
This is a repository copy of Energy-aware resource allocation in multi-mode automotive
applications with hard real-time constraints.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/104871/

Version: Accepted Version

Proceedings Paper:
Dziurzanski, Piotr orcid.org/0000-0001-9542-652X, Singh, Amit Kumar and Indrusiak,
Leandro Soares orcid.org/0000-0002-9938-2920 (2016) Energy-aware resource allocation
in multi-mode automotive applications with hard real-time constraints. In: Proceedings -
2016 IEEE 19th International Symposium on Real-Time Distributed Computing, ISORC
2016. 19th IEEE International Symposium on Real-Time Distributed Computing, ISORC
2016, 17-20 May 2016 Institute of Electrical and Electronics Engineers Inc. , GBR , pp.
100-107.

https://doi.org/10.1109/ISORC.2016.23

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Energy-aware Resource Allocation in Multi-mode

Automotive Applications with Hard Real-Time

Constraints

Piotr Dziurzanski, Amit Kumar Singh and Leandro Soares Indrusiak

Department of Computer Science, University of York, Deramore Lane, Heslington, York, YO10 5GH, UK.

{Piotr.Dziurzanski, Amit.Singh, Leandro.Indrusiak}@york.ac.uk

Abstract—This paper presents an energy aware resource al-

location approach that benefits from modal nature of hard-

real time systems under consideration. The modal nature of the

considered applications made it possible to decrease the number

of active cores consuming high power in certain modes or to

switch into core states with lower power consumption, which

lead to considerable energy savings while still not violating any

of the timing constraints. For the considered automotive use case,

the number of required cores has been decreased by up to 75%

in a particular mode and relatively low amount of data is to

be migrated during the mode change. The trade-off between the

amount of data to be migrated and energy dissipation in the

subsequent state is also analysed.

I. INTRODUCTION

In contemporary cars the number of electronic control units

(ECUs) sometimes reaches even 100. Since building an em-

bedded system comprised of such number of devices is rather

challenging, the automotive industry gradually resigns from

their paradigm of using a separate unit for each functionality

[10]. This has led to the requirement of placing a number of

ever more sophisticated functionalities in one chip, which has

resulted in appearance of multi-core ECUs [19].

Based on the AUTOSAR (AUTomotive Open System AR-

chitecture) standard [1], atomic software components, named

runnables, are mapping statically (i.e. determined during de-

sign time) into cores since it is less complex and more pre-

dictable than dynamic resource allocation [8]. The runnables

in automotive systems are usually confined with hard real-

time constraints. Consequently, the cores have to execute all

the tasks on time even for their worst-case execution behavior,

where they take the worst-case execution time (WCET), which

is usually much higher than the average execution time [18].

The difference between the worst and average task execution

times can be decreased by exploiting modal nature of such

applications. The modal nature determines the number of ways

in which the applications can behave, referred to as modes, and

it can be known at design time.

Some modes of an example gasoline engine, together with

its relation with its throttle, RPMs and acceleration pedal are

illustrated in Fig. 1 (idea of this picture has been taken from

[11]). The starting mode, PowerUp, describes the situation

when the the key has been just inserted into the ignition. In the

RPM

idle RPM

throttle [%]

idle threshold

wide open
throttle threshold

0

0

PowerUp Stalled Cranking Idle Drive

Fig. 1. Modes in DemoCar

following Stalled mode the throttle is still closed. In cranking

mode the engine starts, so the number of RPM increses up

to the idle RPM level. Then the engine stays in the Idle

mode as long as the driver does not push the accelerator

pedal. Thereafter, the current mode changes to Drive, where

the throttle opens and the number of RPM grows above the

idle RPM level. If each mode is analysed independently, the

average execution time may be closer to the WCET determined

for that mode [13].

In different modes, the contexts of runnables that are

executed on different cores need to be migrated from one core

to another. This sets additional requirements for the available

communication bandwidth. The process of mode switching

(e.g. from PowerUp to Drive) usually incurs overhead (both in

execution time and energy), if allocation needs to be changed.

This overhead needs to be taken into account at run-time to

decide whether to change the allocation for the next mode or

not.

In hard real-time systems, even during the mode switching

process, it is essential to satisfy all the timing constraints,

i.e. the migration time of tasks must be time bounded [6].

Therefore, the worst case switching time has to be assumed

to provide the timing guarantees.

