
This is a repository copy of Multi-mode Propagation in 2D filters and Metamaterials.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/104699/

Version: Accepted Version

Article:

Hunter, IC orcid.org/0000-0002-4246-6971, Rhodes, D, Sandhu, M et al. (2 more authors) 
(2016) Multi-mode Propagation in 2D filters and Metamaterials. IEEE Transactions on 
Microwave Theory and Techniques, 64 (12). pp. 4204-4210. ISSN 0018-9480 

https://doi.org/10.1109/TMTT.2016.2613046

© 2016, IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


> PAPER IDENTIFICATION NUMBER < 
 

1 

 
Abstract— Meta-materials are characterised using a modal 

technique for the analysis of 2N- port two dimensional filter 
networks. It will be shown that in general, all such networks 
support N modes of propagation each with different propagation 
constants unless as with the TEM multi-wire transmission line, 
the inductance matrix is the inverse of the capacitance matrix. 
Furthermore a simple equivalent circuit for these 2N port 
networks is derived, enabling complete network analysis for any 
combination of modal excitations. An explicit formula is derived 
for the propagation constants of a quasi lowpass filter. This 
demonstrates that there are always N modes even when the 
transverse network is infinite in extent.  
 

Index Terms—Meta-materials, Filters, Modes, Propagation 

I. INTRODUCTION 

Modal analysis of two-dimensional filter networks was 
introduced in [1] to explain the phenomenon of negative 
reflection in microwave and optical metamaterials. However, 
this technique only considered four possible modes of 
propagation, the even and odd modes for TE and TM 
excitation. Here we take a more general approach and 
demonstrate that a two dimensional 2N-port network will have 
N unique modes of propagation each with its own propagation 
constant.  

In section II, starting from the basic electromagnetics of a 
TEM N-wire transmission line [2] it is shown that the 
necessary condition for a single mode of propagation is that 
the static inductance matrix of the structure is the inverse of 
the capacitance matrix. With the exception of the N wire line 
this is generally not the case, as it would require extremely 
complex networks. The propagation constants are found from 
the eigen values of the system matrix and the nodal voltages 
and currents are derived from their associated eigen vectors. 
This is demonstrated using the example of a simple 3 node 
filter. 

At first glance obtaining the transfer function of a 2N-port 
network with N mods of propagation is a daunting prospect. 
However a relatively simple method for achieving this is 
described in section III. By diagonalising the network matrix a 
simple equivalent circuit is obtained comprising input and 
output transformers and separate uncoupled internal networks 
for each mode. Thus applying any individual mode at the input 
only excites the internal network corresponding to that mode. 

 
 

Consequently the response to any input may be obtained by 
superposition.  

Finally, analysis of a lumped-element filter yields an 
explicit formula for the values of the modal propagation 
constants. This is conclusive proof that even if the structure 
was to be extended infinitely in the transverse plane, the 
behavior could never converge to a single mode, as is often 
reported [3]. 

II. MODAL ANALYSIS 

A. Multimode propagation in metamaterials 

A transverse field component ܧሺݖ െ  ሻ satisfies the waveݐݒ
equation everywhere in the transverse plane even after the 
introduction of the lossless N+1-wire line structure shown in 
Fig.1. The mode of propagation is a non-dispersive TEM 
mode. All voltages and currents propagate with velocity ݒǤ  

 

Fig. 1. Illustration of the N-wire line with coupling capacitance. 

