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Dating the origin of Placentalia has been a contentious issue for biologists and paleontologists. Although it is likely that crown-

group placentals originated in the Late Cretaceous, nearly all molecular clock estimates point to a deeper Cretaceous origin. An

approach with the potential to reconcile this discrepancy could be the application of a morphological clock. This would permit

the direct incorporation of fossil data in node dating, and would break long internal branches of the tree, so leading to improved

estimates of node ages. Here, we use a large morphological dataset and the tip-calibration approach of MrBayes. We find that the

estimated date for the origin of crown mammals is much older, �130–145 million years ago (Ma), than fossil and molecular clock

data (�80–90 Ma). Our results suggest that tip calibration may result in estimated dates that are more ancient than those obtained

from other sources of data. This can be partially overcome by constraining the ages of internal nodes on the tree; however, when

this was applied to our dataset, the estimated dates were still substantially more ancient than expected. We recommend that

results obtained using tip calibration, and possibly morphological dating more generally, should be treated with caution.
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Few subjects spark the interests of paleontologists, molecular bi-

ologists, and evolutionary biologists more than dating the origin

of Placentalia. This was the classic example in the “rocks versus

clocks,” or “fossils versus molecules” debate (Benton 1999). Pa-

leontological debates about the timing of the origin of crown Pla-

centalia have been ongoing for the last three decades, with some

phylogenies supporting a Late Cretaceous origin (Clemens 1970;

Mckenna 1975; Szalay 1977; Archibald et al. 2011; Hooker and

Russell 2012; Hooker 2014) and others a Cenozoic origin (Wible

et al. 2007; Goswami et al. 2011; O’Leary et al. 2013). How-

ever, even the most conservative molecular estimates (dos Reis

et al. 2012) date crown Placentalia and its earliest diversification

deeper within the Cretaceous, and many studies have provided

even older origin estimates (Bininda-Emonds et al. 2007; Mered-

ith et al. 2011; Slater 2013). The earliest-known placental fossils

require an origin of the clade at least in the latest Cretaceous

(Signor and Lipps 1982), but this still leaves a large temporal gap

between molecules and fossils (Foote et al. 1999; Archibald and

Deutschman 2001). One controversial study has suggested that

placental origination and diversification occurred exclusively in

the Cenozoic (O’Leary et al. 2013), but this has been criticized for

using hard minimum estimates and not considering maximum soft

estimates to date nodes, as well as not accommodating preserva-

tion uncertainty (Springer et al. 2013; dos Reis et al. 2014). Efforts

have been made to shorten the fuse between the molecular dating

of Placentalia and its first fossil representatives (dos Reis et al.

2012). One possibility is to use fossils as tips in the phylogeny

(Slater 2013), rather than purely in the direct estimation of internal

node ages.

As nearly all fossils lack molecular data, the use of a mor-

phological clock (Lewis 2001; Polly 2001) allows for the direct

incorporation of fossils with morphological data (Pyron 2011) as

tips in dating analyses. The morphological clock is now being

employed in total-evidence analyses alongside molecular clocks

(e.g., Ronquist et al. 2012; Wood et al. 2013; Puttick and Thomas

2015). Furthermore, the morphological clock has been used
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independently of the molecular clock to estimate clade ages

(Schrago et al. 2013; Beck and Lee 2014; Lee et al. 2014). This is

of particular promise to paleontologists, as clades without extant

members can be used for clock analyses and for the estimation of

the dated phylogenies that are essential in many macroevolution-

ary studies. In the case of the origin of Placentalia, tip calibration

may also be able to break up long internal branches and in so

doing improve estimation of the rates on early branches, and thus

estimated dates (Magallón et al. 2010). In addition, tip calibra-

tion permits the more holistic inclusion of fossils in node dating,

instead of treating fossil taxa only as minima for node calibra-

tion. This approach allows for the inclusion of more information

from the fossil record to produce age estimates for nodes and so

may help date the origin of Placentalia. Recently, Beck and Lee

(2014) applied the morphological clock to Mammalia, and found

a Late Jurassic/Early Cretaceous origin for Placentalia. This tim-

ing of divergence is much more ancient than predicted by either

molecular clocks or the fossil record, and so perhaps represents

an unrealistic estimate of that node’s age.

Here, we use a large dataset of morphological characters, in-

deed one larger than any used in prior morphological clock anal-

yses, to date the origin of the placental mammals, Placentalia. We

use the morphological clock with both tip- and node-calibration

approaches. Using a tip-calibration approach, we estimate an an-

cient, Early Cretaceous origin of Placentalia, in agreement with

earlier morphological clock studies (Beck and Lee 2014), but con-

trasting with the much younger date estimated in a recent, defini-

tive, large-scale molecular clock study (dos Reis et al. 2012). By

contrast, a node-calibration approach yields age estimates that

are much more congruent with dates estimated using a molecular

clock. The ancient age estimates produced in this study may be

due to the influence of tip dating or biases in the application of the

morphological clock, or it may be a combination of these factors.

Presently, it is not clear which of these factors is more important

in driving ancient node age estimates. Consequently, it may be the

case that the node ages obtained using morphological clock dating

could be systematically overestimated in some or many studies in

which this technique is employed (O’Reilly et al. 2015).

Materials and Methods
MODELING MORPHOLOGICAL EVOLUTION

To model morphological evolution on the tree, we used an equal

rates, k-state, Markov (Mkv) model, with discrete gamma dis-

tributed rate heterogeneity among sites (Yang 1993; Lewis 2001).

