
This is a repository copy of A branch-and-price approach for solving the train unit
scheduling problem.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/105182/

Version: Accepted Version

Article:

Lin, Z and Kwan, RSK (2016) A branch-and-price approach for solving the train unit
scheduling problem. Transportation Research Part B: Methodological, 94. pp. 97-120.
ISSN 0191-2615

https://doi.org/10.1016/j.trb.2016.09.007

© 2016 Elsevier Ltd. All rights reserved. This manuscript version is made available under
the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A branch-and-price approach for solving the train unit

scheduling problem

Zhiyuan Lin ∗1 and Raymond S. K. Kwan †1

1School of Computing, University of Leeds, Leeds, LS2 9JT, United Kingdom

September 15, 2016

Abstract

We propose a branch-and-price approach for solving the integer multicommodity flow model

for the network-level train unit scheduling problem (TUSP). Given a train operator’s fixed timetable

and a fleet of train units of different types, the TUSP aims at determining an assignment plan such

that each train trip in the timetable is appropriately covered by a single or coupled train units.

The TUSP is challenging due to its complex nature. Our branch-and-price approach includes a

branching system with multiple branching rules for satisfying real-world requirements that are

difficult to realize by linear constraints, such as unit type coupling compatibility relations and

locations banned for coupling/decoupling. The approach also benefits from an adaptive node se-

lection method, a column inheritance strategy and a feature of estimated upper bounds with node

reservation functions. The branch-and-price solver designed for TUSP is capable of handling

instances of up to about 500 train trips. Computational experiments were conducted based on

real-world problem instances from First ScotRail. The results are satisfied by rail practitioners

and are generally competitive or better than the manual ones.

Keywords: Rolling stock scheduling; Train unit scheduling; Integer multicommodity flow prob-

lems; Branch-and-price

1 Introduction

1.1 Train unit scheduling problem

A train unit is a self-propelled non-splittable fixed set of train cars (carriages), which is the most

commonly used passenger rolling stock in the UK and many other European countries. A train unit

is able to move in both directions on its own. Train units are classified into types having different

characteristics. A train unit can be coupled with other units of the same or compatible types.

Given a rail operator’s timetable on one operational day, a fleet of train units of different types and

a rail network of routes, stations and infrastructures, the train unit scheduling problem (TUSP) (Lin

and Kwan, 2014) refers to the planning of how timetabled trains are covered by a single or coupled

train units from the fleet. From the perspective of a train unit, scheduling assigns a sequence of trains

to it as its daily workload. A route refers to a unique path in a rail network between two locations. The

∗Z.Lin@leeds.ac.uk (Corresponding author)
†R.S.Kwan@leeds.ac.uk

1

TUSP may also include auxiliary activities, e.g. empty-running insertion, coupling/decoupling con-

trol, platform assignment, platform/siding/depot capacity control, re-platforming, reverse, shunting

movements from/to sidings or depots and unit blockage resolution. Capacity control is needed when

there are several train units staying at the same berthing place such as a platform/siding/depot and it

is to make sure the capacity of the berthing place is not exceeded. Re-platforming refers to the opera-

tion to shunt a train unit from its arrival platform to a different departure platform. Reverse activities

usually occur at a dead-end platform such that the train unit will depart in the opposite direction to

its arrival. A reverse activity will change the unit permutation if a train is formed by coupled units,

where the unit permutation refers to the order of units (e.g. front, middle, rear) in a coupled forma-

tion. More details on the train unit operation rules can be found in Lin and Kwan (2014). In some

cases, maintenance and unit overnight balance planning (or unit cycles) are also included; however

in the UK, they are often achieved at later stages after train unit scheduling. A similar problem in the

literature to the TUSP is the train unit assignment problem (TUAP) (Cacchiani et al., 2010b, 2012b,

2013b). Another relevant problem is rolling stock circulation problem (Schrijver, 1993; Alfieri et al.,

2006; Peeters and Kroon, 2008), which however has different problem definitions than TUAP and

TUSP.

1.2 A branch-and-price solver for TUSP

This paper addresses the particular issue of designing an efficient branch-and-price ILP solver for the

integer multicommodity flow (IMCF) models used for the network-level TUSP. An IMCF model is

proposed in Cacchiani et al. (2010b) for the TUAP, where the integer program is solved by an LP-

based diving heuristic. A two-phase approach is presented in Lin and Kwan (2014) for the TUSP.

The first phase is a fixed-charge IMCF model, where for most tested real-world instances the integer

solver only generated columns at the root node in the BB tree, such that the solution qualities are not

guaranteed to be exact. Although exact methods are used for the rolling stock circulation problems,

the problem definitions are different from Cacchiani et al. (2010b) or Lin and Kwan (2014). For the

TUAP/TUSP, there is no exact solution method in literature that is able to handle realistic problem

sizes especially in the UK as far as the authors are aware.

A branch-and-price solver proposed in Lin and Kwan (2014) mainly uses columns from root node

in the BB tree in most tested instances because of its limited capability. No customized branching

or node selection strategy is used in the solver. No method is used to strengthen the weak LP-

relaxation. The node-family variables are also not capable in handling all possible combination-

specific coupling upper bound requirements. Compared with the aforementioned solver, significant

improvements have been made in the proposed branch-and-price approach. It is capable of handling

real-world instances of up to around 500 trains. The improvements include: (i) A branching system

with multiple branching rules including two customized rules as train-family branching and banned

location branching; (ii) An adaptive node selection method; (iii) A column inheritance strategy; (iv)

A branch-and-bound (BB) system with estimated upper bounds and tree node reservation, and (v) the

use of convex hulls for satisfying difficult real-life constraints.

Computational experiments were carried out based on real-world instances from First ScotRail.

The solutions often outperform the manual schedules in many aspects and the practitioners from

ScotRail are satisfied. Post-processing using TRACS-RS (Tracsis plc, 2016) to resolve the station-

level issues like unit blockage and redundant coupling/decoupling is also shown to be successful for

the instances tested.

2

1.3 Contributions

The main contribution of this paper is the design of a customized branch-and-price solver for solving

the TUSP. While the TUAP studied by Cacchiani et al shares similar features of TUSP, the solution

approaches for the TUAP are all based on heuristics. For instance, in Cacchiani et al. (2010b), an LP

based diving heuristics is used for solving the integer multicommodity flow ILP model. In Cacchi-

ani et al. (2013b), a fast heuristics is applied in conjunction with Lagrangian relaxation. Moreover,

compared with the TUAP, additional real-life requirements that are crucial in UK railway opera-

tions are considered in the TUSP, such as train unit type compatibility relations, locations banned for

coupling/decoupling and combination-specific coupling upper bounds. Customized strategies to ac-

commodate those requirements have been implemented in the branch-and-price solver, such as local

convex hulls, branching on train families and banned locations. Finally, some advanced techniques

are used in the solver for speeding up the solution process, such as an adaptive node selection method

combined with best-first and depth-first, column inheritance and estimated upper bound. Computa-

tional experiments have proved their usefulness for the tested real-world instances.

It is worth mentioning that some constraints considered in Cacchiani et al. (2010b), such as main-

tenance and overnight balance, are not included in our solver. This is because they are conventionally

regarded as separate stages in the UK railway industry. Moreover, in Cacchiani et al. (2010b) and

Cacchiani et al. (2013b), larger numbers of different unit types (up to 10 for real-world instances and

20 for realistic instances) are experimented. In our work, up to three different types are experimented,

which is based on the real-world operational rules of the operator’s network.

1.4 Organization of the paper

The remainder of this paper is organized as follows. Section 2 surveys the relevant literature. Sec-

tion 3 describes the TUSP in more details. Section 4 presents the model and integer linear program-

ming formulation. Section 5 gives the branch-and-price approach for solving the above formulation.

Section 6 reports computational experiments based on real-world instances. Finally we conclude this

paper in Section 7.

2 Literature review

With respect to the objects being planned, railway planning activities can often be divided into phases

as train scheduling (timetabling), rolling stock scheduling and crew scheduling (Huisman et al., 2005),

and possibly with rescheduling on the above stages (Cacchiani et al., 2014). Train scheduling or

timetabling (Higgins et al., 1996; Carey and Crawford, 2007; Zhou and Zhong, 2007; Kroon et al.,

2008; Cacchiani et al., 2010a; Mu and Dessouky, 2011; Barrena et al., 2014) defines the planned

arrival and departure times of train trips to/from stations, yards, and sidings in timetables. When a

timetable is fixed, rolling stock scheduling (Cordeau et al., 2001a; Lingaya et al., 2002; Alfieri et al.,

2006; Cacchiani et al., 2010b) assigns rolling stock to cover the train trips in the timetable. Major

kinds of rolling stock include locomotives with cars and train units. When trains and rolling stock

schedules are given, the next step would be crew scheduling (Caprara et al., 1999; Kroon and Fischetti,

2001; Kwan, 2010; Shen et al., 2013) assigning duties to transport staff in accordance with train and

rolling stock planning. Rescheduling (recovery) on the above three stages is also important for real-

time disturbance and disruption management. Examples of railway rescheduling include Adenso-

Díaz et al. (1999); Huisman (2007); Tornquist and Persson (2007); Burdett and Kozan (2009); Kroon

et al. (2015); Kang et al. (2015); Zhan et al. (2015); Meng and Zhou (2011). See a survey on railway

3

rescheduling in Cacchiani et al. (2014). For surveys on methodological approaches in general railway

planning, see Caprara et al. (2007, 2011); Huisman et al. (2005).

2.1 Train unit resource planning

Train unit scheduling is a kind of rolling stock scheduling. Below, we review the researches that are

directly pertinent to this field.

2.1.1 The train unit circulation problem

Although sharing a common feature as being a practice to assign train units to a given timetable,

problem definitions for the train unit circulation problem are different from the TUAP and TUSP. For

a train/trip at Nederlandse Spoorwegen Reizigers (NSR)1, its unique predecessor and successor are

given in advance. By predecessor and successor, at least one unit should be operated according to the

preset connection between the two relevant trains or trips. Often this pre-sequencing is done locally

at each station based on a first-in-first-out (FIFO) basis (Fioole et al., 2006; Maróti, 2006); the fact

that trains in timetables are generally well-patterned (departure and arrival times are regulated every

hour or periodically) at NSR also makes the FIFO pre-sequencing practically workable. Moreover, at

least one unit should follow the complete journey of its associated NSR-train. This is referred to as

the “continuity requirement” (Fioole et al., 2006; Maróti, 2006). In the TUAP/TUSP, the connection

possibilities among trains are left flexible such that no prescribed connection is imposed. The unit

permutation (order) issue is also considered in the research on NSR. In the UK, the train timetables

are not regular enough for pre-sequencing, and FIFO is thus not suitable for connecting most trains. In

addition, circulation and rostering of train units are often left as a separate process in the UK railway

industry.

Schrijver (1993) proposes an integer multicommodity flow model for the train unit circulation

problem for a single line on a single day with two compatible unit types for NSR. In the model the

nodes represent the arrival and departure events at stations and the arcs represent the trips. Flows

of different commodities stand for train units of different types. The framework of this model (flow

graph or time-space graph) has been used in most subsequent research on rolling stock circulation by

NSR. The objective is to minimize the fleet size. As there are at most two compatible types of unit,

the weak passenger demand satisfaction and coupling upper bound knapsack constraints are replaced

by explicitly finding their relevant convex hulls in R
2. Some local issues like time allowances and

permutation restrictions regarding coupling/decoupling are ignored.

Alfieri et al. (2006) consider a problem scenario similar to Schrijver (1993). The same flow

graph framework is used. The objective is to minimize the combination of fixed and variable costs

of train units. Two models have been proposed. The first one ignores the unit permutation issue

and satisfies the passenger demands and coupling upper bounds directly by constraints in conjunction

with similar convex hull strengthening as in Schrijver (1993). The second model can handle the unit

permutation issue by introducing a transition graph concept and new decision variables representing

unit compositions per trip. These new composition variables also have included the conditions to

comply with passenger demands and coupling upper bounds implicitly. Issues like cycles, shunting

conflicts and maintenance are left to other planning stages. Also a pre-processing approach to reduce

the sizes of the transition graphs is developed. The model has been applied to the line 3000 of NSR

with 12 NSR-trains.

1A “train” at NSR does not have the same meaning as a “train” in the TUAP or TUSP. The unit composition within an

NSR-train can be changed and it is trips, as subsections of a train, that cannot have their unit compositions changed.

