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Abstract 7 

Computational Fluid Dynamics tools and Response Surface Methodology optimization techniques 8 

were coupled for the evaluation of an optimum window opening design that improves the ventilation 9 

efficiency in a naturally-ventilated building. The multi-variable optimization problem was based on 10 

Design of Experiments analysis and the Central Composite Design method for the sampling process 11 

and estimation of quadratic models for the response variables. The Screening optimization method 12 

was used for the generation of the optimal design solution. The generated results indicated a good 13 

performance of the estimated response surface revealing the strength correlations between the 14 

parameters. Window width was found to have greater impact on the flow rate values with correlation 15 

coefficient of 73.62%, in comparison to the standard deviation 55.68%, where the window height 16 

prevails with correlation coefficient of 96.94% and 12.35% for the flow rate. The CFD results were 17 

validated against wind tunnel experiments and the optimization solution was verified with simulation 18 

runs, proving the accuracy of the methodology followed, which is applicable to numerous 19 

environmental design problems. 20 

Keywords: Computational fluid dynamics (CFD); Response Surface Methodology (RSM); 21 

Optimization; Natural ventilation 22 
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1. Introduction 23 

A successful building design improves the quality of life and facilitates the functional needs of the 24 

users. However, the achievement of acceptable design solutions presupposes the contribution of 25 

rational multidisciplinary decisions [1]. An important and mandatory step prior to every engineering 26 

solution is the conceptual design phase that tends to establish the holistic integrity of the design. The 27 

development of software tools has facilitated the decision-making process, by offering the 28 

opportunity to evaluate the performance and efficiency of the initial design concept under numerous 29 

objective parameters during the conceptual design phase. 30 

Computational Fluid Dynamics (CFD) software is used to perform multiple types of analysis, 31 

regarding a rational approach to design investigation that enables the simulation of air flow and 32 

prediction of physical phenomena within building spaces [2]. This technique has been adopted by 33 

numerous researchers, to study the thermal comfort of occupants in buildings [3], the positioning of 34 

building services [4], natural ventilation [5], heat transfer effects [6], contaminant dispersion [7] and 35 

the interaction between indoor and outdoor environments [8]. 36 

This study presents an integrated computational method to optimise design spaces in the built 37 

environment. The work is based on simulation-driven optimisation techniques, using a CFD 38 

simulation software integrated with Response Surface Methodology-based design optimisation 39 

algorithms and validated against wind tunnel experiments. The method is applied to a generic cross-40 

ventilated building structure to investigate natural ventilation efficiency. Since 1992 [9] up to present 41 

[10], studies on cross-ventilated buildings have been performed using CFD techniques and validated 42 

with real scale measurements, wind tunnel experiments and flow visualization methods [11]. 43 

However, the increasing need for adopting integrated design solutions demands further information 44 

beyond what it is offered by the investigation of the naturally occurring wind flow in buildings, and 45 

it is this research gap under investigation here.  46 



3 
 

2. Previous related work 47 

Stavrakakis et al. (2012) investigated the optimum window-opening configuration, to improve the 48 

indoor thermal comfort in a naturally-ventilated building (NVB). Using a coupled CFD-ANN 49 

(Artificial Neutral Network) technique that enabled the evaluation of 126 data pairs to minimise 50 

discomfort for 3 different activity levels. On the investigation of the influential behaviour of the air 51 

speed and direction towards the ventilation rates in NVB, Shen et al., (2012) combined CFD and 52 

Response Surface Methodology (RSM) optimization techniques. They evaluated different Design of 53 

Experiment (DoE) methods for the generation of experimental models in a stand-alone software. The 54 

obtained results were validated with CFD simulation cases. 55 

In a more recent study, Shen et al., (2013) assessed the performance of different DoE methods on the 56 

estimation of the ventilation rate in a naturally ventilated livestock. The parameters evaluated were 57 

the window opening characteristics and wind conditions. The results indicated that the most accurate 58 

response surface model was developed by the Box-Behnken design, followed by the central 59 

composite rotation design (CCRD) method. The work also highlighted that the performance of the 60 

DoE method may differ, depending on the case study. On the optimization of ventilation efficiency 61 

and indoor homogeneous conditions in livestock buildings, Norton et al. (2010) employed CFD tools 62 

and Box-Bohnken design methods for the generation of a response function based on the geometrical 63 

characteristics of the building. The verified RSM method indicated that the environmental 64 

heterogeneity is more correlated to the geometrical characteristics of the building and particularly 65 

when the most restrictive eave opening conditions, regarding porosity and height, are applied. 66 

Both ANN and RSM are well-recognised techniques that enable the approximation of the interrelated 67 

nature of the independent design parameters and their design solutions [15]. However, the 68 

aforementioned research topics within the NVB framework, generated the experimental case studies 69 
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in independent software and used CFD codes to perform parametric analyses and/ or validation of 70 

the results. 71 

In this study, a commercial CFD software integrated with RSM optimisation techniques is employed 72 

to present a parametric simulation method for the analysis and optimisation of a simple cross-73 

ventilated building. The RSM technique is used to determine the interrelationships between the 74 

design parameters and design responses. The Screening optimization technique is employed to 75 

identify the optimum window opening dimensions that improve the natural ventilation efficiency in 76 

terms of the air flow rate and flow homogeneity. The CFD results were validated against wind tunnel 77 

experiments to establish the accuracy of the method. 78 

In Section 3, the theoretical background of the RSM, which is used in the parametric-optimization 79 

study, is briefly presented. In Section 4, the case study is introduced followed by the CFD 80 

methodology, results and validation study. The optimisation methodology is presented in Section 5, 81 

along with the interpretation and verification of results. Finally, the discussion and conclusions are 82 

covered in Section 6 and 7 respectively. 83 

3. Response Surface Methodology (RSM) 84 

Pioneers in the exploration of the impact of the design parameters on several design responses were 85 

