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ABSTRACT 

A novel solid acid nano-catalyst [Ti(SO4)O] was synthesised and used for the simultaneous esterification 

and transesterification of free fatty acids in used cooking oil (UCO) to produce biodiesel. The synthesised 

nano-catalyst was fully characterised by different analytical techniques. The XPS results clearly confirmed 

that the bidentate sulphate coordinated to the Ti4+ metal in the nano-catalyst product. Obtained d-spacing 

values from the experimental data of XRD peaks and the SAED pattern of produced nano-catalyst agreed 

well with the d-spacing values from the JCPDS-ICDD card numbers 04-011-4951 for titanium sulphate 

oxide or titanium oxysulfate crystal structures.This confirms the sulphate groups were within the crystalline 

structure rather than on the surface of titania nano particles, which has not been previously reported. It has 

been demonstrated 97.1% yield for the fatty acid methyl ester can be achieved usign the synthetised catalyst 

under a reaction time of 3 hrs, catalyst to UCO ration of 1.5wt% and methanol to UCO ratio of 9:1 at 75oC 

reaction temperature. The nano-catalyst showed a good catalytic activity for the feedstock containing ≤6 

wt% free fatty acid. Furthermore, the catalytic activity and re-usability of the Ti(SO4)O for the 

esterification/transesterification of UCO were investigated. XRD results confirmed that the amount of SOସଶି 

species in the solid acid nano-catalyst slowly decreased with re-use after 8 cycles under optimized 

conditions, which is higher than the reusability of other functionalised titania reported in the literature . 

Finally, the biodiesel prodcued from this process satisfied the ASTM and European Norm standards. 
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1. INTRODUCTION 

During past twenty years, scientists have been investigating alternatives to fossil fuels in to meet 

global energy demands and reduce carbon emissions. Biodiesel has been widely regarded as a 

suitable resource because of its availability [1], renewability [2], lower gas emissions [3], non-

toxicity [4], and its biodegradability [2, 5]. Currently around 90% of biodiesel is produced by the 

transesterification process of triglycerides with low molecular weight alcohols using homogenous 

acid or base catalysts. However, the biodiesel industry faces some significant challenges; (i) high 

cost of biodiesel feedstock (70 to 85% of the overall production cost) and (ii) cost of biodiesel 

processing, including separation, purification and neutralisation of by-products [6-9]. These issues 

can be resolved by using low-cost feedstocks, but  with catalysts highly tolerant to moisture and 

Free Fatty Acids (FFA) in oil, because FFA and moisture content in cheap raw materials have an 

adverse effect on catalyst activity. 

Used Cooking Oil (UCO) is regarded as the a promising feedstock for biodiesel production despite 

containing a certain amount of water, a large amount of FFA and other impurities [10, 11]. If UCO 

contains more than 1.0% of FFA and 0.5% of water, a homogenous based catalyst would not be 

preferred in the transesterification process because of soap formation (fatty acid salts), hydrolysis 

of the product and decreasing the reactivity of the base catalyst [12, 13]. One way of reducing the 

amount of FFA is to use a homogenous acidic catalyst for the pre-esterification of UCO; however, 

using an acidic catalyst demands expensive equipment to avoid acid corrosion, which inevitably 

increases costs of biodiesel production [2, 14]. Heterogeneous catalysts, however, could be suitable 

for biodiesel production from UCO due to their reusability, higher stability, high surface area, non-

toxicity and the simplicity of purification as reported by other researchers [15-20]. Numerous 
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studies have been conducted on the development of sulphated metal oxides for the simultaneous 

esterification and transesterification process of UCO to produce biodiesel [21-23]. Several synthetic 

routes were applied for the preparation of heterogeneous catalysts including sol-gel [24-27], 

solvent-free [28, 29] and hydrothermal methods [30-33]. Examples of heterogeneous catalysts 

include SOସଶି/TiO2 [30, 34-37],, SOସଶି/TiO2-SiO2 [38-41], SrO/SOସଶି-ZrO2 [29], SOସଶି/ZrO2 [17, 42-

44], SOସଶି/TiO2-ZrO2 [45] and SOସଶି/SnO2 [17, 46], which were considered for a good catalytic 

activity for the raw materials containing large amounts of FFA in biodiesel production. Among these, 

sulphated doped TiO2 is a good example of a solid super-acidic catalyst which is also used in the 

petrochemical industry and petroleum refining process [24, 47] and showed better performances as 

compared to other sulphated metal oxides.  This is due to the acid strength of the TiO2 particles 

which further enhances with loading of SOସଶି groups on the surface of TiO2 [48]. Many recent 

studies have reported that the super acidity of sulphated titanium dioxide catalysts could be based 

on Lewis acid and Brऺnsted acid sites, and the formation of Brऺnsted acid sites are possibly due to 

the higher content of sulphate groups in the catalyst [24, 49, 50]. The presence of Brऺnsted acid sites 

in acid catalysts is significantly important for the catalytic activity [28, 51, 52]. Some researchers 

have reported that the addition of sulphate ions to metal oxides enhances the acidic properties, 

catalytic activity, high selectivity, and causes less deactivation of the catalyst [25, 53-56]. However, 

Shi and Li [36] observed the deposition of carbon on the surface of sulphated metal oxide catalysts 

is the main reason to poison the catalytic activity of sulphated titania. 

Chen, et al. [34] studied transesterification of cotton seed oil at 230oC with 12:1 methanol to oil ratio 

for 8 hrs reaction time using 2wt% of SOସଶି/TiO2 catalyst to achieve 90% biodiesel. Furthermore, 

Ropero-Vega et al. [35] investigated the effect of SOସଶି/TiO2 on the esterification of oleic acid with 

ethanol. They found that the maximum conversion of oleic acid was 82.2%, whilst a 100% selectivity 

of the catalyst on oleic acid to ester was reported at 80oC after 3hrs. Zhao and co-workers [30] have 

recently studied the catalytic activity of sulphated titanium oxide (SOସଶି/TiO2) with exposed (001) 
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and (101) facets for esterification of acetic acid and n-butanol. It was reported that the high surface 

acidity of titanium dioxide (SOସଶି/TiO2) increased the yield of butyl acetate to about 92.2% in 

esterification reaction and the selectivity of the catalyst mostly depended on the degree of exposure 

of reactive crystal facets. Yang et al. [40] reported a novel strategy for the preparation of SOସଶି/TiO2-

SiO2 nano-crystalline solid catalyst. The prepared nano-catalyst had a high surface area of 550m2/g 

compared to SOସଶି/TiO2 nano-catalyst. Nonetheless, the catalyst displayed low catalytic activity for 

glycerine with acetic acid in toluene at 120oC. Peng et al. [38] reported a study on the use of SOସଶି/TiO2-SiO2 as a solid acid catalyst for the simultaneous esterification and transesterification of 

low cost feedstocks with high FFA. They reported that under 9:1 methanol to oil molar ratio, 6hrs 

reaction time, 3% catalyst loading, and reaction temperature of 200oC a yield of 92% can be 

achieved. It was also reported that the SOସଶି/TiO2-SiO2 catalyst can be re-used up to 4 times without 

reducing the catalytic activity. Recently, an inexpensive precursor was used in the synthesis of SOସଶି/TiO2-SiO2 catalyst by Shao and co-workers [41]. They reported 88% yield for biodiesel 

production under 20:1 methanol to UCO molar ratio, 10wt% catalyst concentration and 3hrs reaction 

time at 120oC with constant stirring at 400rpm. Nurul Hajar et al. [39] have recently used SOସଶି/TiO2-

SiO2 catalyst for the transesterification of decanter cake produced from waste palm oil into biodiesel. 

