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Abstract. The Unifying Theories of Programming (UTP) is a mathe-
matical framework to define, examine and link program semantics for a
large variety of computational paradigms. Several mechanisations of the
UTP in HOL theorem provers have been developed. All of them, how-
ever, succumb to a trade off in how they encode the value model of UTP
theories. A deep and unified value model via a universal (data)type in-
curs restrictions on permissible value types and adds complexity; a value
model directly instantiating HOL types for UTP values retains simplicity,
but sacrifices expressiveness, since we lose the ability to compositionally
reason about alphabets and theories. We here propose an alternative
solution that axiomatises the value model and retains the advantages
of both approaches. We carefully craft a definitional mechanism in the
Isabelle/HOL prover that guarantees soundness.

1 Introduction

Much work has already been done in developing semantic models of partic-
ular programming languages and modelling notations. The Unifying Theories
of Programming (UTP) [10] put forward an agenda of relating and combin-
ing such models in order to facilitate the development of sound foundations for
highly-integrated languages that incorporate multiple paradigms, such as con-
currency [16], object orientation [20], and time [21], to name a few only.

The importance of the UTP is to justify verification techniques that involve a
heterogeneous set of notations, methods and tools. This is becoming an integral
part of certification standards such as DO-178C in avionics [19], and motivated
work in mechanising the UTP in theorem provers. Machine-checked proofs about
the formalism(s) in use may thus become part of the certification evidence, in
addition to verification proofs of actual systems and software components.

Several mechanisations of the UTP are currently available [17,25,6,3,7]. The
majority of them uses HOL-based provers, namely ProofPower-Z [17,25] and
Isabelle/HOL [6,7]. Only [3] develops a proof system and tool from scratch. The
use of Isabelle/HOL in the aforementioned works is motivated by the high level
of adaptability and automation afforded by this prover. This is, for instance, due
to its ability to interface with external tools such as powerful SMT solvers [1].

Although Isabelle/HOL appears to be an attractive choice for a proof tool,
its type system forces us into a compromise when encoding the binding and



predicate model of UTP theories. UTP theories are, in essence, characterised by
subsets of predicates over some alphabet of variables. Predicates are typically
encoded by sets of bindings, namely those that render the predicate true. Bind-
ings associate alphabet variables with values. A fundamental part of any UTP
reasoning framework is hence the representation of bindings and values.

Where the existing works on UTP mechanisation most notably differ is in how
they encode the binding and value model of UTP theories. We here distinguish
a deep and a shallow approach. In a deep approach as adopted by [14,17,25], a
monomorphic value type with a fixed representation is introduced, typically as a
datatype. This leads to a monomorphic binding model, and thereby, a monomor-
phic predicate model. It permits a high level of expressiveness by allowing us to
define operators that inspect and modify the alphabets of predicates. A downside
is that the value model must be a priori fixed and therefore cannot be extended.
Moreover, certain constructions, such as arbitrary sets and functions, are difficult
to support as they are not permissible in recursive datatype definitions.

In a shallow approach, as adopted by [5,6], the binding type is kept abstract
by using a HOL type variable in place of it. This leads to a polymorphic (type-
parametric) binding and predicate model. Therein, variables can only have an
abstract representation, and we cannot prove properties about them until the
binding model is (at least partially) instantiated — typically, using extensible
record types to retain a degree of modularity. Doing so, however, forfeits the
ability to compositionally reason about predicate alphabets. A crucial advantage
of the shallow model is that UTP values can be drawn from any HOL type, and
reasoning is much simplified since we are able to directly employ HOL theorems
and tactics; the shallow model is moreover naturally extensible.

We here present an alternative and novel approach that uses an axiomatic
value model. It combines the advantages of the deep and shallow approach, with
no added complexity for the user. Our contribution here is not only relevant to
mechanised proof support for the UTP, but indeed any kind of semantic language
embedding in HOL. The choice of Isabelle/HOL is a pragmatic one: we benefit
from an adaptable and open architecture, as well as powerful external proof tools
that we can readily interface with. While dependently-typed logics and provers
may tackle the issue we address in other ways, we nonetheless believe there is
important scientific benefit in solving it in the context of HOL, too.

Our terminology of a deep and shallow approach ought not be confused with
the terminology of a deep or shallow embedding. Whereas an embedding is
classified as deep if it encodes the syntax of the embedded language, this paper
is only concerned with the nature of semantic models. We remark that at the
core, the UTP can in fact be viewed as a shallow embedding of program logic.

The structure of the paper is as follows. In Section 2, we review the UTP and
Isabelle/HOL. Section 3 surveys the existing UTP mechanisations, comparing
their encoding approaches for values and bindings in detail. Section 4 introduces
our axiomatic value model in mathematical terms, and Section 5 describes its
sound implementation in Isabelle/HOL. Lastly, in Section 6 we give an example
of its use, and conclude and discuss future work in Section 7.



2 Preliminaries

In this section, we discuss preliminary material: the UTP in Section 2.1, and
Isabelle/HOL in Section 2.2.

2.1 Unifying Theories of Programming

The Unifying Theories of Programming (UTP) [10] is a mathematical framework
for describing and unifying the formal semantics of programming and modelling
languages within the same descriptive environment of the alphabetised relational
calculus. A UTP theory consists of an alphabet of variable names, a signature
of language constructs, and a set of constraints (called healthiness conditions).
Relations are encoded by alphabetised predicates: that is, predicates that contain
additional information about the relation’s alphabet.

Alphabets identify observational variables whose values are relevant to char-
acterise system behaviour within a given paradigm. We use undecorated vari-
ables for initial, and dashed variables for intermediate or final observations. The
alphabet of each theory contains variables relevant to the description of its pro-
grams, as well as auxiliary variables used to record aspects of the paradigm.
For instance, the UTP theory of designs uses a boolean variable ok to record
the program has started, and ok ′ to record that the program has terminated.
The seminal book [10] on UTP is not precise on typing, but it is generally ac-
knowledged that we operate in a typed language and logic setting, with common
mathematical structures being available, such as sets, functions and sequences.

