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Abstract— A Symbiotic relationship between robots is the-
oretically developed. It is characterised by sharing sensory
information and tightly coordinating operational logic by taking
care of each other’s needs during missions. The system is
characterised by an intertwined reasoning system while having
separate conditioning and execution of plans to achieve subgoals
to support each other. The results are illustrated on strong
operational inter-dependence of a rover and a drone through
shared logical inference. The drone uses the rover as a landing
pad and the rover uses the drone to complements its sensor
system by information gathering. There is a GitHub library
provided in association with the demonstration for generic use
of adding cameras and cooperation logic to a AR.Drone 2.0 and
a KUKA youBot system. The benefits of symbiotic relationship
are quantitatively evaluated on the demonstration example.

I. INTRODUCTION

A. Background

Ambient Intelligence [1] provides a model in a robot-

human interaction, where the robot pro-actively, intelligently

and unobtrusively aids a human in performing a task. The

Symbiotic relationships [2] which exist between a human

and a robot provides very natural operation. For example

in the scenario discussed by Coradeschi and Saffiotti [2],

a robot safely navigates a kitchen to take some milk from

the fridge to help someone make breakfast. This performs

a part of the task freeing the human to carry on with their

everyday work, but providing an essential service making the

overall task easier. This paper extends human-robot symbiotic

relationships to explore them between robots, a robot-robot

interaction, where one robot aids another in performing

a task. The assisting robot provides information rapidly,

pro-actively and as unobtrusively as possible to assist in

performing a task.

The symbiotic relationship presented in this paper arose

from examples of rover-drone collaboration. The drone pro-

vides a rapid inspection of the environment and can offer

an efficient method to find the best possible routes to take,

Goodrich et al. [3] present the clear advantage of using a

Unmanned Aerial Vehicle (UAV) to locate objects quickly

within an area. By collaborating with ground vehicles it is

then possible to expand the tasks, as a more detailed search

can be conducted. Parker et al. and Hseih et al. [4], [5] use a
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UAV to aid ground rovers in an urban environment. UAV

navigation can be achieved through a Global Positioning

System (GPS), however, in environments such as for a

Mars Rover or when operating indoors this is an asset

which is unavailable. Therefore a UAV must be capable of

localising with reference solely to a rover using no external

influences. This can then serve a useful asset that can provide

a wider field of view, and more environmental information

to guide the rover. For example Mueggler et al. [6] perform

aerial navigation of a youBot using an aerial quadcopter

to help route plan through a moveable series of obstacles.

The example presented in this paper differs as the ground

rover itself becomes a landing site for the quadcopter. This

provides a resource that is more firmly fixed to the ground

vehicle, that can be deployed autonomously, as required. This

enables more efficient collaboration between ground and air

vehicles and maximises the use of onboard power resources

only to situations where they are required. It allows for more

autonomy in the spontaneous collaboration of a UAV and

rover, as has been observed when humans complete a search

and rescue task in the field [7].

B. Contribution

This paper makes several key contributions to the design

of systems using the Robot Operating System (ROS), the

AR.Drone 2.0 platform by Parrot and KUKA youBots.

• Developing techniques for showing efficient au-

tonomous collaboration between a ground and air ve-

hicle equipped with simple sensors. This takes place

without advanced positioning systems such as GPS

or VICON - being performed indoors using simple

rover-UAV localisation. Providing information on the

environment that can be used for navigation from an

easily deployable on-rover UAV platform.

• Development, addition and release of a low-cost, high-

quality, extensible, automatic at start-up additional cam-

era for the AR.Drone 2.0. The libraries and installer files

have been made available through GitHub.

• Extension of control and development and integration

to Matlab, allowing quick, efficient development.



II. SCENARIO DESCRIPTION

The experimental scenario involves the exploration of an

unknown environment by a ground rover. The environment

contains a single target point of interest which is initially

unknown and hidden from the rover, which has limited

sensing range and movement speed. After operating the robot

in isolation to gather baseline data, an autonomous UAV is

introduced to assist the rover. This scenario is analogous to

fields such as search and rescue operations [8] or planetary

exploration [9].

The rover is initially located some distance from a wall

(obstacle) which it is currently unable to detect, as shown

in Figure 1. The target location is behind either the left or

right hand side of the wall and can only be observed from

that side. As can be seen in Figure 3 the obstacle is so large

to prevent the rover using its on-board arm to view over it.