It was found that 120oC reaction temperature, 1:15 oil to methanol ratio, 5hrs transesterification time, 

and 13wt% catalyst loading a 91% yield was achieved. 

The stability and catalytic activity of sulfated metal oxide catalysts strongly depended on the 

synthetic routes, sulfate content and the position of sulfate group in the structure of the catalyst. Few 

researchers [57] have recently reported the addition of rare earth element, such as La+3 and Ce+3, 

could enhance the catalytic stability of the sulphated TiO2 for the simultaneous esterification and 

transesterification of waste cooking oil [48, 58]. The application of such catalysts is preferable in 

simultaneous esterification and transesterification reactions when using cheap raw materials with 

high FFA due to the high acidity of solid acid catalysts. The major drawback with the sulphated 
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metal oxide catalysts could be (i) relatively high temperature requirements, (ii) low yield, (iii) long 

reaction time and (iv) catalyst stability and reusability [59]. The latter could be due to the fact that 

the sulphate group is placed on the surface of the catalysts in majority of cases, making the catalyst 

prone to deactivation. The present work describes a novel method of preparing Ti(SO4)O solid super 

acidic nano-catalyst, where the sulphate group is chemically bonded within the structure of the 

catalyst with potential high stability and reusability. Characterisation and application of the 

developed nano-catalyst for biodiesel production via simultaneous esterification and 

transesterification of used cooking oil (UCO) are investigated; because, so far, there is no reported 

work and/or information available on the nano catalysts of titanium sulphate oxide or titanium oxide 

sulfate [Ti(SO4)O] for biodiesel production. The chemical structure, catalytic stability, morphology, 

particle sizes and surface area for the catalyst are determined using X-ray diffraction (XRD), Fourier 

transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), N2 adsorption-

desorption isotherms, scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), and thermogravimetric analysis coupled with FT-IR (TGA-FTIR). The effect of catalyst 

loading, time and temperature of reaction, methanol to UCO ratio and level of FFA in the feedstock 

on the biodiesel yield as well as the catalyst activity and stability during the 

esterification/transesterification are investigated. Additionally, the obtained biodiesel from the 

catalytic transesterification processes is analysed in accordance to ASTM and EN standard methods 

to determine characteristic fuel properties such as kinematic viscosity, cloud point, density, flash 

point, fatty acid methyl ester (FAME) content, linoleic acid methyl ester (LAME) content, and acid 

number. 

2. EXPERIMENTAL 

2.1 Materials 

The sample of UCO provided by a restaurant in Leeds, UK, was used as a cheap raw material. The 

feedstock was pre-treated by filtration to remove impurities through filter paper and heated to 100oC 
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to minimise the moisture in the esterification/transesterification process. The physicochemical 

properties of pre-treated UCO, presented in Table S1 (supplementary information), were measured 

using EN and ASTM standard methods. Oleic acid and chlorosulfonic acid (for preparation of 

catalyst) were obtained from Fluka Analytical. Titanium (IV) oxide (99.5% purity), methanol (≥λλ.λ 

purity), methyl heptadecanoate (≥λλ.5 purity, internal standard for GC), FAME mix reference 

standard (99.9 purity, GC), n-heptane (≥λλ purity, GC), acetone and n-hexane (99.5%, purity) were 

purchased from Sigma-Aldrich (UK) and used without further purifications. 

2.2 Methodology 

2.2.1 Synthesis of Ti(SO4)O nano-catalyst 

The titanium sulphate oxide or titanium oxysulphate nano-catalyst has been prepared using 

following procedure: 17.16mmol of chlorosulfonic acid was added drop-wise using a glass syringe 

at room temperature into a round-bottomed flask containing 5.0g of titanium (IV) oxide. The 

resulting mixture was then heated on an automatic hotplate-magnetic stirrer at 120°C using agitation 

rate of 500RPM, to prevent generation of hydrogen and chloride gases in the flask. The flask 

containing the produced gel solution was connected with a reflux condenser using tap water to 

condensate the remaining reagent for 2 hours at the constant stirring rate. The resulting gel solution 

aged quiescently at room temperature for 2 hours and was then dried in an oven at 110°C overnight. 

The resultant catalyst was crushed and grinded by pestle mortar, and then the grinded powders were 

washed properly with 1:1 ratio of acetone to n-hexane in order to remove any remaining residues on 

the surface of the prepared catalyst. Finally, the obtained fine powder was dried in an oven at 110°C 

in order to remove any moisture on the surface of the catalyst, then characterized, using different 

analytical tools to determine the chemical structure, morphology, surface area, thermal/oxidative 

stability and particle sizes. 
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2.2.2 Synthesis and analysis of biodiesel fuel 

The simultaneous esterification and transesterification of UCO was performed in a glass batch 

reactor connected with an automatic temperature controller loop system (Ministat Huber 125 Pilot 

ONE Controller, UK) under constant agitation rate at 600RPM using a digital mechanical stirrer 

(Eurostar digital IKA) and a reflux condenser. Specified amounts of nano-catalyst, pre-treated UCO 

and methanol were charged into the batch reactor. The three-phase mixture was agitated and heated 

to specified temperatures and times. The final reaction mixture was poured into a separating funnel 

and allowed to cool down to ambient temperature. The crude methyl ester, contained in the upper 

layer, was separated by gravity from the glycerol layer and nano-catalyst in the lower layer. The 

crude biodiesel layer was then separated from any remaining nano-catalyst and glycerol by a 

centrifuge at 9000RPM for 10 minutes. 

The FAME content of the prepared biodiesel sample was quantified by Perkin Elmer Clarus gas 

chromatography (580S, GC), equipped with a mass spectroscopy (560S, MS) instrument. The 

chromatographic separation was achieved on an Elite 5MS capillary column (30.0m x 250µm) and 

helium was used as a carrier gas at a constant flow rate of 1ml per minute. The initial oven 

temperature in the column was programmed at 60oC for 0min then ramped to 200oC at 10oC/min. 

The temperature was held for 10min at 200oC then increased to 270oC at 10oC/min. Finally, the 

temperature was held for 5 minutes to remove any remaining traces of sample residue. Biodiesel 

sample was injected in splitless mode with a split ratio of 2:1. The transfer line temperature and the 

injection temperature were kept at 250oC. GC-MS was operated in the 70eV electron ionization 

mode with a collected scanning mass range of 50 to 600Da. The GC instrument was calibrated using 

a reference FAME mixture and the biodiesel sample was prepared by dissolving (250±5) mg in 5mL 

of solution of internal standard with n-heptane using a shaker. 1.0mL of the prepared solution of the 

sample was transferred into 2.0ml of GC automatic sampler vial for injection, followed by the 

instrument injecting automatically 0.5ȝl of this solution into the GC instrument. Turbo MassTM 
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software was used for data processing and reporting. The method to calculate the percentage of total 

FAMEs has been reported elsewhere [60] and the FAME composition result for obtained biodiesel 

is presented in Table 1. 

