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Abstract
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of cellular processes

and diseases such as cancer; however, their functions remain poorly characterised. Sev-

eral studies have demonstrated that lncRNAs are typically disease and tumour subtype

specific, particularly in breast cancer where lncRNA expression alone is sufficient to dis-

criminate samples based on hormone status and molecular intrinsic subtype. However, lit-

tle attempt has been made to assess the reproducibility of lncRNA signatures across more

than one dataset. In this work, we derive consensus lncRNA signatures indicative of breast

cancer subtype based on two clinical RNA-Seq datasets: the Utah Breast Cancer Study

and The Cancer Genome Atlas, through integration of differential expression and hypothe-

sis-free clustering analyses. The most consistent signature is associated with breast can-

cers of the basal-like subtype, leading us to generate a putative set of six lncRNA basal-like

breast cancer markers, at least two of which may have a role in cis-regulation of known

poor prognosis markers. Through in silico functional characterization of individual signa-

tures and integration of expression data from pre-clinical cancer models, we discover that

discordance between signatures derived from different clinical cohorts can arise from the

strong influence of non-cancerous cells in tumour samples. As a consequence, we identify

nine lncRNAs putatively associated with breast cancer associated fibroblasts, or the

immune response. Overall, our study establishes the confounding effects of tumour purity

on lncRNA signature derivation, and generates several novel hypotheses on the role of

lncRNAs in basal-like breast cancers and the tumour microenvironment.
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Background

Remarkable progress over the last decade has challenged the idea that the human transcrip-
tome is derived exclusively from protein-coding (PC) genes and a few specific non-coding
RNAs. This so-called pervasive transcription is widespread, with some studies estimating that
up to 90% of the genome is transcribeddespite PC genes representing<2% of the total geno-
mic sequence [1]. A major component of non-coding species consists of long non-coding
RNAs (lncRNAs) defined as RNA of>200nt in length with no apparent coding capacity.
LncRNAs function through a variety of mechanisms including remodelling of chromatin, tran-
scriptional co-activation or -repression, protein inhibition, post-transcriptionalmodification,
or decoy. They can regulate gene expression either transcriptionally or post-transcriptionally,
acting either on the same locus (cis) or more distal sites (trans). For some lncRNAs, the act of
transcription alone is sufficient to regulate their neighbouring genes by altering local chromatin
state [2]. For others, subcellular specificity and splicing suggest a mature RNA molecule is
required for function [3].
LncRNAs are now emerging as crucial regulators of cellular processes and diseases, and

their aberrant transcription can lead to altered expression of target genes involved in cancer
pathways and functions [4]. For example, over-expression of several prominent lncRNAs such
asHOTAIR in colorectal and metastatic breast cancers [5][6][7], PCAT1 in prostate cancer [8],
andMALAT1 in early-stage non small-cell lung cancer [9], has been linked to poor prognosis
and tumour progression. Despite these advances, the vast majority of lncRNAs identified
through large-scale efforts such as GENCODE [10] and MiTranscriptome [11] remain poorly
understood. To address this gap, two recent genome-wide pan-cancer studies used integrative
genomic approaches to assign putative function to several thousand lncRNAs [12][13]. Both
studies incorporated the “guilt-by-association” strategy for in silico lncRNA function charac-
terization, deriving a prediction based on a common expression pattern between the lncRNA
and a biological process or pathway [14]. These and other studies also demonstrated the disease
and tumour subtype specificity of lncRNAs [12][13][15][16]. Notably, lncRNA expression
alone is sufficient to discriminate breast cancer samples based on hormone status and molecu-
lar intrinsic subtype [12][17][18], achieving greater specificity than PC genes [12].
In this work, we build on these subtype association studies by deriving breast cancer sub-

type-specific lncRNA signatures from two patient cohorts: The Cancer Genome Atlas (TCGA),
and the Utah Breast Cancer Study (UBCS). First we evaluate signature consistency between the
two datasets, and then determine the underlying cause of any disparity through “guilt-by-asso-
ciation” with PC genes, and integration of pre-clinical expression data. By doing so, our study
reveals the influence of tumour purity on lncRNA signature derivation from patient samples,
and proposes several lncRNAs whose expression is specific to cells in the breast tumour
microenvironment.

