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Energies of non3planar conjugated π systems are typically described qualitatively in terms of the 

balance of π stabilisation and the steric strain associated with geometric curvature. Curvature also 

has a purely graph3theoretical description: combinatorial curvature at a vertex of a polyhedral 

graph is defined as one minus half the vertex degree plus the sum of reciprocal sizes of the faces 

meeting at that vertex. Prisms and antiprisms have positive combinatorial vertex curvature at 

every vertex. Excluding these two infinite families, we call any other polyhedron with everywhere 

positive combinatorial curvature a PCC polyhedron. Cubic PCC polyhedra are initially common, 

but must eventually die out with increasing vertex count; the largest example constructed so far 

has 132 vertices. The fullerenes Cn have cubic polyhedral molecular graphs with n vertices, 12 

pentagonal and (n/2 − 10) hexagonal faces. We show that there are exactly 39 PCC fullerenes, all 

in the range 20 ≤ n ≤ 60.  In this range, there is only partial correlation between PCC status and 

stability as defined by minimum pentagon adjacency. The sum of vertex curvatures is 2 for any 

polyhedron; for fullerenes the sum of squared vertex curvatures is linearly related to the number of 

pentagon adjacencies and hence is a direct measure of relative stability of the lower (n ≤ 60) 

fullerenes. For n ≥ 62, non3PCC fullerenes with a minimum number of pentagon adjacencies 

minimise mean3square curvature. For n ≥ 70, minimum mean3square curvature implies isolation of 

pentagons, which is the strongest indicator of stability for a bare fullerene. 

 

�����
������ 

A quarter of a century after fullerenes were first obtained in synthetically useful quantities,1,2  the 

factors selecting the relatively few experimentally observed nuclearities and isomers136 from the 

mass of mathematical possibilities7 for these molecules are still only partly known. It is clear that 

competing π3electronic and σ3steric factors are significant for the relative kinetic and 

thermodynamic stabilities of fullerene isomers.7,8 Exhaustive ab initio optimisation of all 

mathematically distinct structural isomers to determine their relative energies is a strategy that 
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soon runs into difficulties, given the rapid growth in isomer count,7,9312 and input from more 

qualitative methods is therefore an essential aid to identification of general classes of stable 

fullerenes.7,13315 Correlations for the lower fullerenes (Cn with n ≤ 60)16 point to the number of 

pentagon adjacencies, NP, as an important first estimator of stability. Each additional pentagon 

adjacency carries an energy penalty of ca 1 eV.16,17 Minimisation of NP correlates well with low 

energy for the small fullerenes.7 For n ≥ 70, where isolation of pentagons (NP = 0) is possible, it 

appears that all experimentally characterised neutral fullerenes obey the isolated3pentagon rule 

(IPR).18,19 Separation of σ and π systems is not strictly preserved in curved systems such as 

fullerenes, but still gives a useful framework for discussing qualitative effects of curvature. 

Pentagon adjacencies are disfavoured on both π and σ criteria: they introduce energetically 

unfavourable ‘anti3aromatic’ 8π circuits and also concentrate local curvature, with resulting 

hybridisation strain, an effect that is captured in geometric models such as POAV.13,20 These 

various considerations give ample reason for the common practice of using NP as a proxy for both 

steric strain and overall stability of fullerene isomers. 

There is a close association between closed3shell π configurations and isolation of 

pentagons. Until recently, it was tacitly assumed that that isolation of pentagons was necessary if a 

fullerene was to have all its bonding π orbitals occupied in the Hückel model; occasional 

countexamples to this belief have been found from C120 onwards, but they have LUMOs that are 

bonding by only tiny amounts.21 Stability rules for functionalised, endohedral or charged fullerene 

species are apparently more complicated.22327 and, even in bare fullerenes, cross3cage interactions 

may destabilise some  IPR isomers, as in the notorious case of the sole IPR isomer of the elusive 

C72, where the bare3fullerene isomer of highest stability is believed to be one with a single 

pentagon adjacency28330 

The present investigation revisits the assumed general connection between stability and 

distribution of local curvature for fullerenes. We first reprise combinatorial definitions of 

curvature, Positive Combinatorial Curvature, and PCC polyhedra (PCCP). We identify the PCC 

fullerenes, and exhibit relationships between new mathematical and established chemical 

measures of steric strain in fullerenes and other cubic polyhedra. Finally, we place isolated3

pentagon fullerenes in the context of combinatorial measures of curvature, giving a new 

interpretation of the IPR. The key point here is that IPR isomers have a precise characterisation in 

terms of curvature: they minimise mean3square combinatorial curvature. 