Through appropriate choice of variables and mathematical structures, it is
possible to express the desired features of a programming notation in an elegant
and concise way. The underlying UTP theory must select the appropriate and
relevant subset of variables to represent intended behaviours. The signature of
a theory is the language syntax, and the meaning of every program is given as
a predicate restricted to the selected alphabet and signature.

Healthiness conditions formalise constraints on the semantic model: we only
consider predicates that satisfy the healthiness conditions of a theory as valid
models of computations within that theory. Importantly, healthiness conditions
sometimes depend in their definition on the alphabet of the theory in which they
reside. For instance, the theory of methods in [24] adds one constraint for each
method variable m that is present in the theory’s alphabet. This illustrates the
nominal character of the UTP logic: variables are treated as first-class objects,
with the αP operator yielding the alphabet of a predicate P as a set.

One can think of the UTP as a ‘theory supermarket’: whatever theoretical
mechanisms are needed for a particular application, pick the appropriate UTP
theories and link them to provide the laws and compositional refinement notion
to verify specifications all the way down to code. The use of Galois connec-
tions is pervasive within UTP theories as a means to enable the description
of formal links between a variety of paradigms, justifying the use of the same
(formal) universe of discourse. In this utopian view of programming, the under-
lying mathematics are often challenging and profit from a mechanised reasoning



framework, where the customer of the theory supermarket can be assured that
the ingredients she picks soundly combine when preparing her theory.

Having said that, when it comes to making use of such theories in an indus-
trial setting, or on examples beyond the blackboard, a suitable arrangement of
technical details is required in order to use proof assistants. That is, before we
can focus on any proof obligations born from modelling, we first need to shape
and polish models to fit the needs of a mechanical theorem prover. The most
fundamental problem tackled in this paper is therefore the description of an ex-
tensible and (expressively) rich value model. We claim this is as much part of
UTP theory engineering as defining operators and healthiness conditions.

Our key objective here is to free the language designer from any restrictions
that may be imposed by the embedding of the UTP logic in a HOL theorem
prover; that is, without having to compromise on expressivity elsewhere.

2.2 Isabelle/HOL

Isabelle/HOL [13] is a popular theorem prover for Higher-Order Logic (HOL).
It follows the design of LCF [9] in protecting the user from unsound deduc-
tions: theorems can only be generated through valid inferences that, ultimately,
rely on the consistency of a small logic kernel of axiomatic rules only.

The Isabelle framework itself is agnostic to the logic being used. There exist,
for instance, instantiations of it for First-Order Logic and Zermelo-Fraenkel set
theory. Isabelle provides natural-deduction-style proof rules and an underlying
proof engine to conveniently perform backward and forward inferences. In addi-
tion, several powerful external provers can be easily invoked from within Isabelle.
A structured proof language called ISAR is also part of the system.

Types in Isabelle/HOL can be defined in various ways. The most basic type
declaration is via a typedecl (’t1, ’t2, . . .)Tnew , which introduces a new given
type Tnew without any constructor functions. The ’t1, ’t2, and so on, are possible
parameters of the type. All we know about such types is that they are non-empty.

Type definitions are supported by way of:

typedef (’t1, ’t2, . . .)Tnew = S :: (’t1, ’t2, . . .)Texists set

where S is some (non-empty) subset of values of some existing type Texists to
which the newly-defined type is deemed to be isomorphic. We thus obtain a pair
of abstraction and representation functions which are internally axiomatised to
provide a bijection from S into the carrier set of Tnew .

More sophisticated type definitions can be achieved with the datatype com-
mand for (co)inductive datatypes and record command to introduce extensible
record types, although underneath the HOL system reformulates both in terms
of plain typedefs. This definitional style of implementing high-level features
guarantees that soundness is necessarily preserved.

Isabelle additionally supports type classes. They can be viewed as contractual
specifications on types. A type may instantiate a particular type class C , and
such can be formulated as a requirement ’a :: C on some type ’a. We note that
the symbol ‘::’ in HOL is used for both, typing and type-class membership.



Name Developers Proof System

UTP in ProofPower-Z Nuka [14], Oliviera [17], and Zeyda [25] ProofPower-Z

Isabelle/Circus Feliachi et al. [5,6] Isabelle/HOL

Isabelle/UTP Foster and Zeyda [7] Isabelle/HOL

U ·(TP)2 (Saoith́ın) Butterfield [2,3] Custom

Table 1. Existing works that mechanise the UTP framework.

3 UTP embedding approaches

In this section, we survey the existing mechanisations of the UTP and their ap-
proaches to encoding values, bindings and predicates. A complete list of current
works is presented in Table 1. We note that there are three mechanisations that
target ProofPower-Z, but they are very similar in how they encode the predicate
and value model. All works except for U ·(TP)2 are definitional, meaning that
they extend HOL conservatively; this guarantees consistency of the embeddings.
As U ·(TP)2 uses its own logic, consistency must be argued by other means.

All HOL-based embeddings create some type P for alphabetised predicates,
either as a type synonym — in some cases with associated constraints, or HOL
type definition. The model of P is typically the set of bindings P(B) over some
binding type B. In all works except Isabelle/Circus, P also includes explicit infor-
mation about the predicate’s alphabet. We note that Isabelle/Circus represents
predicates as characteristic functions B ⇒ bool , but this does not limit generality
of our discussion, as being equivalent to a set-based encoding.

3.1 A shallow predicate model

A shallow predicate model is adopted by Isabelle/Circus [5,6]. The binding notion
is kept abstract, using a HOL type variable such as ’s for it. UTP variables are
likewise modelled abstractly, by way of pairs consisting of a getter and update
function. The types of these functions are recaptured below.

get :: ’s ⇒ ’a and update :: ’s ⇒ ’a ⇒ ’s

Above, ’a determines the HOL type of the variable. The get function extracts
the value of the variable from a binding, and the update function modifies the
binding to assign a new value to the variable. Variables hence do not have a
symbolic identity that is, for instance, formalised by an encoding of names.

