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Abstract

This paper presents a numerical solution to the inverse problems of simultaneous deter-
mination of the time-dependent coefficients and the source term in the parabolic heat
equation subject to overspecified conditions of integral type. The ill-posed problems are
numerically discretised using the finite-difference method and the resulting system of
nonlinear equations is solved numerically using the MATLAB toolbox routine lsqnonlin
applied to minimizing the nonlinear Tikhonov regularization functional subject to simple
physical bounds on the variables. Numerical examples are presented to illustrate the ac-
curacy and stability of the solution.

Keywords: Inverse problem; Coefficient identification; Heat equation; Finite-difference
method; Tikhonov regularization; Nonlinear minimization.

1 Introduction

Determination of a single unknown time-dependent property such as the capacity, conduc-
tivity or diffusivity from additional local or non-local measurements of the main dependent
variable at the boundary or inside the space domain represents a classical example of a
coefficient identification problem, as described for example in Chapter 13 of the excellent
book of Cannon [4] on the one-dimensional heat equation. For more recent studies on the
same inverse problems, see e.g. [9, 13] and the references therein.

The inverse formulation can be further extended to allow for an unknown free boundary
to be determined as well, see e.g. [12]. Moreover, multiple time-dependent coefficient
identifications have also been considered theoretically in the past, see e.g. [3, 11], and
recently been solved numerically by the authors, [8]. In these studies, the unknowns
were mainly coefficients multiplying the temperature and its partial derivatives, but more
recent theoretical studies, [14, 15], allow for one of the time-dependent unknown to be in
the free term heat source as well. And it is the purpose of this paper to numerically solve
a couple of such related multiple coefficient identification problems.

The structure of the paper is as follows. In Section 2 we formulate the two inverse
problems that we consider and state the uniqueness theorems. In Section 3 we briefly
describe the finite-difference method used to discretise the direct problem, whilst Section
4 introduces the constrained regularized minimization problem that has to be solved
using the MATLAB routine [sqnonlin. In Section 5, numerical results are presented and
discussed and finally conclusions of the paper are given in Section 6.



2 Mathematical formulation

In this paper, we study a couple of coefficient identification problems related to the second-
order parabolic partial differential equation

%(x,t) = a(x,t)%(x,t) - b(x,t)g—z(x,t) —d(x,t)u(x,t) + f(t)g(x,t), (z,t) € QT< |
1

where Qr = [—¢, (] x [0,T], with £ > 0 and T' > 0, represents the solution domain, a(x,t)
is a given positive function involving physical quantities of the medium (—¢,¢) such as
conductivity, capacity, storage, diffusivity, u(x,t) is the unknown dependent variable, e.g.
the temperature in heat conduction, the pressure in porous media or the piezometric
head in groundwater flow, f(t)g(z,t) with f(¢) unknown and g(x,t) given function rep-
resents a source (heat or hydraulic), and either one of the coefficients b (representing an
advection/convection coefficient) or d (representing a reaction or perfusion coefficient in
bio-heat conduction) are unknown (though we shall further assume that, when unknown,
the corresponding quantity b or d depends on time only). To be more explicit, let us
particularize equation (1) to the following two cases, namely,

ou 0%u ou

E(xvﬂ = a(x,t)@(:x,t) - b(t)g(l’,t) - d($,t)u(x,t) + f(t)g(l‘,t), (Jf,t) € QT (2)

with unknown triplet (u(z,t), f(t),b(t)) and

ou 0%u

E(% t) = a(:v,t)@(:v,t) — b(x, t)%(:v,t) —d(t)u(z,t) + f(t)g(z, 1), (x,t) € Qr. (3)

with unknown triplet (u(z,t), f(t),d(t)).

We emphasize that such particularizations are often necessary when seeking to es-
tablish the uniqueness of the solution. Together with (2) or (3) we impose the initial
condition

u(z,0) = ¢(x), =z €[4, (4)

and the homogenous Dirichlet boundary conditions
u(£l,t) =0, tel0,T]. (5)

As over-determination conditions we consider, [14],

¢
/ w(z)u(x,t)dx = ¢(t), tel0,T], (6)

-/

¢
/ w(z)ug(z, t)dr = (t), tel0,T], (7)

