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The nonlinear stability of two-fluid Couette flows is studied using a novel evolution equa-
tion whose dynamics are validated by direct numerical simulations (DNS). The evolution
equation incorporates inertial effects at arbitrary Reynolds numbers through a non-local
term arising from the coupling between the two fluid regions, and is valid when one of
the layers is thin. The equation predicts asymmetric solutions and exhibits bistability,
features that are essential observations in the experiments of Barthelet et al. (1995).
Related low-inertia models have been used in qualitative predictions rather than the di-
rect comparisons carried out here, and ad hoc modifications appear to be necessary in
order to predict asymmetry and bistability. Comparisons between model solutions and
DNS show excellent agreement at Reynolds numbers of O(103) found in the experiments.
Direct comparisons are also made with the available experimental results of Barthelet et
al. (1995) when the thin layer occupies 1/5 of the channel height. Pointwise comparisons
of the travelling wave shapes are carried out and once again the agreement is very good.

1. Introduction

The stability of plane Couette-Poiseuille two-fluid flows was first investigated by Yih
(1967) who showed that the flow is unstable to long waves at non-zero Reynolds numbers.
This instability is due to a viscosity jump across the interface, and depends on the
viscosity and thickness ratios of the two fluid layers (the density and surface tension
ratios were held fixed in Yih’s study). Further work by Hooper & Boyd (1983); Hooper
(1985); Renardy (1985, 1987) revealed that the flow is always linearly unstable if the
thin layer is also more viscous; this effect is known as the “thin layer effect” and is often
found in multilayer flows (Craster & Matar 2009).
The aim of the present study is the analysis of the nonlinear stages of these instabilities

and a direct comparison of a new theory with both direct numerical computations (DNS)
and the experiments of Barthelet et al. (1995). Previous attempts have been made us-
ing Kuramoto-Sivashinsky (KS) equations - see for example Hooper & Grimshaw (1985,
1988) and subsequently Barthelet & Charru (1995); Charru & Fabre (1994) who take
smaller surface tension and retain higher-order terms corresponding to linear and non-
linear dispersion as well as nonlinear dissipation. Barthelet & Charru (1995) present a
detailed and critical evaluation of KS-type equations in the light of the experiments by
the same authors. The experiments of Barthelet et al. (1995) are set up in an annular
Couette device that facilitates the generation of periodic waves (described in more detail
in Section 2) and predict that as the upper plate speed increases, and for thickness ratios
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less than approximately 0.3 (the thin layer is always more viscous), there is a supercriti-
cal bifurcation to non-symmetric nonlinear travelling waves with wavelength equal to the
Couette device length. In addition, bistability is found at larger plate speeds with uni-
modal and bimodal (i.e. wavelengths equal to half the device length) solutions coexisting
and emerging as long-time features in the experiments depending on initial conditions.
For order-one thickness ratios, subcritical bifurcations are found with travelling waves
of shorter wavelength scaling with the device thickness; this branch of solutions also
supports hysteresis, with the travelling wave persisting as the plate velocity is gradually
decreased (see for example figure 10 in Barthelet et al. (1995)). The main focus of the
experiments was on the supercritical waves and detailed data are provided for a thickness
ratio of 0.25. We will focus on this relatively small thickness ratio regime and develop a
novel set of equations capable of describing these nonlinear phenomena. It is worth not-
ing that the detailed evaluation of KS-type models by Charru & Fabre (1994) identified
some shortcomings of the models vis a vis the experiments; the KS equation is found
to be inappropriate (no linear dispersion is present and reflectionally symmetric profiles
emerge), while a judicious selection of higher-order terms can reproduce the experimen-
tal features, at least qualitatively. The basis of the weakly nonlinear theory of Hooper &
Grimshaw (1985) and Charru & Fabre (1994) is that given a wave amplitude α ≪ 1, the
wavelength is of order 1/α ≫ 1. This introduces an arbitrarily large wavelength and as a
result inertial effects cannot be accounted for. Our approach is very different - the wave-
length is set by the geometry of the problem (e.g. the channel thickness) and analytical
progress is possible when one of the layers is thin. For the thin layer the wave is long but
for the thicker one it is not - in fact it scales with the thickness of the respective layer.
Asymptotic solutions are sought in each layer and matched at the interface to provide
a single evolution equation for the scaled amplitude that accounts for the flow in the
thick layer at arbitrary Reynolds numbers and in particular for those of the experiments
of Barthelet et al. (1995). In addition to non-symmetric profiles, our model also pre-
dicts the experimentally observed bistability phenomena. Similar analyses were carried
out for pressure-driven two-phase core-annular flows by Papageorgiou et al (1990) and
by Kalogirou & Papageorgiou (2016) for a small variation of the present problem but
in the presence of insoluble surfactants. Related non-local equations are found in other
physical contexts, for example turbulent shear flows in riverbed dynamics (Fowler 2011),
the dynamics of electrified falling films (Tseluiko et al. 2010) or the dynamics of falling
films below turbulent gas flows (Tseluiko & Kalliadasis 2011).
The structure of the rest of this paper is as follows: §2 provides a brief overview of