Table 1 Fatty acid methyl ester composition for obtained UCO biodiesel 

FAME Form wt% content 

Palmitic acid methyl ester C16:0 6.23 

Stearic acid methyl ester C18:0 0.85 

Oleic acid methyl ester C18:1 69.56 

Linoleic acid methyl ester C18:2 20.41 

Linolenic acid methyl ester C18:3 2.18 

Arachidic acid methyl ester C20:0 0.17 

Gadoleic acid methyl ester C20:1 0.31 

Erucic acid methyl ester C21:1 0.16 

Behenic acid methyl ester C22:0 0.12 

The separated nano-catalyst was properly washed three times with 1:1 ratio of methanol to n-hexane 

in order to remove any remaining non-polar and polar compounds on its surface such as fatty acid 

methyl ester (FAME), glycerol, monoglycerides, diglycerides and triglycerides. Finally, the catalyst 

was treated in an oven for 3hrs at 110oC to remove any moisture on the surface then the structure of 

the nano-catalyst was re-confirmed using XRD before it was re-used in order to determine the nano-

catalyst life time. 

2.2.3 Characterization methods 

2.2.3.1 Catalyst characterization 

The XRD patterns of the nano-catalyst samples were obtained using Bruker D8 X-ray diffraction 

fitted with a LynxEye detector, using CuKĮ (1.54Å) radiation source operating at 40kV and 40mA, 
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calibrated against a Si standard. Each sample was scanned from 2ș angle ranging 10º to 70º with 

step size 0.0495º at 35 seconds per step.  

Fourier transform infrared (FT-IR) spectroscopy of original TiO2-NPs and synthestised Ti(SO4)O 

nano-catalyst were carried out at room temperature using a Nicolet iS10 FT-IR spectrometer 

equipped with a deuterated triglycine sulfate (DTGS) KBr detector to investigate the chemical 

vibrational modes in each catalyst sample. A minimum of 36 scans were performed at the average 

signal of infrared with a resolution 4cm-1 in the ranges of 400 cm-1 to 4000cm-1. The X-ray 

photoelectron spectroscopy (XPS) was carried out using a KRATOS XSAM 800 fitted with an 

energy analyser. The X-ray source employed was Al-KĮ X-ray source (hv1486eV) generated from 

aluminium anode operating at the emission voltage 15keV and 5mA. The base pressure within the 

spectrometer during examination was 6.5x10-10 bar. The films of catalyst samples were prepared by 

dissolving a few milligrams of each sample in chloroform and methanol (3:1) then coating on the 

silicon wafer surface. The surfaces were exposed to near infrared light to evaporate the solvent to 

make a thin film. All spectra were referenced by setting the hydrocarbon C 1s peak to 285eV to 

compensate for residual charging effects. The Brunauer–Emmett–Teller (BET) surface area analysis, 

pore size and pore volume measurements were obtained according to the multipoint nitrogen 

adsorption-desorption method at 77.3K using Micromeritics TriStar 3000 surface analyser. The 

catalyst samples were degassed in a vacuum oven at 120oC for 24 hours under a vacuum of 10mmHg 

in order to remove any moisture and/or absorbed gases on the surface of the catalyst samples prior 

to analysis. The N2 adsorption isotherms were used to calculate the BET parameters for initial TiO2-

NPs and synthetized Ti(SO4)O nano-catalysts; however, the desorption isotherms were used to 

calculate the average pore size and total pore volume for both samples using the Barrett-Joyner-

Halenda (BJH) method. 

The particle size, morphology and surface structure of the powder samples were studied using 

SU8230 Hitachi scanning electron microscopy (SEM). The sample was prepared by adding a small 
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amount of powder into 2ml of methanol and keeping in ultrasonic bath for 10 minutes. One drop of 

this suspension was then put on the SEM sample holder and placed in a zone SEM cleaner in order 

to remove any contaminants using of UV radiation and Ozone at 1 Pascal for 10 minutes. The 

Transmission electron microscopy (TEM) measurements were carried out on a FEI Tecnai TF20 

FEG operated at 200kV and equipped with an energy dispersive X-ray spectroscopy (EDS, Oxford 

INCA) to analyse the particle size, surface morphologies, location of the elements and elemental 

compositions of the catalyst samples. The sample was prepared by suspending a small amount of 

powder sample in acetone, followed by ultra-sonication for 10 minutes. One drop of this suspension 

was put on a carbon coated copper grid for TEM analysis. 

The thermal decomposition of TiO2-NPs and Ti(SO4)O nano-catalyst was measured by Stanton 

Redcroft thermogravimetric analysis (TGA-TGH 1000) connected via a transfer line to a Nicolet 

iS10 FT-IR spectrometer to confirm the decomposition of the catalyst via gas production, in 

particular loss of SOx molecules and absorbed surface species. The transfer line was kept at 170°C 

and the interface cell oven was maintained at 220°C. (20±5) mg of sample was weighted in a 100ȝl 

platinum crucible and placed in the TGA sample holder. The system was programmed to heat up the 

catalyst samples from 25°C to 900°C at 10°C per minute under different purge gases, nitrogen and 

air separately at 30ml per minute with a constant flow rate. The system was then held at 900°C for 

10 minutes before being cooled to room temperature using water jacket circulator (Julabo F32). The 

FT-IR spectra were taken with a minimum 36 scans performed at the average signal of infrared with 

4cm-1 a resolution ranging 400cm-1 to 4000cm-1 and the time interval of 50 seconds between spectra. 

The total data collection time was 90 minutes for each sample. 

2.2.3.2 Biodiesel characterization 

Flash point of prepared biodiesel sample was measured by an auto ramp closed cup flash point tester 

(Setaflash series 3, England) equipped with a coolant block unit. At ambient temperature, 2.0 ml of 

biodiesel sample was manually injected into the sample cup via the filter orifice and the instrument 
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was set on the expected flash point temperature for the biodiesel sample. The temperature ramped at 

1oC-2oC/min until the flash was captured. Moreover, the pycnometeric method was used to 

determine the density of obtained biodiesel at 15oC. Furthermore, viscosity of prepared biodiesel 

was measured on a Bohlin-Gemini 150 rotary rheometer (Malvern, UK). 2ml of biodiesel fuel was 

placed and the data was analysed based on the Newtonian model from the Bohlin program to 

determine the dynamic viscosity at 40oC of the biodiesel sample [5]. Additionally, trace moisture 

content in biodiesel was analysed by volumetric Karl Fischer titration (Mettler Toledo-V20, 

Germany) [61]. The acid values and percentage of FFA were measured according to the standard 

method [62, 63]. Finally, the cooling behavior of prepared biodiesel was examined using optical 

microscopy (Olympus, Japan) equipped with a hot-stage (EHEIM professional 3, Germany) to 

screen the crystal nucleation/growth in biodiesel sample during cooling. The sample first heated up 

to 50oC at 25oC/min and held at 50oC for 5 minutes to dissolve any wax materials in the sample. The 

system was then cooled down to -40oC at 3oC/min and then held at each specified temperature stage 

for 5 minutes. Images were collected with a Pixelink camera (PL-A662, Canada) at 15 seconds 

intervals upon cooling. Linksys32 software was used for programming (heating and cooling) and 

data processing. 

3. RESULTS AND DISCUSSION 

3.1 Catalyst characterization 

3.1.1 Crystal structure 

TiO2-NPs reacts with chlorosulfonic acid producing Ti(SO4)O solid super acidic nano-catalyst (main 

product) and hydrochloric acid gas (by-product) as shown in proposed scheme 1. At high 

temperature (120oC), chlorosulfonic acid slowly generates sulphur trioxide (SO3) and hydrochloric 

acid gas [64]. The by-product (HCl) gas liberated from this reaction is a corrosive gas, but in industry 

normally it is recovered either by neutralizing the off-gas with a very low concentration of sodium 

hydroxide as a basic scrubbing solution to produce sodium chloride salt or by diluting with water 
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[65]. The sulphur trioxide is a very aggressive electrophilic reagent that rapidly reacts with TiO2-

NPs to form TiO2-sulfonic acid. In the presence of a reflux condenser for 2hrs, the formed TiO2-

sulfonic acid is slowly converted into the sulphated titanium oxide or oxysulfate titania [Ti(SO4)O]. 