To enable energy awareness in automotive systems, Dy-

namic Voltage and Frequency Scaling (DVFS) technique om-

nipresent in CMOS circuits can be exploited [12]. It benefits

from the fact that their dynamic (or switching) power P is pro-

portional to the square of core supply voltage V and its clock

frequency f , P ∝ fV 2. Contemporary circuits usually follow

the Advanced Configuration and Power Interface (ACPI) open

standard, defining processor states known as P-states. In the

highest P-state, P0, a processor works with the highest voltage

and frequency level, but offers the best performance. In P1

and other modes, the processor works slower, but dissipates

less energy. Since any reduction of core voltage requires

an adequate decrease of the clock frequency, some trade-

off between energy savings and computation performance is

expected. Some guidance in real-time systems stems from the

fact that there is usually no additional benefits from faster

task execution as long as it is before the deadline. Therefore,

slower executions at lower voltage and frequency levels can be

performed while meeting the deadline in order to save energy

consumption.

Contribution: In this paper, we consider various modes of

automotive applications and determine the best allocation for

each mode by employing a genetic algorithm (GA) based

approach. The approach performs optimization for energy

dissipation and migration cost in terms of the context length of

the transmitted runnables. To guarantee that the mode switch-

ing migration finishes in the required time, the traditional

schedulability analysis is used to determine the necessary

network bandwidth.

This paper is organised as follows. In the next section, the

state-of-the-art solutions are reviewed. Then, in Section III,

the applied application and platform models together with

the problem formulation are described. In Section IV the

steps of the proposed design flow are presented. They are

experimentally evaluated in Section V using an engine ECU

code named DemoCar from Robert Bosch GmbH. The paper

is concluded in Section VI.

II. RELATED WORKS

Exploiting the knowledge about distinguishable operating

modes in a system is tempting and thus modal systems are

an increasingly popular subject in research. Since the number

of possible scenarios is typically prohibitively high [16], a

number of research activities aims at developing design-time

(off-line) heuristics to reduce the number of operating points.

This Design Space Exploration (DSE) process can be carried

out using classic heuristic techniques for clustering modes

so that their final number is manageable. Then during run-

time of that system, a run-time manager (RTM) determines

the current mode out of an explicitly given set by observing

some variables of the model [11].

Two different mapping approaches are proposed in [14], but

they do not allow task migration, i.e. once a task is assigned

to a processing core, it remains there until its computation is

finished. In contrast, Benini et al. [2] allowed tasks to migrate

between processing cores when the envisaged performance

gain is higher than the precomputed migration cost.

The possible modes and transitions between them can be

shown in a formal way in order to analyse the worst case

switching time between two modes. An example formal way

could be to use Finite State Machines (FSMs), as proposed

in [13]. This facilitates to identify all the allowed modes and

the transitions between them, and to check the cost of mode

switchings. In [5], for H.264 decoder, an average switching

time overhead between two modes has been measured to be

equal to 0.2% of the total system time. This slight value has

been caused due to a low number of existing modes, obtained

due to the clustering, and thus relatively lower switching. In

[17], the authors suggest to map as many tasks as possible

to the same core in various modes to avoid the data or

code items to be moved between different resources when

switching between modes. However, this condition does not

take into consideration different context sizes of the tasks. In

the proposed approach, we minimize the amount of data to be

migrated instead.

To guarantee hard real-time during task migration, a

methodology is proposed in [9]. However, a costly schedulabil-

ity analysis is performed during run-time. Further, experiments

supporting their proposed approach are not provided, but one

may predict that the overload of that dynamics could be

considerable.

The approach closest to the approach described in this paper

is that of [11], where mode transition points in an engine

management system are identified and it is shown that a

load distribution by mode-dependent task allocation is better

balanced in comparison with a static task allocation. However,

in contrast to our approach, the task migration costs have not

been considered.

In our prior work [4], an earlier version of the proposed

approach has been presented. In that version, DVFS has not

been exploited, thus only a single objective genetic algorithm

has been employed to find a quasi-optimum mapping, whereas

in this paper we use a two-objective genetic algorithm and

also encode core voltage/frequency levels into inviduals. The

contribution of that paper has focused mainly on the issue of

schedulability in each mode and also during mode changes,

whereas in this paper we present multiple solutions in a form

of a Pareto frontier to choose a solution representing a trade-

off between migration time and the energy consumed in the

future mode. Also, different modes in the DemoCar example

have been indentified.