A key advantage of this approach is that UTP variables can range over arbi-
trary HOL types ’a; a downside is that we cannot prove anything about them
unless the binding type ’s is concretised, so that the get and update functions
may be concretely defined. In Isabelle/Circus, instantiation of the binding type
accompanies UTP theory development. It is done partially and incrementally,
by way of extensible records. For instance, to encode the UTP theory of designs,



we have to create a record type L ok :: bool , ’more M to encode the variable ok .
The type ’more here corresponds to the open extension of the record type and
allows us to subsequently add further variables to that theory.

The use of extensible records retains a certain degree of modularity in defin-
ing generic connectives that apply to predicates with different alphabets. These
connectives are typically encoded by operations on the binding sets. Unifica-
tion of the binding types is therefore needed to apply these operators. As an
example, we may unify the following binding types L ok :: bool , ’more M and
L ok :: bool , x :: nat M by instantiating ’more with L x :: nat M. The first corre-
sponds to the (extensible) design alphabet {ok :: bool , . . .}, and the second to
the closed design alphabet {ok :: bool , x :: nat} including a program variable x .

A ramification of this approach is that each time we introduce a variable,
we effectively have to create a host-logic record type for it. It is therefore non-
compositional in the treatment of alphabets. Variables, despite their abstract
representation, are not first-class citizens in this treatment: we cannot create
them on-the-fly or collect them in sets.

In a shallow model, the value universe U may potentially include any Is-
abelle/HOL type. The binding type B is equated with open and closed record
types; this makes the predicate type P parametric in the extension type of (open)
records. New record types are created through Isabelle’s declarative mechanism,
ensuring soundness. In this approach, complexity arises as record types have to
be created as UTP theory development unfolds; complexity is, however, allevi-
ated by a thin layer between object and host-logic value models.

3.2 A deep predicate model

The ProofPower-Z works [14,17,25] use a deep predicate model by creating a
fixed value universe U as an inductive datatype that supports the construction
of various basic and composite values. Below, F(S ) yields the finite subsets of S .

VALUE ::= Nat(N) | Bool(B) | Pair(VALUE × VALUE) | Set(F(VALUE)) | . . .

This approach leads to a monomorphic predicate type P, because bindings B can
be equated with the function space VAR ⇒ VALUE , where both the domain
and range types are monomorphic. UTP variables (type VAR) are encoded sym-
bolically as strings, with some added information for dashes and subscripts. The
work [25] adds to this a (monomorphic) model of types to formalise well-typed
constructions. In that model, variables are encoded by name and type pairs.

In a deep predicate model, we are able to introspect and reason about the
alphabets of predicates since variables are treated as first-class objects. This
provides more expressivity to mechanise UTP theories, since functions can be
formalised that manipulate predicates and their alphabets in any conceivable
manner. We discuss an example where this is needed in Section 6.

A downside of the deep approach is that the value model is not extensible,
since the VALUE type (universe) must be defined upfront. The use of datatypes
imposes further restrictions. For instance, we cannot support general set-valued



constructions as to avoid well-known inconsistencies [22], which is why the argu-
ment of Set( ) above must be a finite set. Recent advances in using categorical
foundations for datatypes in Isabelle/HOL [23] have relaxed that restriction to
furthermore permit infinite sets with bounded cardinalities, but this is still more
restrictive than HOL sets in general.

The use of a deep model is often inevitable if we perform a deep embedding,
since it enables us to formalise the mapping from syntax to semantics within
the host logic. While a deep model offers more expressiveness at the level of
predicates and UTP theories, it incurs restrictions with regards to what kind
of values can be supported. Moreover, operators and theorems about (HOL)
value types need to be ‘lifted’ into the unified VALUE type, resulting in a larger
number of definitions and underlying proof infrastructure to burden the user.

3.3 A hybrid predicate model

Isabelle/UTP [7] adopts a hybrid approach to alleviate some of the downsides
of a deep predicate model while retaining its expressivity. Rather than using a
polymorphic type ’s for bindings, it introduces an abstract type ’a for the values
themselves. This type, unlike in Isabelle/Circus, does not need to be instantiated
as the UTP theory hierarchy unfolds. Instead, we create type classes to inject
particular desired HOL types into it. The type classes introduce the abstraction
and representation function for the respective value. An example follows.

class INT_SORT =

fixes MkInt :: "int ⇒ ’a::TYPED_VALUE"

fixes DestInt :: "’a::TYPED_VALUE ⇒ int"

assumes MkInt_inv : "DestInt(MkInt x) = x"

assumes DestInt_inv : "y :u IntType =⇒ MkInt(DestInt y) = y"

The constant IntType and the operator :u are provided by the TYPED VALUE type
class, whose definition we omit for brevity. We can indeed think of the classes as
type definitions that ‘reuse’ the target type to be defined. To prove consistency,
we have to show that an aggregation of type classes (one for each value notion
used by a UTP theory) can be instantiated. Logically, this corresponds to show-
ing that the abstract value type has a model that satisfies the assumptions of
all aggregated type classes. Yet in practice, such a proof has to be carried out
for every UTP theory, based on what value notions are used by the theory.

With the above, we can formalise constraints on the value model of particular
UTP theories through class constraints on ’a. For instance, the theory of designs
requires the presence of a value type to encode booleans for its auxiliary variables
ok and ok ′, and this can be captured by a class constraint ’a :: BOOL SORT on all
definitional entities that play a part in the encoding of that UTP theory.

In this approach, the universe U need not be fixed upfront. We can inject new
types into it as we go along. To prove consistency, which now becomes a ‘proof
obligation’ to be discharged by the user, we are, however, still restricted to value
notions that have a model within HOL. We note that the hybrid approach can
be ‘abused’ as an axiomatic treatment, for instance, to support general sets and



functions as UTP values but in doing so, we introduce the possibility of localised
inconsistencies into the value model. This is not safe since the consistency issue
then rests with the user rather than the mechanised framework.