 

Scheme 1: Preparation of Ti(SO4)O nano-catalyst 

The XRD patterns of base TiO2-NPs indexed using JCPDS-ICDD confirmed 81.6% of tetragonal 

anatase phase (04-014-5762, TiO2) and 18.4% of tetragonal rutile phase (01-072-4815, TiO2). The 

major diffraction peaks of nano-TiO2 were observed at 2ș values of 25.30°, 36.λ5°, 37.80°, 38.56°, 

48.03°, 53.89°, 55.06°, 62.11°, 62.69° and 68.76° assigned to the (101), (103), (004), (112), (200), 

(105), (211), (213), (204) and (116) reflections for the anatase structure of TiO2, respectively. The 

rest of the diffraction peaks were observed at 2ș values of 27.43°, 36.07°, 3λ.18°, 41.23°, 44.04°, 

54.31°, 56.62°, 62.75°, 64.04°, 65.50° and 68.99° corresponded to the (110), (101), (200), (111), 

(210), (211), (220), (002), (310), (221), (301) and (112) planes for the rutile structure of TiO2, 

respectively, as shown in figure 1.  

In the case of the synthesised nano-catalyst (Ti(SO4)O), the XRD patterns indexed using JCPDS-

ICDD in Figure 1 confirm that all diffraction peaks matched with titanium sulphate oxide or titanium 

oxysulfate (Ti(SO4)O, 04-011-4951). It should be noted that most of the diffraction peaks were sharp 

peaks indicating the high crystallinity degree of the Ti(SO4)O nano-catalyst sample. However, there 

are some broad peaks with low intensities at 36.80°, 45.43°, 51.89°, etc., presumably due to the 

amorphous degree, which could be explained by the presence of sulphate group inside the chemical 

structure of prepared nano-catalyst. 
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Figure 1: Powder XRD profiles for TiO2 and Ti(SO4)O nano-catalyst samples at room temperature. 

The average particle sizes of TiO2 and Ti(SO4)O nano-catalysts were calculated as 28nm and 45 nm, 

respectively, using Debye-Scherrer’s method [66-68] (d=kȜ/ȕcosș), where k is a shape factor of the 

particles, ȕ is the full width at half maxima of the diffraction peaks (FWHM), Ȝ is a wavelength of 

the CuKĮ radiation, and ș is the incident angle of the X-rays. 

3.1.2 Surface analysis 

3.1.2.1 Fourier Transform infrared (FT-IR) spectroscopy 

The FT-IR spectrum of the prepared Ti(SO4)O nano-catalyst shows five extra band vibrations than 

the spectrum of TiO2-NPs, suggesting sulphate group’s incorporation into the structure of the TiO2 

molecules as shown in figure 2. The sharp band in Ti(SO4)O at 626.4cm-1 and the broad band in 

TiO2 at 553cm-1 were assigned to the vibration stretching of Ti-O [69, 70]. Moreover, three extra 

strong bands at 786.9cm-1, 915cm-1 and 1044.7cm-1 in Ti(SO4)O nano-catalyst spectrum correspond 

to S-O stretching vibrations in bidentate sulphate coordinated to the Ti4+ metal [50, 71-73]. The 

strong band at 1216.9cm-1 referred to S=O asymmetric stretching vibration whilst the other strong 



14 
 

band at 1132.9cm-1 attributed to the S=O symmetric stretching vibration. The band at 1690.1cm-1 in 

Ti(SO4)O and at 1637.8cm-1 in TiO2 nano-catalyst correspond to H-O-H symmetric vibration of 

absorbed water molecules on the surface of both catalysts [74, 75]. The vibration bands at 2360.8cm-

1 and 2352.5cm-1 in TiO2 and Ti(SO4)O nano-catalysts spectra, respectively, could correspond to 

asymmetric stretching of CO2 molecules in the air, contaminated the surface of both nano-catalysts 

[76]. The broad bands at 3045cm-1 to 3400cm-1 in both catalysts assign to the stretching vibration of 

O-H functional groups [74, 75]. 
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Figure 2: The FT-IR spectra of TiO2 and prepared Ti(SO4)O nano-catalyst samples at ambient 

temperature. The black dots indicate the extra absorption bands for S=O and S-O in the prepared 

nano-catalyst. 

3.1.2.2 X-ray photoelectron spectrum (XPS) 

Figure 3 shows the high resolution XPS spectrum survey scan for TiO2 and Ti(SO4)O nano-catalysts. 

In case of TiO2-NPs the catalyst contains not only Ti (464eV) and O (530 eV) elements but also 

some carbon observed at 285eV, presumably due to the CO2 contamination. Whereas, in the case of 

synthesised Ti(SO4)O catalyst, four significant peaks were observed at 167eV, 285eV, 457.35eV, 
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and 529.95eV, corresponding to S 2p, C 1s, Ti 2p and O 1s, respectively. The band at 167 eV is a 

clear evidence of sulphate group in the synthesised nano-catalyst [Ti(SO4)O]. 
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Figure 3: XPS survey scan of TiO2 and Ti(SO4)O nano-catalyst samples showing the chemical 

environments at 167eV for S 2p in the obtained nano-catalyst. 

The spin-orbital splitting between Ti 2p3/2 (at 462.75eV) and Ti 2p1/2 (at 456.94eV) is 5.81eV, as 

shown in figure S1c (supplementary information). This is most prominent implication that titanium 

in the TiO2 exists in a quadrivalent oxidation state (Ti4+) in the anatase phase of the TiO2. Figure S1a 

(supplementary information) shows the deconvoluted O 1s peaks of TiO2-NPs. The spectra yielded 

three Gaussian peaks. The first band located at 530.2eV with full width at half maximum (FWHM) 

of 1.177eV (ǻEBE) could be attributed to the Ti=O from TiO2. The second peak centered at binding 

energy of 531.2eV could be related to the C=O from absorbed CO2 in air on the surface of the nano-

catalyst. The last peak detected at 532.52eV is assigned to the O-H of absorbed moisture from air on 

the surface of the TiO2-NPs by forming [-Ti(OH)-O-Ti-O-]. This agrees with the reported XPS in 

the literature for TiO2 as listed in table S2 (supplementary information). 

Based on the result presented in table S2 (supplementary information), it can be inferred that the 

surface of TiO2 was very active and contaminated with CO2 and H2O from the air [77]. In the case 
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of Ti(SO4)O , the O 1s spectra was fitted and resulted in two Gaussian components (figure S1b, 

supplementary information). A broad peak located at 530.76eV corresponds to the lattice oxygen in 

Ti=O and S=O, this could be due to the binding energy of the de-convoluted O 1s peaks for Ti=O 

and S=O falling in the same region which made it difficult to distinguish between the contribution 

of both species [78]. The band detected at 531.72eV correlated to the two different oxygen species 

and this must be due to the presence of Ti-O and S-O bonds. Moreover, the binding energy of the Ti 

2p3/2, as can be seen in figure S1d (Supplementary information), in Ti(SO4)O nano-catalyst was 

shifted by 2.01eV compared to the binding energy of the Ti 2p3/2 in nano-sized TiO2. Furthermore, 

the Ti 2p1/2 peak in Ti(SO4)O located at 458.7eV could be ascribed to Ti4+ oxidation state [79]. The 

binding energy of S 2p was observed at 167eV which agrees with the reported earlier values for S-

O bonds in sulphate groups [80, 81]. This elucidates that one of the oxygen atoms in the TiO2 nano-

catalyst was replaced by sulphate group as in obtain nano-sized Ti(SO4)O catalyst. 