Hotelling (1941) and Friedman and Savage (1947). In mathematical terms, the unknown functional 86 

relationship between the design parameters (x) and their design responses (y) can be described by the 87 

low-degree polynomial model given by the Eq. (1): 88 

ݕ ൌ ݂ሺݔǡ ሻߠ ൅  Eq. (1) 89     ߝ

where İ is treated as a statistical error. By employing mathematical and statistical methods, first-90 

order (Eq. (2)) and second-order (Eq. (3)) polynomial regression models are constructed, based on 91 

physical or computer experiments [18]. 92 
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ߟ ൌ ଴ߚ ൅ ଵݔଵߚ ൅ ڮ ൅  ௞     Eq. (2) 93ݔ௞ߚ

ߟ ൌ ଴ߚ ൅ σ ௜௞௜ୀଵݔ௜ߚ ൅ σ ௜ଶ௞௜ୀଵݔ௜௜ߚ ൅ σ σ ௝௞௝ୀଵ௞௜ୀଵ௜ழ௝ݔ௜ݔ௜௝ߚ   Eq. (3) 94 

where ߟ represents a design solution (i.e. velocity, temperature, stresses, etc), ݔଵ, ݔଶ, …, ݔ௞ the 95 

design variables (i.e. height, thickness, load, etc) and ߚ଴, ߚଵ,…, ߚ௞ the unknown regression 96 

coefficients. 97 

Box and Wilson (1951) introduced a statistical tool that enables the evaluation of several design 98 

parameters, targeting an improved design solution (or response) by satisfying specific requirements. 99 

They defined the “experimental region” as the region within which the design parameters vary and 100 

the optimum design solution is localized, with the minimum possible number of conducted 101 

experiments. This method is known as Response Surface Methodology (RSM) and targets finding an 102 

improved, if not optimum, response of given controllable variables. 103 

The RSM calculates approximate values for the regression coefficients, based on the evaluation of 104 

either experimental or simulation results generated for a specific number of sample design points. 105 

Once the best fitted approximation function is found, several design combinations can be examined, 106 

without the need to conduct deterministic response analysis that is an extremely time-consuming 107 

process. It is therefore apparent that the performance of a fully accurate design study may necessitate 108 

the simultaneous consideration of several independent design variables, resulting in complex 109 

mathematical functions/systems. 110 

RSM has been widely used in various projects and disciplines, due to its advantageous performance 111 

in approaching mathematically the behaviour of multiscale phenomena, regardless of the nature of 112 

the studied parameters [16]. The integration of this method with expensive computer simulation 113 

codes has launched a new generation of research studies, which allows the optimization of designs 114 

with either large or small number of input and output parameters. 115 
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Fegade and Patel (2013) studied a parametric finite element model of a rotor, by employing Design 116 

of Experiments (DOE) techniques integrated in ANSYS simulation software. They performed 48 117 

simulation runs, aiming at investigating the effect of different rotor diameters on the rotor’s 118 

frequency. For the purpose of this, two levels factorial design with eleven input parameters per 119 

Plankett-Burman1 design was considered and it two rotor diameters were found to have major 120 

impact on frequency for the fluid film. 121 

Mandloi and Verma (2009) employed Central Composite Design (CCD) experimental design in 122 

order to improve the performance and efficiency of an in-cylinder engine intake port. Based on RSM 123 

from ANSYS software, they established a goal-driven optimum design solution, determined by 124 

independent geometrical characteristics. 125 

Ng et al. (2008) evaluated the performance index of an air diffusion system integrated in a 126 

displacement-ventilated office. With the aid of commercial statistical and CFD software, they used 127 

RSM to predict the optimum position for the diffusers, the supply temperature and the exhaust 128 

position, in order to provide optimum thermal comfort in the space. The results obtained from the 129 

Box-Behnken design models were found to agree 95% with the CFD simulation results, indicating 130 

the accuracy of the method, as well as the very promising benefits and results. 131 

4. Case study description 132 

The achievement of an accurate and reliable simulation research study requires full compliance with 133 

the fundamental steps and in depth understanding of the CFD simulation and optimization processes. 134 

For the purpose of this, a simple benchmark building model was designed, as illustrated in Figure 1. 135 

The geometrical characteristics are based on a previously published research paper of Karava et al. 136 

(2011). The scaled building dimensions are 0.1m x 0.1m x 0.08m (L x W x H), wall depth of 0.002 137 

                                                 
1 Plankett-Burman experimental design is a factional factorial design, which is manly used for the identification of the 
most important variables of a partly known system with a large number of independent factors [21]. 
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m, and two window openings of 0.018m x 0.046m (H x W), placed on the opposite sides at the 138 

centres of the walls to promote natural airflow with the least resistance. 139 

 140 

 141 
Figure 1 Dimensional characteristics of the case study building model. 142 

4.1 CFD set-up 143 

The CFD simulation analysis was performed with the commercial software ANSYS Workbench 15, 144 

since it comprises a complete interface for the implementation of the work. The study was conducted 145 

in three phases. The pre-processing phase included the creation of the building model and the domain 146 

geometry, and the generation of the computational mesh. The second phase comprised the solver, 147 

along with the selection of the transport equations, the physical models and the solver settings. 148 