In conclusion, it seems we cannot have our cake and eat it: none of the existing
mechanised UTP systems gives us an unconstrained and provably-sound value
model and an expressive (compositional) predicate model. In the remainder, we
propose a new axiomatic approach that satisfies both desiderata.

4 An axiomatic value model

We next describe our value model in general mathematical terms. Section 4.1
examines the HOL universe, and Section 4.2 our axiomatic UTP universe.

4.1 The HOL universe

The standard set-theoretic semantics of HOL prescribes the von Neumann uni-
verse Vω+ω \ {∅} (without the empty set) as a minimal model for its possible
type constructions [18]. The von Neumann universe Vi is inductively defined for
some index i by repeated application of the power-set for ordinal indices β, and
generalised union for limit ordinals λ.

V0 =̂ ∅ Vβ+1 =̂ P(Vβ) Vλ =̂
⋃

β<λ Vβ

Each limit ordinal index corresponds to the union of all sets constructed up to
that level. In HOL, every finite type is representable by some Vn (for n ∈ N>0),
and every infinite type by some Vω+n . For example, nat and int correspond
to Vω, and real and nat set correspond to Vω+1. In Isabelle/HOL specifically,
types can be constructed either by composition of existing parametric types, or
by definition of new types through identification of a suitable non-empty subset
of some existing type [11,12]. The built-in types of Isabelle/HOL are:

– the boolean type bool containing the elements True and False;
– the infinite type ind whose cardinality is that of the naturals;
– the parametric function type σ ⇒ τ for HOL types σ and τ .

From these three types, all standard HOL types can be produced, including the
power type σ set ( =̂ σ ⇒ bool), the product type σ × τ , and the sum type
σ + τ . The constructions are performed via the typedef command, though the
σ set type is technically axiomatised in Isabelle/HOL. This, however, is merely
for convenience — its definition as a function type is equally feasible. It shows
though, in defence of our solution, that Isabelle/HOL itself does not shy away
from axiomatisations where we can provide strong evidence for consistency.

We conclude that all types in Isabelle/HOL of higher cardinality than |N|
must be constructed by a (finite) repeated application of the power-type con-
structor σ set, with their cardinality being bounded by Vω+n for some n ∈ N.
Thus it is impossible to define a type as large as Vω+ω within HOL itself, when
using only the standard mechanisms for type definition.



The above implies that it is not possible to define a universal type U in HOL
into which all HOL types are injectable. The existence of such a type in HOL
would moreover lead to inconsistency, since there would then have to exist an
injection U set into U itself, which Cantor’s theorem forbids. In introducing U
axiomatically, namely for UTP value and type models, it is, in essence, the latter
that we have to protect ourselves from.

There have been several attempts to formalise a larger universe in HOL
than the standard definitional mechanisms allow. HOL-ST [8] is an experimental
combination of HOL and set theory that axiomatises a universe consisting of
ZFC set constructions. HOL-ST was later adapted to create Isabelle/HOLZF [15]
which axiomatises the ZFC universe as a type ZF alongside other HOL types; the
motivation of that work was to formalise the notion of Partisan Games [15] as
they cannot be captured through permissible datatype constructions in HOL.

Our approach here has the same aim as HOL-ST in using an axiomatization
to provide a type that is ‘larger’ than any type definable in HOL, but unlike
HOL-ST we want to make it possible to directly inject existing HOL types in
our new (axiomatic) type. For this, it is sufficient to declare a type UVal and
postulate three axioms that provide injectivity and type reflection from HOL
into UVal. The next section discusses the axiomatisation in general terms.

4.2 The UTP universe

In this section, we give a semi-formal exposition of our axiomatic UTP universe,
which will be formally mechanised in Section 5. We presuppose the existence of a
class Type of HOL types, and also a universe HOL of HOL values. We recall that
the latter cannot be defined in HOL as a set, and we therefore refer to it here as
a (proper) class. For simplicity, we do not directly consider polymorphism and
treat each type σ ∈ Type as a fully-instantiated monomorphic type. Hence, no
two types can possess a common element. Our objectives are:

– The creation of a universe type UVal into which the values of a suitable
subset of permissible HOL types can be soundly injected;

– reflection of the HOL typing relation v :: t into UVal, also allowing us to
explicitly reason about typing within UVal.

Our universe will be implemented through monomorphic types. This enables
us to form definitions and theorems that effectively quantify over HOL types.
Each objective is characterised by an additional axiom that we will describe.
These axioms are conceptual, and do not correspond precisely to the Isabelle
axioms which cannot, for instance, have typing statements like x :: σ as caveats
or talk explicitly about the HOL universe of values. The axioms will therefore
require some refinement before their implementation into Isabelle/HOL, which
we describe in Section 5. We will also prove some necessary theorems implied by
these axioms, which our implementation satisfies.

Our UTP universe is characterised by a declared Isabelle type UVal, together
with a polymorphic injection function InjU : HOL ⇒ UVal, a projection function



Fig. 1. Relation between the HOL and UVal universes.

ProjU : UVal ⇒ HOL, and a type mapping UTYPE : Type ⇒ UType. The appli-
cation UTYPE (σ) encodes a HOL type σ as a suitable value of a monomorphic
type UType that represents HOL types. We also have a reflected typing relation
x :u t , for x ∈ UVal and t ∈ UType. We visualise the behaviour of these functions
in Figure 1. Every HOL type σ ∈ Type can be injected into a corresponding
subset of UVal, by application of InjU . Moreover, all values within UVal can be
projected back to their corresponding HOL type.

We now formally specify the behaviour of these functions through three ax-
ioms that augment the axioms of HOL:

1. AxValBij. For any σ ∈ Type, InjU is a bijection between the values of σ
and those of UTYPE (σ), with ProjU being its inverse.

2. AxTypeRefl. The reflected typing relation is sound and complete with
respect to HOL typing, such that InjU (x ) :u UTYPE (σ) if and only if x ::σ.

3. AxTypeNonempty. For any t ∈ UType, there exists a value v ∈ UVal such
that v :u t .

Axiom AxValBij indirectly ensures that the cardinality of any HOL type is less
or equal than that of UVal, as stated by the following theorem.