As the rover approaches the wall it is unable to observe its

extents so must traverse it in one direction. If the chosen

direction does not lead to the target, the rover must retrace

its steps and explore the other side of the wall.

When the UAV is provided to assist the rover, it will

deploy and fly over the wall when it is first encountered.

The UAV can then detect the target location and prevent the

possibility of the rover taking the wrong route.

Fig. 1. Ground rover exploration scenario

III. EXPERIMENTAL SETUP

A. Hardware - AR.Drone 2.0

The AR.Drone 2.0 is a commercial Unmanned Aerial

Vehicle (UAV) manufactured by Parrot. It is a popular

platform used for both indoor and outdoor tasks, especially

surrounding surveillance [10] and navigation [11], [12], [13],

[14] through a forward mounted camera.

The Robot Operating System (ROS) [15] is a widely-

supported piece of middleware that provides a collection of

useful software tools for supporting development of robot-led

applications. To ease the use of the AR.Drone 2.0, a driver

has been produced linking its Application Programming

Interface (API) to ROS1. This enables easy and convenient

use from any computing platform compatible with ROS.

1) Expanding the Platform: The AR.Drone 2.0 provides a

good basic platform. However, it only provides a high-quality

forward-facing camera. The existing downward-camera only

provides video of lower quality used to perform optical

1https://github.com/AutonomyLab/ardroneautonomy.

flow measurements, also using the ROS driver it can not

be used at the same time as the front camera; both are

streamed using Bitmap images which consume large amounts

of bandwidth. By adding an additional high-quality camera,

navigation then can be performed using forward-facing and

additional camera simultaneously. This additional camera can

then placed anywhere deemed necessary on the platform, for

example used as a high-quality downward-camera.

The AR.Drone 2.0 platform does not natively support the

addition of cameras and therefore requires modification to

provide this functionality. Previous projects have investigated

the modification of onboard software [16]. We build upon

this work to provide all the necessary software to add an

additional camera.

The process for adding the camera can be summarised in

a series of steps:

1) Cross-compile the AR.Drone 2.0 kernel source for

version 2.6.32.9-gbb4d210 to include support for UVC

Video drivers.

2) Cross-compile suitable video streaming software for

the AR.Drone 2.0. For this project we chose MJPEG-

Stream2 as this provides a Motion JPEG stream along

with an HTTP interface to provide easy access through

either ROS or Matlab. This also provides full access

to camera setup, so frame rate and image size can be

specified. Using Motion JPEG is highly recommended

as it provides a good level of compression to the

video stream, this avoids bandwidth restrictions but

produces a low-latency high-quality stream without

compromising the native camera.

3) Modify the startup script of the AR.Drone 2.0 so that

when it boots it will use bi-directional USB Support

for the webcam. This is achieved by changing gpio

181 to be bi-directional, loading the UVC driver and

starting MJPEG-Stream.

4) Plug the Webcam into the AR.Drone 2.0 USB port. As

part of this project we use an e-con Sytems 5MP USB

Webcam which is convenient for its low cost, small

footprint and light weight.

Pleban et al. [16] and Daugaard and Thyregod [17] detail

the process for installing and configuring the cross-compile

environment. This cross-compile step is essential, as the

AR.Drone 2.0 does not have an onboard compiler. Therefore

it mus be install separately to a generic laptop which can

then be used to compile code for the ARM Cortex A8

processor. Such a compiler is readily available and can easily

be configured to be used within any environment3,4.

This allows the kernel to be recompiled producing a

Universal Video device driver, “uvcvideo.ko”, which can

be inserted autonmatically on boot to provide USB Video

2http://sourceforge.net/projects/mjpg-streamer/
3http://taghof.github.io/Navigation-for-Robots-

with-WIFI-and-CV/blog/2012/01/13/Compiling-Code-

For-The-ARDrone/
4http://www.nas-central.org/wiki/Setting_up_

the_codesourcery_toolchain_for_X86_to_ARM9_cross_

compiling



support5. Whilst the kernel contains the UVC Video support,

it must be selected as part of the build, as by default it is

turned off as it has been deemed non-essential. This cross-

compiler can also be used to produce “mjpg-streamer”, a

version of the MJPEG-Streamer compatible with the Arm

Cortex A8.