�

�

�
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The mathematical definition of curvature at a vertex i of a polyhedral graph is31,32 

���� = 1– �
	
� + ∑ 1 ���������           (1) 

where di is the degree of the vertex i, and fij is the size of the jth of the di faces incident on vertex i. 

This combinatorial definition is motivated by the Euler theorem for spherical polyhedra: 

� + � = � + 2,          (2) 

where n, f and m are respectively the total numbers of vertices, faces and  edges. Within definition 

(1), the global curvature, i.e., vertex curvature (1) summed over all vertices, is equal to the Euler 

characteristic, which is two for the sphere: 

∑ �������� = ∑ {1– �
	���� 
� + ∑ 1 ���� }����� = �–� + � = 2.     (3) 

Here the summations of the three terms on the RHS of (1) follow from simple counting of 

vertices, from double counting of edges by adding up vertex degrees, and from noting that each 

face of size r contributes 1/r at each of its r vertices. 

All spherical polyhedra have the same global total curvature, but what may distinguish 

them is the distribution of that curvature over the vertices. One natural limiting case is of 

polyhedra with everywhere positive combinatorial curvature, i.e., where every vertex of the 

polyhedron has a strictly positive value of ����. The two infinite series of polyhedral graphs with 

everywhere positive combinatorial curvature are the prisms and antiprisms. It is usual to use the 

term PCC polyhedra to describe those polyhedra that have everywhere positive combinatorial 

curvature but are neither prisms nor antiprisms. The number of PCC polyhedra is finite33 and it is 

of interest to determine their maximum order (i.e., vertex count). Devos and Mohar33 asked for a 

largest PCC polyhedral graph and proved that it has at least 120 and at most 3444 vertices; 

Zhang34 reduced the upper bound, showing that the maximum vertex count is less than 580. For 

the lower bound, Réti et al.31 gave an example of a PCC polyhedron with 138 vertices, which was 

further improved to 208 vertices by Nicholson and Sneddon,35 both examples containing a mixture 

of degree33 and degree34 vertices. The best bounds currently available for largest PCC polyhedral 

graphs of general degree are therefore 

208 ≤ ���� < 580.          (4) 

If we are interested in polyhedra that can model all3carbon hollow cages, vertex degree is limited 

to three (cubic polyhedra, also known as trivalent polyhedra). Ten combinations of sizes for faces 

meeting at a degree33 vertex (the ten vertex types) lead to a combinatorially flat vertex (Table 1). 

Conversely, all vertex types that lead to positive curvature at a degree33 vertex are listed in Table 

Page 3 of 21 Physical Chemistry Chemical Physics

Ph
ys
ic
al
C
he
m
is
tr
y
C
he
m
ic
al
Ph
ys
ic
s
A
cc
ep
te
d
M
an
us
cr
ip
t



� 4 
 

2. A similar table for general degrees is given in Ref. 34. A cubic PCC polyhedron has have vertex 

types drawn from Table 2 (only). 

�

�����������	
��

Computer search of cubic polyhedral graphs in the range 4 ≤ n ≤ 28 (generated with the plantri 

program36) gives the counts listed in Table 3. Cubic PCC polyhedra are common for small n. The 

observed monotonic reduction in the percentage of PCC polyhedra for small n, 14	 ≤ �	 ≤ 28, is 

consistent with their inevitable eventual disappearance for large cubic polyhedra. The two smallest 

non3PCC cubic polyhedra have the 143vertex graphs shown in Figure 1.  A much larger cubic 

