flux up a pressure gradient qn,

represented by the last term in

qe = −
Te

e
ψ ′ · j − (κ + neφ) · ∇Te − Teφ · ∇ne, (2)

where ψ , φ, and κ are transport coefficients. These are

functions of the local magnetic field, current, and temperature

gradients and density gradients, as described in Ref. [21].

Equation 2 recovers the calculation from Ref. [26] in the

limit where f0 is a Maxwell-Boltzmann velocity distribu-

FIG. 1. (a) Ray tracing profile overlaid onto laser intensity

profile (W/cm2) at t = 0, (b) electron plasma temperature (keV),

(c) externally applied magnetic field (T), and (d) Nernst velocity

vN/vth0 at t = 250 ps.

tion. Further, qn increases as m > 2 increases, where m is

the power of the super-Gaussian distribution function de-

fined by fSG(v) = C(m)ne/v
3
th exp[−(v/αevth)m], where αe =

[3Ŵ(3/m)/2Ŵ(5/m)]1/2 and C(m) = m/4πα3
eŴ(3/m).

In these simulations, by finding the best fit of a super-
Gaussian distribution to the low-velocity part of f0, m reaches
a maximum of 3.1 near the centers of the laser-heated
regions, but varies spatially and temporally, thus requiring
the preservation of the distribution function at each point
throughout the simulation for accurate calculation of the heat
flow. Using theory detailed in Refs. [21,27], the heat flow can
be modified in hydrodynamics codes to include this effect.
However, the distribution is not precisely a super-Gaussian
function [28] due to other effects such as nonlocality, magnetic
fields, and collisions and this fix remains an approximation.

A postprocessed calculation of the anomalous heat flow
shows that there is heat flow towards the hohlraum wall due
to the φ∇Pe term and this approximately results in a 10%
correction to the diffusive heat flow, i.e., κ∇Te. A majority
of the disagreement between the heat flow from the code
and the postprocessed heat flow from all three terms from
Eq. (2) stems from the strongly nonlocal heat flow that is
prevalent in the hohlraum. Figure 2(b) shows a 2D profile
of a metric for quantifying the discrepancy between the
two heat flows, described by the relative difference between
the super-Gaussian approximation and the exact heat fluxes
1 − qEq. (2)/qcode.
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FIG. 2. (a) Heat flow mene0v
3
th0, (b) 1 − qEq. (2)/qcode, (c)

v5(fcode − fMB), and (d) v5(fcode − fSG) at x = 0.4 mm, y = −0.6

mm, m = 2.625, and t = 100 ps.

The regions within black contours have ±25% agreement

between the two heat flows. The white contours correspond to

regions of high nonlocality where the super-Gaussian transport

calculation is an underapproximation, while the blue contours

correspond to regions where the heat flow is significantly

overcalculated. Heat flow from regions near the temperature

hot spots, ±50 μm, is overestimated by the super-Gaussian

calculation, while the heat flow farther away from the hot

spots, ±200 μm, is underestimated, as expected from the

existence of nonlocality. The regions of relative agreement

are ±50–200 μm from the hot spots.

Consideration of the in-plane electron distribution func-

tion f (θ,v) = f0 + f1x v̂x + f1y v̂y can show the significance

of inverse-bremsstrahlung heating and nonlocality. Since

q ∝
∫

v5f (θ,v)v̂(θ,φ)dv sin θ dθ dφ, the important contribu-

tions to the heat flow may be best illustrated by the function

v5f (θ,v). Figures 2(c) and 2(d) show the difference between

the calculated distribution v5f and a Maxwell-Boltzmann

v5fMB [Fig. 2(c)] and a super-Gaussian distribution with the

best fit to m [Fig. 2(d)], both with Te(x = 0.4,y = −0.6).

Figure 2(c) shows that f > fMB in the region 2 < vth < 4 and

f < fMB in the region 4 < vth < 6, which is characteristic

of inverse-bremsstrahlung heating. Calculating the heat flow

contribution difference between the real distribution and

the best-fit super-Gaussian distribution (m ≈ 2.625 in this

case) shows that the inverse-bremsstrahlung model does not

replicate the distribution function fully due to anisotropy from

the flow and nonlocality. The enhanced tail and shifted center

in the 180◦ direction is characteristic of the (nonlocal) heat

flow down the density gradient, while the colder return flow is

a result of the features in the 0◦ direction.

As shown in Ref. [9], the Nernst velocity is given by

vN =
〈vv3〉
2〈v3〉

+
j

ene

(3)

≈
κ · ∇Te

5/2Pe

. (4)

It can be shown for this geometry that By has no field

generation terms from the curl of Ohm’s law and therefore can

be transported through the (vN + C) × B term in addition to

resistive diffusion. Over 0.5 ns, the simulation shows that there

is magnetic field cavitation resulting in a flux pileup on the

hohlraum axis and compression at the hohlraum wall due to the

energy deposition from the laser. The pileup of magnetic flux

results in a 25-T magnetic field, more than 3 times the strength

of the initial 7.5-T field.