2) Installing and Operating on the AR.Drone 2.0: In order

to facilitate these tasks for future research, the requisite

packages for modifying the AR.Drone 2.0 are available from

the Author’s page on GitHub6. This set of packages provides

all of the functionality detailed within this section, natively

on startup. The project contains a collection of files sorted

into a collection of sub-folders.

• File “uvcvideo.ko” - The custom kernel module,

the Universal Video device driver, compiled for the

AR.Drone 2.0. This must sit within a folder named

“/custom modules” on the AR.Drone 2.0.

• Sub-Folder “mjpg-streamer” - MJPEG-Streamer, com-

piled for the AR.Drone 2.0. This must sit as a sub-

folder within a folder named “/custom modules” on the

AR.Drone 2.0.

• File “check updates.sh” - A modified startup script for

the AR.Drone 2.0, that will enable the kernel modules

for the camera, and automatically start them on boot.

This replaces the normal “check updates.sh” file within

the /bin folder on the AR.Drone 2.0.

• File “launch stream.sh” - A script that is called within

check updates to launch MJPEG-Streamer, within

which the resolution and frame rate of the camera

can be defined. This must sit within a folder named

“/custom modules” on the AR.Drone 2.0.

B. Hardware - KUKA youBot

A standard KUKA youBot with a Hokuyu laser scanner7

is used as the ground rover [18], which provides a 240◦ laser

arc in front of the vehicle that can be used for locating

objects. This loading platform of the vehicle is fitted with

a helipad target to provide access for the AR.Drone 2.0.

IV. CONTROL IN MATLAB AND SIMULINK

Both the rover and the UAV are commanded through ROS8

by setting the corresponding body frame velocity demands

(ẋd, ẏd, ψ̇d) with the addition of żd for the UAV. The control

system is developed in Simulink9, and the Robotics System

Toolbox10 to communicate with ROS nodes.

The control systems assume full autonomous control of

both the Rover and UAV. Once the experiment is started,

no further human intervention is necessary in order for the

rover to find the target, whether assisted by the UAV or not.

The UAV is piloted by a fully autonomous controller which

localises it to the rover as described in the following sections.

5The kernel is available from https://devzone.parrot.com/
6https://github.com/jonaitken/ARDroneCamera
7https://www.hokuyo-aut.jp/02sensor/07scanner/

urg_04lx_ug01.html
8http://www.ros.org/
9http://uk.mathworks.com/products/simulink/
10http://uk.mathworks.com/products/robotics/

A. UAV Control

The UAV is initially located on a landing pad mounted

to the back of the rover. Once commanded to take-off, the

downward camera is used to localise the drone over the

landing pad, Figure 2. Position over the helipad is controlled

with decoupled lateral and longitudinal PID controllers.

Fig. 2. Helipad localisation

The UAV is commanded to climb at a constant rate of żd =
0.2ms−1, whilst maintaining position over the landing pad,

until the forward camera detects that the way is clear. The

UAV then flies forwards by dead-reckoning to pass over the

wall and the downward camera tasked with target detection.

Figure 3 illustrates the stages of the UAV assistance flight.

The control block diagram in Figure 4 shows the separate

components used as part of the mission. These control

the basic operations of the AR.Drone 2.0 through ROS,

commanding landing, takeoff and flight control. The block

diagram contains components to identify the landing symbol,

and take flight-control decisions.

The flight controller is decomposed into a state flow shown

in Figure 5. The stateflow for the AR.Drone 2.0 can be

decomposed into a series of steps that are easily captured

in a Simulink stateflow:

• Takeoff - Takeoff to a height of 1m is an automated

process on the AR.Drone 2.0.

• HelipadTakeOff - Once above 0.5m, and as the air-

craft is transitioning out of ground effect, allow the

autonomous controller to take control and begin to

centralise the vehicle over the target. Begin to climb

to investigate surroundings, this climb takes place until

the forward path in front of the vehicle is clear to ensure

collision does not occur.

• Forward - This state maintaining a view on the helipad,

to ensure that localisation on the KUKA youBot perse-

veres, and that the way forward is clear. Move forward

at low speed for 5s or until a target is located.