—t
where w is given weight function. Integral observation such as (6) have been considered
before in numerous studies, see e.g. [5, 6, 10] to mention only a few, and physically it
represents the mass/energy specification obtained by measuring the temperature u(z, )

with thermocouples/ sources and then averaging over the space domain of the finite slab
[—¢, ¢]. This is because sometimes it might be practically impossible to measure the state
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of an object (or a process) at individual points and instead only the mean value of the
state over the entire object can be specified, [1]. Remark also that if w is differentiable
then integration by parts in (7) and using (5) imply

/_ W@ule, e = —0(t), ¢ € [0.T] (8)

so (7) may be thought to have the same physical meaning as (6) previously described.
About the input data we assume that they satisfy the following conditions:

(A) 0 <ag <alz,t) <ay, |ag(x,t)] < K |ag.(z,t)] < K, (x,t) € Qr.

(B) lg(z, )] < Ky, (2,1) € Qr.

(C) w e WE([—£,£)), w() = o/ (+0) = 0, /(2)| < K5, 2 € [~6,0], [, wlw)p(a)ds =
0(0), [*,w(@)¢' (x)dz = 1(0).

(D) ¢ € W([=t, ), |6(x)] < Mo, € [~£,4).
(B) (1), ¥(t) € WL([0,7)).

For the notation of the spaces of functions involved, see [16]. Then we have the

following theorems of uniqueness of the solution for the inverse problems considered.

Theorem 1 (see [14]). Assume conditions (A)—(E) on the input data hold. Assume also
that 0 < v < |(t)|, t € [0,T], |d(z,t)| < di, (x,t) € Qr, and that

¢
/ W'(x)g(x, t)dx| > Go >0, tel0,T]. 9)
—t
In addition, let the inequality
1
20|G4(t)| K5 (Mo + K TRo)e™" < 5 Goto, £ €1[0,7], (10)

hold for some Ry > 0, where
¢
Gh(t) = / w(z)g(e, t)dz, te[0,T). (11)
—
Then there exists at most one solution
(ulz, ), F(2),b(1)) € (Wy*(Qr) N C¥(Qr)) % Loo([0,T]) X Loc([0,T]),  (12)
for some a € (0, 1), of the inverse problem (2), (4)—(7) such that

11| 2 (ro.77) < Ro- (13)
In particular, if it happens that G1(t) = 0 on [0,T] then (10) holds for any Ry > 0 and
thus the uniqueness of solution holds without the restriction (13).

Theorem 2 (see [15]). Assume conditions (A)-(E) on the input data hold. Assume also
that |b(z,t)| < Ky, |be(x,t)| < Kf, (z,t) € Qr, and that

Ad(t) s = (8) /_Zw(x)g(q;,t)dx + go(t)/ (@) g(z,)de > 60> 0, te[0,T].  (14)

)
Then there exists at most one solution

(u(, t), f(1),d(1)) € (Wy*(Qr) N C**(Qr)) X Loo([0, T]) x LL([0.T]),  (15)
of the inverse problem (3)-(7).



3 Numerical Solution of the Direct Problem

In this section, we consider the direct (forward) initial value problem given by equations
(1), (4) and (5) when the coefficients b(z,t), d(z,t) and f(t) are given and the dependent
variable u(z,t) is the solution to be determined. We use the finite-difference method
(FDM) with Crank-Nicolson scheme, [18], which is unconditionally stable and second
order accurate in space and time.

The discrete form of the direct problem is as follows. Taking the positive integer
numbers M and N, the solution domain Qr = [—/¢, (] x [0, T] is divided by a M x N mesh
with spatial step size Az = 2¢/M in z-direction and the time step size At = T'/N. The
solution at the node (4, j) is denoted by u; ; := u(z;,t;), where z; = —0 4+ iAz, t; = jAt,
Q5 5 il((lfi,tj>, bL: b(l’z‘,t]‘), fj = f(tj) =, d@j = d((lfz,tj> and 9ij = g(xz,t]) for
1=0,M and j =0, N.

