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Abstract

Quantifying flood hazard is an essential component of resilience planning, emergency response, and
mitigation, including insurance. Traditionally undertaken at catchment and national scales, recently,
efforts have intensified to estimate flood risk globally to better allow consistent and equitable decision
making. Global flood hazard models are now a practical reality, thanks to improvements in numerical
algorithms, global datasets, computing power, and coupled modelling frameworks. Outputs of these
models are vital for consistent quantification of global flood risk and in projecting the impacts of
climate change. However, the urgency of these tasks means that outputs are being used as soon as they
are made available and before such methods have been adequately tested. To address this, we compare
multi-probability flood hazard maps for Africa from six global models and show wide variation in
their flood hazard, economic loss and exposed population estimates, which has serious implications
for model credibility. While there is around 30%—40% agreement in flood extent, our results show
that even at continental scales, there are significant differences in hazard magnitude and spatial pattern
between models, notably in deltas, arid /semi-arid zones and wetlands. This study is an important step
towards a better understanding of modelling global flood hazard, which is urgently required for both
current risk and climate change projections.

Introduction $187 billion in overall losses (adjusted for inflation) as

well as the loss of 13 597 lives [2]. With the frequency
Flooding is one of the most damaging natural hazards, ~and magnitude of flood disasters projected to increase
accounting for 31% of all economic losses worldwide ~ due to both climate change and growing population
resulting from natural hazards [1]. The ten costliest exposure [3, 4], flooding is one of the key societal
floods between 1980 and 2014 caused an estimated US  challenges for this century. In order to address this
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challenge, knowledge of the expected flood hazard for
a given probability is required for risk reduction. Such
risk reduction is at the heart of two recent interna-
tional agreements: the Sendai Framework for Disaster
Risk Reduction [5] and the Warsaw International
Mechanism for Loss and Damage Associated with
Climate Change Impacts [6]. Some countries have
made significant progress in this regard, due to greater
wealth, political will and more comprehensive data
availability. However, fluvial (river) flood risk for
much of the world is still ‘unmapped’, and even where
mapping exists, it often uses different and inconsistent
methodologies or datasets across countries and
regions. This lack of consistent risk information makes
global and national efforts to reduce risk and increase
resilience as well as high level planning and decision
making, particularly challenging. In the same way that
national level modelling in some countries (e.g. UK,
Germany) has allowed a more consistent, comprehen-
sive and equitable understanding of flood hazard,
relative to disparate collections of heterogeneous and
patchy local scale modelling, so global scale models
provide the same benefits for those interested in global
flood risk relative to a national scale. In addition,
consistent global coverage can provide flood risk
information for many nations where even national
level assessments are currently unavailable [7].
Computational river flood models are one of the
core tools used for national flood hazard mapping, and
flood forecasting. Usually, they consist of: (i) a method
to estimate river flow magnitude for a given prob-
ability; and (ii) a model to simulate water flow in river
channels and over floodplains. Programmes for
national level flood modelling often use specially com-
missioned data collection, for example airborne laser
terrain data at high resolution (1-2m horizontal),
detailed surveys of river bathymetry and long-term
river flow data. The application of these methods on a
global scale was hard to envisage ten years ago [8] due
to the local nature of flood hazard, but recent global
datasets have enabled this possibility [9]. Datasets such
as the Shuttle Radar Topography Mission (SRTM)
digital elevation data [10], suitably processed for
floodplain modelling [11], as well as derived river net-
works [12], and mapping of characteristics such as
channel width [13], mean there are now sufficient data
at a moderate resolution (of the order ~90 m at the
equator) with which to undertake global flood model-
ling. Added to this, are new methods of estimating
extreme flow probability distributions by cascading
climate reanalysis datasets through atmospheric and
land surface models [14-16] or regional flow fre-
quency analysis based on river gauge observations
[17]. Finally, with advances in algorithms for rapid
simulation of flood flow physics [ 18], it is now possible
to model global flood risk in sufficient detail (100 m—
1km resolution) to be useful for decision makers.
Recognising this potential, scientific and commercial
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groups have recently been developing global flood
hazard models.

Current publications show that model outputs are
now available and being used to address science and
management questions related to flood risk, including
the issue of how these risks could change in the future
due to climate change and socioeconomic develop-
ment [7, 19]. Global models are even being incorpo-
rated into a new range of open online hazard tools
[1, 7, 20]. In parallel, proprietary Catastrophe (CAT)
flood models for the insurance industry are being
developed, and model evaluation is a regulatory
requirement for most industries around the globe.