Assuming there is a ground conductor then the voltages on 
each of the remaining N wires can be calculated from a line 
integral along any path to each of the conductors producing a 
unique set of voltages ௥ܸ  for ݎ ൌ ͳ to ݊. Since the E field has 
the solution ܧሺݖ െ  ሻ everywhere in the cross sectional planeݐݒ
then each voltage has the same argument and hence the 
voltage column vector is [ܸሺݖ െ  ሻ ]. Let the current flow onݐݒ
each conductor be described by the vector ሾܫሿǤ The loss of 
charge on the wires over an incremental length dz is ݀ሾܳሿ ൌ  ሿሾܸሿ ሺͳሻܥሾݖ݀

where ሾܥሿ is the capacitance matrix with the necessary and 
sufficient conditions on realisability being that ሾܥሿ is 
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hyperdominant i.e. all off diagonal terms are negative and the 
sum of all rows and columns are non-negative. In the limit ݀ሾܳሿ݀ݖ ൌ ሾܥሿሾܸሿ ሺʹሻ 

and hence dሾIሿdz ൌ ሾCሿ dሾVሿdt  ሺ͵ሻ 

A new matrix which can be called an inductance matrix (3) is 
defined with respect to change of voltage down the lines as ݀ሾܸሿ݀ݖ ൌ ሾܮሿ ݀ሾܫሿ݀ݐ  ሺͶሻ 

Eliminating ሾܫሿ we obtain ݀ଶሾܸሿ݀ݖଶ ൌ ሾܮሿሾܥሿ ݀ଶሾܸሿ݀ଶݐ  ሺͷሻ 

The propagation along the z-axis is always of the form ݁ିఊ௭
 ሺ͸ሻ 

hence ߛଶሾܸሿԢԢ ൌ  ሿሾܸሿԢԢ ሺ͹ሻܥሿሾܮଶሾݒ

and in this case of the homogeneous N-wire line ሾܮሿ ൌ ͳݒଶ ሾܥሿିଵ
 ሺͺሻ 

In general this is not the case. Now define characteristic 
impedance and admittance matrices ሾܼሿ ൌ  ሿ ሺͻሻܮሾݒ

 ሾܻሿ ൌ  ሿ   ሺͳͲሻܥሾݒ

And from (7), (9) and (10) ߛଶሾܸሿԢԢ ൌ  ଶሾܼሿሾܻሿሾܸሿԢԢ ሺͳͳሻݒ

And the propagation constants are the eigen values of  

ȁሾܼሿሾܻሿݐ݁݀ െ ଶሾͳሿȁߛ ൌ Ͳ ሺͳʹሻ 

i.e.  ܨሺߛଶሻ   ൌ Ͳ ሺͳ͵ሻ 

Thus for a single mode of propagation, ሾܼሿ ൌ ሾܻሿିଵ apart 
from a scalar multiplier. In general this is not the case and F is 
a complex function with ʹܰ solutions for ߛ, with ܰ positive 
solutions representing forward waves and ܰ negative solutions 
representing waves travelling in the opposite direction. 

 

 

Fig. 2.  4-node lowpass filter 

It is instructive to imagine constructing a circuit which 
supports a single mode of propagation. Consider the simplest 
metamaterial where the transverse network is an array of four 
capacitors to ground with coupling constrained to adjacent 
capacitors, and the series elements an array of inductors as in 
Fig. 2. This is analogous to a two dimensional telegraphic 
equivalent far a transmission line. The capacitance matrix is 
given by 

 


























4434

343323

232212

1211

00

0

0

00

CC

CCC

CCC

CC

C  ሺͳͶሻ 

And the inverse matrix is 

_______________________________________________________________________________________________________
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342312442312
2
34443312

2
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2
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1 1
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C

 

ሺͳͷሻ 

Where οൌ ȁܥȁ ൌ ସସܥଷଷܥଶଶܥଵଵܥ ൅ ଵଶଶܥ ଷସଶܥ െ ଵଶଶܥସସܥଷଷܥ െ ଶଷଶܥସସܥଵଵܥ െܥଵଵܥଶଶܥଷସଶ
 ሺͳ͸ሻ 

_____________________________________________________________________________________________________ 
 
Thus although the capacitance matrix is sparse the inductance 
matrix is full, with each inductor coupling to all the others. 
Any attempt to construct a metamaterial with a single mode of 
propagation would require the construction of this complex 

matrix with all inductors coupling all the others despite the 
capacitors not coupling. 