4

Peeters and Kroon (2008) present a model for a train unit circulation problem for two lines of

NSR with 15 NSR-trains (182 trips) and 12 NSR-trains (115 trips) respectively. Also based on the

framework of a time-space graph, the model uses the aforementioned transition graph where unit

compositions at each connection between the trips are explicitly enumerated and the composition

transition possibilities are represented by associated decision variables. Moreover, variables and con-

straints for describing unit inventories at stations are used. Dantzig-Wolfe decomposition is used for

solving the model, where since the order of the joint flows are considered, the master problem is

decomposed with respect to NSR-trains. Branch-and-price is applied to get integer solutions. This

approach is able to handle real-world instances of NSR in a short time after fine-tuning in the branch-

and-price solver.

The models in Alfieri et al. (2006) and Peeters and Kroon (2008) have employed the idea of

transition graph that strongly uses the fact that all NSR-trains are running on lines such that the

predecessor and successor of a train or trip are unique. Sometimes, an NSR-train will be associated

with a route with a topology other than a “line”, but of a “Y” or an “X” shape, indicating that a

train/trip can have two predecessors and/or two successors and thus relevant coupling/decoupling

operations have to be imposed. This is called combining/splitting of a train and has been catered

for in a customized way by a model proposed in Fioole et al. (2006). Real-world problems in the

Noord-Oost lines with 665 trips have been tested and several fine-tuning methods are used to speed

up the solution process. Near-optimal solutions for the tested instances can be found in 1900–6400

seconds.

2.1.2 The train unit assignment problem and train unit scheduling problem

The train unit assignment problem (TUAP) shares similar definitions and settings with the TUSP,

especially in the sense that no trains are pre-sequenced in advance and no coupling/decoupling is

allowed en route. Cacchiani et al. (2010b) present an integer multicommodity flow model for the

TUAP. For each train, there is a passenger demand in the number of seats and a coupling upper bound

of two units. The model can also include additional constraints for maintenance and overnight bal-

ance. The model is based on a directed acyclic graph (DAG) where the nodes represent trains and the

arcs represent connection possibilities. Each commodity stands for a unit type and its flow amount at

a node gives the number of units of that type used there. A similar DAG framework is also used in this

work and in Lin and Kwan (2014). The path formulation is reported to be more efficient in solving the

TUAP. Taking advantage that no more than two units can be coupled, the LP-relaxation is strength-

ened by replacing relevant knapsack constraints by their dominants (see Cacchiani et al. (2013a)). An

LP-based heuristic is designed for finding the integer solutions without using a branch-and-bound tree.

This heuristic is reported to be crucial in finding feasible solutions in many of the tested instances.

The above model and the heuristic method has been applied to real-world instances of a regional train

operator in Italy, with fleets of up to 10 distinct unit types and timetables of 528–660 trains. The

heuristic is able to find solutions 10–20% better than the manual solutions in practice. Experimented

on a PC with Pentium 4, 3.2GHz, 2GB RAM, and an LP-solver of ILOG-CPLEX 9.0, the solution

time ranges from 1878–1932 seconds without the additional maintenance and overnight balance con-

straints, and 5897–14105 seconds with those constraints. Compared with TUSP, TUAP does not

consider locations banned for coupling/decoupling, unit type compatibility relations or combination-

specific coupling upper bound. The objective function in the reported experiments is set to only

minimize the number of used units, while in TUSP, mileage, number of empty-movements and other

preferences are also included in the objective.

Cacchiani et al. (2013b) later develop a fast and effective heuristic method based on Lagrangian

relaxation for the same problem as in Cacchiani et al. (2010b). The main aim is to find a suboptimal

5

solution in a very short time such that it can be embedded into real-time operations in conjunction

with other planing activities like timetabling. Computational experiments have been conducted for the

same instances as in Cacchiani et al. (2010b) and for some larger instances of up to around 1000 trains.

Comparisons with the method given in Cacchiani et al. (2010b) have been made. The same authors

have proposed another fast heuristic for the same train unit assignment problem in Cacchiani et al.

(2012b). The lower bound is given by solving an ILP that only considers a subset of “simultaneous”

peak time trains where any two of them cannot be covered by the same unit. Real-world instances

were tested and comparisons with the approaches in Cacchiani et al. (2010b, 2013b) were made. See

Cacchiani (2007, 2009); Cacchiani et al. (2012a) for more of the research on the TUAP.

The train unit scheduling problem (TUSP) described in Lin and Kwan (2014) is similar to the

TUAP (Cacchiani et al., 2010b), except that additional real-world requirements are considered, such

as unit type coupling compatibility, locations banned for coupling/decoupling, combination-specific

coupling upper bounds, and station-level unit blockage issues. A two-phase approach is presented

since including station-level details into the main model would give an intractable huge-sized prob-

lem. This two-level decomposition framework is justified from railway operation practice and station-

based simulations. In the reported experiments, the integer solver only generated columns at the root

node of the BB trees for most of the tested instances such that the exactness of the solutions cannot

be guaranteed. Moreover, the integer solver reported did not use customized branching strategies and

the node selection method was fixed to best-first. No attempt was made at strengthening the lower

bound given by LP-relaxation. The train-family variable method for ensuring coupling compatibility

and combination-specific upper bounds also had limitations such that not all possible combination-

specific upper bound scenarios can be handled.

While rolling stock scheduling usually assume unique and well-defined train capacity require-

ments, in practice rail operators may consider different levels of capacity provisions. In Lin et al.

(2016), the problem of train unit scheduling with bi-level capacity requirements is studied and an

integer multicommodity flow model is proposed based on previous research.

2.1.3 Other research in train unit planning

Jiang et al. (2014) propose a model for scheduling additional train unit services in a double parallel rail

transit line such that timetable scheduling and train unit scheduling are integrated into the model with

two objectives: minimizing travel times of additional trains and minimizing shifts of initial trains.

Computational experiments on real rail transit line 16 in Shanghai were tested yielding a reasonable

new timetable.

Lu et al. (2016) present a solution approach for scheduling train units under the condition of their

utilizations on one sector or within several interacting sectors. The method consists of two stages: a

greedy stage to construct a feasible circulation plan fragment, and a stochastic disturbance to generate

a whole feasible solutions or get a new feasible solution. Computational experiments on a railway

corridor representing the basic feature of railway networks were reported.

2.2 Locomotive scheduling

Being a different kind of rolling stock, the requirements and problem settings for locomotive schedul-

ing are quite dissimilar from train unit circulation/assignment/scheduling. For instance, the carriages

and locomotives can be scheduled separately with different operating rules. Locomotive scheduling

and train unit scheduling both can be formulated as integer multicommodity flow problems, where

often different commodities represent rolling stock types and nodes/arcs represent trips to be covered

by rolling stock. Locomotive hauled train carriages are now rarely used for passenger rail transport

6

in the UK and many other countries.

Wolfenden and Wren (1966) propose a heuristic method such that it can resize the problem scale

small enough for the Hungarian algorithm to repeatedly solve updated instances until the converged

optimum. This method was applied to real-world instances of British Railways and became opera-

tional in May 1963, reducing the number of locomotives from 15 to 12 and giving 28% less empty-

running. It is reported to be the world’s first computer-produced working schedule (Wren, 2004).

Ziarati et al. (1999) propose a model to assign locomotives to trains such that sufficient power can

be used to pull the cars. It is solved by a “branch-first, cut-second” approach, where valid inequalities

are inserted to strengthen the LP lower bound and to prevent the case that more than 3 types of

locomotives are assigned to the same train leg. Computational experiments have been conducted for

real-world instances from Canadian National Railway with 2000 trains and 26 locomotive types.

Cordeau et al. (2000, 2001a,b) present some models on the locomotive and car assignment prob-

lem, employing solution methods such as Benders decomposition and heuristic branch-and-bound

based on column generation. They considered a group of compatible locomotive-car combinations

that travel along some part of the rail network. Later various practical constraints have been added to

the model, such as the maintenance issue. Computational experiments have been performed based on

the instances from VIA Rail, Canada.

Lingaya et al. (2002) study the problem of assigning cars to timetabled trains for VIA Rail,

Canada. A complex model including a master plan to additional information regarding passenger de-

mands is used. Coupling/decoupling activities among cars is allowed and notably the order of the cars

has been explicitly considered. Some real-world requirements such as maintenance are considered as

well. Dantzig-Wolfe decomposition in conjunction with a heuristic branch-and-bound procedure is

employed to solve the relevant ILP. The model has been tested based on the instances from VIA Rail,

Canada.

3 Problem description

We briefly list the requirements/restrictions and objectives for the TUSP. For a more detailed descrip-

tion, see Lin and Kwan (2014).

3.1 Requirements and restrictions

(1) Fleet size limit: Each train operator has a fleet of units of a limited number per type. A schedule

whose used unit number exceeding the fleet size limit is invalid.

(2) Type-route compatibility: There are compatibility relations among unit types and routes. As each

train belongs to a route, this turns out to be a compatibility relation among unit types and trains.

(3) Time allowances: A prerequisite for two trains to be consecutively connected by the same unit

is that the arrival time of the previous train should be earlier than the departure time of the next

train. Extra buffering time also has to be imposed on this time gap, as well as empty-running and

shunting movements if relevant.

(4) Passenger demand: Each train in the timetable should be covered by unit(s) whose total capacity

satisfies a passenger demand expected for the train, which is often measured in number of seats.

(5) Empty-running: Generating an empty-running train without passengers when necessary may

make contribution to the overall solution quality. However, track paths and timing have to be

checked and approved by authorities such that no conflict with other track users may occur.

7

(6) Unit blockage: Movements of rolling stock vehicles are strictly restricted by tracks and other

rail infrastructures, which will give various blockage problems. Detecting and eliminating poten-

tial blockage requires the collection of comprehensive station-level infrastructure knowledge and

operation details.

(7) Coupling/decoupling: Coupling/decoupling activities are often essential for satisfying high pas-

senger demands at peak time by providing more capacities. They can also be used as a way to

redistribute unit resources across the network, i.e. to provide unit capacities to some trains later

elsewhere rather than for the current train whose passenger demand requirement may be actually

very low.

(8) Type-type compatibility: Train units of the same type are permitted to be coupled and some dif-

ferent types are also allowed to be coupled. This relation is referred to as type-type compatibility.

The train unit family is defined such that coupling compatible unit types belong to the same fam-

ily. So far in all the problem instances in ScotRail and Southern Railway, train unit families

partition the fleet into mutually exclusive subsets. Table 1 shows the unit type and family infor-

mation of Southern Railway and ScotRail. The unit types are rewritten as “Type in paper” to be

referred to in this paper for convenience. Note that this requirement will increase the difficulty

of the problem as it is proved in Lin and Kwan (2016a) that the multicommodity flow problem

with incompatible commodities is NP-hard even when the flows are allowed to be fractional (A

general fractional multicommodity flow problem can be solved in polynomial time (Ahuja et al.,

1993).)

(9) Complex coupling upper bounds: When train units are coupled into a unit block, the total number

of cars is restricted by an upper bound. This upper bound is often combination-specific that it is

difficult to describe the relevant rules in a unified form such as linear constraints. Table 2 gives

the coupling upper bound as a result of different unit combinations.

(10) Locations banned/restricted for coupling/decoupling: At some locations coupling/decoupling op-

erations are either forbidden or restricted under certain conditions. The proportion of banned/restricted

locations can be large. Taking the ScotRail network for example, among the 75 locations that can

be the end points of trains, coupling/decoupling is totally banned at 49 of them. Generally, loca-

tions banned for coupling/decoupling will make the overall problem more difficult to solve. We

conjecture that the problem is NP-hard even for single unit type cases if the banned locations

are imposed due to the fact that the single commodity confluent flow problem is NP-hard (Chen,

2005). Note that in Cacchiani et al. (2010b), it is proved that the TUAP is polynomial solvable

for one type of unit.