PCC polyhedron is the Ih3symmetric great rhombicosidodecahedron,37 once suggested as the 

framework for a possible C120 all3carbon cage,38 in which each of the 120 vertices occurs at the 

junction of a 43gon, 63gon and 103gon, and hence contributes 1/60 to the curvature. The lower 

bound33 of 120 on nmax for cubic polyhedra derived from this example was improved to 132 by 

Réti et al.31 who subdivided opposite edges of six of the square faces of the great 

rhombicosidodecahedron in a pattern that preserves Th point3group symmetry. The resultant 1323

vertex polyhedron has 36 square, 20 hexagonal and 12 113sided faces, with vertex curvatures of 

1/11 for the twelve new vertices created by the subdivision, and 1/132 for the rest. This gives the 

best published lower bound for cubic polyhedra. 

 

����	�	�	������	
��

For the particular subset of cubic polyhedra comprised by the fullerenes, the situation is much 

simpler, as the only allowed face sizes are 5 and 6, which fact leads to an easy upper bound on 

nmax for this class.  Fullerene vertices occur at junctions of three faces according to the vertex 

types 555, 556, 566, or 666 (Figure 2), with counts of n555, n556, n566, and n666, and with decreasing 

vertex curvatures φ(i) = 1/10, 1/15, 1/30 and 0. Geometric measures of strain follow the same 

decreasing order, from the highly pyramidal triple3pentagon to the flat triple3hexagon sites. For 

example, the POAV (π3orbital axis vector) measure20 calculated with nominal bond angles gives 

pyramidalisation angles 20.90, 16.70, 11.60 and 00 for the four cases. With two exceptions, all 

fullerenes contain a mixture of vertex types. The curvature sum rule ∑ �������� = 	2 derived from 

the Euler formula implies values of n = 20, 30, and 60 for the exceptional all3555, all3556 and all3

566 fullerenes. Of these, the first and third cases are uniquely realised in C20 and Ih C60. The 

second case is impossible: any hypothetical all3556 C30 would require each of its five hexagons to 

be surrounded by pentagons, but no isolated3hexagon fullerenes exist for n > 28. 
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An upper bound on the number of vertices of a PCC fullerene is easily established. Every 

fullerene vertex with positive curvature is in at least one pentagon. A fullerene has exactly 12 

pentagonal faces, and hence at most 60 vertices in pentagons. Any fullerene with n > 60 vertices 

must have at least one vertex of type 666, and hence a PCC fullerene has at most 60 vertices. The 

bound is sharp: the experimentally observed icosahedral isomer of C60 is vertex3transitive, with all 

vertices therefore having equal curvature of 2/60 = 1/30. The smallest possible fullerene is the 

vertex3transitive dodecahedron, with 20 vertices of type 555, hence curvature 1/10 at all vertices. 

The range of existence of PCC fullerenes is therefore 20 ≤ nmax ≤ 60. There are 5770 fullerene 

isomers in this range,7 and straightforward exhaustive search yields a total of exactly 39 PCC 

fullerenes, as listed in Table 4 and Figure 3. The smallest non3PCC fullerene is C32:5, with two 

666 vertices (Figure 4). There are no PCC fullerenes on 46, 48, 52, 54, 56 or 58 vertices, and, of 

course, none on more than 60 vertices.  

The PCC set forms a vanishingly small fraction of mathematically possible fullerene 

isomers, but, in view of the earlier discussion of curvature and steric strain, it is of interest to ask 

whether the PCC property correlates with stability. As noted above, an indicator of overall 

energetic stability for the lower fullerenes is Np, the number of pentagon adjacencies.7,16320 

Counting vertices, vertices in pentagons, and pentagon3pentagon edges gives three relations 

amongst the counts of the four vertex types and the number of pentagon adjacencies for a general 

fullerene on n vertices: 

				�### +			�##$ 	+ �#$$ 		= �– �$$$,       (5)

 				3�### + 	2�##$ 	+ �#$$ 		= 60,        (6)

 				3�### +			 	�##$ 																= 2)*	.        (7) 

Taking the numbers of pentagon adjacencies, Np, and fused pentagon triples (n555) as the known 

quantities, the remaining three vertex counts are determined: 

  �##$ 		= 			2)+	– 	3�###,        (8) 

  �#$$ 		=	– 4)++	3�### + 60,        (9) 