There are ultimately many different end users who
need to know how accurate these models are and if
they are fit for purpose [7]. However, to date, all global
flood hazard models have had limited validation
against observed flood flows or extents. Partly, this is
because they are different to other more local scale
models in this field, and so cannot draw on a rich heri-
tage of previous testing methods, but mainly it is due
to the difficulty of undertaking validation comprehen-
sively over such large spatial scales, particularly in data
scarce areas where risk products are most needed.

The validation and benchmarking that has been
undertaken so far for individual global models, shows
they have some skill in predicting flood hazard at a
large river scale [4, 14, 16, 21-24]. Benchmarking
undertaken for the SSBN model against Canadian and
UK flood hazard maps, shows that the global model
captures between two thirds and three quarters of the
area determined to be at risk in the detailed models
[22]. The JRC model was also benchmarked against
European rivers and the results were comparable to
SSBN’s, although with lower scores in some areas. For
regions outside Europe and North America, where no
detailed flood models are generally available, compar-
ison of the JRC model with satellite images of flooding
show more variable results [21]. Better results for Eur-
opean rivers are thought to be due to the more reliable
hydrological data available and the relatively small size
of floodplain and wetland areas [21]. For the GLOFRIS
model, visual comparisons with satellite observations
of Bangladesh show plausible river flood hazard out-
put [14]. The GLOFRIS model was benchmarked
against some UK and German national flood hazard
maps of large rivers, commensurate with model reso-
lution, and showed that it captured around two thirds
of the detailed model’s predicted flood hazard [4]. The
ECMWF model was benchmarked against a global
flood hazard map that was produced for the 2011 Glo-
bal Assessment Report on Disaster Risk Reduction
[23, 24], and found to compare reasonably well, but in
general predicted greater flood extents. CaMa-UT was
benchmarked against flow gauges and SAR satellite
data of floodplain inundation of the Amazon basin,
and showed a good correlation with observations [16].
Flow validation of the CaMa-UT model against gauges
in 30 major river basins was also conducted and results
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were more variable, but improved on previous
attempts [16].

As the number of available global models increases
and their results are incorporated more deeply into
decision making, there is an urgent need to under-
stand how they compare with each other by those that
use them. Are they interchangeable in the new global
flood risk assessment frameworks? It is also important
to identify strengths and weaknesses of particular
models and how we might improve them.

Data, models and methods

The need to compare models was identified as a
research priority at the inaugural Global Flood Part-
nership (GFP) meeting hosted at the European Centre
for Medium Range Weather Forecasting in Reading,
UK during March 2014 [25]. The research presented
here is a direct outcome of that collective agreement to
begin the process of model inter-comparison and
testing. We take the flood hazard output from six
state-of-the-art global models, and assess how they
compare in terms of flood hazard simulations, to
understand the implications for estimates of exposed
gross domestic product (GDP) loss and population.
The inter-comparison analysis is undertaken for the
entire African continent for a standard range of hazard
return periods (25, 100, 250, 500, 1000 years) and is
summarised at continent, catchment and country
level. The African continent was chosen as large
enough to be meaningful, the least commercially
sensitive to encourage participation, and most lacking
in flood hazard information for global planning. All
six models were also aggregated into a single ‘model
agreement’ dataset, categorising areas by how many
models agree that they are flooded.

The six global flood hazard models compared in
this paper are CaMa-UT [16], GLOFRIS [14, 26],
ECMWE [15], JRC [21], SSBN [22], and CIMA-UNEP
[1]. All the models attempt to simulate, for a given
probability flow, how water that is excess to river
channel capacity inundates the surrounding flood-
plain topography. While at its core this is a similar aim
to traditional hydraulic modelling, the sheer scale of
the model domain, and the lack of high quality DEM
or gauged flow data require innovative approaches at
all stages that are largely untested at this scale. The
models each use a wide variety of different approaches
to tackle these challenges. All the global flood hazard
models predict flood extent and depth from fluvial
(river) flooding only; coastal and pluvial hazard are
excluded. The flood hazard is predicted for the range
of standard return periods by deriving a river flow for
the return period and simulating the flooding that
would occur.