Considering the general form of partial differential equation

Uy = G(xatauvuJJ?uxx)a (16>

equation (16) can be approximated as

il — Ui 1 L o . T
St = 2 (G + Gign) s i = LM, j=0,(N - 1), (17)
U0 = QS([L}), 1= 07 M7 (18>
Ug,; = 07 Uprg = 07 J= 07 ) (19>
where
Gii = Gyt g —Yizag Yisig = 205 T U1 Ty S OUN. (20)
,] (2R Q(AZE) I (AI‘)Q Y ) Y Y

For our problem, equation (1) can be discretised in the form of (17) as

— Ajjrtiojs + (1+ Biji)uige — Cijrtiv o =

At
A juic1j+ (1= Bij)uij + Cjuirj + > (fi9i; + fit19i541), (21)

fori=1,(M —1), j=0,(N — 1), where

A — ’ ’ B . — el - g .
9= 50ne T aae) 0 DT e T2 ST g0 T aan)

At each time step t;iq, for j = 0, (N — 1), using the homogenous Dirichlet boundary
conditions (19), the above difference equation can be reformulated as a (M —1) x (M —1)
system of linear equations of the form,

DUj+1 = EUj + b, (22)
where

_ T
U1 = (Ul,j+17u2,j+17 --‘7UM—1,j+1) )



Agjy1 14+ Bojin —Ch 0 0 0
D = : : . : : : ) ’
0 0 0 cee —AM_Q,]'+1 1+ BM—Q,j—H _OM—QJ'H
0 0 0 . 0 —Ap-1j+1 1+ By-1jm
1-B;, Cy; 0 0 0 0
Ay 1 —DBy; Cy; 0 0 0
E — . : : T N : . )
0 0 0 e AM72,j 1— BM,Q’]' CM72,j
0 0 0 PN O AM*l,j 1 — BMij
and

%(fjgl,j + fi4191,5+1)
SHfi925 + fj+192,j+1)

(f]gM 2.4 +f]+19M 9.j+1)
L(figm-15 + fi+190m—-1,j+1)

B[’

2
The numerical solutions for ¢(t) and ¢ (t) are calculated using the trapezoidal rule for
integrals in (6) and (7), namely,

o(t;) = / w(@)ule, t;)de = Az (Z_ ul,jwi> . j=0.N, (23)

M—1
Y(t;) = /iw@)ux(x,t])dz i <ux0]w0 + Uy ar jWnr + 2 Z umjwz> , j=0,N
7 - (24)
where w; := w(x;) for i = 0, M, and
oo — duy j —ugj — 3u0,j7 oy = CAupa —up—a; — SUM’J',
2(Ax) 2(Ax)
Um,j:%a izm, j:r-

4 Numerical Solutions of the Inverse Problems

In this section, we aim to obtain accurate and stable simultaneous identifications for the
temperature u(z,t), source f(t) and the coefficients b(t) or d(t) for the inverse prob-
lems (2), (4)—(7) or (3)—(7), respectively. In the former case we minimize the nonlinear
Tikhonov functional

Fi(b, f) : —H/ u(z, t)dr — ¢ H —i—H/ uxxtdx—l/z(t)Hz
+Bufp)|f +52||f Il (25)



whilst in the latter case we minimize

Fy(d, f): —H/ u(z,t)dr — ¢ ” +H/ umxtdx—z/)(t)HQ
+ slla)lf +52||f

where 8; > 0, 1 = 1,2, 3, are regularization parameters which are introduced in order to
stabilise the numerical solution and the norm is the L?[0, 7] norm. The discretizations of
(25) and (26) are

(26)

Jj=1 j=1
N N
+ﬁlzb§+622f]27 (27)
j=1 j=1
N ¢ 2 N ¢ 2
Fy(d, f) = [/gw(a:)u(x,tj)dx—@(t])] +3 [/Ew(:z:)um(:c t)da — )}
=1 7 =1 7
N N
+Bs) i+ B> [ (28)
j=1 Jj=1
respectively.
The unregularized case, i.e., 8; = 0 for ¢« = 1,2,3, yields the ordinary nonlinear

least-squares method which is usually producing unstable solutions when noisy data are
inverted.
The noisy data is numerically simulated as

el (ty) = o(ty) +ely, V() =vt) +€2;, j=1,N, (29)
where €1; and €2; are random variables generated from a Gaussian normal distribution
with mean zero and standard deviation ol and 02, respectively, given by

1=px 2=px t 30

ol =px max |o(t)l, 02=px max [¢(t)], (30)

where p represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables el = (€l;),_ and €2 = (€2;),_1 as follows:

el = normrnd(0,01, N), €2 = normrnd(0,02, N). (31)

In the case of noisy data (6) and (7), we replace ¢(t;) and 1(¢;) by ¢ (¢;) and ¥(t;),
respectively, in (27) and (28).