Finally, in the post-processing phase, plots and graphs of the solutions were created and the results 149 

were interpreted. 150 

4.2 Governing equations 151 

The simulation of the natural ventilation phenomena was treated as steady and incompressible 152 

turbulent flow. The standard k-İ turbulence model was used with standard wall functions, since it is 153 

widely used in natural ventilation studies in buildings [11], [25], [26], [27], [28], [30]and it shows 154 

good performance when compared with wind tunnel experiments [29], [31], [32], [32][33]. 155 

Moreover, when empty rooms are studied, the standard k-İ and the RNG k-İ model have been 156 
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proven to behave similarly [34], [35]. The governing equations of continuity (4), momentum (5), as 157 

well as the transport equations of the standard k-İ turbulence model (6 & 7) are presented below: 158 

డ௨ഢതതതడ௫೔ ൌ Ͳ      Eq. (4) 159 

డ௨ഢ௨ണതതതതതതడ௫ೕ ൌ െ ଵఘ డ௣ҧడ௫೔ ൅ డడ௫ೕ ቆ߭ ൬డ௨ഢതതതడ௫ೕ ൅ డ௨ഢതതതడ௫೔൰ቇ    Eq. (5) 160 

ߩ డ௞డ௧ ൅ ௜ݑߩ డ௞డ௫೔ ൌ డడ௫ೕ ൤ቀఓାఓ೟ఙೖ ቁ డ௞డ௫ೕ൨ ൅ ܲ െ  Eq. (6) 161     ߝߩ

ߩ డఌడ௧ ൅ ௜ݑߩ డఌడ௫೔ ൌ డడ௫ೕ ൤ቀఓାఓ೟ఙഄ ቁ డఌడ௫ೕ൨ ൅ ܿఌଵ ఌ௞ ܲ െ ܿఌଶ ఘఌమ௞     Eq. (7) 162 

where µt is the turbulent viscosity calculated by the equation ߤ௧ ൌ ఓܥ ௞మఌ , with Cµ=0.09, ݑത and ݌ҧ are 163 

the mean (time-averaged) components of velocity and pressure, P ൌ ஜ౪஡ Sଶ represents the production 164 

of turbulence, S ൌ ඥʹS୧୨S୧୨ the shear stress magnitude and Cİ1=1.44, Cİ2=1.92, ık= 1.0 and ıİ=1.3 165 

[37]. 166 

4.3 Computational geometry and mesh generation 167 

The size of the computational domain was set according to the wind tunnel’s working section 168 

dimensions that would be used in sequence for a scaled validation study [39]. More specifically, the 169 

domain had dimensions of 0.5m x 1.0m x 0.5m (W x L x H) (Figure 2), allowing a blockage ratio 170 

(Areamodel /Areatunnel x 100%) of 2.8%, which lies within the recommended values for accurate 171 

simulation studies of air flow around buildings located in open flat terrains [40]. 172 
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 173 
Figure 2 Computational domain and model positioning. 174 

The simplicity of the geometry allowed the creation of a fully hexahedral mesh that enables better 175 

convergence behaviour. A finer grid was generated around the critical areas of the model, including 176 

the building edges, the window openings, as well as, the front, back and lateral flow paths around the 177 

building block. The rest of the domain was developed with high-resolution on the connections along 178 

the critical areas, starting with height of the neighbour cell at 0.002 m and an increasing size 179 

thereafter till the edges of the domain with a ratio of 1.2, leading to a coarser grid size, as illustrated 180 

in Figure 3. 181 

 182 
Figure 3 Computational surface grid of the simulation model (left) and the flow domain (right). 183 

4.4 Grid Verification 184 

In order to ensure grid independency, the volume adaptation method was used that enables the 185 

refinement and coarsening of the entire fluid volume. The initial mesh that was produced in ANSYS 186 
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Mesher, comprised of 1,071,790 hexahedral cells. The refinement and coarsening of the 187 

computational domain enabled the comparison of the average rates of air velocity in the two window 188 

openings. In the initial grid size of 1,071,790 cells, the average wind velocity value was equal to 1.88 189 

m/s. The coarsening of the domain led to 647,542 hexahedral cells, with a magnitude of average 190 

wind velocity equal to 1.79 m/s. After the refinement of the computational domain, 1,236,636 191 

hexahedral cells were produced, with an average wind speed equal to 1.92 m/s. The deviation of the 192 

average velocity magnitude from the medium grid was 4.8% for the coarse grid and 2.1% for the fine 193 

grid, as shown in Table 1. Thus, the medium size grid was selected for the simulation analysis, 194 

ensuring good performance, with reduced computational cost and without compromising the 195 

accuracy of the solution. 196 

Table 1. Estimated error of average velocity magnitude at the two openings of the building 197 
block 198 

Computational Grid Size Average Velocity (m/s) ૓ ൌ ሺ܎૛ െ  ૚ 100%܎૚ሻȀ܎

Coarse: 647,542 1.79 4.8 % 

Middle: 1,071,790 1.88 - 

Fine: 1,236,636 1.92 2.1 % 

4.5  Boundary conditions and solution settings 199 

The boundary conditions set were similar to the one used in the research of Calautit and Hughes 200 

(2014), since the same wind tunnel facility was used. A constant wind profile was set at the inlet and 201 

zero static pressure at the outlet. At the side, top and ground walls of the domain, no-slip shear 202 

condition was applied with roughness height, ks=0.001 m and roughness constant, Cs=0.5. The walls 203 

of the building block were set with similar roughness height of 0.001 m. The boundary conditions 204 

along with the solver settings are summarised in Table 2: 205 

  206 
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Table 2. Boundary conditions and solver settings for the simulation model 207 