Results

The UBCS RNA-Seq dataset was derived from fresh frozen breast tissue samples obtained
from 88 women who had surgery at the Huntsman Cancer Hospital from 2009–2012. These
included tumour tissues from 69 breast cancer patients, of which 51 ER+ and 12 triple-negative
breast cancer (TNBC) tumours were selected for this study. A mean of 18,704,489 reads were
uniquely mapped to the human genome corresponding to a mapping success rate of 87% (S1
Table). To achieve consistency with UBCS, TCGA RNA-Seq reads across 271 ER+ and 68
TNBC patients were re-mapped using a similar protocol (seeMethods), resulting in a mean of
67,741,640 reads uniquely mapped to the human genome and a mapping success rate of 86%
(S2 Table).
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LncRNA expression generates clusters that correspond to hormone

status and intrinsic subtype

We applied non-negative matrix factorization (NMF) [19][20] to cluster 932 and 588 of the
most highly expressed ((mean FPKM + standard deviation (SD))>1.00) and variable (coeffi-
cient of variation (CV)>0.10) GENCODE [10] annotated lncRNAs across UBCS and TCGA
cohorts respectively, and tested whether lncRNA expression signatures allow separation of
breast cancer into distinct subtypes. Stable clusters were achieved at k = 4 (UBCS; Fig 1A) and
k = 3 (TCGA; Fig 1B) where k denotes the number of clusters selected according to the proce-
dure outlined inMethods. Model-to-cluster mappings for both UBCS and TCGA are given in
S1 and S2 Tables respectively, and genes deemed as key drivers of the clustering (meta-genes)
are listed in S3a (UBSC) and S3b (TCGA) Table.
Across both datasets, clusters broadly corresponded to breast cancer hormone status. Of the

four UBCS clusters, clusters three and four consisted exclusively of ER+ tumours, and cluster
two of TNBC tumours, with cluster one comprising a “mixed” theme of two ER+ and three
TNBC tumours (Fig 1C; S4a Table). The two ER+ clusters were differentiated according to
PAM50 intrinsic subtype [21] with luminal A tumours comprising the majority (16/19) of clus-
ter three, and the remainder of the cluster including three normal-like tumours. Cluster four
encompassed both ER+ luminal A (19/30) and luminal B (11/30) tumours. All TNBC tumours
of cluster two corresponded to the basal-like subtype, whereas the three TNBC tumours in
cluster one were classified as basal, HER2- and normal-like subtypes.

Fig 1. Application of non-negative matrix factorization (NMF) to optimal clustering of UBCS and TCGA lncRNA

expression. A, consensus matrix at k = 4 for lncRNA expression across 63 UBCS samples. B, consensus matrix at k = 3 for

lncRNA expression across 339 TCGA samples. C, contributing cancer types and mean consensus value of each UBCS

cluster. D, contributing cancer types and mean consensus value of each TCGA cluster. “Representative” disease indicates

the majority breast cancer subtype in the cluster, and numbers of models are given in brackets. Mean consensus value was

computed from 200 runs of NMF.

doi:10.1371/journal.pone.0163238.g001
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Clusters derived from TCGA followed a similar pattern (Fig 1D; S4b Table), with themes
relating to ER+ luminal A (cluster one; 91/113 tumours), basal-like (cluster two; 60/86) and ER+
luminal A/B (cluster three; luminal A: 76/140, luminal B: 59/140).Whilst the majority of cluster
two consisted of TNBC, all eight ER+ basal-like tumours were members of the cluster two, fur-
ther suggesting separation was being driven by intrinsic subtype rather than hormone status.
Note that no ER+ basal-like tumours were present in the UBCS dataset.

A consensus set of basal breast cancer lncRNA markers

By comparing the cluster meta-genes of UBCS and TCGA (Table 1), we found significant over-
lap (p<0.001 by hyper-geometric test) between the TNBC basal clusters, and between the ER+
luminal A/B clusters (p<0.001). By contrast, very little overlap was observedbetween the ER+
luminal A cluster, and none of the 14 genes driving the UBCSmixed subtype cluster achieved
the expression and variance criteria in the TCGA sample set.
Of the nine lncRNAs defined as meta-genes by NMF in both the UBCS and TCGA basal-

like clusters, six were also significantly over-expressed (log2 FC>1.00; adjusted p<0.05) in
basal-like compared to other breast cancer subtypes (Table 2; Fig 2; S5a and S5b Table). We
therefore classed these six genes as candidate lncRNA markers of basal-like breast cancer.
For the majority of markers, there was a clear distinction between high expression levels in

basal-like tumours compared to other subtypes (Fig 2). Exceptions were CTD-2015G9.2 (Fig
2A) and LINC01198 (Fig 2D), both of which are also expressed in the normal-like tumours.
Furthermore, expression was typically low across an extra 19 ER-/PR-/HER2+ TCGA tumours
classified as HER2-enrichedTCGA tumours compared to basal-like tumours (S1 Fig).

Relationship between lncRNA basal-like breast cancer markers and

neighbouring genes

Recent observations have shown that cis-acting lncRNAs tend to correlate strongly with their
neighbouring genes [22]. Therefore, to determine potential cis-regulatory functions, we first

Table 1. Comparison between meta-genes driving clustering of UBSC and TCGA tumour samples.