B. Analysis of simple 3-node lowpass filter 

Fig. 3 shows a simple 3-node lowpass filter. 
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Fig. 3  3 node lowpass filter 

Let ܮ௭ ൌ ʹǡ ௫ܥ ൌ ͳ and ܥ௬ ൌ ʹ 

ሾܼሿሾܻሿ െ  ଶሾͳሿߛ
ൌ ଶ݌ʹ ൥ʹ݌ Ͳ ͲͲ ݌ʹ ͲͲ Ͳ ൩݌ʹ ൥͵݌ െ݌ Ͳെ݌ Ͷ݌ െ݌Ͳ െ݌ ݌͵ ൩ 

െߛଶ ൥ͳ Ͳ ͲͲ ͳ ͲͲ Ͳ ͳ൩ 

ሺͳ͹ሻ 

 

ൌ ଶ݌ʹ
ێێۏ
ێێێ
͵ۍ െ ଶ െͳ݌ʹଶߛ Ͳെͳ Ͷ െ ଶ݌ʹଶߛ െͳͲ െͳ ͵ െ ۑۑےଶ݌ʹଶߛ

ۑۑۑ
ې
 ሺͳͺሻ 

ൌ ଶ݌ʹ ൥͵ ൅ ݖ െͳ Ͳെͳ Ͷ ൅ ݖ െͳͲ െͳ ͵ ൅ ൩ݖ ൌ  ሿ ሺͳͻሻܣଶሾ݌ʹ

Where ݖ ൌ െ  ଶ ሺʹͲሻ݌ʹଶߛ

The eigen values are found from  

อ͵ ൅ ݖ െͳ Ͳെͳ Ͷ ൅ ݖ െͳͲ െͳ ͵ ൅ อݖ ൌ Ͳ ሺʹͳሻ 

And  ݖ௜ ൌ െʹǡ െ͵ǡ െͷ ሺʹʹሻ 

௜ߛ  ൌ ǡ݌ʹ ξ͸݌ǡ ξͳͲ݌ ሺʹ͵ሻ 

And for sinusoidal signals ߛ௜ ൌ ௜ߚ݆ ൌ ݆ʹ߱ǡ ݆ξ͸߱ǡ ݆ξͳͲ߱ ሺʹͶሻ 

The circuit supports three modes of propagation, each of 
which has dc cutoff frequency.  

The voltage vectors for each of the three nodes may be found 
by evaluating the eigen vectors of matrix [4] ܣ by solving ሾܣሺݖ௜ሻሿሾVሿ௜ ൌ Ͳ ሺʹͷሻ 

e.g. for mode 1 with ݖ௜ ൌ െʹ 

ሾܣሺെʹሻሿሾVሿଵ ൌ ൥    ͳ െͳ     Ͳെͳ     ʹ െͳ    Ͳ െͳ     ͳ൩ ൥ ଵܸܸଶܸଷ൩ ൌ Ͳ ሺʹ͸ሻ 

Giving ሾݒሿଵ ൌ ൥ͳͳͳ൩ ሺʹ͹ሻ 

Similarly, ሾݒሿଶ ൌ ൥    ͳ   Ͳെͳ൩ ሺʹͺሻ 

and ሾݒሿଷ ൌ ൥    ͳ െʹ    ͳ൩ ሺʹͻሻ 

The eigen vectors represent the input voltage at the three 
nodes which will excite the eigen mode with corresponding 
eigen values. The first eigen vector represents equal voltages 
at the three input nodes. This case is equivalent to a 
common(even) mode excitation, an even or common mode 
analysis can be applied as shown in Fig. 4a providing the 
equivalent circuit with propagation constant of ɀ ൌേpඥL୸C୷ ൌ േʹp. The second eigen vector represents a zero 
voltage at the second node and the equivalent circuit is shown 
in Fig. 4b. The propagation constant of this mode is ɀ ൌേpඥL୸ሺC୷ ൅ C୶ሻ ൌ േξ͸p. For the third eigen vector, as in 
Fig. 4c, the voltage across Cy is V0 and the voltage across Cx is 
3V0 which provides an equivalent capacitance of 3Cx. As a 
result, the propagation constant is ɀ ൌ േpඥL୸ሺC୷ ൅ ͵C୶ሻ ൌേξͳͲp. 