The minimization of F} or F; subject to simple bounds on the variables is accomplished
using the MATLAB optimization toolbox routine lsqnonlin, which does not require sup-
plying (by the user) the gradient of the objective function, [17]. This routine attempts to
find a minimum of a sum of squares, starting from an initial guess, subject to constraints
and this generally is referred to as a constrained nonlinear optimization.

We take bounds for the quantities b(t) and f(t) say, we seek them in the interval
[—10%,103], whilst the non-negative quantity d(¢) is sought in the interval [0,10%]. We
also take the parameters of the routine as follows:
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e Maximum number of iterations = 10 x (number of variables).
e Maximum number of objective function evaluations = 10° x (number of variables).

Solution tolerance = 10710,

Object function tolerance = 10719,

5 Numerical Results and Discussion

In this section, we present numerical results for the recovery of the unknowns f(t), b(t) or
d(t), in the case of exact and noisy data (29). To measure the accuracy of the numerical
solution we employ the root mean square error (rmse) defined by:

rmse(f) = J %

and similar expressions exist for b(t) and d(t).

(fnumemcal( ) fewact( )) ) (32)

M=

Remark 1.

During the computation we need the values of f(0) and b(0) or d(0). One can easily
derive these values from the governing equations (2) or (3) with the help of the initial and
boundary conditions (4) and (5), as follows.

Apply (2) or (3) at x = £/ to obtain
ur(£0,t) = a(£0, ) ug (£, 1) — b(t)u(£0,t) — d(£L, )u(EL,t) + f(E)g(£L,t),  (33)
(0, 1) = a(£l, t)uge (£, 1) — b(£l, t)u, (£4, 1) — d(t)u(E£l,t) + f(E)g(£L,t),  (34)

respectively. Then apply (33) and (34) at t = 0, and use the compatibility conditions for
the initial data (4) and the boundary conditions (5) to result in

0 = a(4, 0)" (££) — b(0)¢/ (0) + f(0)g(:L,0), (35)
0 = a(£, O)gzﬁ”(j:E) — b(£, O)gzﬁ/(j:ﬁ) + f(0)g(£¢,0), (36)

respectively. Solving the (2 x 2) linear system of equations (35) for b(0) and f(0) we
obtain

b(0) = = 9(=£,0)a(t,0)¢"(£) + g(¢, 0)a(=£,0)¢" (1)
—¢’( 0)g(£,0) + ¢/ (£)g(—£,0) ’
£(0) = ¢'(=0)a((,0)¢"(€) + ¢'(£)a(=(,0)¢" ()
—¢'(=0g((,0) + ¢'(O)g(—¢,0)
provided that the denominator —¢'(—¢)g(¢,0) + ¢'(¢)g(—¢,0) # 0. Also, from equation
(36) an expression for f(0) can be obtained as

—a(£L,0)¢"(£0) + b(+L,0)¢' (+£)
g(££,0) ’

(37)

(38)

f(0) = (39)



provided that the denominator g(£¢,0) # 0. For d(0) we use a different method which
uses the overdermination conditions (6) or (7), as follows. Multiplying equation (3) by
w(z) and integrating with respect to z, using (6), we obtain

J(t) = / (&) (@2, )itz (2, 1) — bz, E)ug (2, 1) — d(1)p(1)

—¢

+ A / w(2)g(w, t)da. (40)

-/

Setting ¢t = 0 in (40) we obtain

¢ ¢
o) = —F O T () 0l 000 (0) b 0 (@) o+ £0) [ ol )
»(0) ’
provided that ¢(0) # 0, where f(0) is computed by expression (39). Alternatively, differ-
entiating equation (3) with respect to x and multiplying it by w(x) and then integrating
it with respect to x, and using (7), we obtain

W) = / w(@)[(a(, )tize(2,1))e — (b(z, ua (2, 1))]dz — d(t)3(t)

-/

¢
+f(t)/ w(z)ge(z,t)dx. (42)

—
Setting t = 0 in (42) we obtain

—/(0) + [*,w(x) (a(z,0)¢" () — b(z,0)¢ (z)) da + £(0) [, w(x)gs(x,0)dx

¥(0) ’
(43)

d(0) =

provided that ¢(0) # 0, where f(0) is computed by expression (39).