In generating river flows for a given probability,
the six models can be grouped (figure 1) by general
structure into: (i) those that use a model cascade of a
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precipitation timeseries from global climate reanalysis
data driving a land surface model to produce flows at
locations along a river (CaMa-UT, GLOEFRIS,
ECMWEFE, JRC); and (ii) those that use a regional flood
frequency approach to estimate flood flows from
pooled river gauged data (5000-8000 gauges), given
upstream catchment characteristics (SSBN), or com-
plemented with hydrologic simulations (CIMA-
UNEP). The models also differ in how they simulate
floodplain inundation, ranging in complexity from: (i)
flood volume redistribution (GLOFRIS) and water ele-
vation calculated from flow at a river section (CIMA-
UNEP); (ii) floodplain storage elevation relationships
(CaMa-UT, GLOFRIS, ECMWEF); and (iii) hydro-
dynamic modelling (SSBN, JRC). Finally, there are
also differences in the resolution of the model calcul-
ation and final output: (i) 1/120 decimal degrees
~900 m (GLOFRIS, JRC); (ii) 1/200 decimal degrees
~540 m (CaMa-UT, ECMWF); and (iii) 1/1200 deci-
mal degrees ~90 m (SSBN, CIMA-UNEP).

The modelled time period is typically the last 4 or 5
decades, but depends on the reanalysis dataset or
gauged records wused: GLOFRIS, EU-WATCH
1960-1999; CaMa-UT, JRA-25 1979-2010; ECMWF,
ERA-Interim 1979-2014; JRC, GloFAS ERA-Interim,
1980-2013; SSBN and CIMA-UNEP, varies by gauge,
but most data is from 1960 to 2010.

All models are based on processed versions of the
SRTM DEM [10] and Hydrosheds river network [12]
to provide near global coverage. A detailed description
of each model framework can be found in the supple-
mentary material, and further technical details can be
found in the supporting publications [14—
16,21,22, 26].

All model results were provided for the compar-
ison analysis in their native raster (grid) format (e.g.
NetCDF, ArcGIS raster) and converted to a common
geotiff format, while retaining the native resolution
and data precision. Model results that were provided
in multiple tiles or overlapping catchments were
merged into seamless rasters covering the entire con-
tinent of Africa. All rasters were provided in and pro-
cessing undertaken in the WGS84 projection system.
Variation of raster cell area with latitude was accoun-
ted for using the Haversine method. Model outputs
were mostly provided in a water depth format and
these were converted to binary flood (depth > 0 m),
dry (depth = 0 m) rasters for this analysis.

Exposure analysis was undertaken by intersecting
the flooded areas with spatially distributed exposure
datasets for population and GDP. Population expo-
sure was calculated with the Worldpop dataset using
the 2010 population with national totals adjusted to
match UN population division estimates, resolution
1/120 decimal degrees [27] (http:///worldpop.org.
uk). GDP exposure was estimated using downscaled
GDP data for 2010 [28], at 1/120 decimal degrees.

Flooded area and exposure analysis was also
undertaken for a combined SRTM Waterbody and
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Figure 1. A simplified schematic of the two main model structures used by the six different global flood models.
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MODIS water mask [13] in order to identify results for
normally wet areas.

Summary statistics of flooded areas and exposure
for regions of interest were calculated for the Africa
continental boundary, country boundaries and
Hydrosheds catchments [12].

To analyse model agreement, we aggregate (sepa-
rately for each return period) the flood area extent
from all the models into categories according to how
many other models agree that an area is flooded. This
results in a single categorised dataset where the cate-
gory is an integer number of models that predict an
area as flooded (figure 2). This gives a range between 0
(no models predict flooding i.e. dry) and 6 (all models
predict flooding). This aggregation is carried out at the
finest resolution of all the models to ensure no loss of
fidelity. The aggregated dataset is available free of
charge for academic research and education purposes
at Research Data Leeds (doi: 10.5518,/96).

A model agreement index (MAI), equation (1), is
then calculated from these categories for a given
region (e.g. country) by summing the total area of each
flooded category, multiplied by the fraction of models
that agree in that category, and then dividing this sum
by the maximum possible model agreement, resulting

in a fraction of model agreement. The resulting frac-
tion varies between 0 for no agreement and 1 for max-
imum agreement
ZN i a0
PP g
MAI = — N (1)
AN
where; A is total flooded area predicted by all models,
a; is the flooded area for an aggregated category, N is
the number of models in comparison, i is the
aggregated category (i.e. number of models in
agreement).