  �$$$ 		= 			2)+	– 			�###		– 	60 + �.                    (10) 

The necessary and sufficient condition for a PCC fullerene is that �$$$ = 	0, and hence (10) gives 

a relationship between measures of pentagon crowding in PCC fullerenes: 

(PCC) 2),	– 	�### = 60–�.                  (11) 

Thus, for a PCC fullerene (�$$$ = 	0), all vertex counts are fixed once ),	 and n are given: 

(PCC) �### 		= 			2)+	– 			60	 + �,                 (12) 

(PCC) �##$ 		=	– 4)+ + 180	– 3�,                 (13) 
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(PCC) �#$$ 		= 			2)+	– 	120 + 3�.                 (14) 

As all terms on the RHS of each equation (12) – (14) are even, all three counts �###, 	�##$	and 

�#$$ take even values in a PCC fullerene, though not necessarily in a general fullerene. 

Note that PCC status does not imply that ),	should be minimized for the given value of n. 

By (11), in a PCC fullerene, ),	may take values greater than the minimum if compensated by 

larger �###. A non3minimum value of either of these two invariants for a fullerene isomer is taken 

as an indicator of instability,15 and so PCC fullerenes are not necessarily stable fullerenes, and 

since integer solutions of equation (11) do not lead to constructible PCC fullerenes for all vertex 

numbers between 20 and 60, stable fullerenes in this range are not necessarily PCC. However, 

inspection of Table 4 shows that at those values where a PCC fullerene exists: (a) at least one PCC 

isomer realises the minimum value of NP for n3vertex fullerenes, and (b) the set of PCC isomers 

includes the most stable n3vertex isomer as predicted by tight3binding calculations.39  

 

����������
��	�	����������	��	���	��

We have seen that PCC character and steric strain (as expressed in fullerenes by NP) are only 

partially correlated (Table 4). The requirement that ���� > 0 for all vertices i does not uniquely 

pick out the fullerenes with minimum ),, but some other measures based on combinatorial 

curvature have greater success.  

Following Réti and Bitsay,40 generalised curvature3like invariants with different exponents 

in the face3size term can be defined for arbitrary powers s: for vertex i, with degree di and where fij 

is the size of the j3th of the di incident faces, 

�.��� = 1– �
	
� + ∑ ���.����� ,                  (15) 

where the usual combinatorial curvature defined in (1) corresponds to s = −1. In principle, Réti 

and Bitsay,40 allow s to be an arbitrary real number, although in fact they use only integer values 

/ ≥–1, as do we in what follows. Moments of the generalised curvatures (15) are then defined as  

 1	.,2 = �
�∑ 3�.���42���� .                   (16) 

In the remainder of this section we examine the behaviour of the moments 1	.,2	when they are 

specialised to fullerenes. For a fullerene, the generalised curvatures for the vertex types 555, 556, 

566, 666 are respectively 3 × 5.– 1 2⁄ 	,  2 × 5. + 1 × 6.– 1 2⁄ ,		 1 × 5. + 2 × 6.– 1 2⁄ , and 

3 × 6.– 1 2⁄ 	. It is a peculiar feature of the definition of these ‘curvatures’ that all vertices of cubic 

polyhedra have positive generalised curvature for all integers /	 >	– 1; there are no ‘flat’ vertices 

in fullerenes or other cubic polyhedra for these values of s. 
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The first moments 	1	.,�	for any of the generalised curvatures depend at most on n and s, 

via the formula 

 �	1.,� = ∑ �.��� = �
	���� �86.9�– 1:– 6086.– 5.:.               (17) 

derived using the curvatures given above for the four vertex types and the expressions (8) to (10) 

for the counts of each vertex type. Hence only the standard curvature (/ =	– 1) has a constant sum 

for all fullerenes; for higher values of s, the total increases in linear fashion. 

