
SOFTWARE ORIGINAL ARTICLE

SpineCreator: a Graphical User Interface for the Creation
of Layered Neural Models

A. J. Cope1 & P. Richmond1
& S. S. James2 & K. Gurney2 & D. J. Allerton3

The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract There is a growing requirement in computational
neuroscience for tools that permit collaborative model build-
ing, model sharing, combining existing models into a larger
system (multi-scale model integration), and are able to simu-
late models using a variety of simulation engines and hard-
ware platforms. Layered XML model specification formats
solve many of these problems, however they are difficult to
write and visualise without tools. Here we describe a new
graphical software tool, SpineCreator, which facilitates the
creation and visualisation of layered models of point spiking
neurons or rate coded neurons without requiring the need for
programming. We demonstrate the tool through the reproduc-
tion and visualisation of published models and show simula-
tion results using code generation interfaced directly into
SpineCreator. As a unique application for the graphical crea-
tion of neural networks, SpineCreator represents an important
step forward for neuronal modelling.

Keywords Modelling tool . GUI . SpineML . Spiking
neurons . Neuronal networks

Introduction

Overview

With the launch of large multidisciplinary projects, such
as the Open Worm and Human Brain Project, neural
models are becoming more complex and detailed.
Accurate models of regions of the brain involve many
types of neuron with complex patterns of synaptic con-
nections, and models can encompass many brain regions.
Such models are difficult to understand unless presented
using graphical visualisation, especially for collaborators
from other fields. In addition, there is a requirement for
tools that permit collaborative model building, model
sharing, combining existing models into a larger system
(multi-scale model integration), and are able to simulate
models using a variety of simulation engines and hard-
ware platforms.

XML based model descriptions are recognised as a solu-
tion to this latter set of problems (Gleeson et al. 2010;
Cannon et al. 2014; Hucka et al. 2003; Richmond et al.
2013). Importantly, they separate the model description from
the simulation method, thus freeing the model from depen-
dency on a single simulation platform. They are also declar-
ative and machine readable (allowing efficient code-
generation for simulation), portable between different hard-
ware platforms and software, provide strict standards for
model description, and allow models to be validated to ensure
syntactic accuracy. These features greatly aid collaborative
model building, as a set of modeling standards minimise di-
vergence in the way models are specified; subsequently,
models can be simulated using the hardware and software
tools available to each collaborator. Sharing is facilitated by

* A. J. Cope
a.cope@sheffield.ac.uk

1 Department of Computer Science, University of Sheffield,
Sheffield, South Yorkshire, UK

2 Department of Psychology, University of Sheffield, Sheffield, South
Yorkshire, UK

3 Department of Automatic and Control Systems Engineering,
University of Sheffield, Sheffield, South Yorkshire, UK

Neuroinform
DOI 10.1007/s12021-016-9311-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-016-9311-z&domain=pdf

the interoperability of models described in a strict validatable
format, as the common description format guarantees that
models developed by different groups can be integrated to
form larger systems. By utilising a layered approach
(Raikov and De Schutter 2012), XML formats can separate
semantic layers: for example, the equations used to simulate
the neurons are separated from the network structure of the
model, and the model separated from the experimental para-
digm. This approach enables efficient reuse of computational
elements in different models.

Despite these advantages, XML based models are difficult
and time consuming to create by hand, and it is difficult even
for a user familiar with XML to read and visualise a model
directly from an XML file. This limitation is especially impor-
tant in multidisciplinary projects, where it is vital that
modellers can easily and clearly share ideas with collaborators
from other fields. For these reasons XML formats benefit
greatly from associated creation tools, which can either allow
an efficient condensed specification of the model (i.e. pro-
gramming language interfaces) or advanced visual manipula-
tion of the model structure (i.e. graphical interfaces). The im-
pact of content-authoring tools can be seen from the extensive
toolsets that surround the most successful XML formats
(Gleeson et al. 2010; Cannon et al. 2014; Hucka et al.
2003). Visualisation tools can take one of two forms. The first
is as an extension to a model creation toolchain - once a model
is described it can then be visualised as read-only. The second
is a graphical creation tool, where the visualisation is used to
build and interact with the model. The advantage of the sec-
ond form is that it also improves the accessibility of model-
ling, which is often predicated upon experience in computer
programming, thus allowing students and researchers with
non-computational backgrounds (e.g. Psychology and
Biology) to contribute to modelling. For this reason we focus
on the second form of visualisation tool.

We have named our tool SpineCreator, as the XML format
behind our tool is SpineML (Richmond et al. 2013), an XML
format for the description of neural models. This format per-
mits modelling at the level of networks of spiking point neu-
rons (SNN) or rate-coded neural units (RCN). Our tool pro-
vides an easily accessible yet powerful graphical interface for
model creation, and additional functionality to extend the ca-
pabilities of the toolchain (e.g. by enabling the use of neuron
locations in specifying neural connectivity).

Key Principles

Accessibility Several existing model creation tools utilise pro-
gramming languages to specify models (specifically Python
which uses scripts (small non-compiled programs)) including
PyNN (Davison et al. 2008), Brian (Goodman and Brette
2008), and pyNEST (Eppler et al. 2008)). These tools allow
the efficient description of models using programming

structures (e.g. for-loops), however they necessarily require
familiarity with computer programming, which reduces the
accessibility of both the models and the modelling approach
to experimentalists, theoreticians, and students lacking expe-
rience in programming. We here advocate an approach where
users enter as much information as possible in a conceptual
form using graphical representations of the model, including
the entry of differential equations rather than their iterative
solutions, in order to promote accessibility.

Informative Model Presentation Except for extremely sim-
ple models, in most current tools used for model creation the
user must extract information from the model description to
generate a separate diagram in order to present the model;
diagrams are often used in publications rather than lists of
equations to describe model architectures (Nordlie et al.
2009). The tool presented here uses the visual representation
of the model in 2D and 3D as the means of building and
interacting with the model, rather than considering it a post-
hoc product of a formal description. This tight integration of
model construction and visualisation greatly facilitates the de-
sign process and identification of errors in the model, for ex-
ample by highlighting the afferent connections of a single
neuron to check for correctly generated connectivity.