the experiments of Barthelet et al. (1995) and identifies the ones that are used for direct
comparisons. §3 presents the asymptotic model and a brief derivation of the weakly non-
linear interfacial evolution equation. In §4, numerical results obtained by the asymptotic
model are compared to direct numerical simulations and the experiments. Bistability
results are also presented. A discussion can be found in §5.

2. The experiments of Barthelet et al. (1995)

Barthelet et al. (1995) observe long-wave instability in a channel of rectangular cross-
section bent into an annular ring (see their figure 2). The flow was driven by the rotation
of the upper plate, and the position of the interface was measured with a probe situated
in the middle of the cross-section. The lower experimental fluid selected here was a
mixture of distilled water and glycerine in proportions 42% − 58% - other mixtures
were also examined in the experiments. The upper fluid was a mineral oil. The channel
dimensions and the physical properties of the fluids are given in table 1. The channel
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Physical parameter Value Physical parameter Value

Channel mean diameter D = 0.4 m Lower fluid viscosity µ1 = 0.0108 Pa·s
Channel width W = 0.04 m Upper fluid viscosity µ2 = 0.0297 Pa·s
Channel height (depth) d = 0.02 m Viscosity ratio m = µ2/µ1 = 2.76
Depth ratio h = h2/h1 = 0.25 Lower fluid density ρ1 = 1142 kg·m−3

Surface tension γ = 0.03 Pa·m Upper fluid density ρ2 = 846 kg·m−3

Density ratio r = ρ2/ρ1 = 0.741

Table 1. Physical parameters from the experiments of Barthelet et al. (1995). These are used
in the computations of the model equation and the DNS.

Experiment U (m · s−1) Re1 Re2 We Ca
A 0.184 389 141 25.66 0.182
B 0.218 461 167 36.07 0.216
C 0.244 516 187 45.25 0.242

Table 2. Dimensionless parameters for three different upper plate speeds U used in the
experiments of Barthelet et al. (1995) - other parameters as in table 1.

width to diameter ratio was 1/10 and so the two-dimensional flow configuration of figure 1
is appropriate. The experiments were performed for various values of the depth ratio
h = h2/h1, but the case which is most relevant in comparisons with our asymptotic
theory is for h = 0.25, which is the smallest h they investigated.
The experiments show that for h = 0.25 there is a critical upper plate speed above

which a supercritical bifurcation occurs to give a travelling wave whose wavelength is
equal to the mean channel perimeter Lw = πD = 1.257 m, implying a dimensionless
period 2L = Lw/d ≈ 63. In this paper we focus on data from three experiments as
detailed in table 2 for three different upper plate speeds U (the definitions of the Reynolds
numbers Re1, Re2, the Weber number We and the Capillary number Ca are given in §3).
As mentioned in the introduction, subcritical shorter waves that scale with d have also
been observed but at values of the depth ratio h that are of order one. We do not pursue
these here because they are outside the range of validity of the model equations derived
below; DNS may be capable of describing them but this is left for future work.