The close observation of literature survey indicates that

designing real-time systems with distinguishable operating

modes has been mainly limited to soft timing constraints,

which means deadline violations could occur. To the best

of our knowledge, there is no proposal of any other method

guaranteing no hard deadline violation during task migrations

required to move from one mode to another while applying

low cost schedulability analysis to check the feasibility of the

task migration process.

III. SYSTEM MODEL

A. Application model

In this work we assume application model is consistent with

the AUTOSAR standard [1]. A taskset Γ is comprised of an

PowerUpPower
Down

Wait

Stalled Cranking Idle Drive

Fig. 2. FSM describing modes in DemoCar

ψ0,1 ψ1,1 ψ2,1

ψ0,0 ψ1,0 ψ2,0

π0,1 π1,1 π2,1

π0,0 π1,0 π2,0

Fig. 3. An example many-core system platform

arbitrary number of periodic runnables, Γ = {τ1, τ2, τ3, . . .},

grouped in tasks with hard real-time constraints. Their proper-

ties depend on the current mode µ of the application. The j-th

occurrence (j-th job) of runnable τi is denoted with τi,j . The

taskset is known in advance, including the WCET of each

runnable, Ci,µ in every mode µ, its period Ti, priority Pi

and its relative deadline Di equal to this period. Runnables

are atomic schedulable units communicating each other with

so called labels, which are memory locations of a particular

length. The order of read and write operations to labels

denotes the runnable dependencies, as the write operation to

a particular label should be completed before its reading. We

assume that the labels are stored in the same node that the

runnable that reads these labels. If more than one runnable

mapped to different cores read from the same label, its content

is to be replicated to all the reading nodes and the writer should

update the label value at all the locations. It means that the

writer is aware of all its readers and knows their locations in

all the possible modes.

All possible modes of the application together with the

allowed transitions between them are known. They may be

described using an FSM, similar to the one presented in Fig.

2, where 7 modes and 16 possible transitions are shown.

Deadlines for mode changing time between each neighbouring

pair of modes shall be also provided.

B. Platform model

The hardware platform assumed in this paper is a mesh

Network on Chip (NoC) with a certain number of cores π ∈ Π
and routers ψ ∈ Ψ, as shown in example in Fig. 3. Each link

is modelled as a single resource, so, for example, to transfer a

portion of data from π0,1 to appropriate sink π2,0 we need such

resources allocated simultaneously: π0,1 − ψ0,1, ψ0,1 − ψ1,1,

ψ1,1 − ψ2,1, ψ2,1 − ψ2,0, ψ2,0 − π2,0.

In every mode, each runnable is mapped to one core and a

label is stored in the local memories of the cores requesting

that label. Data transfer overhead is taken into consideration,

assuming constant time for transferring a single flit (Flow

control digIT, a piece of a network package whose length

usually equals the data width of a single link) between two

neighbouring cores if no contentions are present. Timing

constants for packet latencies while traversing one router and

one link are denoted as dR and dL, respectively. The priority

of data transfer packets are assumed to be equal to the priority

of the runnable sending them.

The processing cores can operate under a given set of

voltage and frequency levels, but the links have no P-states.

C. Problem formulation

Given a platform and an application model with a defined

set of operating modes, the problem is to determine schedula-

ble mappings for each mode so that the amount of data to be

migrated during allowed mode changes and energy consumed

by the platform are minimized. Since these two criteria may

be contradictory, a trade-off between them shall be illustrated

with a Pareto frontier.

During mode changing, the taskset should be still schedula-

ble despite the additional network traffic generated by the task

migrations. The neighbouring modes with similar runnables’

execution time can be clustered to decrease the frequency of

task migrations. Deadlines for mode changing time between

each neighbouring pair of modes must not be violated.

IV. PROPOSED APPROACH

In this section, steps of the proposed design flow are

described. Since it has been assumed that the tasksets of the

considered application are known in advance, it is possible to

perform the majority of the required computations statically.

Consequently, the mapping problem can be split into two

stages: off-line (static) and on-line (dynamic), as shown in

Fig. 4. The computation time of the off-line part is not crucial

and thus heuristics with even high complexity, such as genetic

algorithms, may be used for runnable and label mappings.

During the application run-time, detection of the current

mode is assumed to be done by observing a certain variable.