Cluster (number of meta-genes) UBCS (932 genes)

1 (14) 2 (17) 3 (12) 4 (28)

Representative subtype Mixed TNBC basal-like ER+ luminal A/Normal ER+ luminal A/B

TCGA (588

genes)

1 (20) ER+ luminal A 0 0 0 3

2 (18) Basal-like 0 9* 0 0

3 (33) ER+ luminal A/B 0 0 1 14*

*p<0.001

doi:10.1371/journal.pone.0163238.t001

Table 2. A consensus list of lncRNAs associated with the basal-like breast cancer intrinsic subtype.

Ensembl ID Gene Symbol UBCS TCGA

Log2 FC p-value Adjusted p-value Log2 FC p-value Adjusted p-value

ENSG00000261175 CTD-2015G9.2 1.62 1.47E-07 7.28E-06 2.40 5.34E-98 2.28E-94

ENSG00000179066 CTD-2527I21.15 1.38 2.33E-15 5.44E-12 1.45 1.04E-65 6.68E-63

ENSG00000224853 LINC00393 1.90 1.45E-09 1.80E-07 1.50 4.22E-41 4.31E-39

ENSG00000231817 LINC01198 1.31 1.77E-03 1.16E-02 1.37 3.06E-50 7.48E-48

ENSG00000248538 RP11-10A14.5 1.91 6.03E-10 8.78E-08 1.67 6.40E-35 3.50E-33

ENSG00000258910 RP11-19E11.1 3.23 7.40E-24 1.90E-19 2.40 3.39E-80 4.35E-77

doi:10.1371/journal.pone.0163238.t002
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Fig 2. Comparison of lncRNA basal-like marker expression between breast cancer intrinsic subtypes. A, CTD-2015G9.2. B, CTD-2527I21.15. C,

LINC00393. D, LINC01198. E, RP11-10A14.5. F, RP11-19E11.1. Boxplots representing the basal-like subtype are highlighted in either red (UBCS) or

blue (TCGA).

doi:10.1371/journal.pone.0163238.g002
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defined neighbouring genes of each potential basal-like breast cancer lncRNA marker (Table 2)
using GREAT [23] with the “basal plus extension” setting, and then calculated the Pearson cor-
relation coefficient (r) between each lncRNA expression profile and its neighbouring genes
across the TCGA breast cancer cohort.We repeated this calculation across all other cancer types
represented in the TCGA in which the lncRNA achieved expression ((mean FPKM+SD)>1.00)
and variability (CV>0.10) thresholds. We sought consistently high correlation across a number
of cancer types as support for a potential cis-regulatory relationship.
Three of the six markers (RP11-19E11.1,LINC00393 and CTD-2015G9.2) achieved signifi-

cant correlation (p<0.0001) with a neighbouring gene (Table 3; Fig 3A–3C; S6 Table) across
TCGA breast cancer tumours. Of note was the high correlation achieved betweenRP11-
19E11.1 and the transcription factor engrailed 1 (EN1; r = 0.90; Fig 3A). EN1 is over-expressed
in basal-like breast cancer [24], and achieved significant differential expression between basal
and other breast cancers in both UBCS (log2FC = 4.03, p = 2.26E-22) and TCGA
(log2FC = 3.01, p = 8.04E-71) datasets. EN1 is also consistently correlated with RP11-19E11.1
across multiple cancers, achieving the highest correlation amongst 17308 PC genes in 7/11 can-
cers (Fig 3A; S7a Table). Similarly, LINC00393 achieved significant correlation with the tran-
scription factor krueppel-like factor 5 (KLF5; r = 0.45; Fig 3B), whose high expression in basal-
like breast cancers [25] was supported by both UBCS (log2FC = 2.18, p = 6.52E-05) and TCGA
(log2FC = 1.73, p = 1.07E-30) datasets. Its correlation with LINC00393 also ranked highly in
lung squamous cancer compared to other PC genes (Fig 3B; S7b Table). The strong correlation
betweenCTD-2015G9.2 and FOXL1 forkhead box L1 (FOXL1) in breast cancer (r = 0.73; Fig
3C) was repeated across 4/8 cancers (S7c Table). FOXL1 has not been reported as a TN or basal
breast cancer marker, although other members of the forkhead family of transcription factors
such as FOXA1 (UBCS: log2FC = -5.04, p = 4.05E-18; TCGA: log2FC = -4.89, p = 9.81E-136)
and FOXC1 (UBCS: log2FC = 2.58, p = 3.43E-15; TCGA: log2FC = 3.16, p = 5.83E-103) are
established regulators of luminal and basal-like breast cancers respectively. FOXL1 was over-
expressed in both datasets used in this study (UBCS: log2FC = 0.50, p = 9.18E-07; TCGA:
log2FC = 0.75, p = 2.50E-42) albeit with relatively small fold changes.
By contrast, no significant correlation was observedbetween the three remaining lncRNAs,

CTD-2527I21.15,RP11-10A14.5 and LINC00198, and their neighbouring genes across breast
cancer (Fig 3D–3F), although there was evidence for a cis-regulatory role across other cancers.
For example, protein phosphatase 1 regulatory subunit 3B (PPP1R3B) was ranked in the top
100 most correlated PC genes with RP11-10A14.5 in 10/19 cancers (Fig 3D; S7d Table), and
FXYD domain containing ion transport regulator 3 (FXYD3) with CTD-2527I21.15 in 8/14
cancers (Fig 3E; S7e Table). Interestingly, a higher correlation across basal-like compared to

Table 3. Correlations between basal lncRNA markers and their neighbouring genes.