3. Nonlinear evolution equations in the thin layer limit

Consider the flow of two immiscible, incompressible viscous fluids of equal densities
ρ1 = ρ2 = ρ and different viscosities µ1 and µ2 in a channel of height d, driven by
the motion of the upper plate with velocity U (figure 1). Using Cartesian coordinates,
the channel walls are at y = 0 and y = d and the interface separating the fluids is at
y = S(x, t), where t is time. Surface tension is present at the interface and has constant
value γ. In the undisturbed state the interface is at y = ℓd, where 0 < ℓ < 1 is a
constant. The domains 0 < y < S(x, t) and S(x, t) < y < d are denoted as regions 1
and 2 respectively . Lengths are non-dimensionalised with d, velocities with U , time with
d/U , and pressures with ρU2. The Navier-Stokes and continuity equations in each phase
i = 1, 2 become (gravity is neglected here)

∂ui

∂t
+ ui · ∇ui = −∇pi +

1

Rei
∇2

ui, ∇ · ui = 0, (3.1)
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Fluid 1,

Fluid 2,

U

h2

h1

ρ2, µ2

ρ1, µ1

Figure 1. Geometry of the problem: two superposed fluid layers in a channel of depth d,
driven by the upper plate motion with speed U .

where ui = (ui, vi)
T is the velocity field, pi the pressure and Rei the Reynolds number

in each fluid

Re1 =
ρUd

µ1

, Re2 =
ρUd

µ2

=
Re1
m

, (3.2)

with m = µ2/µ1 the viscosity ratio. The boundary conditions are no-slip at the walls

u1 = v1 = 0 at y = 0, and u2 = 1, v2 = 0 at y = 1, (3.3)

along with continuity of velocities at the interface,

u1 = u2, v1 = v2 at y = S(x, t). (3.4)

In addition, at the interface we need to satisfy a kinematic condition

vi = St + uiSx, i = 1, 2, (3.5)

and continuity of normal and tangential stresses
[
− pi

(
1 + S2

x

)
+

2

Rei

(
S2
xuix + viy − Sx (uiy + vix)

)]1
2

=
1

We

Sxx√
1 + S2

x

, (3.6a)

[
4
µi

µ1

Sxuix +
µi

µ1

(
S2
x − 1

)
(uiy + vix)

]1
2

= 0, (3.6b)

where the jump notation [fi]
1
2 = f1 − f2 is used. Here, We = ρU2d

γ
is the Weber number,

also equal to We = CaRe2 with Ca = µ2U
γ

the Capillary number.

When the interface is flat, y = ℓ, the system (3.1)-(3.6) admits an exact base state
solution u1 = (U1(y), 0), u2 = (U2(y), 0) where

U1(y) =
my

ℓ(m− 1) + 1
, U2(y) = 1−

1− y

ℓ(m− 1) + 1
. (3.7)

One of the main objectives of the present work is to study the nonlinear stability of this
state and in what follows analytical progress is made for thin upper layers - the theory
is also evaluated against direct numerical simulations and experiments.
Taking the mean thickness of region 2 to be ǫ ≪ 1 (analogously ℓ = 1 − ǫ), we

introduce weakly nonlinear perturbations S(x, t) = (1 − ǫ) − ǫ2H̃(x, t), with H̃ = O(1).
The canonical scaling Ca = ǫCa0, with Ca0 = O(1), is introduced to ensure coupling
between the two layers. The analysis follows the work of Kalogirou & Papageorgiou
(2016) (see also Kalogirou (2014)), the main difference being that in the present case



Two-layer Couette flows 5

the thin layer is in the vicinity of the upper moving plate to enable direct comparisons
with experiments. The expansions in region 1 are u1 = U1(y) + ǫ2U1(x, y, t) + · · · , v1 =
ǫ2V1(x, y, t) + · · · , p1 = ǫ2P1(x, y, t) + · · · ; in region 2 we introduce a stretched variable
ζ = (1 − y)/ǫ (the undisturbed interface is now at ζ = 1) and write u2 = U2(ζ; ǫ) +
ǫ3U2(x, ζ, t) + · · · , v2 = ǫ4V2(x, ζ, t) + · · · , p2 = ǫP2(x, ζ, t) + · · · . The solutions then
retain a leading-order balance between the pressure gradient and viscous terms in the
momentum equations.