Theorem 1. For any σ ∈ Type, the cardinality of σ is no greater than that of
UVal, that is |σ| ≤ |UVal|.

Proof. InjU , by AxValBij, is an injection from σ to UVal. This is sufficient to
demonstrate the required cardinality relationship. ⊓⊔

Furthermore, we can show that UVal has a strictly greater cardinality than any
HOL type.

Theorem 2. The cardinality of any HOL type σ ∈ Type is strictly less than the
cardinality of UVal, that is |σ| < |UVal|.

Proof. We prove this by contradiction. Assume that |σ| ≥ |UVal|, then either
|σ| > |UVal| or |σ| = |UVal|.



– If |σ| > |UVal|, we obtain a contradiction by Theorem 1.
– If |σ| = |UVal|, from σ ∈ Type we also have that σ set ∈ Type. By Cantor’s

theorem we have that |σ set| > |σ|, and hence |σ set| > |UVal|. Again, by
Theorem 1 this leads to a contradiction. ⊓⊔

A corollary of Theorem 2 is that neither UVal nor any type with a cardinality
equal to or greater than UVal can be a HOL type.

Corollary 1. ∀ t • |UVal| ≤ |t | ⇒ t 6∈ Type

Proof. By Theorem 2 we have |t | < |UVal|, and by transitivity of < thus follows
the contradiction |UVal| < |UVal|. ⊓⊔

It is therefore essential to ensure that UVal cannot be made an element of Type for
our logic to remain consistent. We can also demonstrate a number of necessary
consequences of the type reflection axiom AxTypeRefl. Firstly, we require that
each reflected type identify a unique HOL type.

Theorem 3. The type mapping function UTYPE is injective for σ, τ ∈ Type.
That is, UTYPE (σ) = UTYPE (τ) implies that σ = τ for all σ, τ ∈ Type.

Proof. Assume UTYPE (σ) = UTYPE (τ) for σ, τ ∈ Type. By non-emptiness
of σ, there exists some value x with x :: σ. Thus InjU (x ) :u UTYPE (σ) by ax-
iom AxTypeRefl, and InjU (x ) :uUTYPE (τ) since UTYPE (σ) = UTYPE (τ).
Converse application of AxTypeRefl finally yields x :: τ . Because of disjoint-
ness of types in HOL, it follows that σ = τ . ⊓⊔

Note that we cannot show from the axioms that all reflected types possess
a witness. Namely, that for any t ∈ UType, there exists a value x ∈ UVal such
that x :u t . To show this, a sufficient condition is that every element in UType is
the image of some permissible HOL type σ ∈ Type. In practice, this turns out to
be too strong since, clearly, not all HOL types are permissible. The third axiom
AxTypeNonempty thus guarantees non-emptiness of all reflected types.

For those types that are not in the image of UTYPE , non-emptiness is all
that we know about their values. For other types, which are in the image of
UTYPE , the axiom does not add any new knowledge, since for those types we
can already prove from the axioms AxValBij and AxTypeRefl that they are
non-empty. Hence this additional axiom does not pose a risk to consistency.

5 Implementation in Isabelle/HOL

In this section, we describe our implementation in Isabelle/HOL of the axiomatic
value model that was proposed in the previous section.

5.1 UTP values and types

UTP Types Our goal is to associate UTP model types directly with (a subset of)
the HOL types. HOL, in general, is not expressive enough to treat HOL types
as values. However, the type-class mechanism is used in Isabelle/HOL to define
an operator TYPEREP(’a) that converts a HOL type ’a into a representation of
that type as a HOL value. The representation is in terms of a datatype typerep,



which is part of the standard HOL library and recaptured below.

datatype typerep = Typerep String.literal "typerep list"

It has a single constructor Typerep that takes both a string literal for the type’s
name, and a list of typerep objects corresponding to the arguments of a para-
metric type. The datatype encodes the structure of any monomorphic HOL type
as a value, and is generally used as a limited facility to support reasoning about
types in HOL. We effectively reuse it here to encode UTP model types, and for
uniformity introduce a syntax abbreviation utype for it.

In order to apply the TYPEREP(’a) operator to some type ’a, the type ’a must
instantiate the type class typerep that defines how ’a is to be represented. That
type class is typically instantiated automatically by Isabelle when new types are
created with typedef. We may hence reasonably assume that all HOL types we
like to use in UTP theories instantiate typerep.

We proceed by introducing a polymorphic typing operator. We note that an
implicit default sort constraint was placed on ’a to be of class typerep.

definition p_type_rel :: "’a ⇒ utype ⇒ bool" (infix ":" 50) where

"x : t ←→ TYPEREP(’a) = t"

Above, x : t holds if the (HOL) value x is of UTP model type t. For instance,
we can prove (1 :: nat) : TYPEREP(nat) but not 1 : TYPEREP(nat) since numbers
in HOL are polymorphic objects. This means that the type of 1 corresponds to
some type variable ’a of sort typerep. For such types, TYPEREP(’a) cannot be
simplified but we can still perform reasoning using unification. For this reason,
our model in fact supports polymorphic types.

To facilitate proofs about typing, we provide a theorem attribute typing that
collects all relevant theorems about typing, including the definitional theorem
of p type rel. Simplification with added typing theorems typically discharges
any kind of type conjecture, or otherwise reduces it to false. We implemented a
hook into Isabelle/HOL’s type definition packages that automatically collects the
required theorems. This kind of proof engineering plays a crucial part in theory
usability and proof automation, and is often overlooked in mechanisations.

We next examine the UTP value model. This is the core contribution of the
novel mechanisation of the UTP in Isabelle/HOL that we developed.

UTP Values In agreement with both Section 4.2 and the earlier ProofPower-Z
works, we introduce a monomorphic type uval for our UTP value model. We
thus are able to retain all of the expressiveness of a deep binding and predicate
model as in the works [17,25,7]. However, rather than giving uval a concrete
definition, for instance, by virtue of a datatype, we leave it uninterpreted.

typedecl uval

In languages like Z, the above corresponds to the definition of a given type. As
explained in Section 2.2, such types are not equipped with an abstraction or
representation function. All we know about them is that they are non-empty.