In the morphological model, a potential issue is that morpholog-

ical data may include only variable characters, a problem known

as acquisition bias, which leads to artificially extended branch

lengths (Lewis 2001). Here, we correct this bias by using the Mkv

model (Lewis 2001; Ronquist et al. 2012a).

DATA

We used the morphological dataset from O’Leary et al. (2013),

which contains 4541 characters for 40 fossil and 46 extant taxa.

We excluded characters with a low to zero chance of fossiliza-

tion, such as behavioral and myological characters, resulting in a

dataset pruned to include only the 3660 osteological characters.

Furthermore, we reduced the number of taxa to 83 by removing the

mammaliaforms Morganucodon oehleri, Morganucodon watsoni,

and Haldanodon exspectatus to ensure compatibility between the

root of the tree based on the O’Leary et al. (2013) dataset and that

in dos Reis et al. (2012). All characters were treated as unordered

as in the original O’Leary et al. (2013) study. In the analyses, we

considered only variable, parsimony-informative characters (cod-

ing = informative, in MrBayes) when estimating topology and

rate of evolution.

PHYLOGENETIC ANALYSIS

Analyses
We used MrBayes 3.2 (Ronquist et al. 2012) with a normal dis-

tribution for the clock rate prior and an exponential prior for the

variance of the relaxed clock model with the relaxed clock In-

dependent Gamma Rates (IGR) model (Lepage et al. 2007). We

ran four chains on each of four runs for 20 million generations,

sampling every 1000th generation. A conservative burn-in period

of 25% of samples was discarded after the run had finished. We

assessed convergence based on the estimated sample size (with

a target value of above 200), potential scale reduction factor for

each character (with a target value of below 1.01), and the stan-

dard deviations between chains (target below 0.05), as in Ronquist

et al. (2012a). We also viewed all runs in Tracer (Rambaut 2014)

to ensure stationarity was achieved.

Phylogenies
Overall, we performed three main analyses of the morphological

clock with different modes of time calibration: (1) tip calibration

on a phylogeny with no topological constraints, (2) tip calibration

on a phylogeny constrained to the best solution in dos Reis et al.

(2012), and (3) tip calibration alongside node calibration (Table 1).

We estimated two nonclock topologies to be used as fixed

trees in the analyses. The two topologies were estimated in the

following manner: for the first analysis we used a model with

no topological constraints (unconstrained fixed tree; 1), and for

the second we used a constrained topology to match the dos Reis

et al. (2012) topology (constrained fixed tree; 2). These fixed trees

are referred to as the unconstrained (1) and constrained (2) fixed

trees, respectively.

The unconstrained fixed-tree topology (1) was virtually iden-

tical to the morphological analyses of O’Leary et al. (2013). This

phylogeny is very different from that of dos Reis et al. (2012).
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Table 1. Summary of the main analyses using the different phylogenies and dating methods.

Main phylogeny Topology Major analyses Taxa included

(1) Unconstrained fixed
tree

Nonclock phylogeny estimated
with no topological constraints
prior to dating analyses. Used
as a fixed tree in dating analyses

Tip dating
Tip dating (FBD model)

All species (148 Ma)
All species (137 Ma)

(2) Constrained fixed tree Nonclock phylogeny estimated
with topological constraints to
match dos Reis et al. (2012)
prior to dating analyses; used as
a fixed tree in dating analyses

Tip dating
Tip dating (FBD model)
Tip dating
Tip dating

All species (146 Ma)
All species (132 Ma)
Extant species only (159 Ma)
Extant Placentalia only (72.1 Ma)

(3) Constrained nonfixed
tree

Phylogeny coestimated in the
dating analyses using only the
most complete characters
(>60% completeness)

Tip dating
Tip and node dating

All species (145.2 Ma)
All species (110.8 Ma; see also

Tables S2 and S3)

The ages following the taxa included refers to the estimated age of Placentalia. The numbering of the phylogenies is used throughout the text.

For example, the Atlantogenata (Afrotheria and Xenarthra) is not

supported, and several clades that are found in molecular phylo-

genies are polyphyletic.

We constrained the extant species in the constrained fixed tree

(2) to the same topology as in dos Reis et al. (2012), and we placed

fossils in the same superorders as in O’Leary et al. (2013), but for

the superordinal relationships we altered the topology to allow for

a direct comparison to the dos Reis (2012) phylogeny. Therefore,

fossil species were placed in the same superorders as indicated

by the morphological and molecular analyses of O’Leary et al.

(2013), but the topology of superorders and extant species were

constrained to the topology of dos Reis et al. (2012). Unless stated,

all analyses were performed on fixed trees (1 or 2).

Unless stated, all analyses were performed using a uniform

tree prior. However, for the full datasets (1 and 2), we also used the

fossilized birth–death process (Stadler 2010; Heath et al. 2014)

in MrBayes. For the speciation parameter of the fossilized birth–

death model, we set an exponential prior distribution (mean = 1),

and for the extinction and sampling parameters, we set a prior

beta distribution (α = 1, β = 1).

Temporal constraints
For the calibration prior on the root age of the tree (age of crown

Mammalia), we set a “soft bound” (Yang and Rannala 2006) by

using an offset-exponential distribution with a minimum age of

124 Ma, and a 95th percentile age of 171.2 Ma—the same con-

straints used by dos Reis et al. (2012). However, dos Reis et al.

(2012) used a Cauchy distribution, but this distribution is not an

available option in MrBayes. Although this may mean ages are not

directly comparable, it is unlikely to greatly influence interpreta-

tions. The Cauchy distribution is similar to the offset exponential

in that it is heavy-tailed, and the expectation is that the fossil

dates will be found close to the imposed hard minima (Inoue et al.