When a value of this variable has been changed, the current

runnable and label mapping might need to be changed. The

mappings have been identified at the design time while trying

to minimize the amount of data to be migrated during the static

mapping and P-state selection step. Schedulability analysis

Detection of current

mode

Mode detection /

clustering

(optional)

Spanning tree

construction

Static mapping for

initial mode

Static mapping for

non-initial modes,

generation of Pareto

frontier

Schedulability analysis

for taskset during mode

changes – bandwidth

determining

Mapping switching

Changing voltage/

frequency levels

(P-states) of cores

o
ff

-l
in

e
o

n
-l

in
e

Fig. 4. Steps of the proposed energy aware dynamic resource allocation method benefiting from modal nature of applications

guarantees that even the worst case switching time does

not violate the deadline required for mode changes. If such

violation is unavoidable, either the states can be clustered, or

the network bandwidth is to be increased.

A. Static mapping

1) Initial mode: Algorithm 1 presents a pseudo-code of

a genetic algorithm that can be used to identify a mapping

for the initial identified mode. The algorithm ensures that

no deadline violation occurs under the chosen allocation. We

propose to use two fitness functions - measuring (i) the number

of deadline violations and (ii) the total energy dissipated by

the resources. The first fitness function value is of primary

importance, as in a hard real-time system no deadline violation

is allowed. However, among fully schedulable mappings, the

one leading to a lower dissipated energy is chosen.

Each chromosome in the genetic algorithm contains genes

of two types, as shown on the top of Fig. 5. The first n genes

indicate the target cores for n runnables and the remaining

|Ψ| genes (for a mesh NoC |Ψ| = x · y, where x and y are

the mesh dimensions) specifies the P-states of the consecutive

cores.

In the algorithm, the following two main steps can be

singled out.

Step 1. Initial population initialisation (line 1). An arbitrary

number of random task mappings (individuals and P-states) is

created.

Step 2. Creating a new population (lines 3-10). For each

individual, values of the two fitness functions (the number

of deadline violations and dissipated energy (lines 3-4)) are

computed. Individuals with the same number of deadline

misses are grouped together (line 5). The groups are then

sorted with respect to the number of deadline violations in the

ascending order (line 6). Inside each group, individuals are

sorted according to their growing dissipated energy (line 7).

The tournament selection is then performed, where individuals

from a group with lower number of deadline violations are

always preferred, whereas among individuals from one group

the one with the lowest dissipated energy is to be chosen (line

8). The individuals winning the tournament are then combined

Algorithm 1: Pseudo-code of no deadline violation

with energy minimisation algorithm for the initial

mode mapping

inputs : Workload Γ;

Resource set Π;

outputs : Task mapping; Core P-states;

1 Choose an initial random population of task

mappings and P-states

2 while not termination condition do

3 Evaluate the number of deadline violations;

//criterion (i)

4 Evaluate the dissipated energy; //criterion (ii)

5 Create clusters of individuals with the same

number of deadline violations;

6 Sort the clusters by increasing number of

deadline violations;

7 Sort individuals in each cluster w.r.t the dissipated

energy ;

8 Perform tournament selection; //criterion (i) has

higher priority than criterion (ii)

9 Generate individuals using crossover and

mutation;

10 Create a new population with the best found

mappings;
end

using a typical crossover operation and mutated (line 9). Then,

a new population is created from these individuals (line 10).

Step 2 is repeated in a loop as long as a termination condition

is not fulfilled, which can be a maximal number of generated

populations or lack of improvement in a number of subsequent

generations.

2) Non-initial modes: As mentioned earlier, it is of primary

importance to migrate as little data as possible during mode

changes to minimise the migration time and energy. However,

it may be beneficial to migrate more data if the energy

consumed in the next mode is much lower than the migration

energy. Thus there could be some trade-off between migration

... ...

Runnable mapping (n genes) Core P-state (x∙y genes)

τ1

τ2

τ3

τn

...

Fig. 5. Genes in chromosomes

data (or time) and energy consumption in the next mode. It is

role of a designer to choose a proper solution from the Pareto

frontier.

Each application A includes a set of tasks and can be

represented with a vector comprised of p runnables A =
[τ1, . . . , τp]. Platform Π is composed of s processing cores,

Π = {π1, . . . , πs}. A mapping M is a vector of p core lo-

cations, M = [πτ1 , . . . , πτp], where each element corresponds

with the appropriate element of A and can be substituted with

any element of set Π.

To perform optimization for migration cost that consid-

ers the context length of the transmitted runnables, weight

vector W is introduced. Each element of this vector W =
[wτ1 , . . . , wτp] is equal to the amount of data that has to be

transferred when a particular runnable is migrated, including

the labels to be read or written.