Inlet Constant velocity U = 3m/s 

Outlet Zero pressure 

Side, Top and Ground walls ks =0.001 m and Cs=0.5 

Building walls ks=0.001 m and Cs=0.5 

Turbulence model Standard k-İ turbulence model 

Scheme SIMPLE 

Spatial Discretization 

Pressure: Standard, 

Momentum, Turbulence Kinetic Energy and 

Diss.Rate: Second Order 

4.6 CFD results 208 

The initial numerical simulation study generated results of the wind and pressure distributions inside 209 

and outside the building block. Figure 4 illustrates the dimensionless velocity patterns and the 210 

normalised vectors at the vertical cross section of the domain. The uniform velocity of 3 m/s (used 211 

also as reference velocity, Uref) at the inlet resulted to a maximum velocity speed of 3.93 m/s and 212 

2.88 m/s at the exterior and interior areas of the building respectively. According to the results, 213 

recirculation zones are developed below the openings of the upwind and downwind walls, as well as 214 

across the roof due to flow separation at the top front edge of the building block. At the interior, the 215 

air is driven directly from the one side to the other, due to the pressure difference between the two 216 

opposite window openings. Recirculation zones are created at both top and bottom parts of the 217 

interior windward wall. 218 
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 219 
Figure 4 Dimensionless velocity contours and normalised vectors on the vertical plane in the 220 

middle of the building block; as Uref was taken the inlet velocity magnitude of 3m/s. 221 

In case of naturally ventilated buildings, the attainment of sufficient ventilation is important for the 222 

provision of comfortable indoor environments, mainly counted in terms of air volume induced in the 223 

occupied spaces and in terms of homogeneity, for equal flow distribution. Thus, the evaluation of the 224 

results was focused on two parameters. The first one was the volumetric flow rate (Q), as an 225 

indicator of the air volume passing through the windward window per unit time and the second one 226 

was the standard deviation of velocities at the building interior, to assess the homogeneity of the 227 

flow. These parameters can be calculated by the Eq. (8) and (9) below: 228 

ܳ ൌ ௠ሶఘ      Eq. (8) 229 

ܦܵ ൌ ටσሺ௎೔ି௎ഥሻమ௡      Eq. (9) 230 

where Q is the flow rate (m3/s), ݉ ሶ  is the mass flow rate (kg/s), ȡ is the air density (1.2 kg/m3), SD is 231 

the standard deviation of velocities, ௜ܷ is the velocity at interior location i (m/s), ഥܷ is the mean 232 

velocity at the interior of the block (m/s) and n is the number of computational cells at the interior of 233 

the block. The expressions were generated in ANSYS post processing and the graphical illustrations 234 

along with the obtained numerical values are presented in Table 3. 235 

 236 



13 
 

Table 3. Graphical illustration of the CFD simulation results 237 

Expression Value Graphic Illustration 

Flow Rate Q 
(m3/s) 

1.81 x 10-3 

 
Velocity vectors at the windward window opening (left) and vertical 
velocity distribution in the middle of the opening (right) 

St_Dev_Vel 
(m/s) 

0.512 

 

Dimensionless velocity magnitudes at the interior of the building block, 
on the windward (left) and leeward side (right)  

It was observed that the incoming air stream through the front window opening developed an almost 238 

symmetrical distribution of velocity magnitudes, with a maximum value of 2.58 m/. In the interior of 239 

the building block, the highest velocity magnitudes were recorded at the horizontal flow path 240 

between the two openings. The percentage distribution of velocity magnitudes are presented in 241 

Figure 5, indicating that around 48% of the internal points have velocity magnitudes lower than 0.29 242 

m/s. On the windward wall of the building model, recirculation zones were developed on top and 243 

below the window opening, creating intensively ventilated areas, compared to the leeward side of the 244 

building, where calm zones were observed, making the internal airflow relatively heterogeneous. 245 
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 246 
Figure 5 Histogram of dimensionless velocity distribution (left) and dimensionless velocity 247 

vectors (right) at the interior of the building block. 248 

4.7 CFD validation 249 

4.7.1 Inlet velocity profile 250 

For the current study a constant velocity profile was set as inlet boundary condition, in order to 251 

match the one produced from the available wind tunnel facility, in the knowledge that it cannot 252 

represent a realistic flow field. The generated velocity profile at the longitudinal direction in the 253 

centre of the building block is illustrated in Figure 6, by the red line. The results are compared with 254 

the one produced by the study of Ramponi and Blocken (2012) (see Figure 6 black dashed line), in 255 

which a logarithmic velocity profile was applied at the inlet. 256 

According to Chen and Srebric (2002) studies with significant level of accuracy are produced, 257 

provided that the generated trends are consistent. It is also highlighted the fact that “very high 258 

accuracy, while desirable, is not essential since most design changes are incremental variations from 259 

a baseline”. Therefore, since our research is not directly focused on the ventilation performance of 260 

the building block, but on the methodology to optimise the parameters that will improve the built 261 

environment, a constant inlet velocity profile may be accepted. 262 
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 263 
Figure 6 Velocity profile at a longitudinal line in the middle of the building block. 264 

4.7.2 Wind tunnel validation 265 

For the validation of the numerical simulation, the wind tunnel facility of the Civil Engineering 266 

Department at the University of Leeds was used. The closed-loop wind tunnel is 5.6 m long, with test 267 

section dimensions of 0.5m x 1.0m x 0.5m (W x L x H) [39]. The performance assessment of the 268 

model was based on velocity measurements on specific locations inside the building block and 269 

outside the window openings, as illustrated in Figure 7. 270 

 271 
Figure 7 Model positioning in the wind tunnel test section and CFD velocity vectors indicating 272 

airflow distribution (a); hot wire measurement points of velocity speeds (b). 273 