2010). The prior density on the root age for the morphological

analysis was assigned as an offset exponential and uniform distri-

bution, respectively, using the same dates as dos Reis et al. (2012)

(min = 162.9, max = 191.1). Although dos Reis et al. (2012) used

further dating constraints on internal nodes, the morphological

dataset relied upon tip ages from the fossil species present in the

phylogeny. The data were downloaded from FossilWorks (Alroy

et al. 2014) on 27 February 2014 except for Protolipterna ellip-

sodontoides and Dawsonolagus antiques (O’Leary et al. 2013),

and they were assigned uniform distributions.

Tip-calibration analyses
We performed analyses on the full dataset with exponential and

uniform distributions on the root for the unconstrained (1) and

constrained fixed trees (2). The temporal calibration information

was from the tip dates, and the root distribution (offset-exponential

or uniform).

Using the constrained fixed tree only (2), we also performed

tip-calibrated divergence time analyses with phylogenies com-

posed of extant taxa and extant placentals only. We changed the

temporal constraints on the root—uniform and exponential with

distributions identical to dos Reis et al. (2012)—to represent the

origin of Placentalia when necessary.

As a test for the effects of character completeness on diver-

gence time estimation, in the osteological only dataset, we sys-

tematically pruned characters according to their coverage across

all taxa, and the analyses were repeated. We retained characters if

they were present in a sufficient number of species; this threshold

ran from 10 to 90% completeness, with analyses performed at

10% increments. We performed these analyses on the constrained

fixed tree (2).
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Node calibration
For the node-calibrated analyses, we applied node-calibrated di-

vergence constraints on nontopologically fixed trees (3). It was

only possible to achieve convergence when the columns of the

data matrix had been subsampled to include only characters with

60% taxon coverage or higher. Therefore, we ran four node-

calibrated analyses on datasets subsampled to contain characters

with 60, 70, 80, and 90% or greater taxon coverage. We ap-

plied node-dating constraints to the following 13 internal nodes

using an offset-exponential distribution: Theria, crown Marsupi-

alia, Placentalia, Paenungulata, Xenarthra, Eulipotyphla, Cetar-

tiodactyla, Carnivora, Chiroptera, Glires, Rodentia, Euarchonta,

and Primates (see Fig. S1). When node dating was applied, we

applied ages primarily taken from dos Reis et al. (2012), with

supplemental dates from Benton et al. (2015) (see Table S1). As

a direct comparison, using the same topological constraints, we

also ran a tip-calibrated (no node age constraints) analysis on the

trees after we removed characters that were coded for less than

60, 70, 80, and 90% of taxa.

EFFECTIVE TIME PRIOR

We ran analyses with no data (data = no) in MrBayes to obtain

an estimate of the effective time prior that is informing the phy-

logenetic model. We plotted these alongside node age estimates

from the posteriors in the model to gauge how much the data is

influencing age estimates.

CLOCK-LIKE SIGNAL IN THE DATA

A correlation of Euclidean distance between species pairs in the

cladistic matrix and time since divergence can give an indication

of the predictive power of a dataset to act in a “clock-like” manner

(Polly 2003a,2003b, 2004). Here, we use this test on the full

dataset to test for evidence of “clock-like” behavior.

INFINITE SITES

As molecular sequence data approaches infinity, the confidence

interval width surrounding posterior age estimates increases in a

positive linear fashion with mean posterior age estimates. This is

known as an infinite sites plot when applied to node-calibrated

molecular phylogenies (Yang and Rannala 2006). We plot our data

in the same manner to test how the addition of more data would

influence analyses, and whether tip-dating approaches conform to

the expected relationships as seen with molecular data and node

calibrations.

FOSSIL DATING ALTERNATIVE: CAL3

Phylogeny dating methods can incorporate estimates of specia-

tion, extinction, and fossil sampling rates, either independently

of the morphological clock (e.g., Bapst 2013), or in conjunc-

tion with clock models (e.g., Heath et al. 2014). Methods have

been developed to date phylogenies using occurrence dates of

taxa, independently of a morphological clock model, by dating

nodes according the occurrence of their first descendant (Hed-

man 2010; Bapst 2013; Brusatte et al. 2014). We used the cal3

function in the paleotree R package (Bapst 2012), which esti-

mates ages using occurrence dates, but also samples node ages

through use of a distribution that is a product of the speciation,

extinction, and sampling rate for a clade. This method does not

rely upon any models of morphological change, so can be used

as a direct comparison to the morphological clock. Here, we used

the function bin_cal3TimePaleoPhy to incorporate uncertainty in

the age of tips on the phylogeny. The ages of tips were identi-

cal to those used in tip dating and used as first and last occur-

rence dates, with extant species set to 0 for both ages. We ran

all analyses over 10,000 phylogenies, and used the constrained

fixed topology from the morphological clock analyses as input.

We used published estimates from the literature to find appro-

priate branching, extinction, and sampling priors in the model.

Sampling estimates were taken from Foote et al. (1999), as 0.27–

0.37 per lineage million years (Cenozoic) and 0.03–0.06 (Creta-

ceous), and from Tavaré et al. (2002) as 0.023 (Cenozoic) and

0.003 (Cretaceous). We took estimated speciation rates from Al-

roy (1999) and converted them to per capita rates per Ma (from

per 2.5 Ma), giving a range of 0.18–0.604 and the mean gave an

input value of 0.39. Similarly, we also used a value of 0.24 per

capita extinctions per Ma from Alroy (1999). As the sampling

values differ greatly between Foote et al. (1999) and Tavaré et al.

(2002), we ran a second analysis using a sampling input of 0.013

per lineage million years, which is the mean from Tavaré et al.