The second moment of the standard curvature, 1–�,	, detects pentagon adjacencies in 

fullerenes, since, from the definition (16), 

 �	1	–�,	 = 	 �
�;;�### + �

		# �##$ + �
<;;�#$$+	0	�$$$,               (18) 

and substitution using (8) and (9) reduces this to 

 �	1–�,	 = ∑ =�–����>	���� =	 ��#+ �
		#)P.                (19) 

The second moment 1–�,		is a linear function of the number of pentagon adjacencies and hence 

correlates well with stability for lower fullerenes.17 All higher moments of �–���� have a linear 

dependence on both �### and NP, with general expression 

 302�1–�,2 = 302 ∑ =�–����>2���� = 	@	�### + A	)P + 60,              (20) 

where @ = 3�32–�– 22 + 1� and A = 4 B22–�– 1C. The third moment is given by 

 �	1–�,D =	 �
E#;; �### + �

		#;)P + �
E#;,                 (21) 

Taken together, moments 1–�,		 and 1	–�,D	 (or 1–�,		 and any 1	–�,2	 with q > 2) carry the same 

information as �### and )P.  

 

�������	��	���	���
���	�ππππ�	�	��������	�	������	������

Finally, it is interesting to note that these relations for curvature moments lead to a direct 

connection between the steric property of curvature and the π electronic property of the graph 

spectrum. If the adjacency matrix has eigenvalues {λ�}, then the q3th spectral moment, defined by 

F2 = ∑ λ�2���� , counts self3returning walks of length q in the graph. For a fullerene Cn, the first 

seven spectral moments are functions of n only, but the eighth and ninth can distinguish isomers 

with different values of �### and )*, since a fused pentagon pair implies an 83circuit and a fused 

triple implies a 93circuit. Hence,41 

FG = ∑ λ�G = 639	�– 1920 + 16	)P���� ,                 (22) 

and 
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F< = ∑ λ�< = 18360 + 18	�###– 36	)P.					����                (23) 

All moments of the standard curvature �–���� are therefore determined by the Hückel spectrum of 

the fullerene, e.g., from (20) and (22), 

 ∑ =�–����>	���� = 	 �
D$;;FG– I�

E;;�	 + D
#.	                (24) 

(Note that (11) and (23) together also give a characterisation of PCC fullerenes as those fullerenes 

for which M9 is equal to 17280 + 18n.) 

From a chemical point of view, this direct relationship between an apparently ‘steric’ and 

an apparently ‘electronic’ property is intriguing. Pentagon adjacency has at least two obvious 

disadvantages in a bare carbon cage: it introduces an 83circuit, which in conjugated3circuit models 

has an adverse effect on the π3resonance energy, and it leads to higher local curvature and hence 

bond3angle strain. It is perhaps not a coincidence that surviving molecular models from the early 

fullerene era often show structural failure at precisely such points of high curvature. The forms of 

equations (22) to (24) show that the steric and electronic effects of these destabilising motifs are 

linked, even at the purely graph3theoretical level. Local curvature is correlated with 

pyramidalisation angle, as we have seen, and (24) therefore implies a connection between the 

effect per pentagon adjacency on orbital energies and this measure of steric strain.  

Non3conventional choices of exponents for the face sizes in the definition of curvature 

have the same information content for fullerenes since all moments 1.,2	are linear functions of 

�###, �##$, �#$$ and �$$$, and hence of the three variables �###, )P and n. For example, using s = 

1 instead of s = −1 in the definition (15) would give 

 �	1	�,� = 	 D#	 �	– 60,                   (25) 

 �	1	�,	 = 	 �		#E �	 + 4	)P– 2040                 (26) 

 �	1	�,D = 	 E	GI#G �	 + 198	)P– 6�###– 52035                       (27) 

for fullerenes, and yet another way of relating curvature, strain and the Hückel spectrum. These 

simple relations can account for many initially surprising correlations. Réti et al.40 plot various 

combinations of moments for fullerenes with 60 vertices, and show one intriguing case where the 

strange combination 

 Λ�1� = 100 JB1 + K��,	C / M1 + N���,��	OP	– 1	               (28) 

gives an apparently perfect correlation with NP (R2 = 1 is reported). Power series expansion shows 

how this (in fact approximate) linearity for fixed n arises from (25) and (26). 
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�	���
���	����	������	�	�	��

In the range 62 ≤ � ≤ 68, full isolation of pentagons is not possible, but isomers that have at most 

pairing of pentagons and also minimise NP can be constructed.7 These have �### = 0 by definition 

and NP values of 3 for C62, and 2 for C64 to C68. They also minimise �$$$, the number of ‘flat’ 

vertices, and the mean square curvature as measured by either �–� or ��. Interestingly, the most 

stable isomer of C62 is expected to be a non3classical cage with a single heptagonal and 13 

pentagonal faces;42 this cage has three flat vertices of type 666 and hence is not PCC.    