A uniform velocity profile of 3 m/s was achieved, identical to the one used for the numerical 274 

simulation. The speed measurements were conducted using a hot wire probe (Testo 425), obtaining 275 
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results with ±1.0% rdg accuracy at velocity values of ≤ 8m/s. For each measurement point, five 276 

repeated measurements of 2 min duration were performed to reduce the human error factor. The hot 277 

wire was placed on the exact proximity of the windward and leeward window openings and in three 278 

symmetric internal positions of the building model. The results obtained are presented in Table 4 and 279 

Figure 8. 280 

Table 4. Comparison of velocity magnitudes in five building locations from wind tunnel 281 
measurements and CFD simulation. 282 

Measurement 
Point 

P1 (-0.03m) 

 

P2(0.024m) 

 

P3 (0.05m)

 

P4(0.074m) 

 

P5 (0.013m)

 

W.T. Velocity 1.95 m/s 2.66 m/s 2.67 m/s 2.36 m/s 2.54 m/s 

CFD Velocity 1.84 m/s 2.87 m/s 2.76 m/s 2.59 m/s 2.97 m/s 

Error 5.9 % 7.3 % 3.3 % 8.9 % 14.5 % 

 283 

 284 
Figure 8 Graphical comparison of velocity magnitudes obtained by CFD and WT experiments 285 

in five measurement points. 286 

According to the velocity values obtained from the wind tunnel experiments, the k-İ model performs 287 

well, validating the CFD methodology followed for the wind flow simulation. The generated errors 288 

of 5.9% and 3.3%, at the inlet and the interior of the building, are within acceptable limits, if we take 289 
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under consideration the human, experimental and mechanical errors. The highest recorded error of 290 

14.5% at the outlet (P5) can be explained by the induced turbulence in the leeward underpressure 291 

region of the building block that increases the uncertainty of both numerical and experimental value. 292 

5. RSM metamodel methodology 293 

The Response Surface Optimisation technique is a simulation driven optimisation tool that enables 294 

the exploration of various design parameters and displays the interactions among them and the 295 

resulting solutions. A DoE study was performed and combined with RSM, in ANSYS Design 296 

Exploration 15.0. The methodology followed for the identification of the optimum design solution 297 

can be summarised in steps 1 to 4, as shown in Table 5, and has doable extension to similar design 298 

exploration problems. 299 

 Table 5. Workflow for optimization methodology 300 

 
Step 1.  Design of Experiments 

i. Define Input Parameters: continuous or discrete 
ii.  Define Output Parameters 
iii.  Select DoE Scheme: Central Composite Design, Box-Behnken Design, etc. 
iv. Select Design Type: Auto Defined, Face-Centered, etc. 
v. Generate Design Points 

Step 2.  Response Surface 
vi. Select a Meta Model: Standard Response Surface, Kriging, Neutral Network etc. 

vii.  Generate Correlation of Parameters, Sensitivity Results, etc. 
Step 3.  Optimization 
viii.  Select Optimization Method: Screening, MOGA or NLPQL. 
ix. Define Objectives and Constrains 
x. Obtain Candidate Points 

Step 4.  Robustness Evaluation 
xi. Perform Six Sigma Analysis (SSA) 
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5.1 RSM set up 301 

Once the input building design is created and the primary simulation run is completed (as presented 302 

in section 4), the optimization problem can be modelled. The first step concerns the identification of 303 

the input independent variables, their design space (or constraints), as well as the output dependent 304 

variables (Table 6). In the case of cross-ventilated buildings, the window positioning and window 305 

configuration has been found to play a determinant role in enhancing natural ventilation efficiency 306 

(Stavrakakis et al., 2012; Bangalee et al., 2013). Therefore, in consideration of the predicted results, 307 

the dimensional characteristics of the window openings, the width and height, were selected as the 308 

input continuous parameters. Additional derived input parameters were defined in order to keep the 309 

windows always centralised regardless configuration. The design space, within which the exploration 310 

of several design alternatives would be performed, was defined based on rational criteria. The range 311 

of the input variables was from 0.01 m to 0.018 m for the window height and from 0.023 m to 0.046 312 

m for the window width. Output parameters were set the flow rate through the front window opening 313 

and the homogeneity of the flow inside the room, represented by the standard deviation of velocities. 314 

Table 6. Quantification of input and output parameters 315 

Parameters Name Initial Value Constrains 
Input  P1 Window_Height 0.018 m 0.01 m≤ P1 ≤0.018 m 

P2 Window_Width 0.046 m 0.023 m≤ P2 ≤0.046 m 

P3 Horizontal_Dist 0.027 m P3 =(0.1-P2)/2 

P4 Vertical_Dist 0.031 m P4 =(0.08-P1)/2 

Output 
P5 Flow_Rate_Q 1.81 x10-3 m3/s 

 
P6 St_Dev_Sensor_Vel 0.512 m/s 

 
Graphical representation of input (left) and output (right) parameters 

  316 
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After having defined the number of input and output parameters, the generation of the design points 317 

was performed using the Auto-defined Central Composite Design (CCD) scheme. The CCD consists 318 

of one central point, 2N star (or axial) points and a two-level full factorial design (2N factorial points) 319 