(2002).

COMPARISON OF MrBAYES AND BEAST2

To verify our results across alternative software, we used the mor-

phological clock model in BEAST2 with an unconstrained topol-

ogy in a tip-dating analysis with uniform age prior on the root.

Furthermore, we used the Birth-Death Serial Sampling model

(Stadler et al. 2013) tree prior that uses speciation rates, extinc-

tion rates, and sampling on sequentially sampled tips. This more

complex model was used as a counterpoint to the simple uniform

tree prior in MrBayes. In the BEAST2 analysis, we used the same

priors for the speciation, extinction, and sampling rates as those

we used in the cal3 analysis. We used the “BeastMaster” package

in R (Matzke 2014) to produce the input files, and we ran analyses

in BEAST2 version 2.1.3 (Bouckaert et al. 2014). The Markov

chain Monte Carlo (MCMC) search consisted of four chains for

50 million generations sampling every 1000th generation, trace

and tree files were combined, and we based convergence upon

evolutionarily stable strategy (ESS) values and assessed conver-

gence qualitatively by analyzing plots in Tracer.
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Table 2. Morphological clock ages indicate an ancient origin for Placentalia.

Full analysis Extant-only taxa Extant placentals

FBD tree prior Uniform tree prior Uniform tree prior Uniform tree prior

Mammalia 176.9 (162.9, 194.6) 167.3 (162.9, 177.3) 168.2 (162.9, 185.7) NA
Marsupalia 46.6 (26.8, 70.1) 48.7 (27.5, 73.4) 50.9 (21.6, 83.1) NA
Placentals 132.2 (119.1, 148.4) 146.2 (135.5, 156.8) 159.7 (141.4, 180.4) 72.1 (61.6, 106.5)
Boreoeutheria 130.3 (116.4, 145.4) 144.5 (133.2, 154.7) 156.2 (136.9, 176.9) 70.6 (58.2, 105.2)
Atlantogenata 127.7 (112.2, 143.5) 142.6 (129.8, 153.6) 155.1 (134.5, 176) 69.8 (55.7, 104.6)
Afrotheria 123.6 (108, 140.4) 138.5 (125.2, 150.9) 147.4 (124.6, 169.6) 66.7 (51.5, 100.3)
Xenarthra 66.1 (44.4, 92.1) 77.1 (51.2, 103.5) 97.5 (61.2, 133.5) 44.7 (25.4, 71.6)
Euarchontoglires 125.1 (109.8, 141.2) 139.1 (125, 151.3) 147.5 (124.1, 170.3) 67.9 (53, 101.8)
Laurasiatheria 128.3 (114.4, 143.1) 142.6 (131.2, 153) 153.3 (133.8, 174.3) 69.4 (56.3, 103.3)
Euarchonta 90.6 (77, 104.9) 99.2 (84.6, 114.4) 93.5 (64.6, 124.6) 44.3 (27.1, 69.2)
Glires 84.7 (66.3, 103.8) 96 (75.1, 117.9) 102.5 (74.4, 132.3) 46.4 (30.7, 71.2)
Eulipotyphla 91.2 (68.4, 114.7) 106 (80.2, 129.4) 115.6 (84.6, 146.4) 51.6 (33.5, 78.7)
Carnivora 33.4 (17, 50.2) 34.4 (17.5, 53.8) 38.2 (15.2, 64.8) 17.5 (5.7, 32.1)
Certartiodactyla 85.6 (72.7, 100.4) 98.9 (83.5, 114.3) 104.3 (77.8, 132.9) 47.9 (32.1, 73.9)
Chiroptera 80 (65.8, 96.1) 88 (71.2, 106.9) 77.7 (49, 108.8) 35 (20.2, 56.1)
Rodentia 53.4 (38.2, 67.7) 56.4 (39.7, 72.8) 69 (45.2, 98.2) 32.2 (17.8, 51.6)
Paenungulata 101.6 (84.9, 119.5) 115.3 (97.2, 133.1) 112.3 (82.2, 141.2) 52.7 (34.5, 80.7)
Cow/horse 122.8 (108.9, 137.2) 137.4 (125.7, 149.4) 142.4 (119.2, 164.9) 64.8 (50.2, 96.8)
Pig/cow 82.7 (69.2, 96.8) 95.8 (80.8, 111.9) 97.4 (71.4, 125.9) 45.2 (29.5, 70.1)
Dolphin/cow 80.7 (67.1, 94.7) 93.5 (78.2, 109.1) 91.5 (65.2, 119.4) 42.9 (27.4, 66.7)
Horse/cat/bat 119.7 (105.1, 134.1) 134.3 (121.6, 146.1) 137.9 (114.2, 161) 62.8 (48.2, 94.1)
Horse/cat 117 (102.6, 131.8) 131.5 (118.3, 144) 132.9 (108.2, 157.2) 60.8 (45.7, 91.7)
Human/tarsier 42.7 (29, 57.9) 46.1 (28.7, 64) 52.7 (30.8, 77.2) 24.3 (13.1, 40.3)

When both the fossilized birth–death process (FBD) and uniform root prior distributions are employed for the full tree, an ancient date is produced spanning

the Late Jurassic to Early Cretaceous. Similar results are found with just extant taxa and just extant Placentalia.