The detailed comparison of the elemental compositions using TEM-EDS analysis and relative 

surface elemental composition using XPS analysis for TiO2 and Ti(SO4)O nano-catalyst samples are 

presented in table 2.  

Table 2  Compared atomic ratios for TiO2 and Ti(SO4)O nano-catalysts using XPS and TEM-EDS 

analyses 

 
Bulk atomic ratio % determined by 

TEM-EDS analysis 
Surface atomic ratio% determined by 

XPS analysis 

O/Ti S/Ti O/Ti S/Ti 

TiO2 1.55:1±0.005 --- 2.35:1±0.008 --- 

Ti(SO4)O 4.45:1±0.006 0.74:1±0.002 4.80:1±0.005 1.00:1±0.078 

 

The atomic ratio of O/Ti in TiO2-NPs measured by TEM-EDS was 1.55:1±0.005 whilst this ratio 

was 2.35:1±0.008 by XPS. This could be due to the surface of the nano-catalyst being contaminated 

with CO2 and H2O in air which is confirmed by FT-IR and presence of sp2 hybridized carbon in XPS 



17 
 

survey scan spectrum at 285eV. The ratio of S/Ti and O/Ti in Ti(SO4)O nano-catalyst have also been 

calculated from TEM-EDS and XPS analyses. According to both analyses the atomic ratio of S/Ti 

was around 1:1 and for O/Ti was 5:1. Based on this result, it can be conclude that there was only one 

oxygen in TiO2 is replaced by sulphate group. This result is consistent with XRD analysis of 

Ti(SO4)O. 

3.1.2.3 Brunauer–Emmett–Teller (BET) surface area 

In general, surface area plays a key role in effectively enhancing the activity of solid acid catalysts 

for esterification and transesterification processes as large surface area facilitates the reactant 

molecules access to the acid sites on the solid catalyst surface. The nitrogen adsorption isotherms 

were used to calculate the BET surface area for both samples whilst the desorption isotherms were 

used to calculate the average pore size and total pore volume for both samples using the Barrett-

Joyner-Halenda (BJH) method. The detailed BET, average pore size and total pore volume of TiO2 

and Ti(SO4)O nano-catalyst samples are summarised in Table 3. Based on these results, the loading 

of sulphate groups on TiO2 has resulted in relatively lower BET surface area as compared to the 

TiO2; this may be explained by the aggregation of the very small crystallites in synthesized nano-

catalyst with their low ordering and crystallinity (see figure 7a). It was also found that the average 

pore size and total pore volume of Ti(SO4)O nano-catalyst increased compared to TiO2 nano-

particles. This might be due to the effect of sulphate group which is incorporated into the TiO2 

structure and could perhaps account for the increase in the concentration of the structural disorder 

and reduction of surface area in the prepared nano-catalyst. 
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Table 3 Summary of the properties of TiO2 and Ti(SO4)O nano-catalysts 

Type of catalyst 
BET surface 

area (m2/g) 

BJH mean 

pore size (nm) 

BJH  total pore 

volume (cm3/g) 

TiO2 48.6398 12.8722 0.156571 

Ti(SO4)O 44.4563 22.7347 0.312459 

 

The nitrogen absorption-desorption isotherms of TiO2 and Ti(SO4)O nano-catalysts could be 

classified as type IV with one hysteresis loops at a relative pressure range of 0.75-1.0 as depicted in 

figure 4. The experimental results clearly confirmed that both samples are mesoporous with the type 

of hysteresis loops H1 according to the IUPAC classification witnessed for uniform pore sizes due 

to differences in absorption and desorption [82]. In the case of Ti(SO4)O, nevertheless, the pore size 

distribution is broader compared to TiO2 NPs sample which is more preferable for minimizing 

diffusion limitations for long alkyl chain hydrocarbons in FFA/triglyceride (TG) [83]. It is also 

believed that the prepared Ti(SO4)O possesses some interesting characteristics such as mixed large 

particles with very fine particles, large and accessible pore surfaces, specifically useful for 

photocatalysis.  
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Figure 4: N2 adsorption-desorption isotherms and total pore volumes for (a) Ti(SO4)O and (b)TiO2 

nano-catalysts. 
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3.1.2.4 Morphology of the nano-sized catalysts 

Figure 5 (a) and (b) shows the SEM images of TiO2 and Ti(SO4)O samples, respectively, at 100K 

magnification. It can be seen that TiO2-NPs (Figure 5a) have relatively uniform size particles with 

some agglomerates, whereas titanium sulphate oxide nano-catalyst (Figure 5b) has completely 

different particle size distribution. 

High resolution TEM (HRTEM) clearly confirmed the actual size of the particles, crystallographic 

phases and morphologies as depicted in Figure 6 (a) and (b) for TiO2 and Ti(SO4)O nano-catalyst 

samples, respectively. It can be observed that the Ti(SO4)O particles aggregate to each other forming 

a network, possibly due to the electrostatic attraction among SOସଶିspecies.  

     

Figure 5: SEM micrograph images of (a) TiO2 and (b) Ti(SO4)O nano-catalyst samples, in case of 

Ti(SO4)O showing the presence of different size of particles. 

     

(b) (a) 

(a) (b) 
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Figure 6: TEM images of (a) TiO2 showing uniform size of particles having irregular morphology 

and (b) Ti(SO4)O nano-catalyst showing the presence of mixed large particles with very fine 

particles. 

The number based particle size distributions of TiO2 and Ti(SO4)O nano-catalysts are presented as 

histograms in figure S2 (supplementary information). The synthesised Ti(SO4)O were non-

uniformly distributed and with an average particle size diameter of ~25 nm (as per 108 particles in 

different TEM images). In contrast, the particles of TiO2-NPs were less scattered with an average 

particle size diameter of ~22.34 nm which is in agreement with the data from supplier. It is also 

noticeable from TEM images that most TiO2-NPs have tetragonal or hexagonal morphologies. 

HRTEM image confirms polycrystalline TiO2 particles as depicted in figure 7a. The visible lattice 

fringes (figure 7a) with interplanar spacing of 3.518Å correspond to (101) lattice planes of TiO2 

according to JCPDS-ICDD file 04-014-5762. HRTEM image proves that prepared Ti(SO4)O nano-

catalyst contains a small fraction of polymorphous as depicted in figure7. It was also found that these 

results are in agreement with XRD result for Ti(SO4)O nano-catalyst (see figure 1). The lattice 

fringes (figure 7c) with interplanar spacing of 3.078Å correspond to (301) lattice planes of Ti(SO4)O 

(JCPDS-ICDD 04-011-4951). This was further confirmed by the selected area electron diffraction 

(SAED) pattern of the TiO2-NPs sample showing a set of diffused spot rings, as shown in figure 

7(b), whilst the SAED pattern of Ti(SO4)O nano-catalyst shows brightness and spotty rings are 

shown in figure 7(d).  