[18]. The number of the design points can be determined by Eq. (10) 320 

ܲܦ ൌ ͳ ൅ ʹܰ ൅ ʹே      Eq. (10) 321 

where N is the number of input parameters (or factors). 322 

The selected scheme enabled the creation of 9 rotatable and symmetrical designs, including the 323 

initial one. The calculation of their responses was the most time consuming part of the study, as they 324 

were solved sequentially to achieve convergence in every simulation run. The results obtained are 325 

listed in Table 7 and represent the design space within which the quadratic response surface was 326 

constructed. 327 

Table 7. CCD-based Design Points and their obtained CFD solutions 328 

Design 
Point 

P1 (m) 
Window_Height 

P2 (m) 
Window_Width 

P5 (m3/s) 
Flow_Rate_Q 

P6 (m/s) 
St_Dev_Sensor_Vel 

1 (DP 6) 0.014 0.0345 1.01 x10-3 0.443 

2 (DP 2) 0.01 0.0345 0.69 x10-3 0.380 

3 (DP 8) 0.018 0.0345 1.34 x10-3 0.491 

4 (DP 4) 0.014 0.023 0.66 x10-3 0.438 

5 (DP 5) 0.014 0.046 1.37 x10-3 0.469 

6 (DP 1) 0.01 0.023 0.46 x10-3 0.374 

7 (DP 7) 0.018 0.023 0.87 x10-3 0.477 

8 (DP 3) 0.01 0.046 0.93 x10-3 0.402 

9 (DP 0) 0.018 0.046 1.81 x10-3 0.512 

The second step was the selection of a Response Surface Type algorithm. For the purpose of this, the 329 

Standard Response Surface was adopted, allowing the implementation of a regression analysis to 330 

generate a second-order fitted response for estimating the correlations among the selected 331 

parameters. The second-order models are commonly used for optimisation processes, due to their 332 

flexible nature and ability to perform better in complex problems (Myers et al., 2009). In this stage, 333 
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the relationships between the independent and dependent parameters can be investigated, by 334 

providing a graphical insight into the design sensitivity analysis. 335 

Next to the optimization problem was the selection of the objective function and the optimisation 336 

algorithm. The objective of the optimization was to improve the natural ventilation efficiency. This 337 

could be achieved by increasing the flow rate and also by promoting the flow homogeneity in the 338 

area of interest. Thus, the resulting optimization aims were to maximise Flow_Rate_Q (P5) and 339 

simultaneously minimise St_Dev_Vel (P6), within the restricted range values set for the window 340 

height (P1) and width (P2). The Screening optimization algorithm was used, which is based on the 341 

simple concept of sampling and sorting, identifying the most significant and influential variables, 342 

regarding the predefined objectives and constraints [43]. 1,000 uniformly distributed sample sets 343 

were generated for correlation, within the optimization domain, which constitutes one of the main 344 

benefits of this method. Figure 9 illustrates the evolution of the sample sets by a red curve and the 345 

location of the design sample points in the predefined design space by a blue dot. 346 

 347 
Figure 9 History chart of the sampling design points for the two output parameters; Flow Rate 348 

(left) and Standard Deviation of velocities (right). 349 

5.2 RSM results 350 

The generated response surface was evaluated against its quality and accuracy by the response 351 

surface’s Goodness of Fit. Figure 10 (top) illustrates the fit of the regressed model on the response 352 

function, by plotting the predicted response values versus the observed values from the design points. 353 
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The Goodness of Fit also enabled the evaluation of the performance of the selected meta-modeling 354 

algorithm. The coefficient of determination (R2) was equal to 1 (or 100%) for the flow rate and equal 355 

to 0.9989 (or 99.89%) for the standard deviation, indicating a well-represented response surface by 356 

the parametric model. However, the verification point for the flow rate showed a small deviation 357 

from the diagonal line, indicating the need to refine the response surface. After taking under 358 

consideration this point to the response surface, the updated Goodness of Fit (Figure 10 bottom) 359 

resulted to an improved response surface with a reduction of the maximum relative residuals from 360 

13.77% to 0.21% for the flow rate and from 0.42% to 0.19% for the standard deviation. 361 

The RSM analysis produced estimations of the correlation between the independent and dependent 362 

parameters, based on the input and output values of the Design Points, allowing the graphical 363 

exploration of any design alternative within the constraint limits (Table 8 a). It also permitted the 364 

quantification of the relationship between the input variables and their responses (Table 8 b, c). The 365 

predicted coefficients of determination for every input variable indicated their impact effect on the 366 

design responses and thus gave a first insight on the sensitivity of the design solution. Furthermore, 367 

the results permitted the exploration of any design point within the design region, considering that 368 

they were values obtained from the response surface and not from actual simulation runs. 369 
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 370 
Figure 10 Goodness of fit for the estimated response surface function; initial prediction (top) 371 

and improved prediction (bottom). 372 
  373 
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Table 8. Results of Standard Response Surface algorithm 374 

a) Response Chart – Graphical response exploration of any design alternative within the constraint 
limits 
 

b) Local Sensitivity Chart – Impact chart of 
input on output parameters 

c) Spider Chart – Impact of variable input 
parameters on all output parameters 

 

 
d) Local Sensitivity Curves – Variation of design points response, based on the Local Sensitivity 
Chart 
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5.3 Correlation of parameters 375 

A Parameters Correlation analysis was conducted, in order to assess the impact role of each input 376 

parameters on the design outputs and ascribe the degree of quadratic correlation between two 377 

parameters, with either a linear or quadratic trend, using the Spearman’s rank correlation2. The 378 

implementation required the generation of 60 unique and randomly selected design sets, based on 379 

Latin Hypercube Sampling (LHS) method, according to which the input parameters have at least 5% 380 

deviation of correlations.  381 

As indicated in Table 9, the window height emerges to be the most influential parameter when the 382 

standard deviation is evaluated, with correlation value of 96.9%, compared to 12.35% for the 383 

window width. While in the flow rate, the window width prevails slightly over the window height 384 

with correlation values equal to 73.6% and 55.7%, respectively. 385 

Table 9. Linear correlation matrix and estimated correlation values between parameters 386 

 

 
P1 = Window_Height 
P2 = Window_Width 
P5 = Flow_Rate (Q) 
P6 = St_Dev_Sensor_Vel (SD) 