Facilitation of Model Creation To simplify code generation
it is sometimes helpful to limit the high level descriptive fea-
tures of an XML language. One example in SpineML is the
specification of connectivity between neural populations. All
types of connection scheme are supported as connectivity can
be described by source neuron and destination neuron connec-
tion pairs, however it may be convenient to the user to de-
scribe the connectivity in other ways. For example, the con-
nectivity between two neural populations may be described as
a function of the distance between each pair of neurons; this is
not supported in SpineML, however a creation tool can re-
move these limitations by adding functionality to describe
distance based connectivity. Models can then be output as
pure declarative SpineML for simulation or sharing, with a
procedural method of generating the connectivity specified
in a separate file specific to the creation tool (or annotations
within the XML).

Access to Simulators and Simulation Results Many proce-
dural, programming language based, modelling tools allow
both support for simulating models in external simulators
and the collection of data from simulations into memory.
The data from the simulation can then be analysed and
visualised using the tools available to the programming lan-
guage, which in the case of Python are extensive. It is not
possible (but also not necessary) for a graphical interface to
match the level of flexibility found in programming lan-
guages, however it is necessary for the interface to provide

Neuroinform

access to simulation tools and the retrieval of data for graph-
ical evaluation.

Methods

Models

We now describe briefly three neural models at differing
levels of detail, from a rate-coded network to a biophysically
derived microcircuit model. These models have been created
using our graphical tool and are used in the following section
to illustrate the capabilities and flexibility of our software. Full
details of all the models can be found by downloading them
from the SpineML website (http://spineml.github.io/models/)
and opening them in SpineCreator.

Basal Ganglia RCN

As an example of an RCNmodel we use a network describing
action selection in the Basal Ganglia (Gurney et al. 2001a, b)
(referred to hereafter as the GPR model) (Fig. 1). This model
consists of rate-coded leaky integrator neurons (LINs). The
model consists of a channel-based architecture, which can
select between these channels by disinhibition of the selected
channel in the model’s output. Further details of the model and
results are available in the original paper (Gurney et al. 2001b).

Basal Ganglia SNN

This model is a newmodel based upon the GPRBasal Ganglia
model described above. The GPR rate-coded model is trans-
lated into a spiking neuron model using leaky integrate and
fire (LIF) models of neural dynamics. Since each LIN repre-
sents a group of spiking neurons, each is replaced by several
LIF neuron models. A study of population behaviour of neu-
rons in the Frontal Eye Fields of macaque monkeys found that
robust neural responses could be obtained with seven neurons
or seven repeated trials (Bichot et al. 2001), so we replace each
LIN with seven LIF neuron models on the understanding that
this represents a lower bound on the number of neurons that
can provide a robust group response. Each channel through
the BG is therefore expanded to seven LIF neurons wide. We
replace the one-to-one connections between LIN units with
all-to-all connections between the seven neurons in a channel
and reduce all the weights in the model sevenfold as there are
seven times more inputs to each LIF neuron than to each LIN
unit. Next, to convert between the LIN input values and off-
sets and the input and intrinsic currents to the LIF neuron, all
current values in the LIFmodel (excepting the intrinsic current
in the STN) are multiplied tenfold (this value is chosen by
hand to allow transmission of information between the layers).
The remaining changes for the conversion consist of replacing

the analog cortical input to the model with a regular spiking
input, adding variation to the membrane time constants (orig-
inally all 25 ms) so that all LIN neurons do not spike simul-
taneously (for this the time constants were obtained from a
uniform distribution with a minimum value of 20 ms and a
maximum value of 30 ms), and adding exponentially
decaying current based synapses with a time constant of
4 ms. In addition the model provides a better qualitative match
to the results of the RCN version if the influence of dopamine
on the D2 receptors is slightly reduced.

Striatal Model

This model is an anatomically accurate model of the striatum -
the main input nucleus to the Basal Ganglia. The model com-
prises a biophysically based description of a 300 μm cube of
the Striatum, with numbers of each neuron types and connec-
tivity commensurate with that volume. The original model
was written as a combination of a C numerical simulation
and a set of Matlab scripts for generating parameters, a form
not amenable to further development or sharing as the model
details are obscured by the syntax. The model uses 2-variable
point neurons with physiologically realistic attributes such a
dopaminergic modulation (Humphries et al. 2009a) and gap
junctions (Humphries et al. 2009b), based on the Izhikevich
neuron model. This model will hereafter be referred to as the
Striatum Model. Translating this model into SpineML facili-
tates sharing, portability, collaboration and accessibility,
which are impractical in the model’s currently implemented
form of Matlab and C.

Fig. 1 Diagram of the GPR Basal Ganglia model extracted using the
network layer output feature in SpineCreator (labels added as
postprocessing). Colour represents example activity from a simulation
run in the LIN units using the ‘hot’ colourmap. Cortex: Cortical input
to the model. SD1: Striatum with D1 type dopamine receptors. SD2:
Striatum with D2 type dopamine receptors. STN: Subthalamic Nucleus.
SNr: Substantia Nigra pars Reticulata. GPe: Globus Pallidus external
segment. All connectivity is directed from top to bottom, except GPe to
STN activity, which loops from the GPe to the STN

Neuroinform

http://spineml.github.io/models/

The full description of this model in SpineML is difficult if
written using a text editor, as the model uses a distance based
connectivity scheme which must be described as a list of ex-
plicit source, destination and delay triplets (Humphries et al.
2010). We will show how SpineCreator’s extended connectiv-
ity types allow for the automated generation of this connec-
tivity, and how SpineCreator facilitates the compact descrip-
tion of this complex model in SpineML.

Results

Overview

Here we present an Open Source tool for the creation of SNN
and RCN models in the SpineML format based on a
Graphical User Interface (GUI), called SpineCreator
(SPIking NEuron/NEtwork CREATOR). The tool is written
in C++ using the Qt cross platform libraries and development
tools. Qt was chosen to allow the creation of an application for
cross-platform deployment (Windows, OSX and Linux).
SpineCreator is designed to fit into the SpineML toolchain
as shown in Fig. 2↓. The source code is available online at
https://github.com/SpineML/SpineCreator.

Outline of the SpineCreator Interface

The SpineCreator GUI provides an interface with a one-to-one
mapping between XML tags and the GUI interface elements.
The stages of the modelling process are also analogous to the
levels of description used to investigate architectures in the
brain, from individual neurons to complete sensori-motor sys-
tems, followed by an external experimental paradigm. The
GUI elements are implemented to allow a user to apply their
existing knowledge of software UI design features such as
undo/redo, recently opened file lists, drag and drop and prop-
erty editing.