The details of studies of the d-spacing values calculated from SAED spotty rings with the reported 

d-spacing values for TiO2 and Ti(SO4)O in the JCPDS-ICDD card numbers 04-014-5762 (Anatase, 

TiO2), 01-072-4815 (Rutile, TiO2) and 04-011-4951 (Ti(SO4)O) are presented in table S3 

(supplementary information). It is noteworthy that the results of ICDD agree with d-spacing values 

obtained from XRD and SAED in this investigation. These results further confirm the successful 

synthesis of Ti(SO4)O nano-catalyst using TiO2-NPs and chlorosulfonic acid as a reagent. 
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Figure 7: Images of HRTEM for (a) TiO2 confirmed the 101 lattice planes and (c) prepared 

Ti(SO4)O confirmed the 301 lattice planes; whilst images of (b and d) showing the SAED patterns 

for TiO2 and Ti(SO4)O, respectively. 

TEM-EDS analysis of prepared Ti(SO4)O nano-catalyst showed an extra strong peak on the EDS 

graph at 2.15keV (Figure S3, supplementary information),  corresponding to the sulphur element. In 

both TEM-EDS graphs, extra peaks of C and Cu were observed due to the carbon-coated copper 

TEM grids used during analysis of the samples as shown in figure S3. Furthermore, the ratio of the 

intensities of titanium signal to sulphur signal was around 1:1wt% at several different whole captured 

areas in TEM images for the synthesised Ti(SO4)O. The presence of a large amount of sulphur spread 

over the entire area of the prepared nano-catalyst has been further verified by TEM-mapping analysis 

(figure 3c, supplementary information). These findings provide direct evidence that sulphur, 

titanium and oxygen are the main elements present in the prepared nano-catalyst. Meanwhile, 
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titanium and oxygen are the only elements present in the raw material nano-catalyst (TiO2-NPs), 

except cu and c from TEM grids (see figure S3a, supplementary information). 

3.1.2.5 Stability analysis 

TGA was carried out to identify the thermal and oxidation stability of the nano-catalyst samples 

during heating from 25°C to 900°C. Figure 8 reveals the stability of Ti(SO4)O and TiO2 samples in 

nitrogen (thermal) and air (oxidative). The TGA curve of Ti(SO4)O displayed a small weight loss at 

50°C to 200°C, indicating the desorption of water molecules from the surface of the nano-catalyst 

(see figure 8a). One can see that Ti(SO4)O sample has an almost negligible weight loss up to 600°C 

heating in both air and N2 purge gases. These results clearly indicate that the sulphate groups are 

fairly stable in the structure of the prepared nano-catalyst. The results also showed significant weight 

loss (about 47%) at 600°C to 800°C. In contrast, there is no further mass loss up to 900°C. This 

might be due to the degradation of sulphate groups in the Ti(SO4)O nano-catalyst sample, as can be 

described by the following equations: 
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Figure 8: TGA profiles of (a) Ti(SO4)O and (b) TiO2 nano-catalyst samples. 
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On the other hand, the mass loss of the unmodified TiO2 nano-particle (see figure 8b) shows that 

there was only one stage of weight loss from ambient temperature to 220°C, due to the desorption 

of H2O molecules from the surface of TiO2 nano-particles, evidence of which was observed also in 

absorption peaks in FT-IR spectrum at 1690.1cm-1 and 3400cm-1 (see figure 2). It can be noticed 

also that the stability of the nano-catalysts in nitrogen as a purge gas (inert) and air as a purge gas 

(oxidiser) show similar behaviour. 
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Figure 9: 2D representation of FT-IR spectrum for evolved gaseous from Ti(SO4)O 

The 2D representation of output FT-IR spectrum for evolved gases from the TGA-FTIR analysis for 

Ti(SO4)O are presented in figure 9. It can be observed that the main evolved gases have been 

identified as SO2-loose, CO2-loose, and H2O-loose through spectral interpretation and comparison 

with database reference spectra for pure SO2 and CO2. In Grand-Schmidt thermographs for Ti(SO4)O 

nano-catalyst, four regions with intense peaks are observed which are: (i) bands between (3800cm-

1-3900cm-1) and (1500cm-1-1700cm-1) due to O-H vibration bands from H-O-H molecule that is 
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always present when the sample is sensitive to moisture; (ii) peaks between 3580cm-1-3780cm-1 and 

at (2250cm-1-2400cm-1) as well as at around (600cm-1-720cm-1) are related to O=C=O vibration 

bands contaminated CO2 from atmosphere; (iii) bands between (1080cm-1-1400cm-1) and at region 

(2460cm-1-2052cm-1) due to O=S=O vibration bands from decomposition of the nano-catalyst; and 

(iv) peaks showed at low wavenumber (400cm-1-580cm-1) attributed to an intermolecular bond 

bending vibrations which are usually not taken into account. It should also be noted that there was 

no hydrogen sulfide gas detected during the pyrolysis of this nano-catalyst, confirming that there 

was no sulfonic acid attached on the surface of TiO2-NPs.  

In the case of TiO2 NPs, there were only CO2 and H2O species released at various time periods. The 

amount of CO2 and SO2 evolved species versus time of TiO2 and Ti(SO4)O nano-catalysts in air and 

N2 as purge gases during pyrolysis are shown in figure 10 (a & b). 

In both samples the wavenumber ranges (2150cm-1 to 2400cm-1) and (1250cm-1 to 1400cm-1) were 

chosen to process the chemigram profiles of CO2 gaseous and SO2 gaseous in both nano-catalysts, 

respectively. The analysis of CO2 chemigram profiles showed negligible amounts of CO2 gases are 

released from the pyrolysis of both nano-catalysts; whereas, the surface of Ti(SO4)O nano-catalyst 

seen possessed a higher value of contaminated CO2 gases as compared to the surface of TiO2 NPs, 

(see figure 10a). Meanwhile, the evolved SO2 gaseous (as shown in figure 10b) in the decomposition 

of Ti(SO4)O nano-catalyst started after 54 minutes of the pyrolysis process with high concentration 

then the width of the peak increased with time up to the end of pyrolysis. These results further 

confirms that sulphate group has been incorporated into the structure of TiO2-NPs for Ti(SO4)O. 
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Figure 10: Chemigram profiles of (a) CO2 (b) SO2 species released from TiO2 (b) Ti(SO4)O nano-

catalyst samples 

3.2 Catalytic performance 

The FAME yield was investigated under different catalytic process parameters including methanol 

to UCO mole ratio, reaction temperature, catalyst loading, and time of 

esterification/transesterification, see figure 11, in order to establish the optimum reaction conditions 

for the esterification/transesterification process of UCO to biodiesel. The 

esterification/transesterification of UCO with methanol using Ti(SO4)O as a solid acid catalyst is a 

liquid-liquid-solid reaction (three phase system) at which the mass transfer rate of reactant molecules 

between the UCO-methanol-catalyst phases is very slow. The conversion rate is normally found to 

increase with reaction time due to an increase in the miscibility of the UCO into methanol [84, 85].  

 

 

 

 



26 
 

 

   

Figure 11: The effects of (a) reaction time, (b) Ti(SO4)O  nano-catalyst loading to UCO, (c) mole 

ratio of methanol to UCO, and (d) reaction temperature on the percentage of FAME yield. 