8

Table 1: Train unit types and their associated families of the fleets of ScotRail and Southern Railway

(“c156” stands for “Class 156” and so on)

Operator Family Real Type Capacity # of cars

Type in paper (seats)

ScotRail
A c156 A1 145 2

B

c158 B1 136 2

c170 B2 189 3

c170S B3 198 3

C c314 C1 212 3

D
c318 D1 219 3

c320 D2 230 3

E c334 E1 183 3

F
c380/0 F1 208 3

c380/1 F2 282 4

Southern Railway G
c171/7 G1 107 2

c171/8 G2 241 4

H
c455/8 H1 316 4

c456/0 H2 152 2

I c313/1 I1 194 3

J c460/0 J1 366 8

K c442/1 K1 320 5

L

c377/1 L1 223 4

c377/2 L2 223 4

c377/3 L3 160 3

c377/4 L4 243 4

Table 2: Coupling upper bounds in number of cars associated with type combinations, regardless of

other factors such as routes

Operator Family Combination Upper bound

(in # of cars)

ScotRail
A A1 6

B any combinations by B1, B2, B3 6

C C1 6

D any combinations by D1, D2 6

E E1 8

F any combinations by F1,F2 7

Southern Railway
G

G1 only 4

G2 only 8

G1 and G2 6

H

H1 only 8

H2 only 6

H1 and H2 8

I I1 3

J J1 8

K K1 10

L any combinations by L1,L2,L3,L4 12

9

3.2 Objectives and solution qualities

(1) Fleet size: Because of the high costs associated with leasing and maintaining a train unit, min-

imizing the number of used units is the most important objective, given the basic fleet limit

requirement has been satisfied.

(2) Operational costs: Common operational costs include carriage-kilometer (mileage), empty-running

movements, shunting movements, unnecessary coupling/decoupling, and so on. Carriage-kilometer

refers to the total mileage incurred by all train units or all unit cars. It is natural to think that if one

unit suffices in serving a train then it is a waste to use a coupled two-unit block. However, over-

provision may be used to relocate unit resources across the network such that a smaller number

of used units and/or less empty-running can be achieved. In this paper, shunting and unnecessary

coupling/decoupling are processed in Phase-2 as a separate stage from the network flow model

(see § 4.1).

(3) Preferences: Various preferences can be found in forming a real-world train unit schedule. For

instance, one type of unit is more preferable than another over the same route. A practical sched-

ule also needs plenty of long gaps during the off-peak time for unit maintenance. On the other

hand, medium and long gaps may not be desirable at some evening times, which are regarded as

irregular patterns.

4 Model description

4.1 Network-level and station-level

The entire train unit scheduling problem would be too huge-sized to be tractable if all detailed station-

level restrictions such as unit blockage resolution are considered in a “once-for-all” process. There-

fore, a two-phase strategy is proposed in Lin and Kwan (2014) to allow some of the station-level

requirements to be omitted from a main network-level phase, whose aim is to globally assign train

units to trains temporarily ignoring some station layout details such as unit permutation and the elim-

ination of unit blockage. The results of the network-level phase (Phase-1) would be a set of se-

quenced train trips as the daily workload for a train unit in the fleet. For trains covered by multiple

units, no unit permutation information is given and unit blockage may occur at the station level. The

network-level phase can be regarded as an extended version of Cacchiani et al. (2010b) with more

real-world constraints such as locations banned for coupling/decoupling, unit type coupling compati-

bility, combination-specific coupling upper bounds and so on. Phase-2 will take the raw results from

Phase-1 in a station-by-station manner to further complete local shunting plans, remove unit block-

age and assign unit permutations for coupled trains. This paper will only consider the network-level

phase. In Lin and Kwan (2014), a mixed integer matching model is proposed to solve Phase-2. In

practice, it is sufficient to use a visual interactive software, e.g. TRACS-RS (Tracsis plc, 2016), to

handel the basic tasks realized by the above model. The results of Phase-1 are uploaded to the soft-

ware and train connections at each station will be displayed in detail. A user of the software thus can

adjust the schedules if unit blockage exists or assign correct unit permutations for trains with coupled

units.

At the early stage of the research, Lin and Kwan (2014) has attempted the incorporation of an

integer fixed-charge multicommodity flow formulation, which led to a difficult integer program that

cannot be solved to exact optimality within practical time. Nonetheless, experiences and real-world

data based experiments suggest that the solution quality often will not be compromised if the “fixed-

charge” variables and constraints in Lin and Kwan (2014) are dropped since extra tasks realized by

10

them such as connection time allowances involving coupling/decoupling and penalizing redundant

coupling/decoupling can be effectively achieved in Phase-2 by TRACS-RS. Therefore, here a standard

integer multicommodity flow problem omitting the “fixed-charge” variables is considered.

4.2 A network-level framework based on DAG representation

A network-level DAG representation (Cacchiani et al. (2010b), Lin and Kwan (2014)) is summarized

here for completeness. For the DAG G = (N ,A), we define a node set N = N ∪{s, t}, where N is

the set of train nodes representing trains in the timetable, and s and t are the source and sink node.

An arc set is defined as A = A∪A0, where A is the connection-arc set and A0 the sign-on/off arc set.

A connection-arc a ∈ A links two train nodes i and j (a = (i, j), i, j ∈ N), representing a potential

connection such that after serving train i a unit can continue to serve train j as its next task. To be

specific, if the time gap between two trains are greater than or equal to the minimum turnaround time,

then a connection arc will be added between the two nodes; otherwise, no arc between them will be

created. When extra time such as empty-running or shunting is involved, it should be also considered

in validating the relevant time slacks. A sign-on arc (s, j) ∈ A0 starts from s and ends at a train node

j ∈ N; a sign-off arc (j, t) ∈ A0 starts from a train node j ∈ N and ends at t. Generally all train nodes

have a sign-on arc and a sign-off arc. δ−(j) and δ+(j) denote all arcs that terminate at / originate

from node j respectively. Finally, an s-t path p ∈ P in G represents a sequenced daily workload (the

train nodes in the path) for a unit.

For the fleet, we denote K the set of all unit types, corresponding to the commodities in a mul-

ticommodity flow model. As for type-route compatibility, type-graphs G k representing routes each

type k ∈ K can serve are constructed based on G , as well as the components of G , e.g. Pk and A k

refer to the set of all paths and arcs in type-graph G k respectively. We call an arc in a type-graph

G k,k ∈ K a type-arc; on the other hand, we call an arc in the original graph G a block-arc.

4.3 Arc formulation and train convex hulls

First, an arc formulation based on the network-level framework is given as,

(AF) min ∑
k∈K

∑
a∈A k

caxa (1)

s. t. ∑
a∈δ k

+(s)

xa ≤ bk
0, ∀k ∈ K; (2)

∑
a∈δ k

−(j)

xa− ∑
a∈δ k

+(j)

xa = 0, ∀ j ∈ N,∀k ∈ K; (3)

∑
k∈K j

∑
a∈δ k

−(j)

H
j

f ,kxa ≤ h
j
f , ∀ f ∈ Fj,∀ j ∈ N; (4)

xa ∈ Z+, ∀a ∈A
k
,∀k ∈ K; . (5)

In the above arc formulation (AF) (1)–(5), the Objective (1) is defined according to the models

described in Lin and Kwan (2014) where fleet size costs, adjusted arc costs (consisting of carriage-

kilometers and preferences) and empty-running costs are the three major costs and they have different

weights in the objective. The carriage-kilometer of a train (node) is associated with an arc in the

following way: The incoming arcs of each train node (including the sign-on arcs) will be given a

cost reflecting the carriage-kilometer of that node. This also applies to the other train-related costs

to be reflected in arcs. Preference costs (associated with arcs) are used to reflect preferences among

11

different connection possibilities. For instance, long gaps during off-peak hours as mentioned in

§ 3.2 will have their preference costs multiplied by a sub-weight of 0.5. Carriage-kilometers and

preferences are combined into adjusted arc costs for the arcs. Constraints (2) ensure the number of

deployed units for each type k ∈ K is within its fleet size limit bk
0. Constraints (3) are to force the

flow conservation balance at each train node. Constraints (4) are the “train convex hull” constraints

to be described in detail later. They are used to satisfy the passengers’ demands and the combination-

specific coupling upper bounds. Finally Constraints (5) give the variable domain where xa ∈Z+,∀a∈
A k,∀k ∈ K indicates the flow amount (number of units) at type-arc a ∈A k.

In order to handle the complex combination-specific coupling upper bounds, which are commonly

seen in the fleets of Southern Railway and ScotRail, we use a method presented in Lin and Kwan

(2016b) based on the computation of “local convex hulls” per train. In the rolling stock scheduling

literature, similar ideas in constructing local convex hulls can be found in Cacchiani et al. (2010b,

2013a); Schrijver (1993); Fioole et al. (2006); Alfieri et al. (2006); Ziarati et al. (1999), where local

convex hulls are solely used to strengthen LP relaxation though.

Let K j be the set of permitted types for train j ∈ N, and w j = (w j
1,w

j
2, · · · ,w

j

|K j|
)T ∈ Z

K j

+ be a

unit combination vector for j, where w
j

k stands for the number of units of type k used for j. A unit

combination set is defined as:

Wj :=

{
w j ∈ Z

K j

+

∣∣∣∣∀w
j : a valid unit combination for train j

}
,∀ j ∈ N, (6)

such that

(i) ∑k∈K j
qkw

j

k ≥ r j, where qk is the capacity of unit type k and r j is the passenger demand require-

ment, both measured in numbers of seats.

(ii) ∑k∈K j
vkw

j

k ≤ u(w j),∃w j ∈Wj being used, where vk is the number of cars for unit type k and

u(w j) is the coupling upper bound in number of cars allowed for combination w j.

(iii) the used types (k : w
j

k > 0) are compatible.

For all Wj in our problem instances, due to their small dimensions (e.g. |K j| ≤ 4,∀ j ∈ N in the

ScotRail datasets), and numbers of points (e.g. |Wj| ≤ 9,∀ j ∈N in the ScotRail datasets), it is possible

to explicitly compute the convex hulls of all unit combination sets by some well-established convex

hull computation algorithms, e.g. the QuickHull algorithm (Barber et al., 1996). For computational

feasibility in computing local convex hulls for problems with higher dimensions and larger number

of points, see Lin and Kwan (2016b). Such convex hulls associated with each train are referred to as

train convex hulls as

conv(Wj) =

{
w j ∈ R

K j

+

∣∣∣∣H
jw j ≤ h j

}
, ∀ j ∈ N, (7)

described by a set of nonzero facets f ∈ Fj in R
K j

+ , with H j ∈RFj×K j and h ∈RFj . Finally, by variable

conversion w
j

k = ∑a∈δ k
−(j) xa, we have the following train convex hull constraints:

∑
k∈K j

∑
a∈δ k

−(j)

H
j

f ,kxa ≤ h
j
f , ∀ f ∈ Fj,∀ j ∈ N, (8)

where H
j

f ,k is the entry of nonzero facet f and type k in H j and h
j
f is the entry of nonzero facet f in

h j. The enumeration and convex hull computation are all processed before solving the ILP such that

no extra burden will be added to the solution process.

12

4.4 Path formulation

Let Mx ≤ b be the matrix form of Constraints (2)–(3), and let H and h be the coefficient matrix and

right-hand side. Also let Xk = {x∈ZA k

+ |M
kxk ≤ bk} and ck,Mk,Hk,xk the corresponding components

with respect to type k. Assume that the coefficients in M,b,H,h are all integers. We rewrite (AF) as:

(AF ′) min ∑
k∈K

ckT xk (9)

s. t. ∑
k∈K

Hkxk ≤ h; (10)

xk ∈ Xk
,∀k ∈ K. (11)

It is well-known that Mk,k ∈ K are totally unimodular (Cook et al., 1998). Therefore Qk = {x ∈

R
A k

+ |M
kx ≤ bk},∀k ∈ K are integral and the corresponding decomposed subproblems can be solved

efficiently. Moreover, the following Theorem 1 can be derived from Gallo and Sodini (1978) and

Vohra (2011):

Theorem 1. An extreme point of Qk = {x ∈ R
A k

+ |M
kx ≤ bk},bk = (bk

0,0, . . . ,0)
T is either the null

point 0 or a feasible solution corresponding to a single path with a magnitude of bk
0. A feasible

solution corresponding to a single path with a magnitude of bk
0 is an extreme point of Qk.