LncRNA Neighboura Pearson correlation

All (349 samples) Non-basal (271) Basal only (68)

CTD-2015G9.2 FOXL1 0.73* 0.26* 0.50*

CTD-2527I21.15 FXYD3 -0.02 0.07 0.52*

LINC00393 KLF5 0.45* 0.08 0.26

LINC01198 LCP1 0.25 0.06 0.21

RP11-10A14.5 PPP1R3B -0.03 -0.06 0.29

RP11-19E11.1 EN1 0.90* 0.52* 0.80*

aNeighbouring PC gene achieving highest correlation

*Pearson p-value<0.0001

doi:10.1371/journal.pone.0163238.t003
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other breast cancers was observed for both PPP1R3B (basal-like: r = 0.29, other: -0.06) and
FXYD3 (basal-like: r = 0.52, other: 0.07), significant at p<0.01 for FXYD3, suggesting their cis-
regulatory role is restricted to the basal-like subtype. A similar pattern was observedbetween
LINC01198 and its nearby PC gene LCP1, where correlation increased from r = 0.06 across
non-basal-like to r = 0.21 across basal-like breast cancers, although this was not significant and
there was no evidence of cis-regulation of LCP1 by LINC01198 in other cancer types (Fig 3F;
S7f Table).

Identification of clusters associated with the tumour microenvironment

To understand the poor overlap between ER+ luminal A clusters, and characterize the mixed
subtype cluster of UBCS, we functionally profiled these clusters from both TCGA and UBCS

Fig 3. Correlation between six potential lncRNA basal-like breast cancer markers and their neighbouring genes, and comparison

of correlation across cancer types. Each segment of the figure consists of (1) a scatterplot comparing FPKM expression values of the

lncRNA with the neighbouring PC gene of interest, and (2) a comparison of the rank achieved by Pearson correlation of the PC gene with

the lncRNA between cancer types. A, RP11-19E11.1 versus EN1. B, LINC00393 versus KLF5. C, CTD-2015G9.2 versus FOXL1. D, RP11-

10A14.5 versus PPP1R3B. E, CTD-2527I21.15 versus FXYD3. F, LINC01198 versus LCP1. Only cancer types in which lncRNA achieves

expression ((mean FPKM+SD)>1.00) and variability (CV>0.10) thresholds were considered. Rank score = 1-(n/N) where n = position of PC

gene in list of PC genes ranked in descending order of correlation to lncRNA, and N = total number of PC genes (17308). Rank score>~0.99

indicates PC gene ranked in top 200. Breast cancer is highlighted in red. TCGA cancer type codes are listed in S8 Table.

doi:10.1371/journal.pone.0163238.g003
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using the guilt-by-association approach [14]. Briefly, the Pearson correlation coefficient (r) was
calculated between each member of the lncRNA meta-gene and the 11027 and 12410 PC genes
achieving the detection ((mean FPKM+SD)>1.00) and variability (CV>0.10) thresholds
across UBCS and TCGA respectively. PC genes achieving r>0.60 (UBCS) or r>0.50 (TCGA)
were then input to DAVID functional enrichment analysis [26].
The majority (9/14) of lncRNA meta-genes of the UBCSmixed subtype cluster were associ-

ated with the immune response or related processes (S9a Table). 8/20 lncRNAs of the TCGA
ER+ luminal A cluster were associated with the extra-cellularmatrix (S9b Table), and all
achieved significant correlation with at least one of two established cancer-associated fibroblast
(CAF) markers: fibroblast activation protein (FAP) and actin, alpha 2, smoothmuscle, aorta
(ACTA2; S9b Table). By contrast, no significant correlation was observedbetween these two
genes and any of the lncRNAs related to the immune response.
These findings were supported by ESTIMATE [27] prediction of tumour purity across each

cluster. High stromal (Fig 4A) and immune cell (Fig 4B) content was observed in samples of
the UBSCmixed subtype cluster and this contributed significantly to their low tumour purity
(0.33±0.05; p<0.001 by T-test) compared to the other three clusters (Fig 4C). By contrast, high
stromal cell content was observed in some ER+ luminal A TCGA samples (Fig 4D) but there
was no significant difference in immune cell score (Fig 4E) or tumour purity (Fig 4F) between
the clusters. Overall, only 1.4% (5/339) TCGA samples achieved immune cell ESTIMATE
score>2000 compared to 11/63 (17.4%) of UBCS samples. Neither sample cohort had been
subject to micro-dissection to separate the tumour from non-tumour cells.