Let Mα and Mβ be sets of mappings (i.e. set of Ms)

that are fully schedulable in a given system in mode α

and β, respectively. The elements of the difference vector

Dmα,mβ
= [dτ1 , . . . , dτp] indicate which runnables are to

be migrated when the mode is changed from α to β. Each

element dδ , δ ∈ {τ1, . . . , τp}, takes value 1 if the particular

runnable/label is allocated to different cores in mappings

mα ∈Mα and mβ ∈Mβ , and 0 otherwise:

dδ =

{

1, if mα,δ 6= mβ,δ,

0, otherwise.
(1)

where mα,δ and mβ,δ denote the δ-th element of vectors mα

and mβ , respectively. The migration cost c between two modes

α and β is then computed in the following way

cmα,mβ
= Dmα,mβ

· WT. (2)

Algorithm 2: Pseudo-code of a migration data

transfer and energy minimisation algorithm

inputs : A spanning tree ST based on Finite State

Machine (FSM) describing the system modes

with transaction probabilities;

W - size of each runnable memory footprint;

outputs : Runnable and label mapping for each mode;

P-states for cores in each mode;

1 Select the initial state of ST and assign it to α;

2 Find a set of schedulable mappings Mα;

3 Select mα ∈ Mα that consumes the lowest

amount of energy;

4 forall β being a direct successor of α in ST do

5 FindMappingMin(α, β, mα);

end

FindMappingMin(α, β, mα)

1.1 Find a Pareto frontier of schedulable mappings

Mβ minimizing criterion Equation (2) and

energy consumption in β using W

1.2 Select mβ ∈Mβ wrt design priorities

1.3 forall q being a direct successor of β in ST do

1.4 FindMappingMin(β, q, mβ)

end

A recursive greedy algorithm for reducing the amount of

data transferred during mode changes is presented in Algo-

rithm 2.

Since some cycles are likely to occur in a graph representing

Cluster2 PowerUp Cluster1

0.9

1

0.05

0.85

0.1

Fig. 6. FSM describing clustered modes in DemoCar

the Finite State Machine describing transitions between modes,

a spanning tree (ST) is to be built, whose branches are labelled

with the transitions probabilities (like in Fig. 6). Then the

mode corresponding to the initial state of the FSM is selected

as the current mode (line 1). For this mode, a set of schedulable

mappings is generated, e.g. with Algorithm 1 (line 2). If more

than one schedulable mapping is found, the one leading to the

lowest energy consumption is selected (line 3). Then for each

direct successor of the ST node corresponding to FSM initial

state, the FindMappingMin procedure is executed (lines 4 and

5).

In the FindMappingMin procedure, a Pareto frontier of

schedulable mappings for that successor node is found using

two criteria: i) minimal migration cost criterion Equation (2)

and ii) minimal energy dissipated in the next mode (line 1.1).

The most suitable schedulable mapping is chosen from the

Pareto frontier based on the design priorities (line 1.2). The

FindMappingMin procedure is then recursively run for each

direct successor of the ST node provided as the function

parameter (lines 1.3 and 1.4).

More mappings could be delivered to the FindMappingMin

procedure to browse a larger search space by skipping lines

3 and 1.2 in the algorithm and providing all elements of Mα

instead of just one. It is the role of a designer to set priorities

between the migration time and energy dissipation to select

the most suitable solution from the Pareto frontier.

B. Schedulability analysis

The proposed task mapping technique aims to benefit from

modal nature of applications, but it also possess new chal-

lenges. If the modes are treated independently from each

other, the end-to-end schedulability of runnables and packet

transmission in each mode can be analysed using equations

from [15].

It is the instant of transition between the modes that requires

special attention. During transition, the task migration time can

be computed with equations from [15], where the packet size

is equal to the sum of the header length and the size of the

payload including the whole context of runnables and labels

to be migrated. To guarantee taskset schedulability during

migration, we propose to treat a migration process as any other

asynchronous process in schedulability analysis, i.e. to use

so-called periodic servers, which are periodic tasks executing

aperiodic jobs. When a periodic server is executed, it processes

pending task migration. If there is no pending migration, the

server simply holds its capacity. Similarly to [9], we split

a runnable context into two parts: i) invariant, which is not

modified at runtime, and ii) dynamic, including all volatile

memory locations. We assume that an upper bound of the

dynamic part size of all runnables is known in advance. This

part shall be migrated at once using the last instance of the

periodic server. It means that the local memory locations that

can be modified by the runnable must not be precopied, but

migrated after the last execution of the runnable in the old

location. This requirement can influence the minimum periodic

server size (i.e. the time allocated to it by a scheduler in each

period) and, consequently, the network bandwidth, as it must

be then wide enough to guarantee migration of dynamic part

before the next runnable execution (in the new location).