Let {xp}p∈Pk be the nonzero extreme points of conv(Xk), and let x̂p = 1

bk
0

xp. By applying Dantzig-

Wolfe decomposition (Dantzig and Wolfe, 1960), the following “extensive” formulation based on

paths can be derived, where yp represents the flow amount used on path p:

(PF) min ∑
k∈K

∑
p∈Pk

(
ckT x̂p

)
yp (12)

s. t. ∑
k∈K

∑
p∈Pk

(
Hkx̂p

)
yp ≤ h; (13)

∑
p∈Pk

yp ≤ bk
0, ∀k ∈ K; (14)

yp ∈ Z+, ∀p ∈ Pk
,∀k ∈ K. (15)

In fact (PF) can be re-expressed into a more “intuitive” formulation that is self-explanatory based

on the meaning of yp, which reads:

(PF ′) min ∑
k∈K

∑
p∈Pk

cpyp (16)

s. t. ∑
p∈Pk

yp ≤ bk
0, ∀k ∈ K; (17)

∑
k∈K j

∑
p∈Pk

j

H
j

f ,kyp ≤ h
j
f , ∀ f ∈ Fj,∀ j ∈ N; (18)

yp ∈ Z+, ∀p ∈ Pk
,∀k ∈ K. (19)

We leave the proof of the above equivalence between (PF) to (PF ′) to Appendix A.

It is worth mentioning that the lower bound given by the LP relaxation of the path formulation

(PF ′) is the same as the one given the arc formulation (AF), since the decomposed parts Xk,k ∈ K

are integral. Due to the same reason, the lower bound given by the Lagrangian relaxation on (AF) by

relaxing Constraints (4) is the same as the above two bounds.

Despite the same lower bound given by LP or Lagrangian relaxation, (PF ′) is usually more prefer-

able to (AF), mainly because the former can be solved more efficiently by column generation based

methods. This is also reported in Cacchiani et al. (2010b).

13

5 A branch-and-price solver

In this section, a branch-and-price solver for solving the path formulation (PF) (and (PF ′)) is pre-

sented, from which many of the techniques used can also be applied to the path formulations of the

“fixed-charge” version in Lin and Kwan (2014), either directly or with certain modifications.

5.1 Branch-and-price and column generation

Branch-and-price (Barnhart et al., 1998) is a high-level framework for solving large-scale ILPs by

combining branch-and-bound (BB) (Wolsey, 1998) and column generation (Lübbecke and Desrosiers,

2002; Desrosiers and Lübbecke, 2005). In a generic branch-and-bound framework, if only the BB

tree’s root node is solved by column generation, then the root may not contain all the columns needed

for finding an optimal integer solution. Thus branch-and-price calls for the need to also perform

column generation not only at the root, but also at the leaf nodes of the BB tree. Branch-and-price is

used in Peeters and Kroon (2008) for solving the rolling stock circulation problem.

5.1.1 Restricted master problem and subproblems

Consider the path formulation (PF), whose LP relaxation is denoted as (PF). Let P̃k ⊆ Pk be the set

of paths in the restricted master problem (RMP) and let φk ≤ 0,∀k ∈ K and ψ f j ≤ 0,∀ f ∈ Fj,∀ j ∈ N

be the optimal dual variables associated with Constraints (14) and (13) of the RMP of (PF). We have

the dual problem of the RMP of (PF) as:

max ∑
k∈K

bk
0φk +hT ψ (20)

s. t. φk +(Hkx̂p)T ψ ≤ cp ∀p ∈ P̃k
,∀k ∈ K; (21)

φ ,ψ ≤ 0, . (22)

There are |K| separation problems from the dual in finding constraints associated with p ∈ Pk in each

G k such that φk +(Hkx̂p)T ψ > cp. This can be performed for each k by solving the k-th subproblem

c∗k(φ ,ψ) := min
p∈Pk

{
cp−φk− (Hkx̂p)T ψ

}
. (23)

In the TUSP, the cost of path p can be defined in the form of cp = ∑ j∈Np
c j +∑a∈Ap

ca+c0
p (where

the first term is node-related, the second term is arc-related and the third term is path-related). The

subproblem (23) can be regarded as a shortest path problem with a node weight c j−∑ f∈Fj
H

j

f kψ f j at

each j, an arc weight ca at each a plus a source-sink weight c0
p−φk. To be more specific, we have

cp = cp− ∑
f∈Fj, j∈N

(Hkx̂p) f jψ f j−φk

= c0
p−φk + ∑

j∈Np

(
c j− ∑

f∈Fj

H
j

f kψ f j

)
+ ∑

a∈Ap

ca.

The above expression on reduced cost can also be directly obtained from (PF ′). There is an equiva-

lence relation between the ILP under the network embedded in Xk and a shortest path problem over

14

the same network, since (23) can be understood as

c∗k(φ ,ψ) = min
p∈Pk

{
ckT x̂p− (Hkx̂p)T ψ−φk

}

= min
x∈Xk

{
1

bk
0

[
ckT x− (Hkx)T ψ

]
−φk

}

= min
x∈Xk

{
1

bk
0

(
∑

a∈A k

caxa− ∑
j∈N, f∈Fj

∑
a∈δ k

−(j)

H
j

f kψ f jxa

)
−φk

}
,

(24)

i.e. a shortest path problem for type k with modified costs.

Since the underlying graph G k is a DAG, the shortest path problem can be solved efficiently by

topological sorting in the linear rate of O(|Nk|+ |A k|) (Ahuja et al., 1993).

5.1.2 Upper and lower bounds

When solving (PF) by column generation, during each iteration a pair of upper and lower bounds

on the master problem’s objective value z∗MP can be obtained. The advantage of taking records of the

bounds is that it is possible to terminate the column generation process before it is solved to optimality

when the gap between the upper and lower bound is regarded as accepted. Then the lower bound can

be used as the BB tree’s node relaxation value.

It is by default that the objective value of the current RMP before optimality gives an upper

bound on z∗MP. Theorem 2 shows that a lower bound can be obtained by considering the value of the

subproblem results c∗k ,k ∈ K and assuming an upper bound on the sum of the optimal master problem

variables can be found (Desrosiers and Lübbecke, 2005; Lübbecke and Desrosiers, 2002).

Theorem 2. For each k ∈ K, let κk ≥ ∑p∈Pk y∗p, where y∗p, p ∈ Pk are the elements of type k in the

optimal solution of the master problem (PF). Then

z∗RMP(φ ,ψ)+ ∑
k∈K

κkc∗k(φ ,ψ)≤ ∑
k∈K,p∈Pk

cpy∗p = z∗MP. (25)

Proof. Noting that ∑p∈Pk y∗p ≤ bk
0,∑k∈K,p∈Pk

j
H

j

f ky∗p ≤ h
j
f and c∗k ,φ ,ψ ≤ 0, we have

z∗MP− z∗RMP(φ ,ψ) = ∑
k∈K,p∈Pk

cpy∗p−

(
∑
k∈K

bk
0φk + ∑

f∈Fj, j∈N

h
j
f ψ f j

)

≥ ∑
k∈K,p∈Pk

cpy∗p−

(
∑

k∈K,p∈Pk

y∗pφk + ∑
f∈Fj, j∈N,k∈K,p∈Pk

j

H
j

f ky∗pψ f j

)

= ∑
k∈K,p∈Pk

cpy∗p−

(
∑

k∈K,p∈Pk

y∗pφk + ∑
f∈Fj, j∈Np,k∈K,p∈Pk

H
j

f ky∗pψ f j

)

= ∑
k∈K,p∈Pk

y∗p

(
cp−φk− ∑

f∈Fj, j∈Np

H
j

f kψ f j

)

≥ ∑
k∈K,p∈Pk

y∗pc∗k(φ ,ψ)

≥ ∑
k∈K

κkc∗k(φ ,ψ),

which finishes the proof.

15

Corollary 1. At iteration i in the column generation process in solving (PF), let φ i,ψ i be the cor-

responding optimal dual variables. A pair of bounds on the optimal objective value of the master

problem (PF) can be obtained as

z∗RMP(φ
i
,ψ i)+ ∑

k∈K

κkc∗k(φ
i
,ψ i)≤ z∗MP ≤ z∗RMP(φ

i
,ψ i) (26)

Since the lower bound may not be monotonically increasing, a tighter pair of bounds at iteration

i can be used in practice:

max
l=1,...,i

{
z∗RMP(φ

l
,ψ l)+ ∑

k∈K

κkc∗k(φ
l
,ψ l)

}
≤ z∗MP ≤ z∗RMP(φ

i
,ψ i). (27)

As for choosing appropriate values for parameters κk, two strategies are discussed. First, it is

possible to set κk = bk
0. The lower bound becomes z∗RMP(φ ,ψ)+∑k∈K bk

0c∗k(φ ,ψ). This is the same

lower bound if the original arc formulation (AF ′) is solved by Lagrangian relaxation with the same

dual variables ψ associated with the penalized Constraints (10). Let L(ψ) be the Lagrangian lower

bound and L = maxψ≤0 L(ψ) be the optimal solution of the Lagrangian dual problem. We have

L(ψ) = min
x∈X

{
∑
k∈K

ckT xk−ψT

(
∑
k∈K

Hkxk−h

)}

= ∑
k∈K

bk
0 min

xk∈Xk

{
1

bk
0

[
ckT xk−ψT (Hkxk)

]}
+ψT h

= ∑
k∈K

bk
0 min

p∈Pk

{
ckT x̂p−ψT (Hkx̂p)

}
+ψT h.

(28)

The resulting Lagrangian dual in finding L is often solved by some subgradient methods. However

it can be understood as an LP in the following way by adding extra variables φk for all k, such that

L = max ∑
k∈K

bk
0φk +ψT h (29)

s. t. φk ≤ ckT x̂p−ψT (Hkx̂p), ∀p ∈ Pk
,∀k ∈ K; (30)

φ ,ψ ≤ 0. (31)

One can verify the Lagrangian dual problem (29)–(31) is exactly the dual problem of the path for-

mulation (PF). Thus given the shared variables ψ plus another variable φ that can be regarded as a

constant, the Lagrangian lower bound at ψ has the same value as the lower bound given by (25) with

κk = bk
0, i.e.,

L(ψ) = ∑
k∈K

bk
0 min

p∈Pk

{
ckT x̂p−ψT (Hkx̂p)−φk

}
+ψT h+ ∑

k∈K

bk
0φk

= ∑
k∈K

bk
0c∗k(ψ,φ)+ψT h+ ∑

k∈K

bk
0φk.

(32)

Alternatively, let ỹ∗(φ ,ψ) be the optimal solution of the RMP with dual variables φ ,ψ . It is

true that ∑p∈Pk y∗p ≤ ∑p∈Pk ỹ∗p(φ ,ψ) ≤ bk
0 for each k ∈ K. Therefore, by setting κk = ∑p∈Pk ỹ∗(φ ,ψ)

promptly in each round of column generation LP, a tighter lower bound on z∗MP can be obtained as

z∗RMP(φ ,ψ)+∑k∈K ∑p∈Pk ỹ∗p(φ ,ψ)c∗k(φ ,ψ).

16

5.2 Branching strategies

Here we propose a system of branching strategies based on BB. A major difference between this

system and an ordinary BB method is that besides making the fractional variables integral, it also

eliminates coupling among incompatible unit types for all trains and forbids coupling/decoupling op-

erations at banned/restricted locations. Thus the purpose of the extended BB method will be referred

to as “to find an optimal operable solution” where being “operable” means: (i) all (path or arc) vari-

ables are integral, (ii) all coupled trains are served by units of compatible types, and (iii) there is no

coupling/decoupling at banned/restricted locations. Moreover, the term “feasible” will be solely used

in the context for showing whether an LP (relaxation) problem is feasible.

In developing an efficient BB method, two issues have to be concerned problem-specifically, i.e.

branch design and node selection. Branch design refers to how to partition the solution space at an

active node; node selection refers to how to select active nodes from the active queue. We will discuss

the details of them in the following sections.

5.2.1 Branch design

The essence of branching is to partition the solution space by imposing mutually exclusive restric-

tions in each branch without losing any potential operable ones. The imposed restrictions could be

implemented by explicitly discarding the offending solutions instead of additional LP constraints. In

a traditional BB framework, branching is generally employed to make fractional variables integral.

However, in our work, branching is also used as a method to realize the requirements that are diffi-

cult to satisfy by constraints. Moreover, if used appropriately, such branches can both satisfy those

tough requirements as well as effectively divide the solution space, making the “fractional-to-integer”

process more efficient.

A multi-rule branching system is thus designed, where three branching rules are involved: train-

family branching, banned location branching, and arc variable branching. The first two rules are com-

patible with the structure of the sub-problems in a branch-and-price framework, since corresponding

modifications on the subproblem networks will take place to be consistent with the branching.