Fig 4. Stromal cell, immune cell and tumour purity measures for each cluster derived from UBCS and TCGA samples according to

ESTIMATE [27]. UBCS: A, stromal cell content. B, immune cell content. C, tumour purity. TCGA: D, stromal cell content. E, immune cell content. F,

tumour purity.

doi:10.1371/journal.pone.0163238.g004
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We next checked for evidence of expression in samples expected to consist of exclusively
tumour cells, reasoning that lncRNAs expressed in clinical samples that typically contain a pro-
portion of non-tumour cells (TCGA:mean tumour purity = 0.60±0.17, UBCS: 0.62±0.15), but
with little or no expression in samples of high tumour cell purity, were likely stromal or
immune cell specific. To do so, we calculated lncRNA expression levels across 41 breast cancer
cell lines from the Cancer Cell Line Encyclopaedia [28] (CCLE;mean tumour purity = 0.99
±0.01), and tumours from 10 breast cancer patient derived xenograft (PDX) models [29]
(mean tumour purity = 0.99±0.01), in which tumour had been separated from stroma using an
in silico species-specificmapping strategy [30]. For 5219 lncRNAs common to all three data-
sets, we then compared both median cell line and PDX expression to median expression across
47 UBCS samples achieving tumour purity>0.70.
Note that the three datasets were generated using different sequencing protocols and so sub-

ject to a number of confounding factors. Therefore this was not intended as a rigorous statisti-
cal assessment, rather a conservative guide to genes consistently over-expressed in cell lines
and the tumour component of PDX models compared to clinical samples.
198 lncRNAs achieved log2FC>0.50 in both comparisons, and median FPKM<0.50 across

cell lines and PDX tumours (S10 Table), thus were classed a potentially stromal or immune cell
specific (SIC). Included in this list was the maternally expressed 3 gene (MEG3), one of the few
lncRNAs known to be preferentially expressed in tumour stroma [31]. This achieved the high-
est fold changes in both cell lines (log2FC = 6.74) and the PDX tumour component (log2FC =
6.73), adding confidence to our approach. We observed the greatest overlap between SIC
lncRNAs and the UBCSmixed subtype (7/14; 43%) and TCGA ER+ luminal A (7/20; 35%)
clusters. No overlap was achieved with the basal-like clusters, and only some overlap with
UBCS (3/28; 11%) and TCGA luminal A/B (2/33; 6%) clusters, and UBCS ER+ luminal A clus-
ter (2/12; 17%). SIC lncRNAs indicated by this method are listed in S11 Table.

A putative set of breast cancer stromal and immune cell associated

lncRNAs

By combining evidence from the guilt-by-association and cell line/PDX expression profiling,
we derived a set of four and six lncRNAs achieving functional enrichment FDR<0.05 for
“immune response” or “extracellular matrix” respectively, and low/undetectable expression in
cell lines/PDX tumour (Table 4; S12 Table). All extracellularmatrix associated lncRNAs
achieved significant Pearson correlation with FAP and ACTA2 (Table 4b; S9b Table), suggest-
ing a potential role in activating fibroblasts. For comparison, we also carried out the same anal-
yses on known stromal lncRNAMEG3 [31], which achieved significant (p<0.0001) correlation
with both FAP (r = 0.63) and ACTA2 (r = 0.53), and enrichment for “extracellular matrix”
(p = 8.88E-38). Consequently,MEG3met all criteria for our classification of a stromal cell asso-
ciated lncRNA.
We next explored whether the three putative immune-response associated lncRNAs were

linked with a specific immune cell type. To do so, we selected a set of establishedmarkers for
immune cell type and calculated the correlation between each marker and the lncRNA (S12
Table). For cell types represented by at least four markers, the median correlations achieved by
each cell type were compared (Fig 5). All three immune cell associated lncRNAs achieved the
strongest correlations with macrophage cell type markers such as CD68 (RP3-460G2.2:
r = 0.67, RP11-1008C21.1: r = 0.68, RP5-899E9.1: r = 0.65) and macrophage scavenger receptor
1 (MSR1; RP3-460G2.2: r = 0.56, RP11-1008C21.1: r = 0.67, RP5-899E9.1: r = 0.52). No other
cell type achieved a median r>0.48 (p<0.0001) across all three lncRNAs.
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Discussion

In this study, we first establish that lncRNA expression alone is sufficient to separate breast
cancer into clusters that broadly correspond to intrinsic subtype. This enabled us to identify a
consensus set of lncRNAs associated with the basal-like breast cancer, and generate hypotheses
on their relationship with neighbouring genes. Secondly, we find evidence that the lack of
agreement between signatures derived from other subtypes is a result of the varying degree of
stromal/immune cell infiltrate present in a typical clinical sample. Finally, we derive a set of
lncRNAs whose expression is specific to the breast tumour microenvironment, with possible
roles in activating fibroblasts to support tumour progression, and macrophage recruitment to
the tumour.