 

 

                                                                                       (a) 

 

 

 

 

 

                                                                                        (b) 

 

 
 

 
                                                                          (c) 

Fig. 4.  Equivalent circuit model FOR A 3 node network with the 
excitation for  each  mode. 
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C. Derivation of network  transfer matrix 

The 2N-port circuit can be greatly simplified by diagonalising ሾܣሿ [4]. To do this form matrix ሾܲሿ whose columns are the 
eigen vectors. Then  ሾܦሿ ൌ ሾܲሿିଵሾܣሿሾܲሿ ሺ͵Ͳሻ 

For example using the 3-node lowpass filter from section II(B) 

ሾܲሿ ൌ ൥    ͳ     ͳ     ͳ    ͳ     Ͳ െʹ    ͳ െͳ     ͳ൩ ሺ͵ͳሻ 

and 

ሾܦሿ ൌ ͳ͸ ൥  ʹ     ʹ     ʹ  ͵     Ͳ െ͵  ͳ െʹ     ͳ൩ ൥͵ ൅ ݖ    െͳ Ͳ   െͳ  Ͷ ൅ ݖ െͳ    Ͳ െͳ ͵ ൅ ൩ݖ ൥    ͳ     ͳ     ͳ    ͳ     Ͳ െʹ    ͳ െͳ     ͳ൩ ൌ ൥͵ ൅ ݖ    Ͳ Ͳ   Ͳ  ʹ ൅ ݖ Ͳ   Ͳ Ͳ ͷ ൅  ൩ ሺ͵ʹሻݖ

____________________________________________________________________________________________________ 
 
[D] is a nodal matrix consisting of a set of three individual 
single node two-port networks as in Fig. 5 

 

Fig. 5  Equivalent circuit for a particular diagonal element in [D] 

And since  ሾܼሿሾܻሿ െ ଶߛ ൌ ଶ݌ܥʹ െ ଶߛ ൌ ܥଶሺ݌ʹ ൅  ሻ ሺ͵͵ሻݖ

From (20) and (33) ܥ௜ ൌ ͵ǡʹ and ͷ ሺ͵Ͷሻ 

Diagonalization makes the input vector for a specific mode 
appear only at the particular two-port which is associated with 
that mode. Thus the entire networks can be represented by the 
following equivalent circuit. 

 

Fig. 6.  Equivalent circuit of 3-node network of Fig. 3 

The input and output networks are 2N-port ideal transformers 
with transfer matrices ሾ ூܶேሿ ൌ ൤ሾܲሿ ሾͲሿሾͲሿ     ሾܲሿିଵ൨ ሺ͵ͷሻ 

and  

ሾ ைܶ௎்ሿ ൌ ሾ ூܶேሿିଵ ൌ ൤    ሾܲሿିଵ ሾͲሿሾͲሿ  ሾܲሿ൨ ሺ͵͸ሻ 

For this example 

ێێۏ
ۍێێ ଵܸܸଶܸଷܫଵܫଶܫଷ ۑۑے

ېۑۑ ൌ ͳ͸ ێێۏ
൥    ͳۍێێ     ͳ     ͳ    ͳ     Ͳ െʹ    ͳ െͳ     ͳ൩ ൥  Ͳ    Ͳ      Ͳ  Ͳ    Ͳ      Ͳ  Ͳ    Ͳ     Ͳ ൩
൥   Ͳ     Ͳ     Ͳ   Ͳ     Ͳ     Ͳ   Ͳ      Ͳ     Ͳ൩ ൥  ʹ     ʹ     ʹ  ͵     Ͳ െ͵  ͳ െʹ     ͳ൩ۑۑے