SpineCreator uses the ‘interface metaphor’ (a user interface
function that utilises specific knowledge that users have from
other domains) of a Project to contain a SpineML model (a
single SpineML Network which references a set of SpineML
Components) and a complete SpineML Experiment (or set of
Experiments). Multiple Projects can be open simultaneously
in SpineCreator. The elements of a Project are stored in a
single working directory as individual SpineML XML files,
along with anXMLProject Description File that contains a list
of the Project files. In addition SpineCreator stores additional
information it needs to visualise the model or describe com-
plex connectivity in XML Annotations tags within the
SpineML. This allows the model to be easily edited using
other software, while the XML structure of the Project and
Annotations allows these elements to be easily utilised by
other editing software. To facilitate this the XML format used

in Project files and Annotations is described on the
SpineCreator website at http://spineml.github.io/spinecreator/
(Fig. 3).

SpineCreator’s functionality consists of five main func-
tions, each of which occupies a separate tab in the left hand
bar of the main program window (see Fig. 2↑). The tabs
comprise:

Component Creation. SpineML Components
representing neuron body dynamics, weight update rules,
synaptic dynamics, or general dynamical processes,
which can be created or imported, and modified using a
graphical interface.
Network Creation. SpineML Network files can be
imported and combined, or created. SpineML
Components in the same project can be used in the
network.
Experiment Creation. SpineML Experiments for each
project can be created and modified.
Graphing. Plots Analog or Event data logged from ex-
periment runs. The plots update automatically when new
experiments are run. Line and raster plots of logged data
can be visualised and saved as Portable Document
Format (.pdf) or Portable Network Graphics (.png) files.
3D visualisation. The 3D layout of the network can be
constructed and visualised. The neurons in Populations
can be assigned locations in 3D space using procedural
layout descriptions which can be created in SpineCreator.
Connectivity patterns can be visualised, and the extended
connection types that SpineCreator supports can be con-
figured (see BExtended connectivity types↓^ section).
This visualisation can be output as a Portable Networks
Graphic (png) or Scalable Vector Graphics (svg) image
file.

We shall now demonstrate the workflow of SpineCreator
for creating an SNN model using an example.

Component Creation

The Component Creation tab of SpineCreator is used to author
SpineML Components. The interface is shown in Fig. 4↓.

The Component list provides an overview of the
Components in the current Project, and is colour coded to
provide immediate visual feedback to show which
Components are valid (i.e. have complete definitions), invalid,
and are in use in the Network, allowing the user to quickly
detect errors in Components. Component dynamics are
displayed graphically, as shown in Fig. 4↓, where they de-
scribe the Striatum model’s FSI neuron behaviour (replicated
fromHumphries et al. (2009b)). Importantly, Components can
be modified, renamed and duplicated here even if they are in
use. In the Striatum Model, all neuron types are extended

Neuroinform

https://github.com/SpineML/SpineCreator
http://spineml.github.io/spinecreator/

versions of a form of the Izhikevich neuron model (Izhikevich
2007). This means that the process of creating the individual

neuron types can be simplified by first creating or importing a
SpineML Component for this neuron type, and then

Fig. 2 Overview of SpineCreator (a) SpineCreator’s role in a SpineML
toolchain. SpineCreator is one of several creation tools able to exchange
models through the SpineML format, and simulate models by exporting
through SpineML to compatible simulators (such as the reference
simulator using BRAHMS, and a range of simulators as listed on the
website (http://spineml.github.io/simulators/)). (b) Visualisation

interface showing D1-type (red) and D2-type (blue) Medium Spiny
Neurons connecting to neurons in the Substantia Nigra pars reticulata
(gray). The afferent connections for a single D1-type neuron are
highlighted in green. (c) Network editor interface showing the Striatal
Model

Neuroinform

http://spineml.github.io/simulators/

duplicating and modifying this component to form the three
neuron types in the Striatal Model. By reusing an existing
Izhikevich Component, the time taken to create the
Components is significantly reduced, as is the likelihood of
errors. Finished Components can be exported as separate
SpineML files, for use in other Networks and Projects. To
prevent mistakes such as deleting an element of a
Component being costly in terms of development time there
are separate undo stacks provided for each Component.

It should be noted that dimensionality units can be added to
Parameters, State Variables and ports, and is used in the
Network Creation section of the software to reduce errors by
only allowing ports with matching types (event/analog/im-
pulse) and dimensions (mV/pA etc…) to be connected.

After creation, the Components can be used to build net-
works in the Network Creation section of SpineCreator to
build the model.

Network Creation

Components created in the Component Creation section of
SpineCreator, or imported from the file menu, are added to
the Components available within the Project. These compo-
nents can then be used in the Network Creation section of
SpineCreator to construct SNN models.

Figure 2↑ (C) shows the Network Creation section of
SpineCreator with the Striatal model. The left hand section
of the interface shows a large 2D view of the model, topped

by a toolbar allowing the addition of new objects to the net-
work or the removal of existing objects. The right hand section
of the interface shows a context sensitive panel for detailed
configuration of the Network. An undo stack is also provided
for the Network, allowing mistakes such as unintentional de-
leting of objects to be rectified easily.

Not all information about the model is presented to the user
at the same time, in order to provide an uncluttered interface
where useful information is not obscured by irrelevant infor-
mation. The organisation of the information presented is as
follows.

2D Interface

This high level structural overview of the model is always
present, which includes the Populations comprising the
model, the Projections between them, and the Generic
Inputs connecting components. These are presented in a
2D graphic which the user can arrange to form a flow
diagram, as shown in Fig. 2↑. The user can therefore
arrange the 2D layout using drag and drop to match the
conceptual diagrams of the model; in Fig. 1↑ the corre-
spondence between the conceptual diagram for the GPR
model and the 2D Network Creation visualisation of the
model can be seen. By presenting the model structure in
2D, the objects that make up the model can be arranged to
clearly show their relationships to other objects, avoiding
the possibility of objects obscuring each other as can oc-
cur in a 3D projected view. In addition the Populations
have further information presented in this view: the
Population name, the number of neurons in the
Population, and the component type used by the
Population. Populations can be assigned a display colour
to facilitate visual identification and grouping. Projections
also display extra information: thicker lines and a set of
dots at the start of the projection indicate the number of
Synapses in a Projection with more than one Synapse, and
line colour is used to indicate the connection type used for
Projections. Displaying this information ensures that the
user always has an overview of the structure of the model,
which can then be actively interrogated to retrieve or alter
detailed information on single objects through the second
level - selection.