In order to determine the effect of Nernst advection on

the magnetic field evolution, simulations with and without the

B × f1 term in the f1 equation were compared. This term is

responsible for the interaction of kinetic electrons with the

magnetic field and therefore is responsible for the Nernst and

Hall terms in Ohm’s law as well as the Righi-Leduc effect

in the heat flow equation. Simulations agree with the previous

determination that j ≪ vN because HN ≪ 1 and the Hall effect

can be neglected. The magnetic field after 50 ps without and

with full Ohm’s law treatment is shown in Figs. 3(a) and 3(b),

FIG. 3. Magnetic field B (T) after 50 ps with (a) only plasma bulk

flow and (b) the full Ohm law. Magnetic field B after 400 ps with (c)

only plasma bulk flow and (d) the full Ohm law.
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FIG. 4. Magnetic field at the hohlraum axis decreases as applied

field strength is increased because the Nernst effect is mitigated,

preventing the magnetic field from accumulating near the hohlraum

axis (t = 300 ps). The discrepancy between the approximated and

exact Nernst velocities also decreases.

respectively. The field has been expelled from the laser-heated

region in both cases but the magnitudes differ. It is not evident

in Fig. 3(a) since the field is only modified by a few percent

by the plasma bulk flow. Thermal energy transport results in a

more noticeable change immediately over 50 ps.

An estimate of the time scale for plasma bulk flow to

transport frozen-in magnetic fields to the hohlraum axis

is given by rH

Cs
≈ rH√

kBTe/Mi
∼ 2 ns. Figure 3(d) shows that

including the Nernst effect results in magnetic field cavitation

on a faster time scale than can be expected due to field

advection only through bulk plasma flow in Fig. 3(c). Given

a 7.5-T initial field strength, the magnetic field on the axis

grows to 30 T within 0.5 ns. Figure 3(d) also shows that the

magnetic flux pileup in the hohlraum wall occurs due to the

Nernst effect, increasing to a strength of nearly 25 T towards

the hohlraum wall.

We ran a series of simulations with varying initial applied

field By0 to understand how field strength affects the hohlraum

dynamics. Figure 4 shows the results of these simulations,

which suggest that the limiting behavior as the magnetic field

is increased is given by

lim
By0→∞

By axis/By0 = 1. (5)

The maximum value of vN in the domain of magnetic

field advection towards the axis (−0.5 mm < x < 0.5 mm)

is chosen. This trend can be explained by the observed

reduction in the Nernst velocity towards the hohlraum axis

as the magnetization increases (also shown in Fig. 4), which

quenches magnetic field transport. These vN (ωτ ) curves are

in line with other predictions [9,13,21] that vN ∝ 1/ωτ for

ωτ ≫ 1. Figure 4 also shows that the exact Nernst velocity

from Eq. (3) is consistently, and up to 2 times, larger than what

the local approximation from Eq. (4) would predict for Te, ne,

and B profiles at 300 ps. This discrepancy decreases at higher

field strengths due to magnetic field induced localization of

the heat flow carrying electrons.

The degree of magnetic flux pileup in the hohlraum wall,

however, is not affected strongly by the increase in magnetic

field strength because ωτ ∼ n−1
e . The magnitude of maximum

field strength in the wall ranges from 2 < By/By0 < 3 for

1 < By0 < 100 T.

The IMPACTA modeling is in agreement with the HYDRA

modeling performed in [5] with respect to the hydrodynamic

motion of the plasma only. In that sense, the hydrodynamic

ion model that is coupled to the electron transport model

in IMPACTA agrees. While it is not possible to compare the

modeling in the two works directly, the IMPACTA modeling

seeks to highlight the fact that magnetic field transport

in [5] is inadequate because it does not include Nernst

convection.

We have shown Vlasov-Fokker-Planck modeling of exter-

nal magnetic fields of 1–100 T imposed upon an Omega-scale

hohlraum. Magnetic flux pileup increases the magnetic field

magnitude by a factor of 3 for a 7.5-T magnetic field.

Additionally, the heat flow is responsible for magnetic field

cavitation on a faster time scale than that from the bulk flow of

the plasma. Not only is the heat flow strongly nonlocal, it also

has distinct signatures of inverse bremsstrahlung heating. The

ability to preserve distribution function information through

use of a kinetic code allows us to model the heat flow

accurately. A full Vlasov-Fokker-Planck-Maxwell treatment

of the system enables accurate modeling of the magnetic field

dynamics. We have shown that Nernst flow is the dominant

mechanism for magnetic field transport and is responsible for

the increase in field strength, up to 100 T for an initial 100-T

field, in the wall as well as cavitation of the magnetic field

towards the hohlraum axis. The field cavitation is mitigated at

higher field strengths. Furthermore, the Nernst velocity is up

to 2 times larger in self-consistent nonlocal calculations than

would be predicted by diffusive transport.

These findings suggest that attempting the same calculation

with diffusive transport would result in significantly different

B and Te evolution. Accurate modeling of these quantities

has implications for laser-plasma interactions [5,6] and hot

electron propagation [7] in the gas fill and understanding

hot spots on the dense plasma that generate x rays. The

kinetic electron transport and B field physics presented here

could affect details of x-ray drive if incorporated into full-

scale radiation-hydrodynamics modeling (including reduced

phenomenological laser-plasma interaction models) of indirect

drive with an externally applied B field.
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