ېۑۑ
ێێۏ
ێێێ
ۍ ଵܸᇱ

ଶܸᇱ
ଷܸᇱܫଵᇱܫଶᇱܫଷᇱ ۑۑے

ۑۑۑ
ې
 ሺ͵͹ሻ 

And  

൥ ଵܸܸଶܸଷ൩ ൌ ൥    ͳ     ͳ     ͳ    ͳ     Ͳ െʹ    ͳ െͳ     ͳ൩ ቎ ଵܸᇱ
ଶܸᇱ
ଷܸᇱ቏ 

ሺ͵ͺሻ 

For mode 1, with ݒଵ ൌ ͳ, ݒଶ ൌ ͳ, ݒଷ ൌ ͳ then ݒଵᇱ ൌ ͳ, ݒଶᇱ ൌ Ͳ, ݒଷᇱ ൌ Ͳ 
ሺ͵ͻሻ 

For mode 2, with ݒଵ ൌ ͳ, ݒଶ ൌ Ͳ, ݒଷ ൌ െͳ then ݒଵᇱ ൌ Ͳ, ݒଶᇱ ൌ ͳ, ݒଷᇱ ൌ Ͳ 
ሺͶͲሻ 

And for mode 3 with ݒଵ ൌ ͳ, ݒଶ ൌ െʹ, ݒଷ ൌ ͳ then ݒଵᇱ ൌ Ͳ, ݒଶᇱ ൌ Ͳ, ݒଷᇱ ൌ ͳ 
ሺͶͳሻ 

The procedure can be applied to any two dimensional filter or 
metamaterial with uniform cross section. The frequency 
response for any combination of modes at the input may be 
obtained by simple superposition. Furthermore extending the 
analysis to include multiple layers along the z-axis is relatively 
trivial. The equivalent circuit for an N node circuit with M 
layers along the Z axis is shown in Fig. 7 
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Fig. 7  N node M layer circuit equivalent 

And since ሾܶሿିଵሾܶሿ ൌ ሾܫሿ the circuit reduces to Fig. 8. The 
cascade of M identical modal subnetworks may then easily be 
dealt with using image parameters for example. 

 

Fig. 8 Final equivalent circuit of ܰ ൈ  filter ܯ

The techniques developed in this section will be demonstrated 
by analysis of the two dimensional lowpass filter in the next 
section. 

III. MODAL ANALYSIS OF 2-D LOWPASS FILTERS 

A. Analysis 

We will apply the theory to the analysis of a two 
dimensional quasi-lowpass filter as shown in Fig.9. This is a 
simple approximate equivalent circuit for the classic Waffle 
iron filter [5]. 

 

Fig. 9 Lumped 2-D quasi-lowpass filter, with N transversal sections 
and M longitudinal section.  

The theory developed in section II has been used to simulate 
a filter with N=5 and M=10 sections. For a practical design a 
half inductance was added to the basic section at both ends of 
the transverse section as in Fig. 10 

 
 

 

Fig. 10  Circuit model of a single layer of N=5 quasi lowpass filter 

The eigen vectors of this N=5 circuit are listed below and 
are independent of specific element values, although 
obviously the eigen values are dependent. 

ଵݒ  ൌ െͲǤͳͻͷͶǡ െͲǤͷͳͳ͹ǡ െͲǤ͸͵ʹͷǡ െͲǤͷͳͳ͹ǡ െͲǤͳͻͷͶ ݒଶ ൌ െͲǤ͵͹ͳ͹ǡ െͲǤ͸Ͳͳͷǡ Ͳǡ ͲǤ͸Ͳͳͷǡ ͲǤ͵͹ͳ͹ ݒଷ ൌ െͲǤͷͳͳ͹ǡ െͲǤͳͻͷͶǡ ͲǤ͸͵ʹͷǡ െͲǤͳͻͷͶǡ െͲǤͷͳͳ͹ ݒସ ൌ െͲǤ͸Ͳͳͷǡ ͲǤ͵͹ͳ͹ǡ Ͳǡ െͲǤ͵͹ͳ͹ǡ ͲǤ͸Ͳͳͷ ݒହ ൌ ͲǤͶͶ͹ʹǡ െͲǤͶͶ͹ʹǡ ͲǤͶͶ͹ʹǡ െͲǤͶͶ͹ʹǡ ͲǤͶͶ͹ʹ 

 
As discussed in the previous section when a particular eigen 

vector is input to the circuit only the corresponding mode will 
be excited, and analysis of the equivalent circuit shown in Fig. 
8 may easily be performed. 