At leading order we have advection with the undisturbed interfacial velocity Us =
U2

∣∣
y=1−ǫ

= U1

∣∣
ζ=1

as expected. An evolution equation for H̃ is found at the next order

after transforming to a Galilean frame of reference and introducing a slow time scale

X = x− Us t, t̃ = ǫ2 t, (3.8)

H̃t̃ −
1

m
H̃H̃X +

1

3Ca0

H̃XXXX −
1

2m
T
∣∣
y=1

= 0. (3.9)

In addition to unsteadiness and nonlinearity, equation (3.9) contains surface tension and
involves the non-local inertial term T (x, y) = U1xy + V1xx that is found by solving in
region 1 as explained next. The slow time dynamics and the order ǫ2 perturbations imply
that the flow in region 1 is governed by the linearised steady Navier-Stokes equations
at Re1 = O(1). Taking Fourier transforms, eliminating the pressure P2 and writing

V̂1 = −ik( 1

m
− 1)

̂̃
HF (y) (hats denote Fourier transforms), yields the following Orr-

Sommerfeld-type problem

(
F ′′′′ − 2k2F ′′ + k4F

)
− ikRe1 y

(
F ′′ − k2F

)
= 0, (3.10a)

F (0) = 0, F ′(0) = 0, F (1) = 0, F ′(1) = 1. (3.10b)

The boundary conditions are those of no-slip at the lower wall y = 0 and continuity of
velocities at the interface y = 1. It follows that the non-local term in (3.9) is given by

T
∣∣
y=1

=
i

π

(
1−

1

m

)∫ +∞

−∞

N (k;Re1)Ĥ(k)eikx dk, N (k;Re1) = −
k

2
F ′′(1). (3.11)

The final rescalings H̃ = (m/3Ca0)H, t̃ = (3Ca0/m)T produce the canonical equation

HT −HHX +HXXXX −
iΛ

2π

∫ +∞

−∞

N (k;Re1)Ĥ(k)eikX dk = 0. (3.12)

The parameter Λ = 3Ca0
1

m
(1 − 1

m
) represents the effects of viscosity stratification.

Linearising about H = 0 and looking for solutions proportional to eikx+σt yields

σ = −k4 −
ikΛ

4π
F ′′(1). (3.13)

Instability is found if ℜ(σ) = k
4π

Λℑ(F ′′(1))−k4 > 0, where ℜ and ℑ denote the real and
imaginary parts of a given quantity. Numerical solution of the boundary value problem
(3.10) predicts that ℑ(F ′′(1)) > 0 (we do not have a proof for this), therefore the flow is
unstable only if the film is more viscous than the lower fluid (Λ > 0), completely in line
with the results of Yih (1967).

Equation (3.12) is solved numerically on 2L−periodic domains. The non-local term
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becomes a Fourier series and the initial value problem to solve is

HT −HHX +HXXXX − iΛ
+∞∑

k=−∞

N
(
kπ
L
;Re1

)
Ĥ(k)e

ikπX

L = 0, (3.14)

H(X, 0) = A sin
(
πX
L

)
, (3.15)

where A > 0 is an amplitude set to 1 unless stated otherwise. Other initial conditions can
be used - for example H(X, 0) = A sin

(
2πX
L

)
when searching for bistability. Equation

(3.14) is discretised spectrally in space and implicit-explicit BDF (backward difference)
schemes are used for the time-stepping. The numerical results that follow were obtained
via a 2nd-order accurate time-discretisation scheme; for numerical analysis details in-
cluding convergence theorems about BDF schemes (with as high as 6th-order accuracy)
see Akrivis et al. (2012).
We conclude this section by constructing the data that is used in experimental and

DNS comparisons discussed in detail in §4. The experiments of Barthelet et al. (1995)
are in the inertial regime (Re1 ≈ 500) and find, among other phenomena, interfacial
travelling waves of permanent form. The interfacial amplitude is recorded by a fixed
probe and the spatial profiles follow from this signal if the wave speed is known - this
is also implemented in computations. The value of the spatial period 2L is set by the
experiment (from table 1 we have 2L = 20π ≈ 63), and at such values equation (3.14) has
travelling wave solutions of the form H(X,T ) ≡ H(X−cT ) where c is the constant phase
velocity. In model computations we record the amplitude at X = 0 and so the period
of oscillation in time is given by 2L/c - this needs to be multiplied by c/Us in order to
compare with experiments and DNS that place a probe at x = 0 and not x = Ust. In a
direct numerical simulation for a given finite ǫ, we monitor

S(0, t) = 1− ǫ− f(t), (3.16)

where f(t) is periodic (for small ǫ the period is approximately 2L/Us). We scale the
oscillatory part as in the experiments by defining S(t) = S(0, t) − (1 − ǫ) and use the
numerical data to find A+ = max{S(t)} and A− = min{S(t)}. The scaled amplitude is

S(t)

Ssat

, where Ssat =
1

2
(A+ +A−). (3.17)

An analogous amplitude normalisation is used in computations of the model also, before
experimental or DNS comparisons are carried out.