The reaction time was varied between 30 to 540 minutes, while keeping other reaction process 

parameters constant at 1.0 mass% of Ti(SO4)O catalyst loading to UCO, 6:1 molar ratio of methanol 

to UCO, 65oC reaction temperature, 600RPM agitation rate, 0.14% moisture content, and 2.034 

mass% free fatty acid contents in feedstock. It can be noted that the increase of reaction time from 

30 minutes to 3 hours led to the enhancement of FAME yield to 89% as shown in Figure 11(a). This 

can be explained by the rate constants for mono-glycerides and di-glycerides conversion to glycerol 

and mono-glycerides being very low compared to triglycerides [86]. Additionally, a longer reaction 

time (after 6 hours) resulted in slowly reduced production yield, possibly due to increasing the 

probability of pushing the reverse reaction. Similar results has been reported by Nayebzadeh [29] 

where a further increase in esterification reaction time resulted in a production yield decrease. 

The optimum ratio of Ti(SO4)O catalyst loading was determined under the other fixed reaction 

conditions, i.e. at 3hrs reaction time, 6:1 molar ratio of methanol to UCO, 65oC reaction temperature, 
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600RPM agitation rate, 0.14% moisture content, and 2.034 mass% free fatty acid. Figure 11(b) 

depicts that 1.5% of Ti(SO4)O was the optimum amount in achieving the highest production yield 

of 92.5% under aforementioned reaction conditions This is due to fact that increasing the catalyst 

concentration in the system leads to an increase in the total number of active sites which results in 

faster reaction rate to reach reaction equilibrium [87].  

The stoichiometric ratio for transesterification reaction, theoretically, requires three moles of 

methanol per mole of TG but esterification reaction requires one mole of methanol per mole of FFA. 

However, the transesterification process experimentally requires an excess of methanol in order to 

push the equilibrium reaction forward direction of methyl esters as the transesterification process is 

a reverse reaction [88]. Maximium conversion of triglycerides into FAME is ensured by the use of 

excess methanol due to esterification/transesterification being a reversible reaction. Figure 11(c) 

shows the effect of various mole ratios of methanol to UCO under the other fixed reaction process 

at 3hrs reaction time, 1.5 mass% Ti(SO4)O catalyst loading to oil, 65oC reaction temperature, 

600RPM agitation rate, 0.14%moisture content, and 2.034 mass% FFA contents. The highest yield 

of 94.3% was achieved at 9:1 mole ratio of methanol to UCO. It can be noted that an increase in 

methanol to UCO from 1:1 to 3:1 resulted in a slight effect on the FAME yield, while further excess 

of methanol from 4:1 to 9:1 increased the production yield up to the highest FAME yield. 

Afterwards, there was a decline in the production yield with higher mole ratios higher than 12:1. 

This can be explained by an additional amount of methanol helping to drive the reversible side of 

reaction to re-form mono-glyceride with di-glyceride and the solubility of the by-product could also 

be increased in the solution. In addition, water (by-product) is obtained during the esterification of 

FFAs in UCO feedstock lowers the activity of the catalyst. 

The rate of esterification/transesterification reaction is highly affected by the reaction temperature 

according to Arrhenius’s equation. A higher temperature also reduces the viscosities of the oils, 

thereby increasing the rate of the reaction. The esterification/transesterification reaction can occur at 
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different temperatures depending on the fatty acid profiles of raw sample oils and the type of catalyst. 

The effect of temperature on the FAME yield using Ti(SO4)O as a solid acid catalyst was examined 

by varying the reaction temperatures from 25oC to 90oC while other process parameters were kept 

constant at 3hrs reaction time, 1.5 mass% Ti(SO4)O catalyst loading, 9:1 molar ratio of methanol to 

UCO, 600RPM agitation rate, 0.14%moisture content, and 2.034 mass% free fatty acid content. It 

was found that the yield consistently increased at higher reaction temperature as shown in Figure 

11(d). This can be explained by the fact that esterification/transesterification is an equilibrium 

process and at 25oC reaction temperature energy was not enough to break down the ester bond in the 

TG molecules, whilst increase of the reaction temperatures to 55oC improves the FAME yield by 

27.4%. A further increase of reaction temperature significantly enhanced the production yield by 

66.3% possibly due to the fact that the reaction temperature at 65oC generates more nucleophilic 

sites in the system. Therefore with a temperature slightly higher than the boiling point of methanol, 

the nucleophilic attack on the carboxylic/carbonyl groups in FFA/TG are further increased. 

Moreover, the highest yield of FAME (97.1%) was produced at 75oC, due to the acceleration of the 

mass transfer rate between the UCO-methanol-catalyst phases; higher temperature helps the 

activation of carboxylic/carbonyl groups in FFA/TG by protonation and the methanol nucleophilic 

attack on the carboxylic/carbonyl groups [89]. In this work the optimum reaction temperature was 

found to be lower than previous work, most probably due to the high acidity of the catalysts leading 

to higher activity during the reaction. Further investigations on the kinetics of this reaction could be 

carried out and reported in future publications. 

The presence of FFA in the feedstock has a great influence on the poisoning of solid acid catalysts 

due to the formation of water from the esterification process[88]. Oleic acid was added to virgin oil 

to assess the effect of FFA on the catalytic activity of Ti(SO4)O as solid acid nano-catalyst. The 

amount of FFA in oil was varied from 0.5 to 7% whilst the other parameters were set constant at 

optimized conditions using 3.0hrs reaction time, 1.5 mass% Ti(SO4)O nano-catalyst loading, 9:1 
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molar ratio of methanol to oil, 75oC reaction temperature, 600RPM agitation rate, and 0.14% 

moisture content.  

 

Table 4: The effect of FFA in feedstock on the percentage of FAME yield 

Oleic acid to oil, wt % 0.5% 1% 2% 3% 4% 5% 5.5% 6% 6.5% 7% 

FAME yield % 97.1 97 97.1 97.01 96.14 95.69 93.42 91.37 75.39 64.5 

 

Noticeable from table 4, there was a slight decrease of yield up to 6.0wt% FFAs in oil, then there 

was a significant decrease after 6wt%, probably as the rapid esterification of oleic acid promotes the 

reverse methanolysis reaction of FAME and glycerol which demotes the transesterification 

process[90]. For that reason the esterification/transesterification reaction could be carried out at 

higher temperature and shorter time for raw materials containing high amount of FFA to in order to 

achieve maximum yield of FAME [88, 89, 91]. The investigation of the effect of high temperature 

on the yield of raw materials containing high FFA could the subject of future studies. 

The reusability of Ti(SO4)O solid acid nano-catalyst was also investigated to determine the nano-

catalyst life time as it can help reducing the production cost for industrial purposes. It was found that 

the Ti(SO4)O can be re-used up to 8 cycles with a slight drop in catalytic activity (Figure 12) for the 

esterification/transesterification reactions using the optimised parametric processes conditions (3hrs 

reaction time, 1.5 mass% Ti(SO4)O loading , 9:1 molar ratio of methanol to UCO, 75oC reaction 

temperature, 600RPM agitation rate, 0.14%moisture content, and 2.034 mass% FFA contents). 
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Figure 12: The effect of reusability of Ti(SO4)O nano-catalyst on the percentage of FAME yield. 

The results revealed that the FAME yield significantly decreased for 9 and 10 trials by 11.19% and 

24.16%, respectively (see Figure 12); this could be probably due to the blockage of active centres of 

catalyst by triglyceride (TG)/product or catalyst leaching [12, 92]. The powder XRD experiments 

were carried out for the recycled nano-catalyst after each run in order to investigate the catalytic 

deactivation. The result showed that Ti(SO4)O solid acid nano-catalyst maintained its structure after 

8 runs as shown in Figures 13 and 14. The XRD patterns of recycled Ti(SO4)O from run 1 to run 7 

shows that there was no loss of SOସଶିgroups or formation of any new phases as shown in Figure 13. 