This index does not assume any one model is cor-
rect and is purely an agreement measure for wet areas,
dry areas are ignored. Including dry areas in an agree-
ment index is problematic for three reasons: (i) each
model has a different upper catchment size, where
flooding is ignored, and these should really be no-data
areas in the model results; and (ii) some models mask
out arid areas in post-processing; and (iii) large dry
areas (~90% of land area) will bias an agreement mea-
sure upwards, giving a false impression of flooding
agreement.

Cohen’s kappa coefficient was also calculated for
each pair of models for each return period and results
are detailed in the supplementary material.
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coastal delta.

Figure 2. (a) Aggregated flood results for six models for a 1-in-100 year return period fluvial flood hazard for the African continent.
Colour scale indicates how many models predict flooding. (b) Detail for the lower Nile. (c) Detail for the lower Niger, showing areas of
strong agreement (narrow confined floodplains at the confluence of Benue and Niger Rivers) and areas of disagreement in the Niger

" Models in
Agreement

B
[ |

For the aggregated dataset, population and GDP
exposure were calculated for all return periods, and
together with the assumption that a 2 year return per-
iod flood has zero exposure, expected annual exposure
(EAE) was then calculated as the area under the excee-
dance probability—exposure curve, and the mean value
of all categories is plotted in figure 4(d), see [29].

Results and discussion

Encouragingly, aggregated results (figure 2) show
many areas of agreement between the models, most
obviously directly adjacent to large rivers, particularly
where these are constrained by distinct floodplain
boundaries, such as near the confluence of the Niger

and Benue Rivers in Nigeria (figure 2(a)). However,
when we calculate two measures of model agreement
continent-wide, we find a MAI of only 0.29, and a
mean Cohen’s kappa coefficient of 0.43, across all
models and all return periods. Both measures range
between 0 (no agreement, or agreement by chance for
kappa) and 1 (perfect agreement) and these calculated
values therefore indicate significant differences. Simi-
lar Global Circulation Model inter-comparisons [30]
have highlighted that agreement between models can
be dependent on using common model components,
but the global flood models compared here are very
new and have been developed mostly independently
so far, resulting in a variety of structures and very few
shared components.
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There are many areas where the models disagree,
in particular in delta regions, where differences in the
way individual models handle bifurcating flood flows
results in very different patterns of inundation. Arid
and semi-arid climate zones also show more disagree-
ment between models than tropical and semi-tropical
areas, pointing towards the greater importance of eva-
poration and recharge processes in these areas. Some
post-processing is carried out on some models to mask
these arid areas, as they are difficult to treat well with
traditional flood modelling assumptions. There is also
model disagreement in the larger wetlands, such as
that of the Congo River. This is likely due to the chal-
lenges of modelling the connectivity of the main chan-
nel and floodplain in large wetlands, as well as the
presence of vegetation artefacts in the SRTM DEM,
particularly in flat areas.

Comparing total flooded area to the total con-
tinental area (figure 3(a)) for each model and all return
periods shows a wide variation in the area simulated to
be under threat from flooding. Ata 1-in-25 year return
period, this flooded area ranges from 3% to 8.3% of
the continent and for a 1-in-1000 year return period,
4.2%-10.5%, depending upon the model. These dif-
ferences can be a consequence of the different hydro-
logical datasets and model structures used. Permanent
waterbodies account for 1% of the total flooded area.
Another interesting difference in the flooded area
results is that the majority of models display limited
sensitivity to the range of probability, evidenced by the
flatter curves in figure 3(a). Using the output from the
less sensitive models in a risk analysis will show less
difference between low probability and high prob-
ability hazards. Flooded area results at a catchment
scale (figure 3(b)) also show significant spatial
differences.

These differences in hazard have significant impli-
cations for exposure analysis (figure 4). The spread of
GDP and population exposure for flooded areas from
the different models demonstrates that, even where
models agree on the percentage area flooded, this
aggregate agreement may result from very different
spatial patterns of flooding which results in very differ-
ent exposure estimates (figures 4(a) and (b)). For
example, the 1-in-1000 year flood for the SSBN and
ECMWF models have around the same flooded area of
just over 10%, but show a difference in total popula-
tion exposure of 6.5%. Some of this difference will be
due to the SSBN model’s inclusion of smaller rivers,
and these smaller rivers will be in locations with less
exposure. However, river size threshold does not
explain all the differences, evidenced by the fact that
CaMa-UT and ECMWF models share the same
hydraulic model and river size threshold, but the
CaMa-UT flooded area is only half that of ECMWF’s,
indicating that the difference here is due to different
climate forcing or land surface models. Indeed, eva-
luation of reanalysis products over West Africa show
significant biases in precipitation, which are especially
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acute in ERA-Interim, used in the ECMWF model
[31]. Exposure analysis by country also shows big dif-
ferences between the model results (figure 4(c)), for
example, Egypt ranging from approximately 1%-—
50%, depending on the model.