5.2.1.1 Train-family branching

In forming the train unit combination set W j in (6), the combinations with incompatible types are not

included in this discrete set. However as discussed in applying train convex hulls (see § 4.3), some

invalid combinations can be still inside the continuous set conv(W j) and thus may appear in a relevant

LP relaxation solution.

Train-family branching is thus used to eliminate the remaining type-incompatible combinations.

It is more advantageous than the train-family variables described in Lin and Kwan (2014) since it

does not require additional binary variables and, in conjunction with train convex hulls, it is suitable

for a broader range of combination-specific coupling upper bounds compared with the method in Lin

and Kwan (2014). To form such branches, the solution of the relevant LP relaxation at a BB tree node

will be checked and the earliest departure train covered by more than one family will be identified.

Due to the nature of DAG, the flow type covering an earlier train is likely to have immediate impact

on its subsequent trains. Computational experiments also suggest there is empirical evidence for the

advantage of this prioritization on train’s departure times. Suppose such a train j is detected with

families ϕ1, . . . ,ϕn (n is usually not a large number) serving it and let Φ j be the set of all families

allowed to serve j. Then n+1 branches will be formed in the following way.

• For the first n branches 1, . . . ,n, say at the i-th branch where i ∈ {1, . . . ,n}, only family ϕi is

17

allowed to serve train j. To achieve this, in the RMP all paths indicating any family in Φ j \{ϕ}
serving j will be deleted; in the shortest path subproblem of type k not belonging to ϕi, node j

will be deleted from the shortest path network.

• For the last (n+1)-th branch, if Φ j \{ϕ1, . . . ,ϕn} 6= /0, then families ϕ1, . . . ,ϕn will be forbidden

to serve j, which can be realized by similar path/node deleting schemes as described above; if

Φ j \{ϕ1, . . . ,ϕn}= /0, then the (n+1)-th branch is no longer needed.

This branch design rule does not add any extra constraints to the RMP. Moreover, it can reduce the

number of columns in the RMP and the scales of the subproblem shortest path networks.

5.2.1.2 Banned location branching

The banned location branching rule aims at ensuring no coupling/decoupling operation takes place at

locations banned/restricted for coupling/decoupling. Let N−B (N+
B) be the set of train nodes where its

departure (arrival) station is banned for coupling/decoupling. Then for any j ∈N−B (N+
B), there should

be one and only one used incoming (outgoing) arc among δ−(j) (δ+(j)) in a valid solution.

Similar to train-family branching, banned location branching will check the LP relaxation solution

at a BB tree node and select a train j among N−B or N+
B that has multiple used block-arcs in δ−(j) or

δ+(j). Also due to the DAG’s nature, the checking order is set to follow the departure times of trains

with banned locations. Suppose train j has been identified with multiple flowed block-arcs a1, . . . ,an

(either incoming or outgoing but not both) and let A j = δ−(j) (when j ∈ N−B) or A j = δ+(j) (when

j ∈ N+
B). Then in principle n+1 branches can be formed such that

• For the first n branches 1, . . . ,n, say at the i-th branch where i∈ {1, . . . ,n}, among all arcs in A j,

only block-arc ai is allowed to be flowed. To achieve this, in the RMP all paths containing any

arcs in A j \{ai} will be deleted; in the shortest path subproblems for all types, arcs in A j \{ai}
will be deleted from the shortest path network.

• For the last (n+ 1)-th branch, if A j \ {a1, . . . ,an} 6= /0, then block-arcs a1, . . . ,an will be all

removed by similar path/node deleting schemes as above; if A j \ {a1, . . . ,an} = /0, then the

(n+1)-th branch is no longer needed.

Similar to train-family branching, banned location branching does not add any extra constraints

and can reduce the problem sizes both in the RMP and the subproblems. However unlike train-family

branching where often only a very small number of families are involved for each train, the number

of flowed arcs linked with a banned location train can be much larger and the number of unused

arcs corresponding to the last (n+1)-th branch can be huge. Therefore, heuristics may be needed in

practice that a parameter 0< ρB < 1 is set to only allow the arcs with a flow proportion greater or equal

to ρB to be considered in forming branches, i.e. only block-arcs a with
∑k∈K ∑p∈Pk

a
yp

∑k∈K ∑p∈Pk
j
yp

≥ ρB,a∈ δ−(j)

or a ∈ δ+(j), will be used.

5.2.1.3 Arc variable branching

Since the flow variables are required to be integers, the traditional “fractional-to-integral” branching

is needed, which will be processed based on individual type-arc variables xa = ∑p∈Pk
a

yp. Experience

suggests that branching on the “most fractional” arc whose decimal part is nearest to 0.5 often gives

the best performance for tested instances. When there is a tie, the arc associated with an earlier

departure time will be chosen, and if there is a second tie, the arc with the tightest connection time

18

will be chosen. In forming branches, we use the method given in Alvelos (2005), where a fractional

arc a ∈A k is branched by two explicit constraints as

∑
p∈Pk

a

yp ≤ ⌊xa⌋, ∑
p∈Pk

a

yp ≥ ⌈xa⌉. (33)

Constraints (33) will be used except the case of ⌊xa⌋ = 0, where arc a can be deleted by removing

the associated paths in the RMP and the associated arc in the subproblem. Constraints (33) are added

in the RMP. Let µ−a ≤ 0 and µ+
a ≥ 0 be the dual variables associated with the left and right part

of Constraints (33) respectively for arc a. Then the reduced cost for path p will be modified as

cp = c0
p−φk +∑ j∈Np

(
c j−∑ f∈Fj

H
j

f kψ f j

)
+∑a∈Ap

(ca−µ+
a −µ−a).

5.2.1.4 The order of the branching rules

Employing several branching rules, it is necessary to control their order (or priority) used during the

BB process. For instance, if train-family branching has a higher priority than arc variable branching,

when both of them can be used, the system will use the former. In this case there is an order that

“train-family branching ≻ arc variable branching”. If no branching object is available for the current

rule used, the next inferior rule will be used, and so on. When no objects are available for any rules,

the BB process is accomplished.

The order on branching rules can either be unchanged (static) or updated according to the current

status (dynamic). Suppose there are n branching rules r1, . . . ,rn. In either case, an initial list L0

representing an order among them at the beginning is set as

L0 = 〈rπ1
,rπ2

, . . . ,rπn
〉,where {π1, . . . ,πn}= {1,2, . . . ,n}, (34)

which states that rπ1
≻ rπ2

≻ ·· · ≻ rπn
.

(i) Static rule ordering The order is static if it is always the same as the initial list L0, which is

specified in Algorithm 1. In this algorithm, objectAvailable(r) is a boolean valued function to

check whether there are available objects for rule r in the LP relaxation solution.

Algorithm 1 Static branching rule order

Given:

a list of ordered branching rules L0 = 〈r1, . . . ,rn〉
an LP relaxation result at a BB tree node nBB

Result: the chosen branching rule r∗ stored in nBB for later use

Begin:

initialise r∗← null

for all r ∈ L0 do

if objectAvailable(r) = TRUE then

r∗ = r

break

end if

end for

if r∗ = null then

an operable solution found at nBB

end if

(ii) Dynamic rule ordering

The dynamic strategy requires the order list to be updated according to the current status. Once

updated, the new checking order will be locally passed down to descendants of the current node being

checked. The dynamic strategy is given in Algorithm 2.

19

Algorithm 2 Dynamic branching rule ordering

Given:

a list of ordered branching rules L j = 〈r1, . . . ,rn〉
an LP relaxation result at a BB tree node nBB

Result: the chosen branching rule r∗ stored in nBB for later use and perhaps an updated rule list

Begin:

initialise r∗← null

for all r ∈ L j do

if objectAvailable(r) = TRUE then

r∗ := r

if r∗ 6= head(L j) then

L j+1 = 〈r
∗,L0 \ 〈r

∗〉〉
end if

break

end if

end for

if r∗ = null then

an operable solution found at nBB

end if

5.2.2 Node selection method

Node selection in a branch-and-bound process refers to the decision making on how to select a next

node to solve from the active queue when the BB process needs to be continued. An adaptive node

selection method combining both best- and depth-first is used for the branch-and-price solver. The

goal is to achieve as many as possible “dives” towards operable solutions, while keeping the solution

qualities and avoiding being trapped at the middle-levels of the tree. It can be summarized as

(i) Do depth-first.

(ii) During depth-first, if a jump condition is triggered, the search will jump to an active node

with the best value. The active nodes before the selected best node in the active queue will

be repositioned to after the current tail in their original order.

(iii) After a jump, continue with depth-first.

5.2.2.1 Jump condition

The BB search starts with depth-first. The qualities of the early nodes yielded by depth-first are often

not satisfactory, as their objective values are not considered for node selection. Moreover, two cases

should be noted. First, although diving is expected, depth-first search may experience oscillations

trapped at the middle levels on the tree without any effective dive at all. Second, intuitively though,

when the current node yields an operable solution, the probability of finding other operable solutions

in its neighborhood is likely to be low. In the above two cases, a “jump” will be triggered such that

depth-first is stopped temporarily and the next node to be solved will be a best active node with the

smallest objective. To be specific, a jump will be triggered at a current node n if the below is TRUE:

[
(noJump(n)> G)

∧
notInDiving(n)

∧ dBB−d(n)

dBB

> εBB

]∨
oprSol(n). (35)

In (35), noJump(n) is a counter recording how many nodes have been searched at tree node n

since the last jump action. G is a “jump gap” that controls the possibly minimum distance in number

of traversed nodes between two jumps. When G = 0, the searching is similar to best-first (assuming

20

not in diving) and when G = ∞, it is close to depth-first. notInDiving(n) detects whether current

searching is “not in diving” (returning TRUE or FALSE). Two parameters are set in determining

the diving status: a backward check range R and a rising action limit L. To check whether depth-

first searching is in diving, R times of comparisons will be made among the recently searched nodes

starting from node n to node n−R, i.e. the R-th earlier searched node before n. For i= n . . .n−R, each

time notInDiving(n) compares the depths between the pair of consecutively searched nodes i and

i−1 and if node i has a depth strictly higher than its former node i−1, then a “rise” is identified. If

within R times of comparisons, more than L times of rises are detected, notInDiving(n) will return

TRUE. Note that if R > G, then R should be reset to G.

Figure 1 and 2 give an example of how notInDiving(n) determines the status at node n = 11.

The numbers marked inside the nodes indicate the order of how they are searched. Suppose from

node 1 to node 11 depth-first is in use, the current inoperable node n = 11 while in (35) the other

conditions in the first disjunction term except notInDiving(n) are already satisfied. Also assume

that R = 8,L = 2. As shown in Figure 1, there are two rises within the checking range, i.e. between

node 6 and 7, and between node 10 and 11. They are both caused by the fact that the children of node

4 and node 8 are both cut-off thus the diving cannot continue (see Figure 2). Therefore, at node 11,

a jump is triggered to relocate the search to node 12 which is currently the best node in the active

queue.

1

2

3 4

5 6

7

8

9 10

11

12

depth

Searched nodes

1

2

3

4

5

rise

rise

jump

R = 8
L = 2

current n = 11

Figure 1: Searched nodes and their depths for the notInDiving(n) example

The third term
dBB−d(n)

dBB
> εBB ensures jumps will not take place when n is within an εBB-percent

distance from the BB tree’s deepest places, where the possibility of finding operable solutions is

generally higher. d(n) and dBB are the depth of current node n and the entire BB tree respectively.

The last term oprSol(n) returns to TRUE if the current node yields an operable solution and

FALSE otherwise. It ensures a jump will immediately take place if an operable node has just been

found.

5.3 Other technical issues of the branch-and-price solver

5.3.1 Initial feasible solutions at root: primal heuristics and naive columns

A primal heuristic based on a greedy algorithm is used to construct an initial feasible solution to

trigger the column generation. The basic idea is to select the tightest connection arc (with respect to

21

1

122

7

11

jump triggered

8

10

cut-off

9

cut-off

4

6

cut-off

5

cut-off

3

cut-off

Figure 2: The BB tree for the notInDiving(n) example

turnround time) for connecting the next train at each train node. The resulting solutions are integer

flows satisfying passenger demands, coupling upper bounds and coupling/decoupling time allowance

while type-type compatibility and banned location restrictions are ignored. For some instances, it can

provide an initial feasible solution with an acceptable quality for subsequent stages. For example, for

one instance from Southern Railway with 102 trains to be served by train unit types 171/7 and 171/8,

the greedy method uses 15 units while the fleet size in the manual schedule is 13 units. Note that initial

feasible solutions generated by the primal heuristic often cannot provide a global upper bound at the

start point for branch-and-price since requirements on type-type compatibility and banned locations

are not included.