Table 4. LncRNAs associated with breast cancer stromal or immune cells.

Ensembl ID Gene symbol Functional enrichment Co-expression

Top enrichment p-value FAP ACTA2

(a) Immune cell associateda

ENSG00000234147 RP3-460G2.2 Immune response 1.06E-09 0.36 0.3

ENSG00000259225 RP11-1008C21.1 Immune response 1.53E-25 0.21 0.17

ENSG00000273341 RP5-899E9.1 Immune response 1.30E-16 0.32 0.21

(b) Stromal cell associatedb

ENSG00000261742 LINC00922 Extracellular matrix 1.26E-46 0.64* 0.41*

ENSG00000254366 RP11-38H17.1 Extracellular matrix 2.01E-11 0.44* 0.35*

ENSG00000232679 RP11-400N13.3 Extracellular matrix 1.30E-31 0.62* 0.37*

ENSG00000261039 RP11-417E7.2 Extracellular matrix 1.46E-57 0.78* 0.57*

ENSG00000261327 RP11-863P13.3 Extracellular matrix 8.03E-47 0.75* 0.50*

ENSG00000233521 RP5-1172A22.1 Extracellular matrix 4.59E-49 0.71* 0.48*

ar-values calculated across 63 samples, r>0.60 used as threshold for enrichment gene list.
br-values calculated across 1093 samples, r>0.50 used as threshold for enrichment gene list.

*Pearson p-value<0.0001

doi:10.1371/journal.pone.0163238.t004

Fig 5. Correlation of immune response-associated lncRNAs with specific immune cell type. A, RP11-1008C21.1. B, RP5-899E9.1. C, RP3-

460G2.2. Each box is generated from correlations obtained between each lncRNA and a set of established markers for the corresponding immune cell

type. Red horizontal dashed line at r = 0.48 indicates significance at p<0.0001. The macrophage cell type achieves median r>0.48 across all lncRNAs

and is highlighted in green. Only immune cell types represented by >3 markers are shown on the boxplots.

doi:10.1371/journal.pone.0163238.g005
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A consensus set of basal-like breast cancer lncRNA markers and their

potential cis-regulatory roles

We derived a set of six high confidence lncRNA basal-likemarkers, all of which were signifi-
cantly over-expressed in basal-like tumours from both UBCS and TCGA, and made a signifi-
cant contribution to the basal-likeNMF clusters. Basal-like breast cancers are characterised by
aggressive features and frequently associated with poor prognosis. They account for 85% of
TNBCs, which lack expression of oestrogen, progesterone or HER2 receptors and as such, fail
to respond to hormone targeting therapies. With rigorous follow-up, our lncRNA markers
could indicate novel regulatorymechanisms specific to basal-like breast cancer, providing a
platform to generate new drug targets.
As an initial exploration, three of these (RP11-19E11.1,CTD-2015G9.2,LINC00393)

achieved significant expression correlation with a neighbouringPC gene, suggesting a possible
cis-regulatory relationship. Notably, PC genes EN1 and KLF5 neighbouringRP11-19E11.1 and
LINC00393 respectively are knownmarkers of the basal-like breast cancer subtype [24][25]. In
all three cases, the relationship was not restricted to breast cancer but extended across at least
one other cancer type, and for RP11-19E11.1 and CTD-2015G9.2 across at least half the cancer
types in which expression of the lncRNA could be detected. To our knowledge, this represents
a unique application of the guilt-by-association approach to identify cis-regulation through
consistent pan-cancer co-expression between lncRNAs and their neighbouring genes. By doing
so, we may have uncovered a potential route by which these lncRNAs control important basal-
like PC genes.
For two of the remaining lncRNA-neighbouring PC gene pairs (CTD-2527I21.15and

FXYD3, RP11-10A14.5 and PPP1R3B) co-expression only emerged across basal-like tumours
despite consistent pan-cancer correlation. The greatest increase was seen betweenCTD-
2527I21.15 and FXYD3, a gene not previously associated with basal-like breast cancer but
whose expression has been shown to increase in response to oestrogen and tamoxifen [32].
Our results demonstrate the need to consider disease subtype specificity when seeking tran-
scriptional evidence of cis-regulation by lncRNAs.

