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1. Introduction 

Phase-locked arrays can be used to improve both the output power and the beam quality of terahertz quantum 
cascade lasers (THz-QCLs). Although progress has been made with phase-locked arrays of surface-emitting THz-
QCLs [1,2], the progress with facet-emitting devices have not yet been demonstrated. Mutual injection of the optical 
fields has been demonstrated as an efficient way to develop phase-locked arrays of facet-emitting semiconductor 
lasers [3]. However, whether such scheme is applicable in THz-QCLs is still an open question. The response of 
QCLs under mutual injection needs to be understood and a suitable waveguide design is also required to maximize 
the injection efficiency and reduce the loss. In this work, we propose a design for a monolithic QCL array with 
mutual injection of the optical fields and carry out a simulation on its dynamics to investigate the possibility of 
coherent lasing. 

2. Simulated spectrum and beam profile of the array 

Fig.1(a) shows a schematic of the proposed monolithic QCL array which is inspired by previous research into THz-
QCLs with coupled cavities [4]. The QCLs consists of a pair of facet-emitting QCLs (the “lasing section”) which are 
electrically biased above threshold. The QCLs are optically coupled via their rear facets by a “coupling section” 
which is biased below threshold. This enables mutual injection and also allows the injection strength and phase to be 
tuned by changing its refraction index. The two sections are optically coupled but electrically isolated through a 
narrow gap. The rate equations describing the dynamics of the optical fields of such a QCL array are as follows 
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where Ej(t) is the normalized complex electric fields of laser j (j =A,B); Nj(t)=N3j(t)-N2j(t) is the carrier number 
difference between the upper and the lower laser levels; ǻNj(t)=Nj(t)-Nthj is the carrier number change due to optical 
feedback and light injection from the other QCL; Įj is the linewidth enhancement factor; G0j is the optical gain 
coefficient of a single active region period in QCLs; Npj is the number of stages; Ĳ2j and Ĳ3j represent the lifetimes of 
lower and upper laser levels, respectively; Ĳpj is the photon lifetime in the cavity; qAB=qBA=qeiȕ denotes the coupling 
efficiency between the two QCLs with modulus q=c12/Ĳc and argument ȕ, where c12 is the coupling coefficient, and Ĳc 
is the laser cavity round trip time; ȖAf(b)=ȖBf(b)=Ȗf(b)eiıf(b) represent the feedback efficiency on the front (back) facet of 
the coupling section with Ȗf(b)=c0f(b)/Ĳc, where c0f(b) is the feedback strength coefficient; ĲAB is the delay time for the 
light to travel the distance from one laser to the other; Ĳf(b) is the round trip time in the external cavity for light 
reflected by the front (back) facet; Jj is the current injected into the active region. In the following simulations, both 
QCLs are assumed to be single-mode emission which may be ensured by fabricating a finite defect site photonic 
lattice. The free-running frequency of QCL A, fA, is assumed to be 2.93 THz and fB is assumed to have a detuning ǻ 
from fA. All other parameters of two QCLs are assumed to be same. 



 
Fig.1. (a): Schematic for the monolithic QCLs array with mutual injection of optical fields. (b): Locked phase difference ĳL as function of the 

frequency detuning ǻ of the two free-running QCLs. 

The steady state solutions show the possibility of coherence between the two lasers. Fig.1(b) shows the locked 
phase difference ĳL as a function of the frequency detuning ǻ of the two free-running QCLs. Phase-locked modes 
occur within the array only when the detuning ranges from -594 to 590 MHz, and the stability analysis indicates the 
stable branch of the steady state solutions (the solid line in the figure). The calculated power spectrum has a single 
component at zero frequency corresponding to a single eigenfrequency if ǻ is within the phase-locked range, as 
shown in Fig.2(a). Otherwise, as shown in Fig.2(c), the power spectrum may show sidebands which correspond to 
some oscillation behavior of the photon density. Correspondingly, the far-field beam of the phase-locked array will 
exhibit an interference pattern and a greatly reduced divergence compared with the non-locked array, as shown in 
Fig.2(b) and 2(d). These results indicate that coherent lasing effects may be observed from the array by using high-
resolution spectroscopy and far field measurements. 

 
Fig. 2. Power spectrum and far-field pattern in horizontal direction of two QCLs within (a, b) and out of (c, d) phase-locked range. 

3.  Summary and Prospects 

In summary, we have proposed a new design of monolithic facet-emitting THz-QCLs array to study the dynamics of 
QCLs under mutual injection of optical fields. The simulation shows the possibility of phase-locked lasing of the 
array as well as oscillatory behavior outside the phase-locking range. We aim to fabricate and characterize QCLs 
with mutual injection to demonstrate a new method of achieving phase-locked arrays, and also to provide a platform 
for studying complex dynamical behaviors in THz-QCLs. 
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