To keep the initial solution “LP-feasible” even if the number of used units exceeds bk
0 for some

type k, artificial variables β k ≥ 0 associated with each k for Constraints (17) are added with big-M

costs in the objective. To be specific, we have the following constraints

∑
p∈Pk

yp ≤ bk
0 +β k

, ∀k ∈ K (36)

to replace (17) and the term M ∑k∈K β k is added in the objective.

Finally when the primal heuristic cannot yield an “LP-feasible” solution, an alternative process

will be invoked. It simply constructs a set of ∑ j∈N |K j| paths each containing one and only one train

j ∈ N served by one type of unit. These paths are called “naive columns” and they can always give an

initial feasible solution as long as the problem is “LP-feasible”. Column management strategies are

also designed to remove some or all of such naive columns beyond the root. It is often observed that

naive columns yield no worse subsequent performance than the aforementioned greedy method.

5.3.2 Initial feasible solutions at leaves: column inheritance

The above primal heuristic is not used at leaf nodes, mainly because it cannot consider accumulated

branching requirements. Instead, a column inheritance strategy is used such that each new-born leaf

node inherits all or part of the columns directly from its parent as its initial columns to trigger the

subsequent column generation. This strategy avoids designing complicated heuristics taking consid-

eration of branching and also prevents inheritance of columns from other inappropriate nodes—e.g.

its parent’s siblings, where the branching is opposite. Another advantage in using inherited columns

is that subsequent column generation often becomes very easy to solve, usually requiring only a very

22

small number of column generation iterations, as shown by experiments. Moreover, it is observed

that the “tail-off” effect (Lübbecke and Desrosiers, 2002; Desrosiers and Lübbecke, 2005) is hardly

found at leaf nodes if column inheritance is used.

When the inherited columns fail in constructing an initial feasible solution, it does not necessarily

indicate the infeasibility of a current leaf node. When this happens, naive columns similar as those

described in § 5.3.1 will be generated to construct a feasible solution. If naive columns also fail, then

the node will be claimed infeasible.

5.3.3 Column generation early termination

There is an option in the branch-and-price solver to stop column generation early before it is fully

solved to optimality, as suggested by Barnhart et al. (1998). This is especially useful when column

generation is triggered by naive columns rather than inherited columns, as the tail-off effect is fre-

quently encountered when the former are used. At the end of each CG iteration, a pair of upper

and lower bounds UB,LB on the optimal objective of the master problem can be obtained from (27).

If their gap is smaller than a tolerance εCG, the LP can be regarded as sufficiently optimal and the

lower bound will become the node’s LP relaxation value. Options are available in whether the gap is

measured absolutely UB−LB≤ εCG, or relatively UB−LB
UB+1

≤ εCG.

An alternative way to achieve an early termination is to set a maximum number MCG on CG

iterations. This will be more advantageous if the column inheritance strategy is used, as often by

limiting the maximum number of CG iterations the early termination will only take place at the root

node while most of the leaf nodes can still be solved to optimality by a few CG iterations.

5.3.4 Estimated global upper bounds and node reservation

In order to speed up the BB process by temporarily ignoring tree nodes with high values, an artificial

estimated global upper bound UB0 is set up as UB0 = z∗(0)+∆z0, where z∗(0) is the root’s objective

value and ∆z0 is the initial increment value usually set based on experience. Let UB be the real global

upper bound either initialized as +∞ or given by operable solutions found in the BB search in later

stages.BB search is then carried out with an estimated global upper bound UB0 in conjunction with

UB. As long as UB0 < UB, the following rule will be used for a BB node n that is LP-feasible but

non-operable with an objective value z(n):

(i) If z(n)≤UB0, then put n into the current active queue;

(ii) If UB0 < z(n)<UB, then put n into the reservation queue;

(iii) If z(n)≥UB, then cut-off n by bound.

Note that nodes in the reservation queue will neither be part of the current active queue nor be aban-

doned as long as UB0 < UB. Moreover, an operable node n with UB0 < z(n) < UB will update the

real upper bound by UB := z(n).
If UB0 fails in finding optimal operable solutions, it implies a temporarily empty active queue

bounded by UB0. Then the estimated upper bound will be updated to UB1 = UB0(1+∆ 0), where

∆ 0 is a percentage increment value for the first update. Accordingly, the nodes in the reservation

queue having objective values between UB0 and UB1 will become the new active queue. If the

new active queue becomes empty, analogous process will take place for subsequent k = 1,2, . . . with

UBk+1 = UBk(1+∆ k),k = 1,2, . . . , where the parameter ∆ k can be set adaptively according to the

current status or as a constant ∆ k = ∆ ′,k = 1,2,

23

If an operable solution can be found within the active nodes bounded by a UBk (i.e. an operable

solution at n with z(n)≤UBk) for the first time, it implies that UBk ≥UB = z(n) and the reservation

queue will be cleared since the reserved nodes will never be used. The estimated upper bound is no

longer needed and the BB will continue only using the newest UB as its global upper bound.

The exactness of branch-and-bound is preserved under this scheme. The algorithmic description

of this scheme is given in Algorithm 3.

Algorithm 3 Estimated upper bound for BB

UB :=+∞, k := 0

noOperUBk := true // true if no operable solution found within UBk, false otherwise

UBk := z∗(0)+∆z0

while activeQueue 6= /0 do

if noOperUBk then

solve the next active node n from activeQueue

if n is LP-infeasible then

cut-off by infeasibility

else

if n is operable then

if z(n)≤UBk then

noOperUBk := false

else if UBk < z(n)<UB then

UB := z(n)
end if

else

if z(n)≤UBk then

activeQueue+= {n}
else if UBk < z(n)<UB then

reservationQueue+= {n}
else

cut-off by bound

end if

end if

end if

if activeQueue = /0 then

k := k+1

UBk =UBk−1(1+∆k−1)
activeQueue := {n : n ∈ reservationQueue and UBk−1 < z(n)≤UBk}

end if

else

conduct standard BB with current activeQueue and UB

end if

end while

6 Computational experiments

This section reports computational experiments for the TUSP using the customozed branch-and-price

solver. They are based on real-world instances from First ScotRail, the major passenger train operator

in Scotland when the research was conducted. The experiments were performed on a 64 bit Xpress-

MP suite (latest version 7.6) on a Dell workstation with 8G RAM and an Intel Xeon E31225 CPU.

The solver only utilized the simplex solver of Xpress-MP to solve LP relaxations during the column

generation processes without employing the default integer programming solver of Xpress-MP. Most

of the post-processing tasks were carried out on TRACS-RS 1.0.177.0.

24

Gourock

Wemyss Bay

Kilwinning

Largs

Ary

Troon Mount Florida

Neilston

Balloch

Hyndland
Patrick

Milngavie

Queen’s Street

Larkhall

Springburn

Drumgelloch

Cumbernauld

Larbert

Inverkeithing

Glasgow Central
Bathgate

North Berwick

Whifflet

Stranraer

Shotts

To Carlisle

Newton

Motherwell
To

Newcastle

Dalmuir

To

Dumfries,

Carlisle

Edinburgh
Waverley

Croy

Paisley Gilmour St

Lanark

Carstairs

Dunbar

East Kilbride

Ardrossan Harbour

Kilmarnock

Paisley Canal

Helensburgh Central

Newcraighall

Figure 3: The GA (red) and GB (blue) areas of the ScotRail network

6.1 First ScotRail dataset

6.1.1 Routes and services of ScotRail

First ScotRail has a daily timetable of around 2250 trains. The more than two thousand services have

been traditionally divided into three relatively independent areas by the manual schedulers, namely

the GA, GB and GC areas. GA and GB are associated with those frequent commuter trains mainly

in the busiest central belt part of Scotland connecting Edinburgh and Glasgow, while GC includes all

other trains in Scotland not in GA/GB. Figure 3 gives an illustrative network map of the central belt.

The GA and GB areas were tested in this research.

GA Area. As suggested by the practitioners from ScotRail, only the GA routes served by electric

units (known as “GA Electrics”) were involved in the experiments. This excludes the trains served by

the diesel units of A1 and B1 which are relatively independent. In the May 2014 timetable, there are

703 timetabled trains in GA Electrics. The manual solution uses 14 units of C1, 20 units of F1 and 15

units of F2 to cover the 703 trains. F1 and F2 are coupling-compatible while C1 can only be coupled

with its own type. Note that the services in GA Electrics generally have very dense patterns since on

average one unit covers about 14.3 trains per day in the manual schedules.

GB Area. In the May 2014 timetable, there are 510 timetabled services in the GB area, to be served by

19 units of D1, 20 units of D2 and 36 units of E1 in the proposed manual schedules. D1 and D2 can

be coupled with each other while E1 defines a unit family on its own. The services in GB have much

less dense patterns compared with GA, since on average each unit only serves 6.8 trains according to

the manual schedules.

6.1.2 Tested instances

There were four problem instances tested in the computational experiments, as shown in Table 3.

“Train#” gives the number of trains in the instance. “Multi-family train#” gives the number of trains

that have more than one family of unit available to serve. N±B # gives the number of banned location

nodes, i.e. |N−B |+ |N
+
B |. Block-arc# and Type-arc# are the number of block-arcs and type-arcs in

25

Table 3: Instances from ScotRail tested in the numerical experiments
Instance GB-entire GB-334R GA-314 GA-380

Timetable Dec 2011 May 2014 May 2014 May 2014

Unit types D1, D2, E1 E1 C1 F1, F2

Location # 21 15 7 16

Train# 483 184 278 427

Multi-family train# 352 – – –

N±B # 366 160 218 142

Block-arc# 10641 3252 3483 5242

Type-arc# 17779 3253 3483 10457

Demand input manual PAX PAX PAX

the DAG. For the Demand input, “manual” means the demands were set as the manually scheduled,

and “PAX” means they were set as the surveyed actual passenger number counts. For the May 2014

timetable, the PAX data were collected from the December 2013 survey.

GB-entire includes the entire GB services in the December 2011 timetable with all the three

permitted types D1, D2 and E1. GB-334R is an instance of rerunning the GB services based on the

May 2014 new timetable; it contains the 184 trains that were served by E1 in the May 2014 manual

schedules. GA-314 and GA-380 are decomposed instances for the GA area based on families. This

decomposition according to unit families was suggested by practitioners from ScotRail.

6.2 Experiment results

Two groups of experiments are reported. The first group is based on GB-entire from the December

2011 timetable with the passenger demands set as the manually scheduled unit capacities. The second

group was formed by three experiments based on GB-334R, GA-314 and GA-380 respectively from

the May 2014 timetable with the passenger demands set as the actual passenger counts (PAX).

The parameter settings remain unchanged for all the experiments are described here unless oth-

erwise stated. The minimum and maximum connection time durations were set to be 5 min and 720

min respectively. The objective weights on number of units, adjusted arc costs and empty-running

costs were set to be 1, 0.001 and 0.1. Only the existing empty-running movements in the manual

schedules were allowed. This is mainly required by ScotRail as creating new empty-running trains

may give potential problems such as track path conflict with trains from other train operators. It was

set that MCG = 890,ρB = 0.01,∆z0 = 0.1,∆ ′ = 0.1. The “jump triggering” parameters were set as

G = 3,R = 10,L = 1 and εBB = 0.02. For CG early termination, only the maximum number of CG

iterations (MCG) was used. A maximum total number of 5000 BB tree nodes and 24 hours of running

time were set. The branch-and-price was set to terminate as soon as the gap between the BB tree’s

global lower bound and global upper bound is less than 0.5. This ensures no operable solution with a

smaller fleet size exists and the objective value cannot be improved by a decrease of 0.5. This toler-

ance is proved to be sufficient and appropriate for the current instances of ScotRail. Other non-general

parameter settings will be specified on individual cases.

6.2.1 Scheduling GB-entire

Two subgroups of experiments were conducted on GB-entire. The first one (GB-entire-A) compares

different branching strategies due to the multi-rule system while the second one (GB-entire-B) com-

pares the “customized” setting with other settings in the solver.

For branching variable selection, the chosen object will be selected as described in § 5.2.1. Table 4

gives the results on GB-entire-A, including the manually produced schedule for comparison at the top.