In the proposed approach, any kind of periodic servers

can be used, however, the trade-off between implementation

complexity and ability to guarantee the deadlines of hard real-

time tasks, as described for example in [3], shall be considered.

C. On-line usage

In the proposed approach, only two steps are performed

on-line: Detection of current mode and Mapping switching.

We assume that the system modes are defined explicitly

and there is a possibility of determining the current mode by

observing some system model variables1, similarly to [11].

When the mode change is requested, an agent residing in

each core prepares a set of packages with runnables to be

migrated via the network. This agent is configured statically

and is equipped with a table with information about runnables

that need to be migrated during a particular mode change.

Then the precopy of these runnables is performed. In the fol-

lowing hyperperiods, runnables are transported using periodic

servers of the length determined statically using schedulability

analysis, as described earlier. The agent is aware of the number

of periodic server instances that have to be used during the

whole migration process, and have the volatile portion of

the context identified. If this instance number elapses, the

runnables that have been migrated are killed on the earlier

core.

Simultaneously, the same agent can receive migration data

from other agents in the network. After the appropriate number

of hyperperiods, the contexts of these runnables are fully

migrated and are ready to be executed by the operating system.

The details of the agent depend on the underlying operating

system. Regardless its implementation, Detection of current

mode shall be characterised with low computational com-

plexity and thus shall impose low overhead for the system

during run-time. The number of the hyperperiods required for

performing task migration during Mapping switching depends

on the size of runnables and labels to be transferred, mappings,

and network bandwidth, in particular flit size and timing

1In DemoCar such variable is named sm and is stored in runnable

OperatingModeSWCRunnableEntity.

constants for packet latencies while traversing one router and

one link dR and dL.

V. EXPERIMENTAL RESULTS

As an example application, we consider a lightweight engine

control system named DemoCar. It consists of 18 runnables

and 61 labels. All runnables are periodic and combinational,

i.e. their outputs depend only on input values. In Fig. 2,

7 identified modes of this application are presented. These

modes have been identified by inspecting the code of the

runnable named OperatingModeSWC, which computes values

of transaction and output functions of the FSM steering this

engine.

The transitions between modes: Stalled, Cranking, Idle,

Drive, are to be performed between two consecutive execu-

tions of their runnable occurrences, which is upperbounded

with 5ms for 9 runnables. Since performing task migration

during such short time window would require a bandwidth

of considerable size, these modes have been clustered into

Cluster1 (Fig. 6). For a similar reason, Wait has been clustered

with PowerDown into Cluster2. Finally, three modes can be

identified after the clustering step: PowerUp, Cluster1 and

Cluster2, as presented in Fig. 6.

The energy consumption of the multi-core system consid-

ered in this paper has been determined using the technique

described in [7]. They are averages obtained during a series

of simulations.

The processing core consumes 2.08E-4µJ when idle and

3.74E-4µJ when busy. An idle link dissipates 17.86E-6µJ

whereas a link transporting a package dissipates 46.10E-6µJ.

The core energy has been scaled using relation P ∝ fV 2 and

P-states, where the maximum voltage/frequency level has been

assigned.

For the PowerUp (initial) mode of DemoCar to be executed

on a multi-core embedded system, we estimate makespan and

number of violated deadlines during one hyperperiod (i.e. the

least common multiple of all runnables’ periods) by allocating

runnables and labels to different cores.

The size of the NoC mesh has been initially configured as

2x2 with no idle cores, since this size had been earlier checked

(also using Algorithm 1) and is large enough to execute

DemoCar in the most computational intensive mode, Cluster1,

not violating any of its timing constraints. The flit size has

been fixed to 16 bits. The genetic algorithm is executed

again to perform assignment of tasks to cores with timing

characteristics for the initial PowerUp mode. The genetic

algorithm has been configured to generate 100 generations of

20 individuals each. The first fully schedulable allocation has

been found in the 1st generation, which suggests that it might

be possible to allocate the taskset to a lower number of cores.