Construction, destruction and typing of values in uval are axiomatised by
three polymorphic functions: InjU, ProjU and utype rel. For the third, we intro-



duce the infix notation v :u t. The following axiomatization introduces these
constants as well as their defining axioms. This formalises our earlier axioms in
Section 4.2 and is all that is needed to reason about UTP model values.

axiomatization

— Universal abstraction, representation and model typing relation.
InjU :: "’a::injectable ⇒ uval" and

ProjU :: "uval ⇒ ’a::injectable" and

utype_rel :: "uval ⇒ utype ⇒ bool" (infix ":u" 50) where

— Axioms that determine the semantics of the above functions.
InjU_inverse: "ProjU (InjU x) = x" and

ProjU_inverse: "y :u TYPEREP(’a) =⇒ InjU (ProjU y) = y" and

utype_rel_def: "(InjU x) :u t ←→ x : t" and

utypes_non_empty: "∃ y. y :u t"

The axioms have similarities with the standard axioms for type definitions [13].
First, we have a pair of injection theorems: InjU inverse and ProjU inverse.
The first one is for the abstraction function (InjU), and the second one for the
representation function (ProjU). An important difference to HOL type definitions
is, however, that we do not merely inject the values of a single existing HOL type
into the new type, but a universe of the values belonging to a collection of HOL
types (HOL in Figure 1). That universe is identified by the type class injectable,
whose purpose is explained later on in Section 5.2. It usually includes values of
infinitely many HOL types because of type parametricity.

Since we here inject the entire carrier (UNIV) of a HOL type ’a, contrary to
typedefs there is no caveat present in the InjU inverse injection theorem. Both
injection theorems together implement the axiom AxValBij in Section 4.2. The
sort constraint ’a::injectable in the definition of the constants InjU and ProjU

ensures that we cannot write any term InjU x where the argument x is not an
injectable HOL type — Isabelle/HOL otherwise flags a type error. Likewise, the
result of ProjU must always be chosen as to have an injectable type. The caveat
of ProjU inverse moreover ensures that the value we are projecting out of the
UTP model and back into HOL has the correct type for the projection to be
valid. Model typing x :u t is formalised by lifting polymorphic typing into uval.
Our third axiom utype rel def hence corresponds to AxTypeRefl and ensures
completeness and soundness of the reflective typing relation.

The fourth axiom utypes non empty encodes AxTypeNonempty, capturing
that all UTP model types are non-empty. If all utype elements corresponded to
injectable HOL types, this would follow automatically. However, since there are
some HOL types that are inherently not injectable, the axiom requires that even
those types have at least one value, though we do not know anything else about
such types. The need for the axiom is technical: we want to ensure that there is
a well-typed ‘total’ binding whose variables must range over any HOL type.

The axiomatisation gives us the ability to control what HOL types we like
to inject into the UTP value model. This is crucial as the injection of certain
types can lead to inconsistencies. We next discuss this issue and explain how we
ensure that unsoundness cannot emerge from inappropriate use of our axioms.



5.2 Controlling injectability

The quintessential example that leads to inconsistency is injecting uval itself into
the value model. Depending on the injection of other HOL types, in particular
’a set, we are then able to derive a contradiction. Since InjU of (injectable!)
type (uval set) ⇒ uval cannot be injective due to Cantor’s theorem, the axiom
InjU inverse above clearly is violated in that case.

We could naively have implemented a mechanism that prevents the user
from instantiating uval as injectable but this is not enough: a clever user might
circumvent that mechanism by defining a new HOL type (via a typedef) that
is equipotent to uval or even larger, and then the same problem arises if that
new type is made permissible for injection into uval.

To solve this problem in a universal and robust manner, we first mechanise
a notion of type dependency. We recall a type definition generally has the form:

typedef (’a, ’b, . . .) new type = S :: (’a, ’b, . . .)T set

where the type term (’a, ’b, . . .)T only involves currently existing HOL types
and S is a non-empty subset of the values of (’a, ’b, . . .)T . We observe that
(’a, ’b, . . .) new type depends on the types occurring in T and the type variables
’a, ’b, and so on. We formalise this dependency via a new type class typedep.

class typedep = typerep +

fixes typedep :: "’a itself ⇒ typerep set"

This class extends Isabelle/HOL’s existing class typerep. Any HOL type that in-
stantiates it must additionally provide a function typedep that, given an element
of ’a itself, yields a set of type representations of HOL types that ’a depends
upon. The type constructor ’a itself is primitive and conventionally used when
a function is polymorphically parametrised by a HOL type. Polymorphism is cru-
cial here since it determines resolution of typedep if applied to a particular HOL
type. To simplify the application of typedep, we introduce a syntactic sugar
that allows us to write TYPEDEP(T) for some HOL type T , instead of having to
construct a corresponding value from ’a itself and then apply typedep to it.
Examples are TYPEDEP(nat), TYPEDEP(nat set) and TYPEDEP(’a set).

A subtle issue is how we ensure that the class typedep is instantiated correctly.
Below we give an example of instantiating typedep for the function type.

instantiation "fun" :: (typedep, typedep) typedep

begin

definition typedep_fun :: "(’a ⇒ ’b) itself ⇒ typerep set" where

"typedep_fun t = TYPEDEP(’a) ∪ TYPEDEP(’b)"

instance by (intro_classes)

end

We first observe that the definition of typedep for the function type ’a ⇒ ’b

involves the recursive application of typedep (via the TYPEDEP( ) syntax) to the
type parameters ’a and ’b, making precise that ’a ⇒ ’b depends on ’a and
’b. We secondly observe that a type representation of the function type does



not itself occur in the right-hand side, namely there is no term such as . . . ∪
{TYPEREP(’a⇒ ’b)} included. The reason for this is that we are only interested
in dependency to ground types, namely those types that are not defined in terms
of other types and thus form the roots of the dependency hierarchy. This also
ensures efficient evaluation of TYPEDEP( ) as resulting terms may become large.