26

The numbers of units used (unit#), operable objective values (oper-obj), numbers of empty-running

movements (ECS#), percentages of the three branching rules (rule% (T/B/A), i.e. train-family, banned

location and arc variable respectively), numbers of nodes in the BB tree (BB #) and computational

time in seconds (time) are listed. It can be observed that the initial priority setting for the three rules

can be crucial. The best strategy is to give arc variable branching the lowest priority (as shown in 1–4,

all solved to optimality in relatively short time), and the worst is to give it the highest priority (shown

in 9–12, all failed). Letting arc variable branching be ranked in the middle (5–8) is not a good option

as two of them failed and the other two spent much longer time than 1–4. Figure 4 shows the relation

between CG iteration numbers and the corresponding time consumption per CG iterations at each

BB tree node for Instance 1 in GB-entire-A. The other instance that did not fail demonstrated similar

patterns. Due to the use of column inheritance, both the iteration number and the time consumption

at the leaf nodes are much smaller compared with the root, avoiding the tail-off effect.

Table 4: GB-entire-A: different multi-rule strategies
instance priority switch strategy unit# oper-obj a ECS# rule%(T/B/A) BB# time

manual – – 72 73.921 12 – – –

1 T≻B≻A dynamic 72 73.537 8 42/26/32 198 2558

2 T≻B≻A static 72 73.537 8 46/25/29 189 2001

3 B≻T≻A dynamic 72 73.543 8 32/34/35 173 1952

4 B≻T≻A static 72 73.543 8 36/37/27 163 2019

5 T≻A≻B dynamic fail – – 44/6/50 2842 86400

6 T≻A≻B static fail – – 42/4/54 2469 86400

7 B≻A≻T dynamic 72 73.5365 8 18/18/64 2602 72286

8 B≻A≻T static 72 73.535 8 5/20/75 1344 47600

9 A≻B≻T dynamic fail – – 4/18/78 2799 86400

10 A≻B≻T static fail – – 0/8/92 1929 86400

11 A≻T≻B dynamic fail – – 30/0/70 2262 86400

12 A≻T≻B static fail – – 6/1/93 2030 86400

a For all runs by the solver, BB tree root objective value = 73.5262, BB tree root lower bound = 73.4386.

Table 5: GB-entire-B: Comparison with other settings
settings unit# root-obj root-LB oper-obj ECS# oper sol# rule%(T/B/A) BB# time

GB-entire-A:1 72 73.5262 73.4386 73.543 8 1 32/34/35 173 1952

random T&B 102 73.5262 73.4386 103.161 9 3 28/61/11 2836 86400

w/o eUB & resv 74 73.5262 73.4386 75.5345 8 6 33/40/26 2096 86400

w/o convhull failed 72.1782 72.1106 – – 0 0/100/0 2960 86400

Table 5 gives the results on Experiment GB-entire-B. The top row shows Instance 1 from GB-

entire-A as in Table 4 where: (i) Chosen branching objects in train-family branching and banned loca-

tion branching are selected based on trains’ departure times in the DAG, (ii) Estimated upper bounds

with node reservation are used in the BB tree, and (iii) The train convex hull constraints (18) are used.

Four other instances were tested where the first one (“random T&B”) chooses branching objects in

train-family and banned location branching in a random way, the second one (“w/o eUB & resv”)

does not use estimated upper bounds and node reservation and the third one (“w/o convhull”) solves

the instance without the local convex hull constraints but directly by ∑k∈K j
∑p∈Pk

j
qkyp ≥ r j,∀ j ∈ N

and ∑k∈K j
∑p∈Pk

j
yp ≤ u j,∀ j ∈ N. This was possible as for all the routes and unit types in GB, the

maximum number of coupled units is a constant of u j = 2 (see Tables 1 and 2). All other settings

were kept the same for the four runs. “Oper sol#” gives the number of operable solutions found in the

BB trees. It can be observed that selecting branching objects according to trains’ departure times and

the use of estimated upper bounds can be important for efficiently finding optimal solutions, as the

27

BB nodes
0 20 40 60 80 100 120 140 160 180 200

C
G

 it
er

at
io

n
nu

m
be

r

0

500

1000

T
im

e
(s

ec
)

0

100

200

Iteration number
time

Figure 4: CG iteration numbers against CG time per tree node for experiment GB-entire-A

absence of them can lead to poor performances in the tested instances. Without the train convex hull

constraints, the solver failed in finding an operable solution within 24 hours and the branching rule

never went beyond banned location branching. The LP-relaxation values at the root were also weak

compared with the runs using train convex hull constraints.

6.2.2 Experiments on May 2014 timetable with actual passenger demands

This group of three experiments (GB-334R-1a, GA-314-1a, GA-380-1a) was based on GA and GB in

the May 2014 timetable with demands extracted from actual passenger counts in December 2013. It

gave the solver an opportunity to provide better solutions than the manual ones. As aforementioned,

the timetabled trains had been decomposed with respect to the type-compatibility relations according

to the manual schedulers’ wish such that no train-family branching was needed. In GB-334R-1a, the

minimum and maximum connection time durations were set to 5 min and 720 min for most locations,

while in GA-314 and GA-380 the maximum connection time was changed to be 120 min due to

the routes’ denser patterns. The primal heuristic discussed in § 5.3.1 was enabled to trigger column

generation in experiments on GA.

6.2.2.1 GB-334R-1a

Table 6 gives the results on GB-334R-1a against the manual solution. The solver saves 3 units com-

pared with the manual and after post-processing the solver’s fleet number is still kept to be 33. Since

the actual passenger numbers PAX# were available for this new round of experiments, three more

criteria comparing the unit capacity provided by the manual schedule and the solver with the actual

28

Table 6: Result on experiment GB-334R-1a
unit# oper-obj root-obj root-LB fita OPa UPa ECS# rule%(B/A) BB# time

manual 36 – – – 111 68 4 3 – – –

solver 33 33.2455 33.232 33.232 166 17 1b 0 92/8 213 107

a There was one train whose December 2013 passenger count survey data was unknown.
b There was one train whose PAX#> 2× qE1 (unit capacity of E1) thus can never be satisfied. The trains’

demand was set as in the manual schedules.

Table 7: Result on experiment GA-314-1a
unit# oper-obj root-obj root-LB fita OPa UPa ECS# rule%(B/A) BB# time

manual 14 – – – 248 9 12b 2 – – –

solver 14 14.406 14.4041 14.3535 253 7 9b 1 5/95 427 5591

a There were 9 trains whose December 2013 passenger count survey data was unknown. They were mainly

newly added trains in the May 2014 timetable.
b There were 12 under-provided trains in the manual solution which were all peak hour ones and whose PAX#

were more than one unit’s capacity but still less than two. Nevertheless, if to let the solver to satisfy all of them,

then the number of used units will exceed the fleet size bound. A compromise had been made to let the solver

to only satisfy 3 of the 12 trains while there were still 9 under-provided trains.

passenger numbers are added as “fit”, “OP” and “UP”. “Fit” gives the number of trains whose unit

capacity provided can satisfy the passenger demand and for a train if the unit number is decreased by

one, the new provision will fail to satisfy the demand. “OP” gives the number of trains whose unit

capacity are over-provided such that for a train if one decreases the unit number by one unit, the pas-

senger demand can still be satisfied. “UP” gives the number of under-provided trains. From Table 6,

it can be seen that although three units are saved by the solver, it still gives better capacity provi-

sion than the manual schedule with more fitted trains (111:166), less over-provided trains (68:17)

and less under-provided trains (4:1). Moreover, although the manual schedule has 3 empty-running

movements, the solver uses none of them. The better capacity provision and the fact that no ECS

movement was used from the network-level ILP solver have been retained after post-processing. The

practitioners from ScotRail were satisfied with experiment GB-334R-1a due to its higher qualities in

many aspects compared with the manual one.

6.2.2.2 GA-314-1a

Table 7 gives the result on experiment GA-314-1a. The solver uses the same number of units as

the manual schedules satisfying 3 additional trains whose demand requirement was not met by the

manual solution. The solver also uses one less empty-running movement. The computational time

of 7766 seconds is relatively long considering the BB tree of 419 nodes. Note that 94 % of the tree

nodes used arc variable branching, which can often make the RMP harder to solve compared with

banned location branching since the former accumulatively adds Constraints (40) to the RMP as the

branching proceeds while the latter, on the contrary, only deletes columns in the RMP and arcs in the

subproblem network. This was rather different from the instances in the GB area.

6.2.2.3 GA-380-1a

Table 8 gives the result on experiment GA-380-1a. Since GA-380 is an instance with two types, it is

tricky to give a rigorous definition on “over-provision” and “fit” (e.g. when “2×F1” is sufficient for

a train, would it be appropriate or not to regard “F1+F2” or “2×F2” as over-provided for the train).

Therefore only the numbers of under-provided trains are given in Table 8.

29

Table 8: Result on experiment GA-380-1a
unit# oper-obj root-obj root-LB UPa ECS# rule%(B/A) BB# time

manual 35 – – – 14b 3 – – –

solver 35 35.78 35.775 35.775 6b 1 1/99 642 14215

a There were 17 trains whose December 2013 passenger count survey data was unknown.
b There were 14 under-provided trains in the manual solution whose PAX# were theoretically pos-

sible to be satisfied. Nevertheless, if to let the solver to satisfy all of them, then the number of

used units will exceed the fleet size bound. A compromise had been made to let the solver to only

satisfy 8 of the 14 trains while there were still 6 under-provided trains.

The behavior of the solver in GA-380-1a was very similar as in GA-314-1a. The arc variable

branching was dominant throughout the processes, giving increase in computational time. Similar as

in GA-314-1a, attempting to satisfy the 14 under-provided trains in the manual solutions would lead

to infeasible solutions violating the fleet size limit. Therefore compromise had to be made to only

satisfy 8 out of the 14 trains in the solver without violating the overall fleet size limit. The solver only

used 1 empty-running train from the 3 existing ones.

7 Conclusions

We have proposed a branch-and-price solver for the network-level model of the TUSP. To the best of

the author’s knowledge, the studies on the TUSP have been very scarce in the literature. There are

researches on the related train unit circulation problem (Schrijver, 1993; Alfieri et al., 2006; Peeters

and Kroon, 2008) which however have different requirements and problem settings from the TUSP.

The train unit assignment problem (Cacchiani et al., 2010b, 2013b) are similar as the network-level

TUSP, but some operational requirements in the UK railway industry are not considered and their

solution approaches are mainly LP-based heuristics.

A customized branch-and-price solver is presented for solving the network-level model exactly.

Its originality includes: (i) A branching system with multiple branching rules; (ii) An adaptive node

selection method combining best-first and depth-first. (iii) Column inheritance in the BB tree. (iv) Es-

timated upper bounds and node reservation, and (v) the use of convex hulls for satisfying combination-

specific coupling upper bound requirements.

Experiments were carried out based on real-world instances on the GA and GB areas of the First

ScotRail network. The solutions often outperform the manual schedules in many aspects. It is found

from the experiments that the initial priority order among the multiple rules can be crucial for effi-

ciently getting high quality solutions. Moreover, the customized settings such as selecting branching

objects according to trains’ departure times in train-family and banned location branching, the use

of estimated upper bounds with node reservation and local convex hulls are also shown to be advan-

tageous in the tested instances. Post-processing using TRACS-RS to resolve the station-level issues

like unit blockage and excessive/redundant coupling/decoupling is also shown to be successful for

the instances tested. The largest instance solved by the branch-and-price solver (GB-entire) contains

483 trains.

Acknowledgments. This research is supported by an Engineering and Physical Sciences Council

(EPSRC) project EP/M007243/1. We would like to also thank First ScotRail and Southern Railway

for their kind and helpful collaboration.

Data Statement First ScotRail and Southern Railway have provided relevant data for the research,

30

part of which is commercially sensitive. Where possible, the data that can be made publicly available

is deposited in http://archive.researchdata.leeds.ac.uk/.

References

Adenso-Díaz, B., González, M. O., and González-Torre, P. On-line timetable re-scheduling in re-

gional train services. Transportation Research Part B: Methodological, 33(6):387 – 398, 1999.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network flows: theory, algorithms and applications.

Prentice Hall, Englewoods Cliffs, USA, 1993.

Alfieri, A., Groot, R., Kroon, L. G., and Schrijver, A. Efficient circulation of railway rolling stock.