After performing further search it has appeared that the

taskset in the initial mode is schedulable even when mapped

to one (out of four) active core. The lowest makespan for the

NoC with three idle cores is equal to 8622µs. The energy

consumed in this mode equals to 3093.01µJ per hyperperiod

Data to be migrated [bytes]

E
n
e
rg

y
 u

s
e
d
 i
n
 m

o
d
e
 C

lu
s
te

r_
1
 [
μJ

]

9650

9700

9750

9800

9850

9900

9950

10000

10050

10100

200000 400000 600000 800000

Fig. 7. Pareto curve illustrating the trade-off between minimal amount of

data to be migrated and minimal energy consumed in the next mode

(100 ms). Thus, thanks to the modal approach, one can switch

off 75% of the cores while the application is in the Cluster1

mode.

Regardless of the mode, the application has been mapped in

a 2x2 mesh Network on Chip without deadline violations. For

the PowerUp mode, schedulable mappings have been found

even if three of the four NoC cores remain idle. It means

that in this mode three cores can be switched off, leading to

considerable energy savings. Similarly, two cores can remain

idle in the Cluster2 mode. However, despite intensive search

using a genetic algorithm, all four cores are needed in the

Cluster1 mode to have the taskset fully schedulable. Thus,

when the current mode changes from PowerUp to Cluster1,

three cores have to be activated, whereas two cores can be

switched off after leaving the Cluster1 mode.

Next we focused on the transition between the PowerUp

and Cluster1 modes. For PowerUp, only one core is active and

thus all runnables are to be mapped to the only active core.

However, in other cases a larger set of mappings that are fully

schedulable on active NoC cores would have been identified.

A Pareto frontier using two criteria: minimal amount of data to

be migrated and minimal energy consumed in the next mode

has been constructed and drawn in Fig. 7. If energy dissipation

is crucial for the design and longer switching time can be

accepted, the rightmost solution from the Pareto curve shall

be chosen. On the contrary, the leftmost solution from the

Pareto curve is appropriate for the system with switching time

more bounded, where some energy loss may be tolerated. The

remaining 6 solutions form a compromise between these two

extremes.

Assuming that minimal energy consumption is crucial for

the system, the solution leading to consumption of 9719.45µJ

(in the next mode) should be chosen. Then, using the same

priority, the mapping in the Cluster2 mode would consume

TABLE I

NUMBER OF HYPERPERIODS (100MS) REQUIRED FOR SWITCHING

BETWEEN MODES PowerUp TO Cluster1 IN DEMOCAR DEPENDING ON

ROUTER (dR) AND ONE LINK LATENCIES (dL)

No. of hyperperiods

dR [ns] dL [ns] solution A solution B

100 200 1 1

100 400 1 2

200 500 1 2

400 800 2 3

500 1000 2 3

5909.37µJ.

We also have evaluated the number of hyperperiods required

to migrate tasks from PowerUp to Cluster1, depending on

constants dR and dL are presented in Table I. Two extreme

solutions from the Pareto frontier illustrated in Fig. 7 are

analysed: A is the mapping with the lowest amount of data to

be migrated, B is the solution with the lowest energy dissipated

in mode Cluster1. The hyperperiod length for DemoCar equals

100ms and this time is enough to migrate all data when

the router and link latencies are equal to 50 and 100ns,

respectively.

VI. CONCLUSIONS

An approach for task migration in a multi-core network-

based embedded system has been proposed as a way to

decrease the number of cores needed for guaranteing safe

execution of a hard real-time software. Applying different

value/frequency levels (P-states) to cores facilitates decreasing

of energy dissipation even further. The poposed approach is

comprised of steps to be performed statically (off-line) and

during runtime (on-line). The approach has been illustrated

with DemoCar, a simple gasoline ECU. A Finite State Ma-

chine describing mode changes has been extracted from its

code and transaction probabilities have been identified during

simulation. The closely related modes have been merged into

clusters. A genetic algorithm has been used to determine

the runnable-to-core mapping for the initial mode. Similarly,

a multi-objective genetic algorithm minimizing the migrated

data and the energy dissipated in the next state has been used.

Each Pareto-optimal solution determines the runnables to be

migrated when a change of the current mode is requested.

The migration time has been evaluated using schedulability

analysis depending on the network bandwidth.

The proposed approach requires development of an agent

realising the migration process. Since its architecture details

depend on the underlying operating system, its implementation

and evaluation in real embedded environments are planned as

a future work.

ACKNOWLEDGEMENT

The research leading to these results has received funding

from the European Union’s Seventh Framework Programme

(FP7/2007-2013) under grant agreement no. 611411.

The authors would like to thank Björn Saballus from Robert

Bosch GmbH for providing the DemoCar use case.