Applying a simple measure of model agreement
(MAI) to each country, along with a measure of the
EAE, we can see a spread of results that provides a use-
ful perspective on the differences between models
(figure 4(d)). This analysis could be applied to any
region, not just at country level, and provides an indi-
cation of where models agree or not and what the
exposure implications are. Split arbitrarily into four
quadrants, it also shows where different follow-up
actions, such as model improvement or exposure
dataset refinement, should have a higher priority.
Looking at an example from each quadrant:

Quadrant A: Egypt will be sensitive to model varia-
tions as it has ~95% of its population living along the
banks of the Nile and half of those in the delta. There is
a low model agreement due to how the models deal
with bifurcating delta channels.

Quadrant B: South Sudan also has a high exposure,
but shows more agreement between models as all
identify the large Sudd wetlands. There is some dis-
agreement due to the fact that dynamics and evapora-
tion play a dominant role in the flood extent, and not
all models include these processes.

Quadrant C: Western Sahara has a low population
with few exposed to flood in any model. There is low
agreement between models, but it is flat and has an
arid climate, and any flood risk is likely to be localised
flashflooding. Models differ in this climatic context, as
some do not include arid climate processes and there
are no major rivers, but this is of low consequence in
this context.

Quadrant D: Rwanda shows better agreement
between the models, but the relative proportion of
population exposed to flood hazard is low. The coun-
try is small and elevated, has a temperate to subtropical
climate, and is dominated by mountains and small
confined river systems with some lakes, so models
should generally agree better in this hydraulic and cli-
matic context.

While there is encouraging agreement between the
models in some areas, there are enough differences
between the models in most areas that any flood risk
conclusions resulting from identical analysis using dif-
ferent models will lead to very different implications
and actions. This shows we are currently at an early
stage of model development and the results from only
one model will need to be used with appropriate
caution.

Conclusions

We have outlined the two main types of new global
flood models (climate or gauge data driven) and
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Figure 3. (a) Flooded area as percentage of continental area for all models and return periods, (b) percentage catchment flooded area
mapped for all models for a 1-in-100 year return period hazard showing significant spatial differences.

500 600 700 800 900 1000

1-in-100 y Flood

% Area
0.0-0.5
05-15
1.5-3.0
3.0-5.0
5.0-8.0
8.0-12

12-50 SSBN

summarised some of their key structural differences.
The newness of the models means there are a rich
variety of structural approaches to the many challenges
of modelling floods at a global scale.

Previous validation of individual models shows
that these models have some skill in mapping flood
extent on larger rivers, typically in the order of two
thirds and three quarters of the area determined to be
at risk in the more detailed engineering scale flood

models. Many also show skill at capturing some large
scale observed flood events.

Aggregating the flood extent data for six of these
global flood models and subsequent analysis shows
that over the continent of Africa, there is around 30%-—
40% agreement in flood extent. There are significant
differences in hazard magnitude and spatial pattern
between models, notably in deltas, arid/semi-arid
zones and wetlands. There are also some areas of




10P Publishing

Environ. Res. Lett. 11 (2016) 094014

P Letters

(a)20%
e water mask
18% | |=e—ECMWF
—e—GloFRIS
—e—SSBN
16% | o jre
a o—CIMA-UNEP
14% | _o=caMa-UT
12% |
c
S
£ 0%
&
8% |-
> 6% - /"'/
e
s o
© 4%
2% |
.
0% . N
0% 2% 4%

6%

Flooded Area [% African continent]

(b)zo%
© water mask
——ECMWF
1000 18% = —o—GloFRIS
500 —a—SSBN 1000
250 16% |
A - ——JRC 500
e o CIMA-UNEP 100250
14% | |—e—CaMa-UT
25
£ 12%
2
&
S 10% |
8% | /
2.
6%
o
o
S 4% | °
-
2%
o
\ . 0% . L \ . .
8% 10% 12% 0% 2% 4% 6% 8% 10% 12%