4. Comparison between direct numerical simulations, model
computations and experiments

In this section we compare computed solutions of (3.14) with those coming from DNS,
and use the model solutions to make quantitative comparisons with experimental results
(the experiments are on very long domains that are challenging to simulate directly).

4.1. Direct numerical simulations and comparison with model solutions

We carry out DNS of the flow configuration given in figure 1 and the fluids described
in table 1 as reported in the experiments. The initial condition in each fluid layer is
a superposition of the basic states (3.7) and a perturbation (chosen to match initial
condition (3.15)) of the form

S(x, 0) = 1− ǫ− ǫ2 sin
(πx
L

)
, (4.1)
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Figure 2. Comparison of wave periods (in seconds) computed with the model (diamonds) and
DNS (circles) as a function of ǫ varying from 0.01 to 0.2. The Reynolds number is Re1 = 516
and two channels with different aspect ratios are used (4:1 - panel (a), 8:1 - panel (c)). The
period obtained by tracking a particle on the undisturbed interface is included for reference
(filled squares). Right panels: Position of the interface at x = 0 obtained numerically using the
model (solid curves) and DNS (dashed lines). Panel (b), aspect ratio 4 : 1 and ǫ = 0.1; panel
(d), aspect ratio 8 : 1 and ǫ = 0.2.

with domain lengths 2L = 4, 8, 12.
The problem was implemented using the volume-of-fluid (VOF) open source software

Gerris (Popinet 2003). The quadtree-based structure of the code enabled adaptive mesh
refinement and efficient parallelisation; the numerical schemes employed are 2nd-order
accurate in both space and time. Periodic boxes representing the three geometries are
constructed in Gerris, and each sub-unit square is discretised using a uniform grid with
64 nodes in each dimension; two additional refinement levels are prescribed around the
fluid-fluid interface so that the local grid spacing here becomes 1/4 of the bulk mesh.
For the largest and most expensive geometries, a total of at least 12288 cells were used
to represent the interfacial vicinity, while the total number of degrees of freedom in the
domain was approximately 6× 104. All simulations were run for sufficiently large times
to enable the interfacial profiles to reach saturation to travelling waves. In each case this
required several days of runtime on local high performance computing facilities, with
calculations executed in parallel on 4, 8 and 12 CPUs, respectively.
Numerical computations and comparisons between DNS and the model are presented

in figure 2 for Re1 = 516, corresponding to experiment C in table 2 (the other parameters
Re2, We and Ca are as given in the table). The interfacial amplitude is monitored at
x = 0, the centre of the domain, and normalised as described in §3 - see (3.16) and
(3.17). Computations of the evolution equation (3.14)-(3.15) were also carried out, with
the value of Λ adjusted in order to obtain the best possible agreement; note that the only
adjustable parameter in Λ is Ca0 where Ca = ǫ Ca0.
A systematic comparison between model and DNS is given in figure 2 for 4 : 1 and

8 : 1 channel aspect ratios. Panels (a) and (c) show the computed periods of oscillation in
seconds versus the upper layer thickness ǫ - open circles are used for the DNS, diamonds
for the model and filled squares represent the time period of a particle on the undisturbed
interface with velocity given by (3.7). The wave speed is found to be independent of
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the channel length and we have confirmed that as ǫ becomes smaller it tends to the
undisturbed base velocity (this is asymptotically equal to the upper plate speed U =
0.244 m/s). We also find that the period of oscillation increases proportionally to the
channel length - for the 8×1 channel the period is approximately double that of the 4×1
channel (to within an error of O(ǫ2)). We note that the periods predicted by the model
underestimate slightly the values obtained by DNS.
A direct comparison of the travelling wave shapes is given in panels 2(b) and (d)

for the 4 : 1 and 8 : 1 aspect ratio geometries, respectively. DNS results are depicted
with a dashed red curve and model ones with a solid curve - agreement is seen to be
very good. The model computations were obtained by setting Λ = 0.4 implying that
Ca0 ≈ 0.577 (the value of m = 2.76 is fixed by the experiments). The simulations take
Ca = 0.242, and using ǫ = 0.1 predicts Ca0 ≈ 2.42 which is larger than the value
used in the model. This discrepancy is due to the asymptotic nature of the evolution
equations and we do not expect an exact correspondence at finite ǫ. In the longer domain
of figure 2(d), the dimensionless film thickness is set to ǫ = 0.2 and the model uses
Λ = 0.2 and Ca0 = 0.29. Once again agreement between DNS results (red dashed curve)
and model predictions (black solid curve) is very good. More notably the interfacial
shapes in the model-DNS comparisons have the same characteristics, with features due
to the nonlinearity dominating as the domain size increases. Finally, we note that for
both channel aspect ratios, the cases presented correspond to the largest values of ǫ, thus
providing the most challenging conditions for the comparison.