REFERENCES

[1] AUTOSAR: AUTomotive Open System ARchitecture,

http://www.autosar.org, 2015.

[2] L. Benini, D. Bertozzi, and M. Milano, ”Resource management policy

handling multiple use-cases in MPSoC platforms using constraint pro-

gramming,” Logic Programming, Springer Berlin Heidelberg, pp. 470–

484, 2008.

[3] R.I. Davis and A. Burns, ”A survey of hard real-time scheduling for

multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, art. 35,

pp. 1–44 , 2011.

[4] P. Dziurzanski, A.K. Singh, L.S. Indrusiak, and B. Saballus, ”Hard

real-time guarantee of automotive applications during mode changes,”

Proceedings of the 23rd International Conference on Real Time and

Networks Systems (RTNS 2015), pp. 161–170, 2015.

[5] S.V. Gheorghita et al., ”System-scenario-based design of dynamic em-

bedded systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 14, no.

1, art. 3, pp. 1–45, January 2009.

[6] J.R. van Kampenhout, ”Deterministic Task Transfer in Network-on-Chip

Based Multi-Core Processors,” Computer Engineering, no. 18, 2011.

[7] K. Latif et al., ”An Integrated Framework for Model-Based Design and

Analysis of Automotive Multi-Core System,” Forum on specification

& Design Languages, FDL’15, Work-in-Progress Session, Barcelona -

Spain, 2015.

[8] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion, ”Multisource

Software on Multicore Automotive ECUs - Combining Runnable Se-

quencing with Task Scheduling,” IEEE Transactions on Industrial Elec-

tronics, vol. 59, no. 10, pp. 3934–3942, 2012.

[9] P. Munk, B. Saballus, J. Richling, and H.U. Heiss, ”Position Paper:

Real-Time Task Migration on Many-Core Processors,” 28th International

Conference on Architecture of Computing Systems (ARCS’15), pp. 1–4,

2015.

[10] M. Di Natale and A.L. Sangiovanni-Vincentelli, ”Moving From Feder-

ated to Integrated Architectures in Automotive: The Role of Standards,

Methods and Tools,” Proceedings of the IEEE, vol. 98, no. 4, pp. 603–

620, 2010.

[11] J. Park et al., ”Mode-Dynamic Task Allocation and Scheduling for an

Engine Management Real-Time System Using a Multicore Microcon-

troller,” SAE Int. J. Passeng. Cars - Electron. Electr. Syst., vol. 7, no.

1, pp. 133–140, 2014.

[12] E. Quinones, J. Abella, F. J. Cazorla, and Mateo Valero, ”Exploiting

intra-task slack time of load operations for DVFS in hard real-time multi-

core systems,” SIGBED Rev. vol. 8, no. 3, pp. 32–35, 2011.

[13] L. Schor, I. Bacivarov, D. Rai, H. Yang, S.H. Kang, and L. Thiele,

”Scenario-based design flow for mapping streaming applications onto

on-chip many-core systems,” ACM International conference on Compil-

ers, architectures and synthesis for embedded systems, pp.71–80, 2012.

[14] A. Schranzhofer, J.J. Chen, and L. Thiele, ”Dynamic Power-Aware

Mapping of Applications onto Heterogeneous MPSoC Platforms,” IEEE

Trans. on Industrial Informatics, vol. 6, no. 4, pp. 692–707, November

2010.

[15] Z. Shi and A. Burns, ”Real-time communication analysis for on-chip

networks with wormhole switching,” ACM/IEEE International Sympo-

sium on Networks-on-Chip (NOCS’08), pp. 161–170, 2008.

[16] A.K Singh, M. Shafique, A. Kumar, and J. Henkel, ”Mapping on

multi/many-core systems: survey of current and emerging trends,” Pro-

ceedings of the 50th Annual Design Automation Conference (DAC),

2013.

[17] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, ”Scenario-aware

dataflow: Modeling, analysis and implementation of dynamic appli-

cations,” International Conference on Embedded Computer Systems

(SAMOS’11), pp. 404–411, 2011.

[18] R. Wilhelm et al., ”The worst-case execution-time problem-overview of

methods and survey of tools,” ACM Trans. Embed. Comput. Syst., vol.

7, no. 3, art. 36, pp. 1–53, 2008.

[19] D. Zhu and C. Qian, ”Challenges in Future Automobile Control Systems

with Multicore Processors,” Workshop on Developing Dependable and

Secure Automotive Cyber-Physical Systems from Components, 2011.