Objects in the 2D graphic can be selected individually, or as
a group (using the shift key to add to the selection, or the right
mouse button to select objects inside a dragged box).
Selecting a group of objects allows these objects to be moved
together in the 2D graphic. Individual selection displays an
interface with information about the selected object in the
panel to the right of the 2D view. These diagrams can be
exported for inclusion in manuscripts as either Portable
Networks Graphic (png) or Scalable Vector Graphics (svg)
image files.

Fig. 3 SpineCreator file structure. The Project file contains a list of all
files contained in the Project. These comprise a complete SpineMLmodel
and Experiments

Neuroinform

Context Sensitive Properties Panel

The interface presented in this panel is different depending on
the class of object selected, and allows the object to be con-
figured. For example, selecting a Population object presents
an interface where the name, size, colour and Component of
the Population can be set. Once a Component is assigned for
the Population, the input interface changes to present an inter-
face for configuring the available Properties (StateVariables
and Parameters) of the assigned Component (see Fig. 2↑). If
several Populations need to share the same Properties (even if
the Components differ) the copy and paste buttons can be used
to copy and paste the Property configuration from one
Population to another.

3D Visualisation

The 2D Network Creation interface provides an efficient and
clear method of creating a model. However for some models,
such as the Striatal Model described here, 3D information
about neuron locations within a Population or connectivity
between Populations is structurally important, and the 3D

interface provides a more natural way to configure and ob-
serve connectivity.

3D Model Visualisation Interface

3D visualisation is provided in the Visualisation pane of
SpineCreator. The interface consists of a 3D viewport to the
left of the interface, topped by a toolbar with options to toggle
the display of neuron indices and to toggle isometric projec-
tion of the model. To the right is a panel with a tree diagram of
the network for selecting objects to configure and toggling
which objects are visible. Below the tree diagram is a section
with a configuration interface for the currently selected object.
Figure 2↑ (B) shows the Visualisation interface.

The advantages of the 3D visualisation over lists is illus-
trated in Fig. 5↓ for an example set of connections between
two populations of neurons: it is clear that the representation
of connectivity for the Projection presented in A is clearer and
more informative than that in B, in which only a few of several
thousand connections are shown, and topographic mappings
cannot be discerned. The highlighting in the 3D diagram dem-
onstrates the context sensitive highlighting of connectivity in

Fig. 4 The Component Creation interface showing the FSI Component
for the Striatal Model with the main UI elements highlighted by colours.
Red: list of Components in the current Project and buttons for new/add/
remove Components. Yellow: toolbar for adding component elements.

Blue: diagram of the dynamics of the currently assigned Component.
Green: context sensitive panel to modify the properties of the currently
selected element in the Component

Neuroinform

the 3D visualisation - connectivity can be highlighted by
source neuron, destination neuron, or the individual connec-
tion. This more informative method of presentation reduces
the chances of errors due to incorrect data entry or connection
parameterisation through visual validation.

Another example, this time with interdigitated popula-
tions, is shown in Figs. 6 and 7↓. This example shows the
connectivity between one FSI and its target MSN D1s.
The visualisation allows the 3D structure of the connec-
tions to be seen.

3D Location Generation

To describe the 3D layout of neurons within a Population,
SpineCreator provides a procedural method, which iterates
through each neuron in turn and calculates the x, y and z co-
ordinates using a set of user specified equations to advance
values from their previous states. The process can be consid-
ered as an animation, with each subsequent frame representing
the location of the subsequent indexed neuron in the popula-
tion. In addition to x, y and z extra state variables can be added
and updated each iteration. If a variable is used in an equation
then the value from the previous iteration will be inserted (or

Fig. 5 aAn example of Projection connections from a neuron visualised
in SpineCreator (currently selected connection highlighted red, other
connections green, the spheres are the individual neurons). b
Connectivity table for the same Projection as in A (only a few of the

thousands of connections listed are shown). With the visual presentation
all connections can be seen simultaneously, and topographic patterns are
apparent, while the table only permits a subset of the connections to be
viewed

Fig. 6 Procedural layout generation for a grid with a row length of three.
p is increased at each iteration, and the x and y co-ordinates of that neuron
are calculated using the respective formulae. The layout method can be
conceptualised as an animation, with the equations determining how to
transition between adjacent frames, and the index of each frame
corresponding to the index of the neuron that should be placed at these
co-ordinates

Fig. 7 Connections (green) of a selected FSI in the Striatal Model to all
target MSND1s.Grey balls are cortical inputs, blue areMSND1s, yellow
areMSND2s and red are FSIs. Connections toMSND1s from other FSIs
are light grey

Neuroinform

zero for the first iteration), unless the value has been updated
in the current iteration. Figure 6↓ shows a diagram of the
procedural method for a grid with a row length of 3 μm.
This layout was used in the BG SNN model to create six
channels consisting of seven neurons each. New types of lay-
out generation are specified using a graphical interface.

The equations used in a layout can also include uniform
random numbers by using the rand() term. A seed can be
specified in order to generate consistent random layouts, and
a minimum distance can be specified to prevent neuron co-
ordinates from being closer than is biologically realistic. A 3D
layout, using random numbers to specify the x, y and z co-
ordinates of each neuron, was used to generate the co-
ordinates of the neurons in the Striatal Model. Using proce-
dural layouts increases the speed of specifying co-ordinates in
comparison with entering explicit co-ordinate lists, and the
neuron co-ordinates can then be used with SpineCreator’s
extended connectivity types, which will now be described.