Results
TIP CALIBRATION

Our tip-dating analysis with the morphological clock indicates

a Late Jurassic to Early Cretaceous origin for Placentalia. The

osteological dataset of 3660 characters with the constrained fixed

tree (2) gives an origin of 146.2 Ma (135.5–156.8, 95% highest

posterior density [HPD]) for Placentalia with the uniform tree

prior, and 132.2 Ma (119.1–148.4, 95% HPD) with the fossilized

birth–death tree prior (Table 2, Fig. 1). The majority of comparable

nodes are older than given by dos Reis et al. (2012), with a few

exceptions, including the root (Fig. 2). Results are very similar

when the tree age prior is set to a uniform distribution (Table S2).

Similar results are found for the age of Placentalia when the

unconstrained fixed phylogeny (1) is employed: a Late Jurassic,

or Early Cretaceous age (148�150 Ma) is seen with both the

exponential and uniform prior on the root (Table 3).

Dates from the analyses are generally much older than the

molecular estimates of dos Reis et al. (2012). Node-by-node com-

parison indicates that nearly all nodes, with the exception of the

root, are older in our morphological clock study than using the

molecular clock (Fig. 2c). Similarly, our node ages (Fig. 2c) are

broadly comparable to the morphological clock analyses of Beck

and Lee (2014), but the ages in our study tend to be slightly

younger. Additionally, the Placentalia age found by Beck and Lee

(2014) is older (163.7 Ma) compared to the median age (146.4 Ma)

in our analysis. However, when we used the fossilized birth–death

tree prior the estimated ages were lesser (Fig. 2d) than those found

by Beck and Lee (2014).

Inclusion or exclusion of all extant taxa does not make a great

difference to estimated dates for the origin of Placentalia. This is

seen with the use of an exponential (159.7 Ma) and uniform (166.6

Ma) prior (Table 2 and Fig. 3). A younger Late Cretaceous age

of 72.1 Ma arises when dating only extant Placentalia (Fig. 3),

but the uncertainty stretches back from the Paleogene to the mid

Cretaceous (61.6–106.5 Ma).

Reducing the size of the dataset to include only the more

complete characters shows there is little trend related to dataset

size (3). The root age ranges from 165.2 to 171.9 Ma and

the estimated age of Placentalia from 145.2 to 165.3 Ma

(see Table S3).
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Figure 1. Time-calibrated Mammalia phylogeny indicates that Placentalia originated around 145 Ma with the uniform tree prior (A)

and around 130 Ma with the fossilized birth–death tree prior (B). Most cladogenesis occurred prior to the Cenozoic, when using the full

dataset and fixed tree. The pink bars indicate the 95% confidence intervals (CIs) around the node age estimates for the nodes that are

directly comparable to dos Reis et al. (2012).

NODE CALIBRATION

In comparison to tip dating alone, slightly younger ages are found

when internal node dating is used alongside tip dating (Table 4

and Fig. 3). As discussed (see Methods), it was difficult to achieve

convergence with datasets unless we excluded characters with less

than 60% taxon coverage. Using this dataset, and smaller datasets

(3) with fewer characters, results in age estimates of Placentalia

(�108–120 Ma) that are younger than those from comparable

tip-dating analyses (Table 4; Tables S3 and S4). However, the age

estimates for Placentalia and other nodes are still more ancient

than molecular estimates.

BRANCH RATES THROUGH TIME

Early branches in the tree have higher median rates when using

the full dataset on the constrained and unconstrained phylogenies

(Fig. S2); this effect is slightly lessened in the reduced tree dataset,

and disappears when internal node calibrations are used alongside

tip dating (Fig. S2).

PRIOR AND POSTERIORS

Given different time priors, the ages of clades converge on the

same values for posterior age estimates (Fig. 4). The effective

prior differs between the uniform and fossilized birth–death priors

in analyses, but the posteriors tend to converge on similar ages.

CLOCK-LIKE SIGNAL

Evidence for clock-like behavior is weak, but not entirely absent.

Although there is evidence of a curvilinear relationship (species

with older common ancestry are more dissimilar), it is not sig-

nificant (Mantel–Spearman test, r statistic = 0.07, P = 0.197;

Fig. 5).

INFINITE SITES PLOT

We find that in our analyses, there is not a perfect linear rela-

tionship between posterior age means estimates and confidence

intervals (Fig. 6). For all analyses there is a lower range of HPD

surrounding nodes closer to the root, than younger nodes that are

opposite to the expected relationship (Yang and Rannala 2006).

The range of R2 (�0.7, when forced through the origin) values

indicates that the addition of more data may improve estimates,

but the distribution indicates that it is unlikely to occur in the

expected linear manner.

cal3

We found a median age of 67.2 Ma for Placentalia (64.8, 73.6 Ma)

when mean estimates of sampling rates were applied alongside

speciation and extinction rates (Fig. S3). Even when the lowest

estimated sampling rate was employed (0.013), the median age

(75.9) and upper confidence interval, 94.4 million years (Myr)

8 7 8 EVOLUTION APRIL 2016



DATING PLACENTALIA

Figure 2. Comparison of the morphological clock ages with the molecular estimates of dos Reis et al. (2012) indicates that many

morphological estimated nodes are older than molecular clock estimates (A, B), but are very similar to another morphological clock study

of Beck and Lee (2014) (B, C). Ages are slightly older when using the uniform tree prior (A, C) compared to the fossilized birth–death

tree prior. Furthermore, the morphological clock estimates from this study have large confidence intervals (gray lines). The regression

line (dotted black) with 95% CIs is much shallower than the 1:1 expectation (dotted gray) than the molecular estimates (A), but overlaps

with the other morphological clock study (B).

Table 3. Topological constraints have little effect on the age estimates for Placentalia.