In this example we chose ܥ ൌ ܮ ,ʹ ൌ ௫ܮ ,ʹ ൌ ͳ and ܮ௭ ൌ ͳ 
The transfer function may be evaluated by summing the 

voltages from each of the output ports and is shown in Fig. 11 

 
Angular frequency 

Fig. 11  ȁܵʹͳȁʹ for the 5 modes of ܰ ൌ ͷ, ܯ ൌ ͳͲ waffle-iron filter 
circuit model 

For any other input voltage the resulting transfer function is 
a combination of all 5 modes. For example with ௜ܸ௡ ൌͳǡʹǡ͵ǡͲǡ െʹ the transfer function is shown in Fig. 12 
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Angular frequency 

Fig. 12  Transfer function with input voltage, ܸ݅݊ ൌ ͳǡʹǡ͵ǡͲǡ െʹ 

B. Explicit formulae for eigen values of quasi lowpass filter  

The equivalent circuit for a transverse section of the waffle 
iron filter is shown in Fig. 13 

 

Fig.13  Transverse section of quasi lowpass filter 

Now  ሾܣሿ ൌ ሾܼሿሾܻሿ െ  ଶሾͳሿߛ
ሺͶʹሻ 

___________________________________________________________________________________________________ 

ሾܣሿ ൌ ݌ ێێێۏ
ͳۍ Ͳ Ͳ ǥ ͲͲ ͳ Ͳ ǥ ͲͲ Ͳ ͳ ǥ Ͳڭ ڭ ڭ ڰ ͲͲ Ͳ Ͳ ǥ ͳۑۑۑے

ې
ێێۏ
݌ܣۍێ ൅ ݌Ȁܤ െܥȀ݌ Ͳ ǥ ͲെܥȀ݌ ݌ܣ ൅ ݌Ȁܤ െܥȀ݌ ǥ ͲͲ െܥȀ݌ ݌ܣ ൅ ݌Ȁܤ ǥ Ͳڭ ڭ ڭ  െܥȀ݌Ͳ Ͳ Ͳ െܥȀ݌ ݌ܣ ൅ ۑۑے݌Ȁܤ

ېۑ െ ଶߛ ێێێۏ
ͳۍ Ͳ Ͳ ǥ ͲͲ ͳ Ͳ ǥ ͲͲ Ͳ ͳ ǥ Ͳڭ ڭ ڭ ڰ ͲͲ Ͳ Ͳ ǥ ͳۑۑۑے

ې
 

ൌ ێێێۏ
ݖۍ ൅ ܤ െܥ ͳ ǥ    ͳെܥ ݖ ൅ ܤ െܥ ǥ    ͳͳ െܥ ݖ ൅ ܤ ǥ    ͳڭ ڭ ڭ  െܥͳ ͳ ͳ െܥ ݖ      ൅ ۑۑۑےܤ

ې
 

ሺͶ͵ሻ 

___________________________________________________________________________________________________
Where  ݖ ൌ ଶ݌ܣ െ ଶߛ

 
ሺͶͶሻ 

This is the admittance matrix of the network shown in Fig. 14 

 

Fig. 14  Equivalent circuit of ሾܣሿ 
Which is a cascade of basic sections shown in Fig. 15. 