Flooded Area [% African continent]

excludes permanent water mask.

d) 7%
( ) A: poor agreement, B: better agreement,
high exposure — high exposure —
improve model science improve exposure data,
and exposure data examine flood severi
6% South Sudan|
5% Egypt
L]
T
2
® 4%
= Somalia
°
g- °
2_ Sudan .Chad
o Mali
x 3% e
E
i Liberia
i Benin
4 ® Madagascar
2% Ma;mtama L &
H CAR
Nemibia  Nger ! Gabgn  JRePUDIc of Congo Gamige
L : %" Mozambique o, ® Nigeria
° | Togo ° 'Cameroon Zamb
1% : Botswana B Malawi — =7 I%R(“ . ®Senegal a.m ia
° Equatorial Guinea; Burkina Faso o Glznea Guinea-Bissau
C: poor agreement, |western Sahara Moroccog Wvory Ggast |gyryndi Sierra Leone D: better agreement,
low exposure — e Libya Tunisia  Kenyg ° PP ) .T; reg%?;a Rwanda | jow exposure — use
improve science, low Alpetia Eritrea J % .‘Uganda" E(‘sl"nana any model, examine
Djibouti ' iopia i :
0% e South Africa ZMbabpe P population detail
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Figure 4. (a) GDP exposure and percentage flooded area for all models and return periods, (b) population exposure and percentage
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strong agreement, where the flood hydraulics is more
straightforward, such as confined floodplains along
major rivers.

The main conclusion from this study, particularly
important for users of these models, is that there are
sufficient differences between the model results that
they are currently not interchangeable in global flood
risk frameworks.

Outlook

This first comparison of global flood hazard models
has shown that it is vital to have a more sustained and
carefully planned comparison leading into the future.
We see this as analogous to the Coupled Model
Intercomparison Project [32], and the Inter-Sectoral
Impact Model Intercomparison Project [33], under-
pinning the Intergovernmental Panel on Climate
Change, while being more explicitly focused on global
flood risk.

The research presented here was shared at the June
2016 GFP conference at the Joint Research Centre,
Ispra, Italy. The outlook for global flood model testing
and validation were discussed at a dedicated workshop
session, and outcomes summarised below.

The GFP conference has a strong representation
from the user community, and it was clear that while
they do not expect perfection from the models, they do
want clarity on what models are useful or best in which
areas, and how that relates to their interest (flood risk,
planning or forecasting) and scale (local community,
catchment, national). Making aggregated comparison
data open access, like with this paper, will assist in this
process, but web visualisation tools should also be
considered to communicate outcomes in a localised
manner.

Forthcoming comparisons should include more
models as they become available, and ideally include
commercial models used by the insurance industry. As
all the models are complex chains of sub-models, this
leads to multiple parameters and challenges in calibra-
tion. Undertaking meaningful calibration of these
models and quantifying uncertainty are seen as impor-
tant next stages of development. Expanding the mod-
els to include pluvial and coastal flood risk, is also
considered an important aspect of future model
development.

The GFP also has a very active flood observation
community, and efforts are underway to collate
benchmark datasets (e.g. satellite observations of
flooding) for a more comprehensive validation against
observed events. Increasingly, these models will be
used for assessing the impacts of climate change on
global flood risk, and recent attempts show increasing
risk due to both greater flood hazard as well as growing
exposure [3, 4, 7, 19]. However, models will require
credible skill at representing currently observed flood-
ing before climate change impacts can be predicted

P Letters

with certainty. As models are improved, there is a par-
allel need to address scale and accuracy limitations in
exposure and vulnerability datasets, which are used
together with the flood model output for global scale
risk assessments [34].

Future inter-comparisons should also extend
beyond the outputs of the models and cover internal
stages; model physics, estimated flows, return period
estimation, processed DEMs, and river networks, all of
which need improvement. For example, there is now a
well-recognised and pressing need for global DEMs
that improve on the relatively poor resolution and pre-
cision of the current datasets as these limit significantly
our ability to estimate flood inundation and
risk [35, 36].

Future inter-comparisons, and the data and meth-
ods developed, should be an open and transparent
process. This will drive model improvements more
rapidly and allow users to see how the models compare
to others available, bringing increased credibility to
global flood risk management efforts.
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