Root Placentals Marsupials

Dos Reis 185.0 (174.5, 191.8) 89.9 (88.3, 91.6) 66.7 (50.7, 83.7)
Uniform tree prior 169.0 (62.9, 181.8) 148.7 (137.4, 162.9) 94.6 (76.4, 115.7)
FBD tree prior 182.5 (164.9, 204.4) 137.4 (121.8, 152.9) 73.4 (64.4, 85.9)

Using the unconstrained topology (1) produces ancient ages compared to the estimates of dos Reis et al. (2012) when using a uniform tree prior and the

fossilized birth–death tree prior.

were younger than any of the morphological dates estimated here

(Fig. S3).

COMPARISON OF MrBAYES AND BEAST2

Analyses in BEAST2 produced ages and an identical topology to

those obtained in MrBayes. The median age for Placentalia from

the BEAST2 model (136.4 Ma) is million years (Myr) younger

than the comparable age from MrBayes (137.4 Ma). The confi-

dence intervals around estimated ages were similar, but the upper

and lower posterior densities from MrBayes (121.8, 152.9) were

smaller than those from BEAST2 (117.3, 158.1).

Discussion
The ages for deep nodes in the phylogeny of Mammalia presented

here do not close the gap between the fossil record and molecular

estimates of the age of origin of Placentalia. In fact, only one age

from the various morphological clock analyses is younger than
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Figure 3. Different dating methods produce very different origin estimates for Placentalia (gray), and differ in their uncertainty (blue

bars represent 95% CIs). The morphological clock points to a divergence well within the Mesozoic when tip dating (Tip Dating), or

node and tip dating (Node Dating) is used. The morphological clock does indicate an Early Cretaceous origin if only extant Placentalia

(Placentals Only) are employed in the analyses, but these dates may rely upon prior assumptions. Using a nonclock model (cal3) gives a

late Mesozoic to early Cenozoic origin for Placentalia.

most molecular clock estimates, and this is only when extant Pla-

centalia are used in analyses. The ancient date estimates obtained

in this study cannot be attributed to a failure of the fitted models to

account sufficiently for fossil sampling, as ancient dates are still

obtained when we analyzed data from only extant taxa. Addition-

ally, posterior age estimates differ from prior age distributions,

which indicate that the priors were not having an overly large

effect on age estimates. The ancient ages produced here are due

in some part to a lack of internal node constraints forcing ancient

ages (Arcila et al. 2015), but there also seem to be some inherent

factors in the morphological dating method that produce ancient

ages (O’Reilly et al. 2015).

Many of the ages presented here are older than molecular

clock estimates, and what is known from the fossil record. As

with Beck and Lee (2014), morphological clock models have

shown the age of Placentalia to be Early Cretaceous (around

145 Ma). Other evidence suggests that the origin of crown Pla-

centalia actually occurred in the Late Cretaceous. The fossil record

of the Late Cretaceous is well studied, and a number of nonpla-

centals (Ji et al. 2006; Wilson et al. 2012) and placental mammals

(Archibald et al. 2011; Hooker and Russell 2012; Hooker 2014)

are known. Close study has resulted in substantial revisions of

the fossil materials (see Wible et al. 2007; Goswami et al. 2011;

O’Leary et al. 2013), and the fossils of crown Placentalia just are

not there, despite the availability of suitable locations with com-

parable fossil specimens scattered around the world. Therefore,

fossil evidence (Benton 1999, 2015), and direct analysis of preser-

vation probabilities on fossil distributions (Signor and Lipps 1982;

Foote et al. 1999; Archibald and Deutschman 2001) indicate that

a “long fuse” stretching back into the Cretaceous is unlikely for

Placentalia. Although it is possible that the record is genuinely

poor, or that some Cretaceous mammals really are placentals, but

lack apomorphies (Foote et al. 1999), there is little direct evi-

dence to support a deep Cretaceous origin for Placentalia. Thus,

the main date estimates from this study appear to be unrealistic

both when compared to a close reading of the fossil record (with

preservation probability taken into account), and when compared

to the molecular clock estimates obtained in other research.

In tip calibration, the absence of many internal prior time

constraints allows for age estimates to be pushed toward the root

(Arcila et al. 2015). In molecular dating with internal constraints,

it has been shown that confidence intervals in posterior age

estimates increase in a linear fashion with distance from the root

as measured by mean posterior age estimates (Yang and Rannala

2006). Here, for two tip-calibration approaches (Fig. 6), the HPD

does not follow this expected linear relationship, and smaller
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Table 4. Node-dating constraints plus tip dating bring estimated dates that are closer to the fossil record compared with tip dating

alone.

Tip dating Node-dating constraints

Mammalia 165.2 (162.9, 173.1) 167.6 (162.9, 179.7)
Marsupials 51.9 (23.4, 81.1) 53.9 (48.6, 67.3)
Placentals 145.2 (125.9, 163.4) 110.8 (97.6, 124)
Boreoeutheria 142.5 (123.2, 160.9) 109.3 (96.1, 122.5)
Atlantogenata 140.3 (119.7, 159.5) 107.7 (93.6, 120.8)
Afrotheria 111 (81.8, 138.5) 104.4 (90.2, 118.4)
Xenarthra 91 (59.6, 124.8) 70.3 (55.6, 88)
Euarchontoglires 134.9 (112.1, 154.3) 104.2 (89.9, 118)
Laurasiatheria 139.9 (120.5, 158.3) 107.8 (93.8, 120.3)
Euarchonta 84.7 (66.9, 105.9) 74.6 (61.9, 88.3)
Eulipotyphla 95.1 (69.2, 123.5) 74.5 (61.5, 92.8)
Carnivora 97.2 (63.9, 130.7) 42.3 (39.7, 49.9)
Certartiodactyla 34.9 (12, 59.1) 44 (30, 58.7)
Chiroptera 55.5 (31.6, 81.5) 51.7 (48.7, 59.8)
Rodentia 66.2 (45.6, 88.7) 56.6 (55.6, 59.7)
Paenungulata 52.2 (34.7, 69.3) 71.7 (55.6, 87.7)
Cow/horse 87 (57.9, 118.7) 103.3 (89.5, 115.9)
Pig/cow 132 (112, 152) 44 (30, 58.7)
Dolphin/cow 55.5 (31.6, 81.5) 57.5 (52.4, 69.9)
Horse/cat/bat 72.9 (43.2, 102.2) 101.1 (87.7, 113.9)
Horse/cat 128.6 (108.2, 147.7) 98.6 (85.1, 111.6)
Human/tarsier 125.2 (105.8, 145.7) 43.3 (28.8, 55.9)