Extended Connectivity Types

One advantage of a creation tool is that it can provide
functionality that is not present in the underlying XML

format. SpineML describes several connectivity types,
however most forms of connectivity must be specified
as an explicit list of [source index, destination index,
delay] triplets (ensuring that any model can be sup-
ported with minimal simulator functionality). This re-
quirement makes specifying connection types such as
Gaussian receptive fields difficult, as explicit lists must
be generated for the connections, with a corresponding
lis t for the weights. To simplify this process,
SpineCreator provides a means of extending the con-
nectivity types of SpineML via Python scripts. These
scripts are added to SpineCreator through the Settings/
Preferences dialog, and once added appear in the list
of connection types. Although the creation of an ex-
tended connectivity type requires knowledge of pro-
gramming in Python, using and configuring one does
not. To allow non-programmers to use and configure
extended connectivity types a set of formatted com-
ments is added to the top of the Python script: these
specify parameters to pass to the script, and define
how SpineCreator should provide a graphical interface
for these parameters. An example script is shown
below:

Adding parameters to the SpineCreator GUI is performed
using the #PARNAME comment, which gives a name used as
a label for the parameter, and a #LOCwhich describes the row
and column where the parameter should be added in a grid for
laying out the parameters. The order of the parameters in the

code denotes the order they have in the corresponding Python
function call, and allows the label to have a more descriptive
name than the variable used in the function. In addition there
are two more comments that are parsed; #HASWEIGHT and
#HASDELAY, which inform SpineCreator if the script needs

#PARNAME=sigma #LOC=1,1
#PARNAME=minimum_weight #LOC=2,1
#HASWEIGHT

def connectionFunc(srclocs,dstlocs,sigma,min_w):
import math
normterm = 1/(sigma*math.sqrt(2*math.pi))
i = 0
out = []
for srcloc in srclocs:

j = 0
for dstloc in dstlocs:

dist = math.sqrt(math.pow((srcloc[0] - dstloc[0]),2) + \
math.pow((srcloc[1] - dstloc[1]),2) + \
math.pow((srcloc[2] - dstloc[2]),2))

gauss = normterm*math.exp(-0.5*math.pow(dist/sigma,2))
if gauss > min_w:

conn = (i,j,0,gauss)
out.append(conn)

j = j + 1
i = i + 1

return out

Neuroinform

to generate a weight and/or a delay. If a weight is generated
SpineCreator will provide a drop-down list of the correspond-
ing Properties in the WeightUpdate Component, and the se-
lected Property will have the weight values inserted when the
connectivity is generated.

The function itself has arguments srclocs and dstlocs,
which are Lists of Tuples, each Tuple containing the x, y,
and z co-ordinates of the neuron at that index in the List.

Generating the explicit list of connections for larger
Populations is slow, requiring a lot of computation to be per-
formed, and therefore we minimise the amount of generation
using the following strategies. Within SpineCreator the con-
nectivity lists are not regenerated unless the script text, script
parameters, or the source or destination sizes change. When
writing the model out for simulation or storage, it is important
that SpineCreator stores both the means of generating these
extended connectivities, as well as the full ConnectionList in
order that the XML version of the model is always a valid and
accurate SpineML model. To achieve this, only if the connec-
tivity has not already been generated by SpineCreator is it
generated, and the full connectivity is saved in the SpineML
model as a ConnectionList, and the Python script and param-
eter values are saved separately in the ConnectionList
Annotations tag. This method has two main advantages.
Firstly it guarantees an accurate SpineML model is always
saved, and can therefore be loaded into other creation tools.
Secondly, it speeds the process of loading a model into
SpineCreator, as the connectivity does not need to be gener-
ated each time.

It should additionally be noted that Python scripting is de-
fined in SpineCreator’s codebase as a ‘generator’ class, which
acts via a ConnectionList class. This method of constructing
the codebase allows that future standardised connectivity

description formats can be added with minimal effort to the
developers. Pragmatically, however, any future additional
specification methods should still store the connectivity as a
ConnectionList in the XML to maximise simulator support.
Standardisation of certain Annotations within the
ConnectionList tag could then provide a means of sharing
the generation method between tools.

Experiment Creation, Simulation and Simulation Data
Visualisation

Experiment Creation

In SpineML, Experiments are separated from the model de-
scription: a feature encouraged in other model formats
(Gleeson et al. 2010; Cannon et al. 2014; Raikov et al.
2011). This separation can be conceptualised as the difference
between an experimental animal (the model) and the experi-
mental paradigm (electrodes used to record data, what stimuli
to present, what neuropharmacological manipulations to ap-
ply) (Waltemath et al. 2011). A single animal can be involved
in a range of experiments, and therefore it is important to have
a separate layer to describe the experimental procedure.
SpineML Experiments can be managed in the Experiment
Creation section of SpineCreator, with the ability to add ex-
periments and specify their names and text descriptions. An
example of an Experiment for the GPR model is shown in
Fig. 8↓. Here a time-varying signal is added to the first two
channels of the model, and the responses of several nuclei are
recorded, with only the activity of the first two neurons in the
D1 Striatal Population recorded. The effect of randomised
values for the D1 Striatum dopamine input are investigated
using a Property Change to override the value in the model.

Fig. 8 SpineCreator Experiment editor interface. A simple experiment for the GPR Basal Ganglia model is shown, with inputs, outputs and property
changes

Neuroinform

By using Property Changes, collaborators can investigate the
effect of different property values without changing the
Network.

The interface is based on the interface metaphor of a work-
book, with the panel to the left of the interface listing the
Experiment entries. When these are selected the columns to
the right fill with text descriptions of the manipulations for the
Experiment. By using sentences with bold fonts to emphasise
key data, information about the Experiment can be found at a
glance.

Simulation

As SpineML is a simulator independent model storage format
it aims to support a wide range of simulators. As support for
simulators increases it is important that SpineCreator allows
easy addition of simulators by the user. Access to simulators
from the graphical interface is not essential, but is required to
meet SpineCreator’s of makingmodelling more accessible. To
this end simulators are supported through scripts (for example,
BASH onUNIX and Batch file onWindows) that operate on a
model stored in SpineML. These scripts can be configured
using an extensible list of system environment variables.
Thus the user can be given a simple set of instructions by a
simulator author that allows them to add support for that

simulator to SpineCreator. This script based system also al-
lows the same scripts to be used by other SpineML model
creation tools or from the command line with a hand written
SpineML model.

The BRAHMS code generation target is provided as the
Reference simulator, and supports all features of the SpineML
language.. The results of simulation for the GPR model using
BRAHMSvia SpineML code generation can be seen in Fig. 9.

Other simulators are supported as described in the original
SpineML paper (Richmond et al 2013), and ongoing develop-
ment and support of simulator targets for SpineML is kept up
to date on the SpineML website at http://spineml.github.
io/simulators/, where installation instructions for the
SpineML BRAHMS code generation target can be found.