 

Fig. 15 Basic section in equivalent circuit of ሾܣሿ 
The basic section has the transfer matrix 

ሾܶሿ ൌ ቂͳ ͳȀܥͲ ͳ ቃ ቂ ͳ Ͳݖ ൅ ܤ ͳቃ ቂͳ ͳȀܥͲ ͳ ቃ 
ሺͶͷሻ 

 

ሾܶሿ ൌ ൦ͳ ൅ ݖ ൅ ܥܤ ͳܥ ൬ʹ ൅ ݖ ൅ ܥܤ ൰ݖ ൅ ܤ ͳ ൅ ݖ ൅ ܥܤ ൪ 
ሺͶ͸ሻ 

And using image parameters [6] ሾܶሿ ൌ ൤ ሺ߮ሻ݄ݏ݋ܿ ܼூ݄݊݅ݏሺ߮ሻூܻ݄݊݅ݏሺ߮ሻ ሺ߮ሻ݄ݏ݋ܿ ൨ 
ሺͶ͹ሻ 

Where  ߮ ൌ ଵି݄ݏ݋ܿ ൬ͳ ൅ ݖ ൅ ܥܤ ൰ 
ሺͶͺሻ 

and 

ܼூ ൌ ඨ ͳܥሺݖ ൅ ሻܤ ൬ʹ ൅ ݖ ൅ ܥܤ ൰ 
ሺͶͻሻ 

And cascading N sections we obtain ሾܶሿே ൌ ൤ ሺܰ߮ሻ݄ݏ݋ܿ ܼூ݄݊݅ݏሺܰ߮ሻூܻ݄݊݅ݏሺܰ߮ሻ ሺܰ߮ሻ݄ݏ݋ܿ ൨ ሺͷͲሻ 
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The A parameter of ሾܶሿே will be zero at the eigen values 
hence  ݄ܿݏ݋ ൤ܰܿି݄ݏ݋ଵ ൬ͳ ൅ ݖ ൅ ܥܤ ൰൨ ൌ Ͳ 

ሺͷͳሻ 

and ܿݏ݋ ൤ܰܿିݏ݋ଵ ൬ͳ ൅ ݖ ൅ ܥܤ ൰൨ ൌ Ͳ 
ሺͷʹሻ 

The zeros of this Chebyshev polynomial occur when  ͳ ൅ ݖ ൅ ܥܤ ൌ cos ቆሺʹݎ െ ͳሻߨʹܰ ቇ ǡ for ݎ ൌ ͳǡʹǡ ǥ ǡ ܰ 
ሺͷ͵ሻ 

and  ݖ ൅ ܥܤ ൌ cos ቆሺʹݎ െ ͳሻߨʹܰ ቇ െ ͳ ൑ Ͳ 
ሺͷͶሻ 

The values of ݖ lie on the negative real axis as in an RC 
network. The roots ݖ are distinct even when N tends to 
infinity, Now  ݖ ൌ C ቆcos ቆሺʹݎ െ ͳሻߨʹܰ ቇ െ ͳቇ െ B 

ሺͷͷሻ 

and from (44) ߛଶ ൌ ଶ݌ܣ െ  ݖ
ሺͷ͸ሻ ݖ is negative and real so for sinusoidal signals ߛ ൌ േඥ݇ଶ െ  ଶ߱ܣ
ሺͷ͹ሻ 

Each of the modes has a distinct cutoff frequency below which ߛ is real, i.e. evanescent and above which ߛ  is imaginary i.e. 
in the modes passband. The same analysis to obtain the 
explicit formula could be applied to any other metamaterials. 

IV. CONCLUSION 

Two dimensional filters and meta-materials with ܰ nodes in 
the transverse direction support ܰ distinct modes of 
propagation each with their own unique propagation constant. 
The propagation constants are the eigen values of the 
transverse nodal matrix of the network and the modal voltages 
are the eigen vectors.  

An equivalent circuit for an ܰ ൈ  .filter has been derived ܯ
This enables the frequency response to be determined for any 
arbitrary modal excitation. The analysis technique has been 
applied to 2-D lowpass filters. An explicit formula for its 
eigen values is derived and demonstrates conclusively that 
there are also ܰ modes even when N tends to infinity. 
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