  
Correlation Value 

P1 – P5 55.68 % 
P2 – P5 73.62 % 
P1 – P6 96.94 % 
P2 – P6 12.35 % 

Scatter plots were also produced to identify the degree to which the regression lines represent the 387 

model data. Figure 11 illustrates the generated linear and quadratic trend lines for each parameter 388 

pair. The multiple regression analysis showed that quadratic trend lines were a better fit for the input 389 

variables. The estimated coefficients of determination (R2) showed that 39.9% and 54.6% of the 390 

Flow_Rate variation can be explained by the variation of the Window_Height and Window_Width, 391 

respectively. The variability of the Standard_Deviation can be strongly explained by the 392 

                                                 
2Spearman’s rank correlation is used to identify the relationship between parameters that belong in complex nonlinear 
data sets, without taking under consideration the outliers [44]. 
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Window_Height with a percentage of 92.1%, as opposed to the Window_Width that gave a poor 393 

coefficient of determination equal to 12.9%. 394 

 395 
Figure 11 Correlation charts with quadratic and linear trend lines for the Flow Rate (top) and 396 

the Standard Deviation of Velocities (bottom) 397 

5.4 Optimization results 398 

On the improvement of the ventilation performance, the Screening optimisation method was 399 

employed that allowed the generation of 1,000 window design samples to be evaluated against the 400 

objective set. The optimisation results contained information about the candidate optimum design 401 

solutions, Pareto optimality and sensitivities analysis of the studied parameters. Figure 12 illustrates 402 

the generated design space, where feasible design solutions exist. Tradeoff charts, also known as 403 

Pareto fronts, enable the exploration of the best (blue), worst (red), feasible and infeasible designs. 404 
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 405 
Figure 12 Two-dimensional Tradeoff chart displaying feasible design points. 406 

Table 10 shows the three generated candidate design points that show the best behaviour regarding 407 

the predefined set of objectives and constraints. According to the results, all three candidate points 408 

produced similar results for the standard deviation, with maximum variation of 3.64% between CP1 409 

and CP3. On the other hand, the flow rate varied over 12.67% between these two points, which 410 

makes the CP3 to satisfy most the established objectives for maximizing the flow rate and 411 

minimizing the standard deviation. 412 

Table 10. Candidate Points generated from the Screening method 413 

Candidate 
Points 

P1 (m) 
Window_Height 

P2 (m) 
Window_Width 

P5 (m3/s) 
Flow_Rate_Q 

P6 (m/s) 
St_Dev_Vel 

Candidate Point 1 10.03 x 10-3 40.26 x 10-3 0.818 x10-3 0.390 
Candidate Point 2 10.06 x 10-3 43.14 x 10-3 0.882 x10-3 0.397 
Candidate Point 3 10.00 x 10-3 46.00 x 10-3 0.937 x10-3 0.405 

The dimensions of the optimum window opening are 0.01m height and 0.046m width. The values of 414 

the output parameters over the initial design deviate -48% and -21% for the flow rate and the 415 

standard deviation respectively. It is worth highlighting that the flow rate was not maximized, but 416 

minimized in order to achieve local optimality. 417 
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5.5 Robust Analysis 418 

On the impact identification of the uncontrollable parameters on the design response, a robust design 419 

analysis was performed. The robust design consists of a Six Sigma Analysis that investigates the 420 

performance of the predicted response surface, by incorporating factors, uncertainties and 421 

assumptions that are not taken under consideration during the RSM analysis. Thus, the robustness of 422 

the model presupposes an unattained design, regarding the possible biases due to model 423 

misspecification and misstatements and the distribution of the error [45]. 424 

The Six Sigma Analysis followed the same steps and settings used in the Design of Experiments and 425 

the Response Surface (refer to Table 5); with the main difference being that the inputs variables were 426 

treated as uncertainty parameters. The LHS method was adopted for the generation of 100 samples 427 

and the obtained results were focused on the sensitivities of output variables with respect to the input 428 

parameters and the statistical distribution of the samples responses. 429 

The sensitivity graph produced was not representative of the local sensitivities (such as in Table 9), 430 

but of the global statistical sensitivities, irrespective of the values of input parameters. As illustrated 431 

in Table 11, the sensitivity correlation coefficients highlighted the window width to affect most the 432 

flow rate with a value of 75.57% and the window height to maintain the highest impact role on the 433 

Standard Deviation response, with a correlation coefficient equal to 82.06%. It is worth mentioning 434 

that when the factor of the Standard Deviation was assessed, the window width appears to have an 435 

increased strength of correlation (54.04%) when compared with the one obtained from the RS 436 

analysis (12.35%) (see Table 9). 437 
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Table 11. SSA statistical sensitivities for the output parameters 438 

 

 
P1 = Window_Height 
P2 = Window_Width 
P5 = Flow_Rate (Q) 
P6 = St_Dev_Vel (SD) 

  
Correlation R2 

P1 – P5 62.39% 
P2 – P5 75.57% 
P1 – P6 82.06% 
P2 – P6 54.04% 

In order to prove the robustness of the model, the Six Sigma quality criterion needs to be satisfied. 439 

According to this, the output parameters should lie within the lower and upper specification limits of 440 

a Gaussian distribution. According to Figure 13, in the flow rate distribution the highest probability 441 

density is in the range of 0.97x10-3 m3/s. The distribution is positively skewed and slightly flat, with 442 

a skewness value of 0.22 and a kurtosis value of -0.55, approximating the graph of the normal 443 

distribution. The standard deviation distribution shows a negative skewness of -0.23 and a small 444 

kurtosis of -0.007, with the maximum probability density to lie in the range of the mean value (0.44 445 

m/s) that gives the image of normal distribution. 446 

 447 
Figure 13 Statistical distribution functions for P5_Flow_Rate (left) and P6_St_Dev_Vel (right). 448 

 449 
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5.6 RSM optimization verification 450 