5.1 Example 1

Consider first the inverse problem (2), (4)—(7), with unknown coefficients f(¢) and b(¢),
and the following input data:

a(z,t) =1, d(z,t)=0, g(x,t)=—2* (z,t) € Qr, (44)
o(x) = z(* —2?), wx)= (2" - 7?2, z¢el-¢1, (45)
o(t) = 7ew(x)u(x,t)dx =0, te]l0,T17, (46)
wl(t) = /_ ol ) = 64? 0‘35&, te0,7) (47)

One can easily observe that the conditions of Theorem 1 are satisfied by the above input
data (in particular note that G;(t) = fffw(x)g(x,t)dx = — ffz 23(2?* — (?)dz = 0) and



hence the inverse problem has at most one solution in the class of functions (12). In fact,
it can easily be checked by direct substitution that the analytical solution is given by

b(t) = 0, f(t)z—%, te[0,7), (48)

u(z,t) = e%x(ﬁ —2%), (v,t) € Qr. (49)

We take for simplicity, ¢ = T' = 1 and employ the FDM described in Section 3 with
M=N=40 at each iteration of minimization procedure described in Section 4. Remark
that from (37) and (38) we obtain b(0) = 0 and f(0) = —6 and therefore, appropriate
candidates for the initial guesses of b and f are 1° = 0 and f° = —6. However, because
the exact solution for b(t) is actually the trivial zero function we also investigate another
initial guess for b given by b°(t) = t.

For exact data, i.e., p = 0 in (30), numerical results of the inversion with and without
regularization in (27) and various initial guesses are presented in Figures 1-3 and Table
1. From Figure 1 and Table 1 it can be seen that, as expected, the farther the initial
guess is, the more iterations and computational time are required to achieve convergence.
However, for both initial guesses considered, the objective function (27) converges to the
same minimum value which is of O(107'°). Furthermore, from Figure 1(a) and Table
1 it can be seen that, in case of no regularization being employed, better results are
obtained for the closer initial guess for b(t). However, the results for b(t) obtained for the
farther initial guess in Figure 2(a) oscillate for the last 7-8 time steps near the final time
showing that instability starts to manifest. In order to alleviate these oscillations some
little regularization is recommended and these improvements over Figure 2 are clearly
illustrated in Figure 3, see also the corresponding rows in Table 1 for further comparison.
Observe in particular from Table 1 that including regularization also reduces the number
of iterations and computational time in addition to achieving the stability of solution.



Unregularized objective function
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Figure 1: The objective function (27), (a) without and (b) with regularization, and various

initial guesses, for Example 1 with exact data.
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2: The exact (—) and numerical solutions without regularization, and various initial
' =0 (- x-)and b° =t (- O-) for: (a) b(t) and (b) f(t), for Example 1 with exact
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x10°

=N
1
[N

=
(1)
&

(=2

Figure 3: The exact (—) and numerical solutions with regularization and various initial guesses
W=0,8=0=107(-x-)and b’ =t, f1 = B2 =10"7 (- O -) for: (a) b(t) and (b) f(t),

for Example 1 with exact data.

In the remaining of this subsection, for brevity, we only illustrate the results obtained
with the initial guess 0° =t and f° = —6.

Table 1: Number of iterations, number of function evaluations, value of the objective function
(27) at final iteration, the rmse values and the computational time with and without regular-
ization and various initial guesses for Example 1 with exact data.

f1=0=0 W=0,f=-6 W=t f'=-6
No. of iterations 19 24

No. of function evaluations 1660 2075
Value of objective function 1.7E-10 7.4E-10
(27) at final iteration

rmse(b) 6.1E-6 0.1557
rmse(f) 0.4379 0.4536
Computational time 20 mins 24 mins

By =10""7 W=0,f0=-68=000=t f'=—-6, 5 =107
No. of iterations 8 9

No. of function evaluations 747 830
Value of objective function 1.0E-5 1.0E-5
(27) at final iteration

rmse(b) 3.5E-6 4.0E-4
rmse(f) 0.1514 0.1516
Computational time 9 mins 10 mins

In order to investigate the stability of the solution we add p = 1% noise to the input
data (6) and (7), as in (29). The objective function (27), as a function of the number
of iterations, is plotted in Figure 4. From this figure it can be seen that in the absence
of regularization a slow and smooth convergence is recorded and, in fact, the process of
minimization of the routine [sqnonlin is stopped when the prescribed tolerance of solution
= 107! is reached. The corresponding numerical results for the unknown coefficients are
presented in Figure 5. From this figure it can be seen that unstable results are obtained

11



for both coefficients b(t) and f(t) (compare with the results for exact data in Figure
2). This is expected since the problem under investigation is ill-posed. Consequently,
regularization should be applied to restore the stability of the solution in the components

b(t) and f(t).
10°
10° +

10 %k —

Unregularized objective function

-15 . . . | . . . | . . . |
10° 10" 10 10°
Number of Iterations
Figure 4: The objective function (27) without regularization for Example 1 with p = 1% noise

data.