This is an indication of the stability of the sulfate group in Ti(SO4)O nano-catalyst and durability for 

the first 7 cycles in simultaneous esterification and transesterification of UCO into biodiesel.  
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Figure 13: The powder XRD patterns of re-used Ti(SO4)O nano-catalyst for run 1 to run 7. 
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Figure 14: The powder XRD patterns of reused Ti(SO4)O nano-catalyst from run 7 to run 10. 
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Figure 14 shows formation of diffraction peak at 2ș value of 25.32° assigned to the (101) reflection 

for the anatase structure of TiO2 and increase of its intensity with continued re-use of the nano-

catalyst beyond 8 runs (9% and 34.7% of anatase phase after 9 and 10 runs, respectively). The 

decrease in acidity of Ti(SO4)O nano-catalyst loss of SOସଶି species might affect the esterification of 

FFA in UCO feedstock. In contrast, some researchers reported that leaching of SOସଶି species was 

not the main cause for the decline in the catalytic activation of different sulfonated catalysts [93, 94]. 

However; in this work catalyst has a different structure than the sulphated metal oxide and XRD 

results confirmed that the catalytic deactivation of prepared solid acid nano-catalyst is caused by 

leaching of SOସଶି species (see Figure 14). The regeneration of the Ti(SO4)O solid acid nano-catalyst 

and the performance of the regenerated nano-catalyst for simultaneous esterification and 

transesterification of UCO would be the subject of future studies. 

3.3 Biodiesel characterizations 

The biodiesel produced in the esterification/transesterification processes from UCO was 

characterized according to ASTM and EN standards. These results are summarised in Table 5. It can 

be noted that the produced biodiesel is in the range of acceptable standard specifications of biodiesel. 

Table 5 Properties of biodiesel produced from UCO over Ti(SO4)O nano-catalyst 

Property Unit 
Limits 

Synthesised biodiesel 
ASTM D6751 EN14214 

Flash point  oC 93 min 101 min 155 

Kinematic viscosity mm2/s 1.9-6.0 3.5-5.0 4.58 

FAME content % mass --- 96.5 min 97.1 

Acid number mgKOH/g 0.8 max 0.5 max 0.32 

Density at 15oC Kg/m3 --- 860-900 896.1 
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Optical microscopy was carried out at different temperatures to detect the formed crystals in the fuel. 

Figure 15 illustrates the optical microscopy images for prepared biodiesel using hot-stage 

microscopy (HSM) at different temperatures. It can be observed that there were no detectable 

crystals during cooling the sample from 50oC to -6oC. Formation of several tiny needle-like crystals 

was observed below -9°C. The nucleation of these tiny needle-like crystals increased at -15oC whilst 

the size of crystals increased during further by cooling to -21oC. 

       

       

       

Figure 15: HSM images of the prepared biodiesel at different temperatures 

3.4 Discussions 

The use of chlorosulfonic acid as a reagent for sulfonation of nano-sized titanium dioxide is a 

promising direction for loading of sulphur species into titanium dioxide.  The obtained titanium 

sulphate oxide or titanium oxysulfate nano-catalyst has a unique and different chemical structure 

+25oC 0oC -3oC 

-6oC -9oC -12oC 

-15oC -18oC -21oC 
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than titanium dioxide (see figure 1) and those from published work on sulphated metal oxides [30, 

34, 41, 83, 95, 96]. This obvious change in the chemical structure makes the prepared Ti(SO4)O 

nano-catalyst more stable compared to all reported sulphated metal oxide [41] as in previous 

catalysis the sulphate species located on the surface of metal oxides which makes the molecule 

unstable [30, 34]. The stability of synthesised Ti(SO4)O nano-catalyst is due to the formation of 

polydentate sulphate species inside the structure of TiO2 which also leads to a higher tolerance to 

high percentage of FFAs in raw material for biodiesel production. This might be due to the synergic 

activation of polydentate sulphate species inside the structure of TiO2 nano-particle resulting in an 

increase of the Lewis and Brønsted acid sites of the nano-catalyst. The effect of different TiO2 phases 

(anatase, rutile and brookite) and different SOx loadings on the nano-sized TiO2 template on the 

catalytic performance would be the subject of future studies in order to have a better understanding 

about the influence of Lewis and Brønsted acid sites on the yield of FAME produced from 

simultaneous esterification and transesterification of UCO. Furthermore, there was no evidence that 

the presence of absorbed carbon dioxide from atmosphere had an influence on the catalytic activity 

of Ti(SO4)O catalyst, but further investigations should be performed in the future studies in order 

to better understand the surface chemistry of this catalyst under different conditions. The amount 

of yield and optimised process conditions (e.g. catalyst loading, methanol to UCO molar ratio, 

reaction time, temperature, tolerance to FFA and catalyst reusability) have been significantly 

improved using the catalyst synthesised in this work as compared to the reported sulphated metal 

oxides [30, 34]. Finally, the conditions for simultaneous esterification and transesterification 

processes using previous solid acid catalysts compared to the current study are presented in Table 

6.  
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Table 6  A comparison of reported optimum process condition for the biodiesel production using 

solid acid nano-catalyst 

 Current study Wang et al. [48] Chen et al. [34] 

Oil/fat feedstock UCO UCO Cottonseed oil 
Methanol to oil ratio 9:1 10:1 12:1 

Type of catalyst Ti(SO4)O SOସଶି/TiO2/La+3 SOସଶି/TiO2 SOସଶି/ZrO2 
Amount of catalyst% 1.5 5 2 

Time, hr 3 1 8 
Particle size, nm 25 Not reported Not reported 

Surface area, m2/g 44.47 229 99.2 91.5 
T, oC 75 110 230 

FAME yield % 97.1 >90 90 80 
Catalyst recycled 8 5 >4 

 

4. CONCLUSIONS  

A novel method has been used to impregnate sulphate group into TiO2-NPs to synthesise titanium 

sulphate oxide or titanium oxide sulfate [Ti(SO4)O] nano-catalyst, which can be used as a solid super 

acidic heterogeneous catalyst for different applications due to its high activity and stability. Different 

analytical techniques have been employed to differentiate the prepared Ti(SO4)O nano-catalyst from 

TiO2-NPs, all confirming a 100% Ti(SO4)O phase. The synthesised nano catalyst and its 

performance has not been reported in the literature. It was found that Ti(SO4)O can be used as a 

novel solid acid nano-catalyst for biodiesel production from low quality and cheap feedstock such 

as UCO. The effect of operating process conditions such as reaction time, catalyst loading, methanol 

to UCO ratio, reaction temperature, %FFA, and re-usability/stability on the biodiesel yield were 

examined. It was found that under certain process parameters a FAME yield of 97.1% can be 

achieved using Ti(SO4)O as a nano-catalyst. The heterogeneous nano-catalyst was found to be most 

effective for the feedstock containing FFA up to ≤6wt%. This result indicated that the novel solid 

acid nano-catalyst can be used for simultaneous esterification and transesterification of UCO to 

biodiesel potentially reducing energy consumption in biodiesel production compared to other solid 
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acid catalysts. The nano-catalyst can be re-cycled and re-used up to eight times without deactivation 

of the active sites, overall with superior functionality, significantly improved process conditions and 

higher tolerance to FFA as compared to other reported metal oxide catalyst. Additionally, the 

produced biodiesel was analysed according to the ASTM and EN standards and the specifications 

are within acceptable biodiesel limits. 
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