 

 	�	����	
��������	��	���	�!��	�	�������������	�	�	������������������	
��

The generalised curvatures proposed by Réti and Bitay40 can also be used to give a new view of a 

previous proposal for a function that successfully picks out fullerenes from the general mass of 

cubic polyhedra. Some years ago, Domene et al.43 suggested that the well known Euler3based 

relation for cubic polyhedra 

 ∑ 86– Q:�R = 12R                    (29) 

(where fr is the number of faces of size r) might usefully be generalised to 

 S = ∑ 86– Q:	�R.		R                   (30) 

as a way of selecting fullerenes and near3fullerenes from the mass of cubic polyhedral candidate 

carbon cages. It is straightforward to show that S ≥ 12 for all cubic polyhedra. We have from (29) 

and (30) 

 S		 = 9�D + 4�E + �# + 0�$ + �I + 4�G + 9�< +⋯               (31) 

 12 = 3�D + 2�E + �# + 0�$	– �I	– 2�G– 3�< +⋯               (32) 

and hence  

 S– 12 = 6�D + 	2�E + 2�I + 6�G + 12�< +⋯               (33) 

As all �R ≥ 0,  we have S ≥ 12. In fact, F = 12 if and only if the polyhedron is a fullerene. The 

proof is easy. In one direction, for a fullerene only f5 and f6 may be non3zero, and F = f5 = 12. In 

the other, if F = 12, (33) implies that all fr other than f5 and f6 are zero, and we have a fullerene. 

This old measure F is related to the recently defined generalised curvature with s = 1, since 

S = ∑ 86– Q:	R �R =	∑ 836�R– 12Q�R 	+ Q	�R:R      

							= 	36�– 24� + ∑ ∑ ��� = 72– D#
	 � + �	1	�,�.���������               (34) 

Hence, the sum ∑ ������ ��� = �	1	�,� carries no more information that the previously defined F. 

Minimisation of either quantity picks out fullerenes from other cubic polyhedra, and finds near3

fullerene polyhedra for the values of n where fullerenes are not possible.  
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The mathematical definitions of combinatorial curvature and allied quantities have been applied to 

make connections between curvature and stability in polyhedral candidates for conjugated carbon 

frameworks. One attractive idea is that, since curvature adds up over the polyhedral surface to a 

fixed sum, the thinnest possible distribution, in which every vertex has a positive contribution to 

the total, could have energetic advantages. It turns out that distribution of curvature as thinly as 

possibly over the surface of a fullerene is not a particularly good recipe for stability. The small set 

of PCC fullerenes includes both stable and unstable isomers, and misses out many relatively 

 stable lower fullerenes.  

However, combinatorial curvature(s) can yield chemically significant correlations. 

Straightforward summation of the generalised vertex curvature �� is sufficient to distinguish 

fullerenes from non3fullerenes through (34); this turns out to be equivalent to a calculation based 

on minimisation of mean departure of face size from the hexagonal ideal, which was the 

motivation behind the older F function.43 More usefully, minimisation of the sum of squares of the 

standard combinatorial curvature �V� separates more stable from less stable lower fullerenes, as 

shown by (19), and also gives a guide to stable isomers in the problem intermediate region 

62 ≤ � ≤ 68 where pentagon isolation is not possible. 

Curvature is also shown to be directly linked to models of π3electron energies through the 

relationship (24) between the same mean3square measure and the moment expansion for the 

eigenvalues of the adjacency matrix. 