10

08¢ 40r

06- b ‘]
: ! " 200 b

04 oo

b(t)
(v
<

I
| l‘l
! [ [ | | I
= X \ [T [N
02 I L ¥ o T
|
I

Figure 5: The exact (—) and numerical (- x -) solutions without regularization for: (a) b(t)
and (b) f(t), for Example 1 with p = 1% noisy data.

Regularization parameters have been chosen by trial and error and numerical results
obtained from some typical choices are given in Table 2 and Figures 6 and 7. Justifying
more rigorously the choice of the regularization parameters 5, and (3, possibly using the L-
surface method, [2], is nevertheless very important and will be the subject of future work.
From Figure 6 it can be noticed that convergence in less than 8 iterations is achieved for
each selection of regularization parameters. The corresponding numerical reconstructions
for b(t) and f(t) are presented in Figure 7. By comparing Figure 5 with Figure 7 one can
immediately notice the dramatic improvement in stability and accuracy which is achieved
through the inclusion of regularization in the objective function (27).
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Figure 6: The objective function (27) with regularization parameters $; = o = 1075 (-0J-),
Br=Po=10"" (-AA-), B1 = B2 = 1072 (--) and B = 1073, B3 = 10™* (-o-), for Example 1

with p = 1% noisy data.

b(t)

Figure 7: The exact (—) and numerical solutions with regularization parameters 8; = 82 = 107°
(-0H), B1= P2 =10"* (-4-), f1 = B2 = 107 (-v-) and fy = 107%, B2 = 107" (-o-) for: (a) b(¢)
and (b) f(t), for Example 1 with p = 1% noisy data.
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Table 2: Number of iterations, number of function evaluations, value of the objective function
(27) at final iteration, the rmse values and the computational time, with regularization for
Example 1 with p = 1% noisy data.

p=1% B1=02=107" | B1=0=10"" | B1=L=10"" | $1=10"", B,=10""
No. of iterations 6 7 8 6
No. of function 581 664 747 581
evaluations

Value of objec- 0.0015 0.0104 0.0526 0.0104
tive function

(27) at final

iteration

rmse(b) 9.5E-6 1.0E-5 4.6E-6 4.5E-7
rmse(f) 0.5698 0.2884 0.8412 0.2884
Computational 7 mins 8 mins 9 mins 7 mins
time

5.2 Example 2

In this example, we consider solving the second inverse problem given by equations (3)—(7)
with unknown coefficients f(¢) and d(t) > 0, and the following input data:

(5 —t)x?

b(x,t) =1, g(x,t) = 7

=32+ (1+t)z+ 02, (x,t) € Qr, (50)
and a, ¢, w, ¢, and ¥ given by equations (45)—(47).
One can easily check the the conditions of Theorem 2 are satisfied; in particular

Bu(t) = | 9(o.0) @l@)p(®) + & (0 (0) do

—/
40966/ 14 4096 —6T/¢* p14
— >
11025 = 11025

=6, >0, tel0,T],

and therefore the inverse problem has at most one solution in the class of functions (15).
In fact, it can easily be checked by direct substitution that the analytical solution is given

by

1+1¢ _6t
d(t) = 72 =

~
~
~
SN—
|
®
S,
|
~
m
=)
=

(51)

and u(x,t) is given by (49).

As in Example 5.1, we take £ = T" = 1 and employ the FDM with M=N=40. Remark
that from (39) and (43) we obtain that f(0)=1 and d(0)=1. So, we take the initial guesses
d’=f%=1 in the minimization of the functional (28).
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Figure 8: The objective function (28) without regularization, for Example 2 with exact data
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Figures 8 and 9 illustrate the convergence of the unregularized objective function (28)
with S = 3 = 0 and the corresponding recovered coefficients d(t) and f(t), respectively,
for exact data p = 0 and for p = 1% noisy data. First, from Figure 8 it can be seen that for
exact data the unregularized objective function decreases rapidly in about 26 iterations
to a low threshold of O(107®). However, for p = 1% noisy data, the number of iterations
necessary to achieve the required degree of convergence with respect to the tolerance
chosen increases to 191, see also the second column of Table 3 where, in particular, one
can observe the long computational time recorded to be in excess of 4 hours. In Figure
9, reasonable good retrievals for the unknown coefficients can be observed for exact data,
but the instability clearly manifests for noisy data. In order to stabilise the solution for
noisy data, as in Example 5.1, regularization needs to be included in the functional (28)
which is minimized.