When using the nonfixed, constrained tree (with the reduced dataset), a similar age to the fixed tree is observed with tip dating only, but these ages are

generally younger in the analysis that also incorporates node constraints.

Figure 4. There is a nonsignificant relationship (Mantel–

Spearman rank test, P = 0.197) between time since divergence and

generalized Euclidean distance separating sister species at the tip

of a phylogeny.

confidence intervals in posterior ages are found closer to the root.

This phenomenon is evident with both the use of the uniform

and fossilized birth–death tree priors, but is more pronounced

with the uniform tree prior. This pattern even appears when node

constraints are applied—indeed there is a close correspondence

between the plot for the fossilized birth–death tree model and

node calibrations under the uniform tree prior. The use of

dates from tip-dating analyses in an infinite sites plot may be

considered to be unjustified, as the theory of these plots is based

upon nodes with time calibration, and they are used to indicate

the limits of precision when infinite sequence data are analyzed

(Yang and Rannala 2006). Here, we are using tip calibration

and morphological data, and we use these plots to show that the

assumption of an infinite sites plot may not hold true with tip

calibration. The root constraint may provide an upper bound, and

so shorten the upper (older) confidence intervals. In contrast, and

unlike node dating analyses, internal nodes are not constrained,

so the expected positive relationship between node age and uncer-

tainty may not be applicable (Fig. 6). Our results indicate that in

tip calibration there is a bias toward ancient ages (O’Reilly et al.

2015) and this problem may be partially overcome by applying

internal node calibrations (Fig. 3). We only applied eight node
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Figure 5. Comparisons of effective priors and posteriors for the root node and Placentalia indicated the impact of data on analyses. With

the unconstrained fixed tree (A–D) and constrained fixed-tree (E–H) similar patterns are shown for the uniform tree prior—a tendency

to move to a younger age (A, B, E, F). For the fossilized birth–death prior (C, D, G, H) there is a move to a more ancient age.

calibrations, so perhaps more node constraints would produce

ages more congruent with molecular divergence estimates.

However, even with node constraints (Fig. 3) or extant-only

analyses, dates are always older than expected. This could be due

to the evidence we have of weak “clock-like” signal in the data,

or it is also possible that morphological dating models simply

tend to give ancient age estimates (O’Reilly et al. 2015).

The assumption of a clock-like, relaxed model of morpholog-

ical evolution, similar to that of the molecular clock (Zuckerkandl

and Pauling 1962), has not been thoroughly tested (O’Reilly et al.

2015). Additionally, while rates and assumptions of clock-like

evolution can vary with molecular data, the coding of molecular

characters is consistent across studies and datasets. Morpholog-

ical coding can vary infinitely, comprising both continuous and

discrete characters, characters of different magnitude, different

intensity of coding of different anatomical regions, and charac-

ters that are subdivided to a greater or lesser extent—these factors

are likely to influence the ability to infer clock-like behavior for

morphological characters. Further, there is evidence for clock-like

behavior in morphological traits in mammal teeth (Polly 2001),

but the way in which cladistic character sets are constructed means

differences between taxa increase with taxonomic scope, but not

necessarily with absolute time (O’Reilly et al. 2015; D. Polly,

pers. comm.). The equivocal evidence of a clock-like signal shows

that, although there is some time-related signal in the data, it is

not significant (Fig. 5).

A potential problem here could be specific problems with

clock models in MrBayes: very ancient dates have been obtained
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Figure 6. Infinite sites plot of tip calibration (uniform and Fossilized birth-death process FBD tree prior) and node calibration indicates

that the lack of internal time constraints on nodes means ages are pushed back so highest posterior density (HPD) range of nodes is

smaller and closer to the root due to the effect of the root constraint. This effect is most evident with the uniform tree prior and lessened

by the FBD tree prior and internal time calibrations.

in clock models (Beck and Lee 2014), and studies have found

clock artifacts (Lee et al. 2013) in MrBayes. On the other hand,

studies that have shown the greatest congruence between molecu-

lar and morphological dates have employed alternative software,

such as Beast (Drummond et al. 2012; Schrago et al. 2013). In

our MrBayes tip-dating analyses, we observed some surprising

results, for example, using more data made it more difficult to

achieve convergence, and an unexpected spike in rates of mor-

phological evolution occurs near the root (Fig. S3). Some of these

problems have been reported before (Lloyd et al. 2012; Beck and

Lee 2014). The spike in rates near the base may be due to di-

vergence of major clades, and it has been suggested that these

high rates can influence divergence times (Beck and Lee 2014).