Transportation Science, 40(3):378–391, 2006.

Alvelos, F. Branch-and-Price and Multicommodity Flows. PhD thesis, Escola de Engenharia, Uni-

versidade do Minho, Portugal, 2005.

Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM

Transactions on Mathematical Software, 22(4):469–483, 1996.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H. Branch-and-

price: Column generation for solving huge integer programs. Operations Research, 46:316–329,

1998.

Barrena, E., Canca, D., Coelho, L. C., and Laporte, G. Single-line rail rapid transit timetabling under

dynamic passenger demand. Transportation Research Part B: Methodological, 70:134–150, 2014.

Burdett, R. and Kozan, E. Techniques for inserting additional trains into existing timetables. Trans-

portation Research Part B: Methodological, 43(8–9):821 – 836, 2009.

Cacchiani, V. Models and Algorithms for Combinatorial Optimization Problems arising in Railway

Applications. PhD thesis, University of Bologna, Italy, 2007.

Cacchiani, V. Models and algorithms for combinatorial optimization problems arising in railway

applications. 4OR, A Quarterly Journal of Operations Research, 7(1):109–112, 2009.

Cacchiani, V., Caprara, A., and Toth, P. Scheduling extra freight trains on railway networks. Trans-

portation Research Part B: Methodological, 44(2):215 – 231, 2010a.

Cacchiani, V., Caprara, A., and Toth, P. Solving a real-world train-unit assignment problem. Mathe-

matical Programming Series B, 124(1–2):207–231, 2010b.

Cacchiani, V., Caprara, A., and Toth, P. Models and algorithms for the train unit assignment problem.

In Combinatorial Optimization, volume 7422 of Lecture Notes in Computer Science, pages 24–35.

Springer Berlin Heidelberg, 2012a.

Cacchiani, V., Caprara, A., and Toth, P. A Fast Heuristic Algorithm for the Train Unit Assignment

Problem. In Delling, D. and Liberti, L., editors, 12th Workshop on Algorithmic Approaches for

Transportation Modelling, Optimization, and Systems, volume 25 of OpenAccess Series in Infor-

matics (OASIcs), pages 1–9, Dagstuhl, Germany, 2012b. Schloss Dagstuhl–Leibniz-Zentrum für

Informatik.

31

Cacchiani, V., Caprara, A., Maróti, G., and Toth, P. On integer polytopes with few nonzero vertices.

Operations Research Letters, 41(1):74–77, 2013a.

Cacchiani, V., Caprara, A., and Toth, P. A Lagrangian heuristic for a train-unit assignment problem.

Discrete Applied Mathematics, 161(12):1707–1718, 2013b.

Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., and Wagenaar, J. An

overview of recovery models and algorithms for real-time railway rescheduling. Transportation

Research Part B: Methodological, 63:15 – 37, 2014.

Caprara, A., Kroon, L., Monaci, M., Peeters, M., and Toth, P. Passenger railway optimization. In

Barnhart, C. and Laporte, G., editors, Handbooks in Operations Research and Management Sci-

ence, volume 14, chapter 3, pages 129–187. Elsevier, 2007.

Caprara, A., Kroon, L., and Toth, P. Optimization problems in passenger railway systems. In Wi-

ley Encyclopedia of Operations Research and Management Science, volume 6, pages 3896–3905.

Wiley, 2011.

Caprara, A., Fischetti, M., Guida, P. L., Toth, P., and Vigo, D. Computer-Aided Transit Schedul-

ing: Proceedings, Cambridge, MA, USA, August 1997, chapter Solution of Large-Scale Railway

Crew Planning Problems: the Italian Experience, pages 1–18. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1999.

Carey, M. and Crawford, I. Scheduling trains on a network of busy complex stations. Transportation

Research Part B: Methodological, 41(2):159 – 178, 2007.

Chen, J. Confluent Flows. PhD thesis, College of Computer and Information Science, Northeastern

University, 2005.

Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., and Schrijver, A. Combinatorial Optimization.

Wiley, New York, 1998.

Cordeau, J.-F., Soumis, F., and Desrosiers, J. A benders decomposition approach for the locomotive

and car assignment problem. Transportation Science, 34(2):133–149, 2000.

Cordeau, J.-F., Desaulniers, G., Lingaya, N., Soumis, F., and Desrosiers, J. Simultaneous locomotive

and car assignment at via rail canada. Transportation Research Part B: Methodological, 35(8):

767–787, 2001a.

Cordeau, J.-F., Soumis, F., and Desrosiers, J. Simultaneous assignment of locomotives and cars to

passenger trains. Operations Research, 49(4):531–548, 2001b.

Dantzig, G. B. and Wolfe, P. Decomposition principle for linear programs. Operations Research, 8

(1):101–111, 1960.

Desrosiers, J. and Lübbecke, M. E. A primer in column generation. In Desaulniers, G., Desrosiers,

J., and Solomon, M. M., editors, Column Generation, pages 1–32. Springer US, New York, USA,

2005.

Fioole, P.-J., Kroon, L., Maróti, G., and Schrijver, A. A rolling stock circulation model for combining

and splitting of passenger trains. European Journal of Operational Research, 174(2):1281–1297,

2006.

32

Gallo, G. and Sodini, C. Extreme points and adjacency relationship in the flow polytope. CALCOLO,

15(3):277–288, 1978.

Higgins, A., Kozan, E., and Ferreira, L. Optimal scheduling of trains on a single line track. Trans-

portation Research Part B: Methodological, 30(2):147 – 161, 1996.

Huisman, D. A column generation approach for the rail crew re-scheduling problem. European

Journal of Operational Research, 180(1):163 – 173, 2007.

Huisman, D., Kroon, L. G., Lentink, R. M., and Vromans, M. J. C. M. Operations research in

passenger railway transportation. Statistica Neerlandica, 59(4):467–497, 2005.

Jiang, Z., Tan, Y., and Yalcinkaya, O. Scheduling additional train unit services on rail transit lines.

Mathematical Problems in Engineering, vol. 2014, 2014.

Kang, L., Wu, J., Sun, H., Zhu, X., and Wang, B. A practical model for last train rescheduling with

train delay in urban railway transit networks. Omega, 50:29 – 42, 2015.

Kroon, L. and Fischetti, M. Computer-Aided Scheduling of Public Transport, chapter Crew Schedul-

ing for Netherlands Railways “Destination: Customer”, pages 181–201. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2001.

Kroon, L. G., Lentink, R. M., and Schrijver, A. Shunting of passenger train units: An integrated

approach. Transportation Science, 42(4):436–449, 2008.

Kroon, L. G., Maróti, G., and Nielsen, L. Rescheduling of railway rolling stock with dynamic pas-

senger flows. Transportation Science, 49(2):165–184, 2015.

Kwan, R. S. K. Case studies of successful train crew scheduling optimisation. Journal of Scheduling,

14(5):423–434, 2010.

Lin, Z. and Kwan, R. S. K. Multicommodity flow problems with commodity compatibility relations.

Applied Mathematical Programming and Modelling (APMOD 2016), Brno, June 8–10, 2016.,

2016a.

Lin, Z. and Kwan, R. S. K. A two-phase approach for real-world train unit scheduling. Public

Transport, 6(1):35–65, 2014.

Lin, Z. and Kwan, R. S. K. Local convex hulls for a special class of integer multicommodity flow

problems. Computational Optimization and Applications, 64(3):881–919, 2016b.

Lin, Z., Barrena, E., and Kwan, R. S. K. Train unit scheduling guided by historic capacity provisions

and passenger count surveys. Public Transport, pages 1–18, 2016. doi: 10.1007/s12469-016-0138-

7.

Lingaya, N., Cordeau, J.-F., Desaulniers, G., Desrosiers, J., and Soumis, F. Operational car assign-

ment at VIA rail canada. Transportation Research Part B: Methodological, 36(9):755 – 778, 2002.

Lu, C., Zhou, L., Yue, Y., and Chen, R. A branch and bound algorithm for the exact solution of the

problem of EMU circulation scheduling in railway network. Mathematical Problems in Engineer-

ing, vol. 2016, 2016.

Lübbecke, M. E. and Desrosiers, J. Selected topics in column generation. Operations Research, 53:

1007–1023, 2002.

33

Maróti, G. Operations Research Models for Railway Rolling Stock Planning. PhD thesis, Eindhoven

University of Technology, the Netherlands, 2006.

Meng, L. and Zhou, X. Robust single-track train dispatching model under a dynamic and stochastic

environment: A scenario-based rolling horizon solution approach. Transportation Research Part

B: Methodological, 45(7):1080 – 1102, 2011.

Mu, S. and Dessouky, M. Scheduling freight trains traveling on complex networks. Transportation

Research Part B: Methodological, 45(7):1103 – 1123, 2011.

Peeters, M. and Kroon, L. G. Circulation of railway rolling stock: a branch-and-price approach.

Computers & OR, 35(2):538–556, 2008.

Schrijver, A. Minimum circulation of railway stock. CWI Quarterly, 6:205–217, 1993.

Shen, Y., Peng, K., Chen, K., and Li, J. Evolutionary crew scheduling with adaptive chromosomes.

Transportation Research Part B: Methodological, 56:174 – 185, 2013.

Tornquist, J. and Persson, J. A. N-tracked railway traffic re-scheduling during disturbances. Trans-

portation Research Part B: Methodological, 41(3):342 – 362, 2007.

Tracsis plc. TRACS-RS: rolling stock planning software, 2016. URL

http://www.tracsis.com/software/tracs-rs.

Vohra, R. Mechanism Design: A Linear Programming Approach. Cambridge University Press, 2011.

Wolfenden, K. and Wren, A. Locomotive scheduling by computer. In Proc. British Joint Computer

Conference, volume 1, pages 31–37, London, UK, 1966. IEE Conference Publication No. 19.

Wolsey, L. A. Integer programming. Wiley, 1998.

Wren, A. Scheduling vehicles and their drivers—forty years’ experience. Technical Report 2004.03,

School of Computing, University of Leeds, April 2004.

Zhan, S., Kroon, L. G., Veelenturf, L. P., and Wagenaar, J. C. Real-time high-speed train rescheduling

in case of a complete blockage. Transportation Research Part B: Methodological, 78:182 – 201,

2015.

Zhou, X. and Zhong, M. Single-track train timetabling with guaranteed optimality: Branch-and-

bound algorithms with enhanced lower bounds. Transportation Research Part B: Methodological,

41(3):320 – 341, 2007.

Ziarati, K., Soumis, F., Desrosiers, J., and Solomon, M. M. A branch-first, cut-second approach for

locomotive assignment. Management Science, 45:1156–1168, 1999.

Appendices

A Proof on the equivalence between (PF) and (PF ′)

Proof. Let δ
p
a = 1 if path p contains arc a and δ

p
a = 0 otherwise. For (PF), a cost for each path p

can be defined as ckT x̂p = ∑a∈A k caδ
p
a = ∑a∈Ap

ca = cp. Then we can write Constraints (13) in their

34

component-wise form as ∑k∈K j,p∈Pk(Hkx̂p) f jyp ≤ h
j
f , ∀ f ∈ Fj,∀ j ∈ N. Consider ∑k∈K j

(Hkxk) f j ≤

h
j
f , the (f , j)-th entry of Constraint (10), and compare it with (4). We have

(Hkxk) f j = ∑
a∈δ k

−(j)

H
j

f kxa.

Thus

(Hkx̂p) f j =
1

bk
0

(Hkxp) f j

=
1

bk
0

∑
a∈δ k

−(j)

H
j

f kxp
a

= ∑
a∈δ k

−(j)

H
j

f kδ p
a .

Let Pk
j be the set of paths passing via node j in type-graph G k, and let A k

p be the set of arcs in path p

in type-graph G k. Constraints (13) can be rewritten with the original coefficients in (AF) as,

∑
k∈K j,p∈Pk

(Hkx̂p) f jyp = ∑
k∈K j,p∈Pk

∑
a∈δ k

−(j)

H
j

f kδ p
a yp

= ∑
k∈K j,p∈Pk

(
∑

a∈δ k
−(j)\A k

p

H
j

f k ·0+ ∑
a∈δ k

−(j)∩A k
p

H
j

f k ·1

)
yp

= ∑
k∈K j,p∈Pk

j

H
j

f kyp ≤ h
j
f ,

which shows the equivalence between (PF) and (PF ′).

35