There are indeed only two genuine ground types in HOL: bool and ind.
Also, any type declaration via a typedecl construct introduces a new ground
type. Therefore, uval, in our formalisation, crucially becomes a ground type,
too. Although HOL’s set type (’a set) and function type (’a ⇒ ’b) are not
introduced by a type definition, we do not consider them as ground types.

For a type definition, such as the one on page 14, we would need to perform
the following instantiation:

instantiation new type :: (typedep, typedep, ...) typedep

begin

definition typedep_new type ::

"(’a, ’b, ...) new type itself ⇒ typerep set" where

"typedep_new type t = TYPEDEP(T)"

instance by (intro_classes)

end

We observe that the dependency of a new type (’a, ’b, . . .) new type is defined in
terms of the dependency of its model type (’a, ’b, . . .)T . While the instantiation
is uniform and easy to perform, it would constitute a risk to rely on the user to
perform it. Instead, we implemented a hook in Isabelle/HOL that executes such
instantiations automatically and outside the control of the user for each new type
defined via a type definition. Isabelle/HOL provides an interface that allows one
to execute such hooks (see the Typedef.interpretation ML function within
the HOL source code). It, fortunately, even does so retrospectively for existing
types. This again means that the user — just like with typerep — does not have
to be concerned with the instantiation of typedep and precludes any unsoundness
potentially arising from wrongly instantiating that class. For convenience, we
lastly make typedep the default sort for free type variables.

We are now in a position to define the injectable class in a safe manner.
This class, we endow with two assumptions that have to be discharged upon
instantiation of any HOL type as injectable.

class injectable = typedep + order +

assumes utype_is_not_uval : "TYPEREP(’a) 6= TYPEREP(uval)"

assumes utype_not_dep_uval : "TYPEREP(uval) 6∈ TYPEDEP(’a)"

The first assumption captures that the type we inject must not be the same as
uval. The second uses the type-dependency mechanism by formalising that uval
must not be in the set of types on which the type we inject depends. If both
proof obligations can be discharged, we have established that injecting T into
the UTP value model uval is safe and sound.

To facilitate the instantiation of HOL types as injectable, we provide an
Isabelle command inject type that discharges the above assumptions automat-
ically. We note that this is for convenience and not for safety reasons — manual



instantiation means that the proof obligations would still need to be discharged.
Their proof is usually not difficult and can be done by rewriting and automatic
reasoning. Again, to facilitate proofs, we introduce an attribute to record theo-
rems that are relevant to reason about type dependency. They are automatically
collected when new types are defined and the class typedep is instantiated.

By default, we inject a useful subset of existing HOL types into the UTP value
model, including unit, bool, nat, int, char, real, fun, set, list, prod, sum and
option. We can, however, inject any custom type definition or datatype in exactly
the same manner, as illustrated in the next section. While our implementation
requires, to a certain degree, low-level ML programming of the proof system,
all of this is done outside the Isabelle/HOL kernel and code — we did not have
to change the prover’s source distribution in any way. We also implemented
useful error reporting to the user when a type cannot be injected as failing the
caveats of the injectable class. Lastly, we note that mutually-recursive datatypes
are implicitly supported since Isabelle/HOL endows such types with a common
model, so that the recursive type dependency disappears when the underlying
(non-recursive) typedefs are constructed under-the-hood by Isabelle/HOL.

We claim that our implementation is LCF-sound: this means that incorrect
use of our tool cannot result in inconsistency of the logic. We deconstruct the
evidence for this through the following reasoning chain.

1. We consider the approach to be ‘mathematically sound’, as a consequence of
restricting injectable types to those that do not depend on uval (Section 4);

2. In the mechanisation, we use a type class to restrict injection to permissible
values only, which excludes constructs that attempt to inject invalid types
already at the level of HOL type analysis (Section 5.1);

3. The injectability caveat is formalised and enforced by endowing the above
type class with two assumptions (proof obligations) (Section 5.2);

4. The proof obligations rely on the correct instantiation of typerep and typedep

classes, but both instantiations reside outside the control of the user.

Our tool is, thus, not only an Isabelle/UTP extension to enable richer UTP value
models, but also a low-level Isabelle/HOL language extension. A final point to
note is that injectable in our design also imports the type class order, since
we assume that any UTP value model is equipped with an order. This opens
up further possibilities to mechanise High-Order UTP, which adds support for
higher-order programming to UTP. The reason for this is that HO UTP relies
on order relations on values, namely to (re)define common UTP operators such
as skip, assignment and variable blocks in this context (Chapter 9 of [10]).

6 Example: mechanising a theory of object orientation

As an example, we consider Santos’ UTP theory of object orientation [20]. In
what follows, we illustrate how the axiomatic value model enables us to easily
encode that theory, using our tool. The Isabelle 2015 sources and a report are
available from https://www.scm.tees.ac.uk/users/f.zeyda/utp2016/.



The UTP theory of object orientation is an extension of the UTP theory
of designs, and, therefore, includes the auxiliary boolean variables ok and ok ′

to record termination. Besides, it also includes additional auxiliary variables to
capture specific aspects of the object-oriented paradigm. These variables and
their types are explained below.

– cls of type P(CName) to record the names of classes used in the program;
– atts of type CName 7→ (AName 7→ Type) to record class attributes;
– sc of type CName 7→ CName to record the subclass hierarchy;
– an open set {m1,m2, . . .} of procedure variables for method definitions;
– an open set {m1,m2, . . .} of procedure variables for method calls.

Above, CName is the set of all class names, AName is the set of all attribute
names, and Type is defined as CName ∪ prim where the elements in prim rep-
resent primitive types, like the integers or booleans. The functions atts and sc
are partial ( 7→) since they only consider classes that are currently declared,
namely those in cls. The function sc maps each class to its immediate su-
perclass; the subclass relation is obtained via its reflexive and transitive clo-
sure: Csub � Csuper =def (Csub ,Csuper ) ∈ sc∗. There also exists a special class
Object ∈ CName that does not have a superclass.