This spike does not appear attributable to fossils near the base,

as it alters when using different time constraints even when iden-

tical fossils are included (Fig. S2). To check that we were not

reporting results unique to a particular software implementation,

we repeated all analyses with BEAST2 (Bouckaert et al. 2014),

and found the same ancient ages as in MrBayes. Additionally,

factors such as increasing character conflict as datasets increase

in size may explain difficulties in achieving convergence with

larger character matrices. Therefore, we do not believe that these

reflect specific software idiosyncrasies or bugs.

In the O’Leary dataset, fossil sampling is not evenly dis-

tributed through time, and is mainly concentrated around the

K-Pg boundary. In the future, more evenly distributed sampling,

or models that incorporate uneven sampling (Drummond et al.

2012; Zhang et al. 2015), will be necessary to accurately model

tree priors and divergence times. Therefore, the current tree priors

may not accurately capture variations in sampling and so may be

a problem for the dating analyses, and could potentially be im-

proved to reflect variable sampling through time. However, the

fact that there are problems with dating in models with no fossils

(Tables 1 and 2) suggests that it is unlikely that variable sampling

is the key or sole explanation of problems with morphological

clock models.

Though some prior studies have found congruence between

morphological and molecular clock dating within mammals

(Schrago et al. 2013), at our larger taxonomic scale there seems

to be little evidence of agreement between these two sources of

data on node ages (Meredith et al. 2011; dos Reis et al. 2012,

but see Bininda-Emonds et al. 2007; Fig. 2). One issue may be

taxonomic breadth; Schrago et al. (2013) analyzed only New

World primates, rather than all Mammalia, although they also

used estimates from molecular divergence times to calibrate

age priors. It may be that smaller clades show more uniform

rates of morphological evolution across all branches, whereas

among Placentalia as a whole, there are substantially different

rates of morphological change within different subclades, or at

different times. Some of these issues in improving the model fit
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for morphological clocks could possibly be resolved by using

lineage-specific rates (Beaulieu et al. 2013) and a priori testing

for “clock-like” behavior of characters (Clarke and Middleton

2008; Jarvis et al. 2014). Different methods, such as node-dating

constraints alongside tip dating, may be necessary to bring

congruence to estimates (Table 3 and Fig. 3).

Effective priors in relaxed clock analyses do not always fol-

low the user-set time priors (Warnock et al. 2012, 2015), and

when analyzing divergence times, careful selection and judgment

of time priors is essential (Warnock et al. 2015). Here in the tip-

dating analyses, as no node-based priors (with the exception of

the root) are specified, it is unclear how tip-based time priors

will influence the posterior; these node estimates will come from

the joint priors of the tree model and of the tip times. Effective

priors on the nodes appear to be quite old (Fig. 4), and seem to

influence the posterior estimates. Currently, more data does not

improve the situation, so it may be important to produce mod-

els that provide sensible priors (Warnock et al. 2012) rather than

adding more character data. The effective priors differ between

the uniform tree prior and fossilized birth–death tree prior analy-

ses, but the data still produce ancient ages in the posterior (Fig. 5).

Yet, another solution is to use morphometric data that have been

shown to act in a clock-like manner. For example, tooth char-

acters in some mammals have been shown to change in a lin-

ear fashion with time (Polly 2001; Gomez-Robles et al. 2013),

but reach saturation rapidly, meaning the ability to estimate di-

vergence times is lost (Polly 2001). Therefore, morphometric

data from dentition of basal Placentalia (Late Cretaceous–Early

Paleogene) could be used, as the data would have not yet reached

saturation and would provide the appropriate temporal resolution

(D. Polly, pers. comm.).

When sampling and diversification rates are considered

alongside occurrence dates, independently of the morphologi-

cal clock, the dates produced are more congruent with the fossil

record. Here, we employ a method that incorporates branching,

extinction, and sampling estimates (Bapst 2013) alone (indepen-

dent of the morphological clock or character change) to act as time

priors on nodes and to coalesce on a time of common ancestry for

Placentalia. This method can increase the congruence between the

fossil record and molecular clocks (Fig. 3 and Fig. S3). Clearly,

these estimates are sensitive to prior assumptions (Fig. S3), as the

lower sampling rate input gives an older age estimate, mainly due

to the greater uncertainty in the model. Thus, there is reason to

favor the use of the higher sampling rate as it is applicable to all

Mammalia (Foote et al. 1999) rather than just primates (Tavaré

et al. 2002), as was the case for the lower sampling rate. However,

this argument may become circular: if we assume a low sampling

rate, then we can more or less accept molecular clock estimates,

and therefore a lower sampling rate makes sense. Yet, even this

low sampling rate provides an age that is much younger than the

morphological clock estimates, and most molecular estimates too

(Bininda-Emonds et al. 2007; Meredith et al. 2011).

Conclusions
The morphological clock, in its current form, cannot close the

gap between the fossil record and molecular clock estimates for

the date of origin of Placentalia. Our results suggest that morpho-

logical dating analyses as currently used tend to estimate ancient

divergence estimates for clades when based on morphological

data. This appears to be due to tip-dating approaches that lack

sufficient constraints on ages prior to the root, and some mor-

phological bias producing ancient age estimates. Morphological

dating approaches cannot reconcile molecular estimates and a

literal reading of the fossil record.
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Figure S1. Location of the node constraints on the node-dated phylogeny.
Figure S2. Absolute morphological rates through time, plotted at the mid-point of branches, following the protocol of Beck and Lee (2014).
Figure S3. Estimated ages of Placentalia from Cal3 (Bapst 2013) are younger than morphological clock approaches, but are dependent upon assumed
sampling rates.
Table S1. Use of node constraints when additional node dating was employed alongside tip dating.
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Table S4. Use of 13 internal node estimates, alongside the use of tip dating, results in node estimates that are younger than the use of tip dating alone.
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