Tumour purity confounds clustering but identifies tumour

microenvironment-associated lncRNAs

Our finding that lncRNA expression clusters broadly correspond to intrinsic molecular subtype
is in accordance with previous studies [12][17][18]. Clear enrichment was observed for ER+
luminal A, ER+ luminal A/B and TNBC/ER+basal-like subtypes in three of the clusters from
both datasets. However, the fourth UBCS cluster comprised a mix of subtypes and showed no
clear correspondence to a TCGA cluster. Notably, this cluster appeared to be driven by
lncRNAs associated with the immune response, concordant with a greater proportion of sam-
ples with predicted high immune cell content in the UBCS cohort than TCGA.We also found
that the ER+ luminal A cluster derived from TCGA is driven partially by lncRNAs associated
with tumour stroma, a trend not observed in the equivalent UBCS cluster. Our results suggest
that signature inconsistency is in part driven by the varying extent of stromal and immune cell
infiltrate in patient samples, supporting a recent study that determined the confounding effects
of tumour purity on differential expression and co-expression measurements [33].
The presence of non-tumour cells highlighted a small set of lncRNAs whose expression is

restricted to the tumour microenvironment. The tumour microenvironment consists of multi-
ple cell types including endothelial cells, adipocytes, CAFs and immune cells such as lympho-
cytes and tumour-associatedmacrophages that play a critical role in supporting cancer growth
and metastasis [34]. An association between lncRNAs and the immune response has only
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recently emerged [35][36], and only a few have been shown to be expressed in endothelial cells
[37], and adipocytes [38], with preferential expression ofMEG3 [31] andH19 [31][39]
observed in tumour stroma.
The observation that our putative immune cell associated lncRNAs correlate strongly with

macrophage markers is consistent with tumour-associatedmacrophages (TAMs) as the most
abundant immunosuppressive cell population in breast tumours. TAMs are frequently associ-
ated with poor prognosis [40], and their relationship with tumour cells is currently under
intense scrutiny since the disruption of the positive-feedback loop betweenTAMs and breast
cancer cells could inhibit the angiogenic and/or metastatic potential of the tumour. Therefore,
lncRNAs could offer a novel avenue to target the TAM population, and supplement
immunotherapy.
The high correlation between the six extracellularmatrix-associated lncRNAs with CAF

markers FAP and ACTA2 may suggest a role for lncRNAs in the acquisition of an activated
phenotype by fibroblasts in the tumour stroma. Currently, the mechanisms of fibroblast activa-
tion are poorly understood, and so the possibility that numerous lncRNAs may have a role in
their regulation opens up an enticing research opportunity. Overall, our discovery of several
lncRNAs specifically expressed in either stromal or immune cells should stimulate further
studies to determine their precise role in the tumour life-cycle, potentially leading to novel
therapeutic strategies.

Conclusions

We have performed a comprehensive analysis of lncRNA in breast cancer that builds on previ-
ous findings that lncRNA expression alone is sufficient to separate breast cancer into clusters
that broadly correspond to hormone status and intrinsic molecular subtype. By combining two
independent clinical datasets, we establish a set of lncRNA markers specific to basal-like breast
cancer, representing a preliminary effort to exploit the disease subtype specificity of lncRNAs.
With rigorous validation, at least a subset of these could have clinical potential as either bio-
markers or therapeutic targets. We also demonstrate the confounding effects of tumour purity
as a source of inconsistency in signatures derived from different studies. The presence of non-
tumour cells in our patient samples provided the opportunity to discover several lncRNAs spe-
cifically expressed in the tumour microenvironment. Our list should motivate follow-up stud-
ies to establish whether these lncRNAs are key regulators of either macrophage recruitment or
fibroblast activation, and thus critical in supporting tumour growth and progression.

Methods

RNA-Seq sample preparation and data processing

Utah Breast Cancer Study (UBCS). Fresh frozen breast tissue samples were obtained
from 88 women who had surgery at the Huntsman Cancer Hospital from 2009–2012, including
tumour tissues from 69 breast cancer patients. One tumour sample yielded poor quality RNA
(RIN = 2.5) and was removed from consideration, resulting in a panel of 68 tumour samples.
RNA libraries were made with the Illumina TruSeq Stranded mRNA Sample Preparation kit
with oligo dT selection according to the manufacturer's protocol. These libraries were then sub-
mitted for 50bp single-end sequencing on the Illumina HiSeq 2000 platform using eight sam-
ples per lane. For the purposes of this analysis, five breast cancers of the HER2 subtype and one
of ambiguous hormone receptor status were ignored. The reads for the remaining 63 were
aligned to the human (GRCh38) genome using StarAlign [41] with no more than three mis-
matches and only uniquely mapped reads allowed. Reads whose ratio of mismatches to
mapped length was greater than 0.10 were also discarded. All other parameters were set to
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their defaults for stranded alignment.Mapped read counts were consistent (14M-23M) across
samples, so no samples were removed due to low mapping rate (S1 Table). The expression
level, based on Fragments Per Kilobase perMillion fragments mapped (FPKM), of each gene
present in the human (GRCh38) GENCODEv22 annotation file was estimated using Cufflinks
with library type defined as “fr-firststrand” and all other parameters set to defaults [42]. Only
genes annotated as “lincRNA” or “protein_coding” were considered. LncRNAs overlapping PC
genes were ignored for consistency with the TCGA dataset, as well as genes whose largest tran-
script is less that 400bp due to potential over-estimation of expression across transcripts less
than the average fragment length. The resulting gene-by-sample matrix consisted 19567 pro-
tein-coding genes and 6062 lncRNAs across 53 non-basal and 10 basal-like samples. Intrinsic
subtypes were assigned according to PAM50 classification [43]. Differentially expressed genes
(|log2FC|>1.5 and FDR<0.05) were identified using Limma [44] with eBayes function parame-
ter “trend” set to “TRUE” and all other parameters set to their default values. Raw sequence
data associated with UBCS have been deposited in the ArrayExpress database (www.ebi.ac.uk/
arrayexpress) under accession number E-MTAB-4993.