4.2. Comparisons with the experiments of Barthelet et al. (1995)

Given the success of the model in comparisons with DNS, we turn next to comparisons
with the experiments of Barthelet et al. (1995). As noted earlier, these require relatively
long domains (approximately 63 dimensionless units) that are challenging for DNS. In
what follows we compare with the experiments A,B and C in table 2 corresponding to
Re1 = 389, 461, 516, respectively. For the model computations we set 2L = 20π ≈ 62.832,
and calculate the required kernels (3.11) at the different Re1. The parameter Λ is set to
Λ = 0.0015 in order to retain a sufficient number of unstable modes to enable dynamical
comparisons. Signals are constructed as described at the end of §3 and the results are
presented in figure 3, which reproduces the experimental results on the left (panel (a))
and the computational ones on the right (panel (b)). The wave amplitudes are normalized
with the saturated amplitude of the wave for the largest Reynolds number Re1 = 516 as
done in the experiments. In panel (b) we also superimpose with dotted curves numerical
results obtained by solving the localised equation

HT −HHX + αHXXXX + 2ΛHX +
ΛRe1
20

HXX − Λ

(
2

15
+

17Re1
50400

)
HXXX = 0, (4.2)

which arises by taking the long-wave limit in (3.14) and introducing a “correction” pa-
rameter α = 1.125 so that the non-local and local models have the same band of linearly
unstable modes (with this choice, the maximum growth rate of the local model is 0.01195
compared to 0.01170 for that of the non-local model). The numerical computations in-
dicate that the non-local model does better in comparisons with the experiments. The
reason for including results from (4.2) is to motivate a possible rational way of construct-
ing appropriate dispersive Kuramoto-Sivashinsky like equations whose dynamics resemble
experimental observations - e.g. see Barthelet & Charru (1995). Using a local model is
not commendable since it nevertheless requires the analysis of the non-local equation
(3.14). The latter is straightforward to implement numerically and hence preferable. The
evolution of the amplitudes of the first three harmonics of the non-local and local models
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Figure 3. Position of the interface at a fixed point. (a) Experimental shapes obtained by
Barthelet et al. (taken from Barthelet et al. (1995), p.36), and (b) interfacial shapes obtained
numerically by solving the model equation (3.14) and its localised version (4.2). The three plots
correspond to the values of upper plate speeds or Reynolds numbers given in table 2.

Experiment A B C
Period (seconds) - experiment 9.4 8.1 7.5
Period (seconds) - model 8.5 7.25 6.45

Table 3. Comparison between periods of oscillation for experiments A,B,C given in table 2
and the corresponding ones from the model computations. All values are given in seconds.

were also compared for the parameters of figure 3. We find (results not shown) that for
Re1 = 389 the local model under predicts the amplitudes whereas for the largest value
Re1 = 516 it over predicts them.
The waves in the two panels have similar shapes, consisting of steep wave fronts and

sharp troughs that are enhanced as Re1 increases. The period of oscillation decreases as
Re1 increases, and a comparison between theory and experiment is provided in table 3.
The differences range from approximately 10% for experiment A to 14% for experiment C.
The model underestimates the experimental values and this is consistent with the fact
that the experiments study stably stratified flows (the density ratio is approximately
0.74 - see table 1) rather than equal densities. In fact, preliminary analysis indicates that
stable density stratification modifies equation (3.14) with a second-order diffusion term
that would increase the period of oscillations, all other parameters being equal.