Logging and Graphing

SpineCreator enables simulation data to be logged through the
SpineML Experiment layer. These logs are then presented
within the Graphing panel to the user, and can be plotted as
line graphs for analog data and raster plots for event data.
Graph drawing is undertaken using QCustomPlot
(Eichhammer 2015). This facility is intended to provide im-
mediate visualisation of the data for greater accessibility and
for more rapid iteration of model development than is possible

Fig. 9 Left: 3D visualisation from SpineCreator of the GPR model (a)
and the SNN version (b). Right: Results from the GPR model (a) and the
SNN version (b). Varying signals (dashed line) are fed into channels one
and two while the remaining channels have no signal, as represented by
channel three. The output of the GPi for each channel (solid line) is

shown. The SNN output spikes are convolved with normalised
Gaussian functions (σ = 100ms) for comparison with the rate-coded
output. Selection on a channel occurs when the GPi output decreases
below 0.1, or 10 Hz. Both models show the same pattern of selection,
with dual selection when channels 1 and 2 have equal input values

Neuroinform

http://spineml.github.io/simulators/
http://spineml.github.io/simulators/

with external programs, as the process of loading logs and
updating graphs between simulation runs is handled automat-
ically by SpineCreator through communication with the sim-
ulator, while external programs are likely to require manual
updating of graph plots. However, more complex analysis is
possible using external programs, aided by an XML file writ-
ten alongside the data file for each log that describes the
source, type, and quantity of data logged. Figure 10 shows
the interface while plotting the results of the experiment from
BExperiment Creation, Simulation and Simulation Data
Visualisation↑^ section.

Features to Facilitate Collaboration and Dissemination

Version Control

In any collaborative or shared model creation software,
versioning is important. We therefore have integrated the
Mercurial version control system (VCS) (http://mercurial.
selenic.com/) into SpineCreator using a unified versioning
structure that will support additional VCS in the future. The
VCS is automatically detected on the user’s computer and
these options for version control are only presented if
Mercurial is present. Currently repositories for SpineCreator
Projects must be created outside of SpineCreator, but
subsequently the repository can be managed and queried
from within the tool.

Publication Quality Diagram Output

Currently there is no standardisation of the diagrams used in
publications to describe models. A review (Nordlie et al.

2009) tried to identify themes and good practice; see
Figs. 10↑ and 11↓ for diagrams of Components and
Networks output from SpineCreator. There is currently only
one diagram export format for Components (shared with
lib9ML (Raikov et al. 2011) and compatible with LEMS
(Gleeson et al. 2010; Cannon et al. 2014)) and two for
Networks based on the recommendations found in the review.
The support of Scalable Vector Graphics output allows vector
graphics images to be created, which can then be edited and
annotated.

Discussion

In this paper we have presented SpineCreator, a GUI for
the creation of neural models using the declarative XML
format, SpineML. Creation tools are essential for the up-
take and usability of any XML based neural model spec-
ification format, as the effort of writing models by hand in
such formats is a major drawback for all but the simplest
models. This interface facilitates the creation of SpineML
models, and increases the accessibility of the SpineML
modelling toolchain to those without a background in
computer programming. The extended connectivity types
allow the creation of complex rule based connection
schemes, thereby extending the functionality of the
SpineML format. The visualisation features of the inter-
face allow the structure of the model to be easily present-
ed and understood. SpineCreator imposes no limits on the
size of models, barring the availability of memory on the
host machine.

Fig. 10 SpineCreator Graphing interface. The results of the experiment shown in Fig. 8↑ are plotted for the first three channels of the BG model

Neuroinform

http://mercurial.selenic.com/
http://mercurial.selenic.com/

Facilitating the Creation of Models

Primarily, SpineCreator is designed to facilitate the crea-
tion of neural models. This can be undertaken using
SpineCreator as the sole model creation tool, however
since SpineCreator saves the model in the SpineML
XML exchange format models can be easily authored
using several tools. For example, it may be beneficial to
create repetitive structures in a programming language,
where a for-loop can be used to iterate over each element.
The resul t ing model can then be imported into
SpineCreator and details can be added once the model is
organised in a 2D flow-diagram form where it is easier to
see the relationships between the elements. To benefit
such collaboration between creation tools we provide an

onl ine resource descr ibing the s t ructure of the
SpineCreator Project file as well as the Annotations that
SpineCreator adds to the SpineML Network file. This can
be found at http://spineml.github.io/spinecreator/.

Model creation is also facilitated through some of the
features provided by the SpineML format structure, as
using a layered approach to describe models (Raikov
and De Schutter 2012) facilitates reuse. Components can
be reused within the same model, and this is an approach
adopted in many simulator independent and simulator de-
pendent tools (e.g. PyNN). Networks can also be reused
by their inclusion in new Projects, thus a Systems
Integration approach, where existing models of different
parts of brain function can be combined into a model of a
larger part of the brain, is supported by SpineCreator.

Fig. 11 a a diagram of Fast-
Spiking Interneuron dynamics
exported by SpineCreator. b and c
A diagram of Striatal microcircuit
exported by SpineCreator with
two different styles, one with less
and one with more information
density

Neuroinform

http://spineml.github.io/spinecreator/

Several further features of SpineCreator also play a role in
facilitating model creation:

By only presenting information when an object is selected,
and providing a clear visual indication of the selected object,
SpineCreator minimises the amount of detailed information
presented to the user and facilitates the identification of the
information the user is seeking. This interrogative approach to
finding information is used in SpineCreator as an alternative
to presenting all information at the same time or in a specific
order as in a script. This approach increases the speed with
which information can be located and changed by minimising
the number of options presented to the user at each stage -
increasing the ease with which a model can be created and
preventing overwhelming inexperienced users with a cluttered
interface.

Version control is essential to any large, collaborative pro-
ject. While version control is possible with any tool, as VCSs
are capable of versioning even binary files, the advantage of
SpineCreator is that the version control is integrated into the
graphical interface. This methodology ensures that the func-
tionality is accessible without requiring knowledge of specific
command line tools. Using version control reduces the chance
of model divergence, and allows verification that the right
version of the model is being used to reproduce results.

The integration of standardised diagram output in
SpineCreator helps model authors by reducing the time spent
creating diagrams of models, and removes the possibility of
inaccurate diagrams by creating the diagrams directly from the
model itself. Most importantly, providing diagram output in a
standard form ensures that diagrams are clear and
understandable.

The extended connection types added to SpineML by
SpineCreator allow complex connectivity patterns to be de-
scribed simply using the graphical interface and visualised in
3D. This extension removes the requirement to use additional
software or programming to create such connectivity and thus
makes the SpineML toolchain more accessible to non-pro-
grammers. Likewise, the built in graphing allows simple raster
and line plots of simulation outputs to be created without the
use of external tools, providing immediate feedback on the
results of a simulation, without having to use external
graphing programs.