The Cancer Genome Atlas (TCGA). Raw FASTQ solid tumour sequence files from 1136
breast cancer patients were downloaded from the Cancer Genomics Hub (CGHub; https://
cghub.ucsc.edu/), and reads aligned to the human (GRCh38) genome using the same proce-
dure as for UBCS except all parameters were set to their defaults for un-stranded alignment.
To reduce possible biases introduced by variable total read counts between samples, tumours
achieving<20,000,000 mapped reads were removed. FPKM values for each gene present in the
human (GRCh38) GENCODEv22 annotation file were calculated as before using Cufflinks
with library type defined as “fr-unstranded” [42], and then batch normalized using COMBAT
[45]. Sequencing data for all other TCGA cancer types used in this study were processed using
the same procedure. The number of tumours used across each cancer type is given in S8 Table.
Only tumours classified as either ER+ or TNBC according to TCGANetwork [46] were

considered in subsequent analyses, and breast cancer samples treated with tamoxifen were dis-
carded. The resulting matrix consisted of 19567 PC genes and 6062 lncRNAs across 271 non-
basal and 68 basal-like samples. Differentially expressed genes were identified using Limma as
for the UBCS dataset.

Cancer Cell Line Encyclopaedia(CCLE). BAM files consisting of reads mapped to the
human (GRCh37) genome were downloaded from the Cancer Genomics Hub (CGHub;
https://cghub.ucsc.edu/) for all breast cancer cell lines represented in the CCLE [28], except
those of the claudin-low subtype according to [47], or with fibroblast morphology according to
ATCC (http://www.lgcstandards-atcc.org). FPKM values for each gene present in the human
(GRCh38) GENCODEv19 annotation file were calculated as before using Cufflinkswith library
type defined as “fr-unstranded”. Of the 6995 lncRNAs annotated in GENCODEv19, 5284 over-
lapped with v22 based on Ensembl identifier. 38 overlapped by gene name only but were dis-
carded since an Ensembl identifier change indicates that the gene structure has changed
significantly between releases. Therefore, the resulting gene-by-sample matrix consisted of
5284 lncRNAs across 41 cell lines.

Clustering of gene expression data with consensus non-negative matrix

factorization (NMF)

We applied NMF to cluster breast cancer lncRNA transcriptomes from UBCS and TCGA.
Only the most highly expressed and variable lncRNAs were chosen for clustering according to
the following criteria: (mean FPKM+SD)>1.00 and CV>0.10, where CV = coefficient of varia-
tion. The underlying principle of NMF is dimensionality reduction in which a small number of
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meta-genes, each defined as a positive linear combination of the genes in the expression data,
are identified and then used to group samples into clusters based on the gene expression pat-
tern of the samples as positive linear combinations of these meta-genes. Using the R package
NMF [48], factorization rank k was chosen by computing the clustering for k = 2–6 against 50
random initializations of both the actual and a permuted gene expression matrix, and selecting
the k value achieving the largest difference between cophenetic correlation coefficients calcu-
lated from the actual and permutated data (S1 Fig). For further visual confirmation of a sensi-
ble choice of k, consensus matrices were generated corresponding to different k values (S2 Fig).
To achieve stability, the NMF algorithmwas then run against 200 perturbations of each gene
expression matrix at the chosen values of k = 4 (UBCS) and k = 3 (TCGA).

Ethics statement

UBCS tissues were attained and studied under written informed consent, as approved by Uni-
versity of Utah Institutional ReviewBoards 10924 (Molecular Classifications of Cancer) and
38201 (Genetic Epidemiology of Breast Cancer)."
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tumours.A, CTD-2015G9.2.B, CTD-2527I21.15.C, LINC00393. D, LINC01198. E, RP11-
10A14.5. F, RP11-19E11.1.
(TIF)

S2 Fig. Rank quality measures generated by the R packageNMF [48].Quality measures com-
puted from 50 runs for each value of rank k across A, UBCS, and B, TCGA expression datasets.
(TIF)

S3 Fig. Rank consensus matrices generated by the R packageNMF [48]. Consensusmatrices
computed from 50 runs for each value of rank k across A, UBCS, and B, TCGA.
(TIF)
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S2 Table. TCGA sample details and sequencing statistics.
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