Finally, we note that consideration of combinatorial curvature and moments of curvature 

casts a sidelight on the isolated3pentagon rule. An IPR fullerene Cn has �#$$ = 60 and �$$$ =
�–60. Thus, by (19), the sum of squared curvature over all vertices of an IPR fullerene is	 ��#. In a 

well defined sense, all IPR fullerenes are closest to PCC character in that they have the maximum 

possible number of vertices with positive combinatorial curvature. Hence for fullerenes in general, 

minimisation of the mean square curvature is equivalent to application of the minimum pentagon 

adjacency rule.7,18 
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7

(a) (b)  

�����	�*. The two smallest cubic polyhedra that do not have everywhere positive combinatorial 

curvature, shown as Schlegel diagrams. In each case, the polyhedron has 13 vertices of positive 

and one of zero combinatorial curvature where three faces of size 6 meet. 
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�

�����	�'. The four fullerene vertex types. 
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�

�

�

�����	�#. The 39 PCC fullerenes, listed in the order used in Table 4 and drawn to 

exhibit maximum symmetry. 
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�����	�$. The smallest non3PCC fullerene, C32 (isomer 5),7 has D3h symmetry and antipodal 666 

vertices (one at the centre and one at infinity in this Schlegel3like representation). 
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�

/��	�*: The ten combinations of sizes f1 ≤ f2 ≤ f3 for faces meeting at a vertex i of a 

cubic polyhedron that produce φ(i) = 0, i.e., a ‘flat’ vertex. 

 

 

 

  

f1 f2 f3 

3 7 42 

3 8 24 

3 9 18 

3 10 15 

3 12 12 

4 5 20 

4 6 12 

4 8 8 

5 5 10 

6 6 6 
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/��	� ': The fifteen cases for sizes for faces meeting at a vertex i of a cubic 

polyhedron that produce positive curvature at the vertex. When the two smallest face 

sizes are fixed at f1 and f2, the third has the range f2 to f high, where in some cases 

(denoted by an infinity sign in the table) f high may be arbitrarily large (controlled only 

by the limit on the total number of vertices). Note that although the arithmetic 

condition φ(i) > 0 would apparently allow f1 = f2 = 3 and f high > 3, the requirement that 

a polyhedron be 33connected implies that the only cubic polyhedral graph with two or 

more adjacent triangular faces is the tetrahedron, and hence f high = 3 here. Bounds on 

curvature for each possibility are given in the final column. 

 

 

 

 

  

f1 f2 f high Curvature 

3 3 3   φ = ½ 

3 4 ∞ 1/12 < φ ≤ 1/3 

3 5 ∞ 1/30 < φ ≤ 7/30 

3 6 ∞ 0 < φ ≤ 1/6 

3 7 41 1/1722 ≤ φ ≤ 5/42 

3 8 23 1/522 ≤ φ ≤ 1/12 

3 9 17 1/306 ≤ φ ≤ 1/18 

3 10 14 1/210 ≤ φ ≤ 1/30 

3 11 13 1/858 ≤ φ ≤ 1/66 

4 4 ∞ 0 < φ ≤   1/4 

4 5 19 1/380 ≤ φ ≤ 3/20 

4 6 11 1/132 ≤ φ ≤ 1/12 

4 7 9 1/252 ≤ φ ≤ 1/28 

5 5 9 1/90 ≤ φ ≤ 1/10 

5 6 7 1/105 ≤ φ ≤ 1/30 
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/��	� #: The numbers of PCC cubic polyhedra with n ≤ 28 vertices. The columns 

show n, the number of vertices and at each n,  N(iso), the number of combinatorially 

distinct cubic polyhedra; N(PCC), the number of combinatorially distinct PCC cubic 

polyhedra, and %PCC, the percentage of PCC polyhedra.. 