4.3. Predicting bistability using the model

The experiments of Barthelet et al. (1995) find bistable travelling waves (of wavelengths
equal to the channel perimeter or half the perimeter, respectively) for sufficiently large
values of the upper plate speed - see their figures 22-24. This phenomenon is reproduced
by the model equation as we describe next. In particular, we model the experiment having
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Figure 4. Evolution of interfacial position at a fixed point (left), and amplitude of harmonics
(right) showing bistability. Parameter values: Re1 = 709, Λ = 0.002. Tsat = 4.68 seconds is the
saturated wave period. The prescribed initial conditions are H(X, 0) = 0.005 sin

(

πX

L

)

(top) and

H(X, 0) = 0.005 sin
(

2πX

L

)

(bottom), respectively.

upper plate velocity U = 0.335 m/s, implying a Reynolds number Re1 ≈ 709. We use
Λ = 0.002 so that two unstable modes exist, and take initial conditions of the form of
either H(X, 0) = 0.005 sin

(
πX
L

)
or H(X, 0) = 0.005 sin

(
2πX
L

)
, respectively, to excite

these modes independently to nonlinear bistable saturated states. The results are shown
in figure 4 with the saturated profiles on the left and the evolution of the corresponding
first four harmonics on the right. Saturation takes place fairly rapidly for the 2L−periodic
waves and the saturated amplitudes of the harmonics decrease as k increases. For the
L−periodic wave (bottom panels), saturation takes longer (approximately 6Tsat seconds,
with Tsat = 4.68 seconds being the oscillation period after saturation). In addition the
bimodal nature is preserved throughout the evolution with only the even modes k = 2
and k = 4 being present. It is interesting to note that the L−periodic solutions (bottom
left) are almost symmetric in contrast to the more pronounced asymmetry observed for
2L−periodic ones (top left) and the experiments of Barthelet et al. (1995) (see figure 22
of that paper). A more detailed study of the dynamical system that fully explores the
solution phase space and tracks bifurcations is warranted and is left for future work.

5. Discussion

A novel evolution equation has been proposed and studied to describe the nonlinear
stability of two-layer Couette flows. The equation is first validated using direct numeri-
cal simulations of the Navier-Stokes equations, and then used to make comparisons with
appropriate experiments from the work of Barthelet et al. (1995). The analysis is per-
formed for the thickness ǫ of the layer adjacent to the moving plate being small. The
smallest thicknesses available in the experiments are ǫ = 0.2, and even though this may
not be considered sufficiently small the model does fairly well in reproducing experi-
mental observations at Reynolds numbers as large as O(103). A crucial aspect of our
model is that it fully captures inertia in the thicker layer through a linear non-local term
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whose spectral properties are found by solving an Orr-Sommerfeld-type problem. As a
result, we can set the Reynolds number Re1 and viscosity ratio m directly from an exper-
iment, and as shown in §3 this leaves us with the parameter Λ = 3Ca0

1

m
(1− 1

m
), where

Ca = µ2U
γ

= ǫ Ca0 is the canonical scaling for the Capillary number that retains coupling
between the two fluid regions. In a given experiment or direct numerical computation,
one can calculate the value of Ca - see table 2 for example - to ensure that it is small.
The value of Ca0 cannot be found from such data, and the parameter Λ is not fixed.
Since the wave periods are fixed by the experiment, Λ is the only parameter that must
be selected in making comparisons with experiments and DNS (note that the functional
form of the linear spectrum is not affected by Λ since it enters as a multiplicative factor
- see (3.13)). The model is computed and Λ modified until agreement is obtained as
shown in the results. If Λ is too small or too large the dynamics can range from trivial
to chaotic, and hence at variance with DNS and experiments.
The model has also been shown to predict bistability with unimodal and bimodal

solutions coexisting at the same parameter values. This was demonstrated for the exper-
imental parameters of figure 22 of Barthelet et al. (1995), and the results are described
in §4.3. Other phenomenologically motivated model equations - see Barthelet & Charru
(1995) - have been shown to predict bistable steady states but it is difficult to make
comparisons with experiments, unlike inertia-retaining models derived and studied here.
As far as we know this work is the first to compare directly solutions of model equations

with those of DNS. The latter take orders of magnitude more time to run even on state-
of-the-art high performance computers. The excellent agreement demonstrated makes
such models good candidates in the description of dynamics beyond the capabilities
of standard lubrication-type approximations of multi-fluid flows - see Craster & Matar
(2009). Our novel methodology can be also extended to viscoelastic flows in order to
assess the effects of elasticity on the stability and nonlinear dynamics arising from the
interaction between thick and thin layers. Such extensions are the subject of ongoing
work.
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