Improving Accessibility Through a Clear Interface
to the Model

Collaborative modelling and sharing models to promote reuse
is becoming increasingly important as our understanding of
neural systems increases, and models grow in scale and com-
plexity. Large projects involving multiple disciplines, includ-
ing experimentalists and theoreticians, are widespread. In such
projects it is important that collaborators without a program-
ming background can understand and contribute to

computational modelling. Collaboration and sharing also in-
creases the number of checks the model undergoes (decreas-
ing the possibility of errors). It is also important that the end
products of these projects are proliferated into the wider sci-
entific community in a form that is both accessible and under-
standable. The graphical representations of models that
SpineCreator provides can help with these goals.

When sharing and exchanging models it is important that
the model recipient is able to understand the model rapidly.
Graphical representations provide a conceptual overview of
the structure of the model, and can reference the flow of the
model through flow-chart style diagrams of Populations and
Projections, or reference the anatomical basis of the model
using three dimensional representations. Through these refer-
ences the recipient of the model can more easily understand
the model. This graphical representation allows SpineCreator
to fit into the workflow of a large project by providing an entry
point into understanding a complex model, both for modellers
looking to extend or modify the model, or for experimenters
looking to understand the modelling work and use it to guide
further experiments. Thus, collaboration between experimen-
talists, theoreticians and modellers is facilitated by making the
model accessible and understandable to those without a back-
ground in computer programming.

The accessibility provided by a graphical representation
also enables SpineCreator to be used as an educational tool
for the teaching of neuron dynamics in disciplines where com-
puter programming skills are not taught. Currently in other
common model description formats (Davison et al. 2008;
Eppler et al. 2008) programming is a requirement for creating
neuron dynamics whereas SpineCreator removes this require-
ment, making the field more accessible.

Levels of Use

While SpineCreator can provide a clear interface for non-pro-
grammers, it also supports different levels of use depending on
the user’s level of understanding. At the simplest level users
can build either individual neurons as components to integrate
into an existing network, or build networks out of existing
components, or modify the parameters of an existing model
and through experimentation discover how this affects the
model’s behaviour. This process requires no programming
knowledge.

Users who are unfamiliar with computer programming can
use SpineCreator to build components and networks using
extended Python connectivity provided for them, also without
requiring any programming knowledge.

Finally, advanced users who have programming experience
can create extended Python connectivities using all the fea-
tures of SpineCreator.

By facilitating exporting publication quality diagrams
SpineCreator can also help the dissemination of finished

Neuroinform

models for users in the research community, and can facilitate
collaborative work using the version control interface built
into SpineCreator.

By including this tiered approach users can utilise
SpineCreator at all levels from student through to researchers,
without needing to appreciate the more advanced features
SpineCreator offers more experienced users.

Comparison with Existing Tools

There is no direct comparison for SpineCreator amongst the
existing model creation tools. NeuroConstruct (Gleeson et al.
2007) is a simulator independent model creation GUI utilising
an XML description format for storage, however it is focused
on the creation of detailed compartmental neural models and
networks in the NeuroML language - for creating SNN
models it has a high learning curve and unintuitive interface,
and it cannot be used to construct RCN models. Aside from
SpineCreator, there is no equivalent of NeuroConstruct for
SNN and RCN creation.

SpikeNET (Delorme et al. 1999; Delorme and Thorpe
2003), XNBC (Vibert et al. 1997, 2003), and SNNAP (Ziv
et al. 1994) are software packages that consist of an integrated
creation tool and simulator. These tools focus on providing a
set of standard neuron models, such as the LIF and Izhikevich
models, and do not permit the user to modify the dynamical
equations of one of these types, or add a new type. One re-
quirement of the SpineML toolchain is that it can be used to
create models that currently can only be created in C and
Matlab, and thus these tools do not fulfill that requirement.

NeuralSyns (Sousa and Aguiar 2014) is a set of graphical
tools for creating and simulating neural networks of spiking
neurons. The tools focus on removing the requirement for
programming, and providing 3D visualisations of neurons
and simulation activity, however programming is required to
add neuron model types. These requirements highlight two
main differences in philosophy from SpineCreator, as
NeuralSyns uses an internal format for storing models, which
is not designed to work as part of a wider toolchain. This
format relies on the use of a single simulator, while the
SpineML format used by SpineCreator provides a full speci-
fication of the model, which allows any user to translate the
XML description into standardised running code. NeuralSyns
also provides graphical visualisation as a simulator feature,
rather than as a part of the modelling process, instead using
a graphical interface of buttons and menus. Therefore while
there is some overlap between the tools there is also a clear
distinction.

Several tools use the high level Python programming lan-
guage for model creation (PyNN (Davison et al. 2008), Brian
(Goodman and Brette 2008), pyNEST (Eppler et al. 2008)).
These tools use a scripting approach where a set of functions
are used to build the model. The scripting approach allows for

extremely compact descriptions of models, but trades off
model comprehensibility, as scripted models can be extremely
difficult to read and understand. On the other hand, declarative
formats are inflexible, and can require considerable duplicated
content. SpineCreator tries to combine these two approaches,
providing structure and constraint by using a declarative XML
format to save models, but also providing tools such as
copy/paste, one click duplication of Components, and extend-
ed connectivity types to facilitate the creation of these declar-
ative models. Always, the declarative output of the procedural
syntax can be visualised to confirm that the declarative model
output is as expected.

Limitations and Future Development

SpineCreator is intended as a first creation tool for the
SpineML toolchain, and it is expected that it will sit alongside
other creation tools, all exporting models to a shared XML
format. In addition, SpineML is a proposal for the completion
of the NineML specification, and as such it is the intention to
integrate SpineML with NineML and NeuroML 2.0’s LEMS
format.

Information Sharing Statement

The example models presented within this paper (namely the
GPR Basal Ganglia models and Striatal model) are available
in complete form from the SpineML website (http://spineml.
github.io). Additional documentation is also available to aid
users in reproducing the experiments and results presented.

Installation

SpineCreator is available to download from the SpineML
website at http://spineml.github.io/spinecreator/, where
extensive instructions are provided on installation under
Macintosh OSX and Linux. There is additionally a list of
supported backend simulators on the SpineML website at
http://spineml.github.io/simulators/.