 

 n       N(iso)    N(PCC) %PCC 

4 1 1 100 

6 1 0 0 

8 2 1 50 

10 10 9 90 

12 14 13 93 

14 50 47 94 

16 233 209 91 

18 1249 1068 86 

20 7595 6183 81 

22 49565 38700 78 

24 339721 253349 75 

26 1507869 1080509 72 

28 17490240 12120318 69 

� �
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/��	�$: The 39 PCC fullerenes. The number of vertices is n, and p is the position in the 

spiral order of fullerene isomers.7 Numbers of pentagon adjacencies (NP), fused 

pentagon triples (�###) and remaining vertex types (�##$ and �#$$) are listed. A 

fullerene has n/2−10 hexagonal faces. A PCC fullerene has �$$$ = 0.		An asterisk 

against NP or �### indicates the minimum for the given n; against the code n:p it 

indicates the isomer with lowest total energy in calculations of Zhang et al.39 

 

n:p Np �### �##$ �#$$ Face Spiral 

20:1* 30* 20* 0 0 1 2 3 4 5 6 7 8 9 10 11 12 
24:1* 24* 12* 12 0 1 2 3 4 5 7 8 10 11 12 13 14 
26:1* 21*   8* 18 0 1 2 3 4 5 7 9 11 12 13 14 15 
28:2 18*   4* 24 0 1 2 3 5 7 9 10 11 12 13 14 15 
28:1* 20   8 16 4 1 2 3 4 5 7 10 12 13 14 15 16 
30:3* 17*   4* 22 4 1 2 3 4 7 10 11 12 13 14 15 16 
30:2 18   6 18 6 1 2 3 4 5 7 11 13 14 15 16 17 
30:1 20 10 10 10 1 2 3 4 5 6 12 13 14 15 16 17 
32:6* 15*   2* 24 6 1 2 3 5 7 9 10 12 14 16 17 18 
32:4 16   4 20 8 1 2 3 4 7 10 11 12 14 15 17 18 
32:1 17   6 16 10 1 2 3 4 5 7 12 14 15 16 17 18 
32:2 18   8 12 12 1 2 3 4 5 8 12 13 15 16 17 18 
32:3 18   8 12 12 1 2 3 4 5 9 12 13 14 16 17 18 
34:5* 14*   2* 22 10 1 2 3 5 7 10 11 13 15 16 18 19 
34:2 15   4 18 12 1 2 3 4 5 12 13 14 15 16 17 18 
34:4 15   4 18 12 1 2 3 4 7 11 12 13 15 16 17 19 
36:14* 12*   0* 24 12 1 2 4 7 9 10 12 13 14 16 18 20 
36:15 12*   0* 24 12 1 2 4 8 9 10 12 13 14 15 18 20 
36:9 13   2 20 14 1 2 3 4 11 12 13 14 15 16 17 18 
36:11 13   2 20 14 1 2 3 5 7 10 12 15 16 18 19 20 
36:12 13   2 20 14 1 2 3 5 10 11 13 14 15 16 17 19 
36:6 14   4 16 16 1 2 3 4 7 10 12 15 17 18 19 20 
36:8 14   4 16 16 1 2 3 4 7 11 12 15 16 18 19 20 
36:13 15   6 12 18 1 2 3 6 10 11 12 14 15 16 18 20 
38:17* 11*   0* 22 16 1 2 4 7 9 10 12 13 15 18 20 21 
38:10 12   2 18 18 1 2 3 5 7 10 12 15 17 19 20 21 
38:13 12   2 18 18 1 2 3 5 10 11 13 15 16 19 20 21 
40:38* 10*   0* 20 20 1 2 4 7 9 11 13 15 17 19 20 22 
40:39 10*   0* 20 20 1 2 4 7 9 11 13 15 18 19 21 22 
40:29 11   2 16 22 1 2 3 5 10 13 14 15 16 18 19 22 
40:31 11   2 16 22 1 2 3 5 10 13 15 16 18 19 20 22 
40:40 12   4 12 24 1 2 6 9 10 12 13 15 16 18 20 22 
42:45*   9*   0* 18 24 1 2 4 7 9 12 13 16 18 19 21 22 
44:75*   8*   0* 16 28 1 2 4 7 9 12 13 16 18 21 23 24 
44:89   8*   0* 16 28 1 2 4 9 12 13 14 16 17 19 22 24 
44:55   9   2 12 30 1 2 3 5 10 13 15 16 19 21 23 24 
44:72   9   2 12 30 1 2 3 10 11 13 14 16 17 20 22 24 
50:271*   5*   0* 10 40 1 2 9 10 12 14 15 17 20 22 24 26 
60:1812*   0*   0* 0 60 1 7 9 11 13 15 18 20 22 24 26 32 
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