The verification of the optimization method concerns the comparison of the values estimated for the 451 

output parameters by the RSM metamodel and those obtained by the CFD simulation runs for the 452 

three candidate points. The calculated design solutions from the numerical simulation are presented 453 

in Table 12. 454 

Table 12. Verification of the optimization-generated Candidate Points 455 

Candidate 
Points 

Candidate Point 1 
RSM | CFD 

Candidate Point 2 
RSM | CFD 

Candidate Point 3 
RSM | CFD 

Window 
Height (m) 

10.03 x 10-3 10.06 x 10-3 10.00 x 10-3 

Window 
Width (m) 

40.26 x 10-3 43.14 x 10-3 46.00 x 10-3 

Flow_Rate 
(x 10-3 m3/s) 

0.818 0.837 0.882 0.901 0.937 0.9362 

St_Dev_Vel (m/s) 0.390 0.406 0.397 0.414 0.4047 0.4049 

According to the results, the values of both flow rate and standard deviation for the CP1 and CP2 456 

were underestimated over a maximum of 4.8%. The CP3 seems to be the optimum one for our case 457 

study, since it maintains the lowest value of standard deviation and the highest flow rate, satisfying 458 

the set of optimisation objectives. 459 

The verification of the results enabled the production of two different error indicators. As shown in 460 

Table 13, the maximum error for the flow rate was equal to 4.28% and the one for the standard 461 

deviation equal to 2.32%, proving the high quality optimization results, verifying at the same time 462 

the Response Surface Methodology study. 463 

Table 13. Error between CFD and RSM results for the three candidate points 464 

Candidate Point Error Flow_Rate Error St_Dev_Vel 
Candidate Point 1 2.32 % 4.10 % 
Candidate Point 2 2.15 % 4.28 % 
Candidate Point 3 0.03 % 0.07 % 
  465 
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6. Discussion 466 

The RSM metamodel-based optimization technique allows the determination of the response of 467 

several design variables after approximating a response function, averting the need for time-468 

consuming parametric studies [46]. It is a valuable tool when the relationship of the independent 469 

variables needs to be assessed, regarding multiple design responses. However, the RSM method 470 

should be carried out with extreme caution, when targets to the identification of those conditions that 471 

will achieve the maxima or minima of the response function. 472 

The arbitrary selection of the independent (input) variables is pre-dominantly user-based, and the 473 

optimization of one response criterion does not always presuppose the optimization of other criteria 474 

of the model and vice versa. Also the number of the selected parameters is of great importance, since 475 

it determines the number of the studied design points, upon which the response surface function will 476 

be based. Thus, the type and the number of the input parameters should always be selected after 477 

rational consideration, in order to maximise the quality of the results within reasonable 478 

computational time. 479 

Moreover, the conduction of the DoE study, within a certain design space, bounded by dimensional 480 

constraints, can only conclude to improved design solutions, or local optimal, which sometimes may 481 

abstain from the global optimal solution. 482 

The current investigation conducted a RSM metamodel-based optimization technique, using the 483 

ANSYS commercial platform. The main aim was the presentation of a validated analysis of 484 

experiments for the identification of improved (or locally optimal) conditions in the building’s 485 

interior environment, based on a set of controllable variables. For this purpose, a CCD design was 486 

adopted for fitting a second order response surface regression model. The problem set was a two 487 

response optimization, including the maximization of the flow rate from the frontal window opening 488 
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and the minimization of the standard deviation of internal velocities, deeming to a homogeneous 489 

ventilation rate inside the building block. 490 

In the first step a CFD simulation study on the wind distribution inside and outside the building 491 

block was performed, followed by wind tunnel velocity measurements that validated the 492 

methodology and the k-İ turbulence model used. 493 

In the DoE study, nine design points were generated and the produced response function revealed the 494 

estimated relationships and correlations of input and output parameters. The flow rate was more 495 

influenced by the window width, rather than the window height with correlation coefficients of 496 

73.62% and 55.68% respectively, as compared to the standard deviation, for which the window 497 

height was the predominant factor of the response with a correlation coefficient of 96.94%, as 498 

opposed to 12.35% for the window width. 499 

The robust assessment, performed by the Six Sigma Analysis, revealed a reliable curve-fitted model 500 

and arising extrapolation errors due to unrepresentative samples’ selection or sampling error were 501 

small to make the analysis imprecise. 502 

Finally, the multi-objective optimization highlighted three candidate points with the most favourable 503 

behaviour for the improvement of indoor airflow conditions. Their verification was valuable, because 504 

even if the deviation of the results was small, it was important to prove the accuracy of the 505 

methodology. 506 

7. Conclusion 507 

The verified solution of the optimal design for the window opening indicated that improved indoor 508 

airflow condition inside the building block, as described by the ventilation rate and the airflow 509 

homogeneity, was obtained by a 0.046 m wide and 0.01 m height opening characteristics. It was also 510 

concluded that both dimensional parameters were influencing the design solution on a different level. 511 

Coupled CFD and optimizations techniques were found to be important tools for the analysis and 512 
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evaluation of multiple parameters and responses, producing comparative results that may assist 513 

decision-making process towards improved (if not optimum) design solutions. Finally, it was 514 

deduced that the presented methodology can be successfully used in studies of the built environment, 515 

allowing users to select throughout a plethora of parameters that are relevant to the equivalent case 516 

study. 517 
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