The above description, which was taken from the literature, indeed gives us
a very clear idea of how to design the value encoding for that theory. In doing
so, however, we do not want to be constrained by a mechanised framework. The
axiomatic value model lets us work at the level of HOL, using its definitional
features as needed. Below we introduce the necessary types.

datatype cname = Object | Class "string"

datatype aname = Attr "string"

datatype prim = int | bool

datatype atype = PType "prim" | CType "cname"

Above, cname encodes CName, aname encodes AName, prim encodes prim, and
atype encodes Type. The next step is to inject these types into the universal
value type uval. As explained in the previous section, this is easily done with
the following set of commands.

inject type cname

inject type aname

inject type prim

inject type atype

Behind the scene, the implementation of the inject type command discharges
the proof obligations that establish that the injections are sound. Here, this is
the case since uval does not occur in the above datatype definitions.

It is worth noting that in order to support injection of datatypes into uval,
we did not have to interface in any way with Isabelle’s datatype package. This
is because, ultimately, the definitional implementation of datatypes implies that
everything boils down to plain type definitions, and our tool can readily handle
those. For the same reason, record types are also supported out-of-the-box, as
well as any other custom types that are definitional, which is the norm.



Name Invariant Description

OO1 Object ∈ cls Object is always a class of the program

OO2 dom sc = cls \Object Every class except Object has a superclass

OO3 ∀C : dom sc • (C ,Object) ∈ sc+ Object is at the top of the class hierarchy

OO4 dom atts = cls Attributes are defined for all classes

OO5 ∀C1,C2 : dom atts | C1 6= C2 • Attribute names are unique across classes

dom(atts(C1)) ∩ dom(atts(C2)) = ∅

OO6 ran(
⋃

ran atts) ⊆ prim ∪ cls Attributes have primitive or class types

Table 2. Healthiness conditions for the theory of object orientation.

Healthiness conditions The theory has seven healthiness conditions. They are
characterised by invariants that constrain the permissible values of cls, atts and
sc, as well as the procedure variables for methods. Table 2 summarises the first
six constraints, which are related to cls, atts and sc. Intuitively, the invariant
OO1 requires Object always to be a valid class of the program. OO2 and OO3
determine the shape of the subclass relation: it has to be a tree with Object
at its root. Attributes have to be defined for all classes (OO4), they have to be
unique (OO5), and their types, if they are not primitive, must refer to declared
classes (OO6). A further healthiness condition (OO7) not in Table 2 is inherited
from the UTP theory of methods in [24]. Its shape is given below, where the
function SIH( ) is part of the UTP theory of invariants [4] and performs the
conversion of invariants into design predicates over before and after states.

OO7(P) = SIH(∀m m | {m,m} ⊆ αP • [∀ args • m(args) ⇔ m(args)]0)(P)

This healthiness condition establishes a correspondence between procedure vari-
ables that are used for definition (double overbar) and call (single overbar) of
methods. The purpose of OO7(P) is beyond the technical scope of this paper;
we, however, observe that the quantifier above ranges over variables m and m
within the alphabet of predicate P . Encoding this condition may not be possible
in a shallow model that does not allow us to quantify over alphabets.

We lastly present an example that illustrates how we encode the healthiness
conditions. While a deep approach is non-negotiable in this case, the axiomatic
value model enables us to express everything in terms of HOL concepts. This
is done by ‘lifting’ HOL predicates into deeply-encoded UTP predicates. The
lifting is performed by a simple rewrite engine that we implemented as part of
the tool. With it, we may, for example, encode OO5 as follows.

definition OO5 :: "upred" where

"OO5 = (∀ C1 ∈ dom atts .

∀ C2 ∈ dom atts . C1 6= C2 |

dom (atts·C1) ∩ dom (atts·C2) = {})p"

The tool that performs the lifting is invoked via the ( )p construct. Inside the
brackets, we may write plain HOL. The beauty of this is that we do not have to



be concerned with redefining any of the HOL operators that are used, such as ∈,
∩, dom, and so on, for our value model, and neither recast laws and tactics for
proof support. Our approach enables the development of a generic rewrite tool
that circumvents all of this so that the user is able to work exclusively in HOL;
the underlying details of the deep encoding are by and large concealed.

There are some useful aspects of the implementation that we did not discuss.
For instance, we also provide a mechanism for parsing and rewriting HOL vari-
ables into UTP variables, in a way that we can take advantage of type-checking
and unification. Our system is flexible: we can always escape the parser to com-
bine unprocessed HOL with lifted predicate terms.

7 Conclusion

We have presented a novel approach to axiomatically encode value models of
language embeddings. While we applied our work to the problem of mechanising
the UTP framework, it remains applicable to any deep language embedding. The
problem we addressed is to relax common restrictions on deep value models in
HOL to support, for instance, general sets and functions. Our key contribution
is the design of a solution and tool in Isabelle/HOL that is definitionally sound.

Beyond this, we put forward an approach to UTP theory engineering that
enables and advocates working at the level of HOL rather than the formalised
concepts and idioms of a particular mechanised framework. We claim that this
is the crux in attracting academics to use a mechanised framework or theorem
prover for the UTP, as we cannot expect users to acquire detailed knowledge of
a mechanised framework or the nitty-gritty of a proof system. We hope that this
work will set the future direction for UTP proof support, but accept that there
is a price to pay in the currency of axioms for having our cake and eating it!

Future work will extend our mechanisation to be competitive with the cur-
rently available systems Isabelle/Circus [6] and Isabelle/UTP [7] in terms of the
number of laws and mechanised theories. This work is mostly clerical and should
not take a lot of time and effort. A second future work will isolate those parts
that are independent of the UTP and only concerned with the value model, and
publish this separately for the Isabelle/HOL community as a stand-alone tool.

Acknowledgement We would like to thank the anonymous reviewers for their
helpful suggestions and conscientious reading of the paper.

References
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