Acknowledgments This work was supported by ESPRC via the
Biologically-Inspire Massively Parallel Architectures (BIMPA) grant
(EP/G015627/1), the Green Brain: Computational Modelling of the
Honeybee Brain grant (EP/J019690/1), and via EPSRC Delivery Plan
‘Kickstart’ funding.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Neuroinform

http://spineml.github.io/
http://spineml.github.io/
http://spineml.github.io/spinecreator/
http://spineml.github.io/simulators/

References

Bichot, N. P., Thompson, K. G., Chencha, R. S., & Schall, J. D. (2001).
Reliability of macaque frontal eye field neurons signaling saccade
targets during visual search. Journal of Neuroscience, 21(2),
713725.

Cannon, R. C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini,
E., & Silver, R. A. (2014). LEMS: a language for expressing com-
plex biological models in concise and hierarchical form and its use
in underpinning NeuroML 2. Frontiers in Neuroinformatics, 8, 79.

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E.,
Pecevski, D., Perrinet, L., & Yger, P. (2008). PyNN: a common
interface for neuronal network simulators. Frontiers in
Neuroinformatics, 2, 11.

Delorme, A., & Thorpe, S. J. (2003). SpikeNET: an event-driven simu-
lation package for modelling large networks of spiking neurons.
Network (Bristol, England), 14(4), 61327.

Delorme, A., Gautrais, J., van Rullen, R., & Thorpe, S. (1999).
SpikeNET: a simulator for modeling large networks of integrate
and re neurons. Neurocomputing, 26, 989996.

Eichhammer, E. (2015). QCustomPlot. Version 1.3.1. [ONLINE]
Available at: http://www.qcustomplot.com/index.php/introduction.
Accessed 25 April 2015.

Eppler, J., Helias, M., Muller, E., Diesmann, M., & Gewaltig, M. (2008).
PyNEST: a convenient interface to the NEST simulator. Frontiers in
Neuroinformatics, 2, 12.

Gleeson, P., Steuber, V., & Silver, R. (2007). neuroConstruct: a tool for
modeling networks of neurons in 3D space. Neuron, 54(2), 21935.

Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O.,
Farinella, M., et al. (2010). NeuroML: a language for describing
data driven models of neurons and networks with a high degree of
biological detail. PLoS Computational Biology, 6(6), e1000815.

Goodman, D., & Brette, R. (2008). Brian: a simulator for spiking neural
networks in python. Frontiers in Neuroinformatics, 2, 5.

Gurney, K., Prescott, T. J., & Redgrave, P. (2001a). A computational
model of action selection in the basal ganglia. I. A new functional
anatomy. Biological Cybernetics, 84, 401410.

Gurney, K., Prescott, T. J., & Redgrave, P. (2001b). A computational
model of action selection in the basal ganglia. II. Analysis and sim-
ulation of behaviour. Biological Cybernetics, 84, 411423.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano,
H., et al. (2003). The systems biology markup language (SBML): a

medium for representation and exchange of biochemical network
models. Bioinformatics, 19(4), 524531.

Humphries, M. D., Lepora, N., Wood, R., & Gurney, K. (2009a).
Capturing dopaminergic modulation and bimodal membrane behav-
iour of striatal medium spiny neurons in accurate, reduced models.
Frontiers in Computational Neuroscience, 3, 26.

Humphries, M. D., Wood, R., & Gurney, K. (2009b). Dopamine-
modulated dynamic cell assemblies generated by the GABAergic
striatal microcircuit. Neural Networks, 22(8), 117488.

Humphries, M. D., Wood, R., & Gurney, K. (2010). Reconstructing the
three-dimensional GABAergic microcircuit of the striatum. PLoS
Computational Biology, 6(11), e1001011.

Izhikevich, E.M. (2007).Dynamical systems in neuroscience. MIT Press.
Nordlie, E., Gewaltig, M., & Plesser, H. E. (2009). Towards reproducible

descriptions of neuronal network models. PLoS Computational
Biology, 5(8), e1000456.

Raikov, I., & De Schutter, E. (2012). The layer-oriented approach to
declarat ive languages for biological modeling. PLoS
Computational Biology, 8(5), e1002521.

Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De
Schutter, E., et al. (2011). NineML: the network inter-change for
neuroscience modeling language. BMC Neuroscience, 12(Suppl
1), P330.

Richmond, P., Cope, A., Gurney, K., & Allerton, D. J. (2013). From
model specification to simulation of biologically constrained net-
works of spiking neurons. Neuroinformatics.

Sousa, M., & Aguiar, P. (2014). Building, simulating and visualizing
large spiking neural networks with NeuralSyns. Neurocomputing,
123, 372–380. doi:10.1016/j.neucom.2013.07.034.

Vibert, J. F., Pakdaman, K., Boussard, E., & Av-Ron, E. (1997). XNBC: a
simulation tool. Application to the study of neural coding using
hybrid networks. Biosystems, 40(1-2), 2118.

Vibert, J. F., Alvarez, F., & Kosmidis, E. K. (2003). XNBC V9: a simu-
lation package of biological neural networks for the neurobiologist,
easy to use, full featured and extensible. AMIA Annual Symposium
Proceedings, 1077.

Waltemath, D., Adams, R., Bergmann, F. T., Hucka, M., Kolpakov, F.,
Miller, A. K., et al. (2011). Reproducible computational biology
experiments with SED-ML the Simulation Experiment Description
Markup Language. BMC Systems Biology, 5(1), 198.

Ziv, I., Baxter, D. A., & Byrne J. H. (1994). Simulator for neural networks
and action potentials: description and application. Journal of
Neuropsychology, 71(1), 294.

Neuroinform

http://www.qcustomplot.com/index.php/introduction
http://dx.doi.org/10.1016/j.neucom.2013.07.034

	SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models
	Abstract
	Introduction
	Overview
	Key Principles

	Methods
	Models
	Basal Ganglia RCN
	Basal Ganglia SNN
	Striatal Model

	Results
	Overview
	Outline of the SpineCreator Interface
	Component Creation
	Network Creation
	2D Interface
	Context Sensitive Properties Panel

	3D Visualisation
	3D Model Visualisation Interface
	3D Location Generation
	Extended Connectivity Types

	Experiment Creation, Simulation and Simulation Data Visualisation
	Experiment Creation
	Simulation
	Logging and Graphing

	Features to Facilitate Collaboration and Dissemination
	Version Control
	Publication Quality Diagram Output

	Discussion
	Facilitating the Creation of Models
	Improving Accessibility Through a Clear Interface to the Model
	Levels of Use
	Comparison with Existing Tools
	Limitations and Future Development

	Information Sharing Statement
	Installation

	References