d(

o q
2 P
b4 pog AR R e ‘
0 ] 1 (UL LM R ML
t t
EHH‘/\‘H\"AV;Iy“'H\‘\‘\\FV‘
Loy ! oy Vet b
Bl |
lu} [
2 boow b

Figure 9: The exact (—) and numerical solutions without regularization for: (a) d(¢) and (b)
f(t), for Example 2 with exact data (-x-) and with p = 1% noisy data (-0J-).
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Regularized objective function

Figure 10: The objective function (28) with regularization parameters B2 = 3 = 1074 (-A-),
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By =3 =107 (-7-) and B2 = B3 = 107° (-0-), for Example 2 with p = 1% noisy data.
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Figure 11: The exact (—) and numerical solutions with regularization parameters o = B3 =
1074 (-A-), Bo = B3 = 1075 (-7-) and B2 = B3 = 1076 (-0-) for: (a) d(t) and (b) f(t), for
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Example 2 with p = 1% noisy data.

Table 3: Number of iterations, number of function evaluations, value of the objective func-
tion (28) at final iteration, rmse values and the computational time, for various regularization

parameters, for Example 2 with p = 1% noisy data.

p=1% Bo=P3=0 | Bo=P3=10"% | Bo=L3=10"" | fo=p3=10""
No. of iterations 191 46 22 11

No. of function evaluations 15936 3901 1909 996
Value of objective function 3E-5 0.0001 0.0004 0.0011
(28) at final iteration

rmse(d) 0.6283 1.1731 1.3207 1.4409
rmse(f) 2.3165 1.0330 0.3127 0.1325
Computational time 4 hours 57 mins 28 mins 15 mins

Figure 10 shows the objective function (28), as a function of the number of the it-

erations, for various selections of regularization parameters fo=p3€ {1076 107° 1071},
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when the input data (6) and (7) is contaminated with p = 1% noise. From this figure
it can be remarked that a rapid convergent is achieved for each selection of regulariza-
tion parameters. The corresponding exact and numerical solutions for d(t) and f(t) are
presented in Figure 11 and other numerical features of the solutions are summarised in
Table 3. First, by comparing Figures 9 and 11 clearly the stabilisation benefit of employ-
ing regularization can be appreciated. It is also interesting to remark from Table 3 that
retrieving accurately and simultaneously both the coefficients d(t) and f(t) requires an
appropriate choice of the regularization parameters f and (3, e.g. for s = B3 = 0 the
recovery of d(t) is accurate in the detriment of that of f(¢), whilst for 8, = 83 = 107* the
accuracy of the simultaneous recovery is viceversa. This situation has also been observed
previously in cases where simultaneous identification of multiple coefficients has been at-
tempted, [7, 9]. Therefore, a compromising but balancing choice would be to pick S = (3
in between, say between 107° and 10™* as is common with ill-posed problems in which
acceptable candidate solutions are those in the region where the accuracy and stability
portions meet/ intersect.

Finally, for completeness, the exact and numerical reconstructions for the temperature
u(z,t) are presented in Figure 12 and the absolute error between them is also included.
From this figure it can be observed that a stable and accurate reconstruction is obtained.

Exact solution Numerical solution

Absolute error

-1

Figure 12: The exact (49) and numerical reconstructions for the temperature u(z,t) with
regularization parameters 31 = B2 = 1075, for Example 2 with p = 1% noisy data.

6 Conclusions

A couple of inverse problems consisting of finding the time-dependent coefficients and the
time-dependent heat source term in the parabolic heat equation with integral overdetermi-
nation conditions have been numerically investigated. The MATLAB routine lsqgnonlin
has been employed effectively to solve the resulting nonlinear constraint optimization
problems subject to both exact or noisy input data. Regularization has been imposed
when the noisy data has been inverted. Numerical results presented and discussed for a
couple test examples show that reasonably accurate and stable numerical solutions have
been achieved.
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