• Backwards - After 5s or when a target is found reverse

to localise over the helipad.

• HelipadLanding - Descend over the helipad maintaining

localisation on the target to 0.6m.

• Landing - Initialise landing using inbuilt automated

procedure on the AR.Drone 2.0.

B. Rover Control

The rover is initially tasked with driving forwards at

a constant velocity of ẋd = 0.1ms−1 until the wall is

sensed at approximately 0.5m. Upon encountering the wall,

without UAV assistance, the rover then chooses a random



Target

Found

a) b) c)

Fig. 3. UAV assistance flight profile. a) Take-off and climb over landing pad. b) Proceed over wall. c) Detect target

Fig. 4. Control Block Diagram for the AR.Drone 2.0

Fig. 5. State Flow Diagram for the AR.Drone 2.0



direction to explore first and proceeds with |ẏd| = 0.1ms−1

whilst maintaining 0.5m spacing to the wall with a simple

proportional controller. Once the edge of the wall is passed

the rover proceeds behind it by dead-reckoning and attempts

to visually detect the target.

If no target is present the rover retraces its step via dead-

reckoing until it is back in front of the wall, at which point

it repeats its search in the opposite direction.

When assisted by the UAV, the rover stops when the wall

is first encountered and launches the UAV to fly over the

wall and detect the target. The rover must then wait for the

UAV to return to its helipad and then proceed in the correct

direction as detected by the UAV.

The process for the KUKA youBot can then also be

decomposed into a Simulink stateflow:

• ApproachWall - Approach the wall at a constant, low

speed. Once at a fixed distance of 0.5m, branch to a

series of different options.

• goLeft - Traverse the wall, to find the edge, initially

heading left.

• goRight -Traverse the wall, to find the edge, initially

heading right.

• goBack - Once the enclosed space has been inspected

for the object reverse back past the wall to commence

investigation in the other direction.

Each of the movement-based states can be further decom-

posed into options, goLeft and goRight are identical actions

composed of a series of states:

• Stop1, Stop2, Stop3, Stop4 - Cease movement, zeroing

any active youBot movement.

• TraverseWall - Move either to the right or to the left,

setting appropriate lateral velocities for the youBot.

• PassWall - Once the edge of the wall has been found, set

longitudinal velocity for the youBot to travel forwards

1.5m to pass the wall.

• SearchPos - Move around the wall to reach the search

position in the enclosed space.

• FindTarget - Visually inspect the enclosed space for the

object of interest.

The goBack command resets the youBot position on the

blind-side of the wall. It can be decomposed into states:

• SearchPos - Move back from the search position out of

the enclosed area.

• PassWall - Move backwards to move back to the blind-

side of the wall.

• TraverseWall - Move to the centre of the wall in the

appropriate direction.

• Stop3, Stop4 - Cease movement, zeroing any active

youBot movement.

C. Algorithmic Overview

In this experiment there are two specific cases that are

investigated, lone operation of the rover and co-operation

with a UAV. These steps can be summarised as a pair of

simple processes that can be conducted fully autonomously:

• Proceed to wall.

• Once at the wall pick a random direction to proceed,

proceed until corner found.

• Inspect whether object is in location. If it is then mission

is completed.

• Perform reverse operations to return to start point

• Select other direction to proceed along the wall, proceed

until corner found.

• Inspect whether object is in location. If the object is

present the mission is a success, otherwise the object is

not present.

When assisted by the UAV, the rover stops when the wall

is first encountered and launches the UAV to fly over the

wall and detect the target. The rover must then wait for the

UAV to return to its helipad and then proceed in the correct

direction as detected by the UAV.

With UAV assistance the mission becomes less complex

with the additional source of information:

• Proceed to wall.

• Once at the wall command UAV launch.

• UAV flies forward maintaining visual lock on the rover.

• UAV detects ground target and relative location with

respect to rover.

• UAV returns to rover and lands reporting direction of

target if found.

• If no target found the mission is complete otherwise

rover proceed until corner found to reach location.

V. RESULTS

The scenario described above was executed 10 times in

each configuration, with and without UAV assistance. The

total time taken to complete the task is illustrated in Figure 6.
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Fig. 6. Task completion time comparison between Rover only and Rover
and UAV

It can be seen that the completion time for the rover

alone exhibits a bimodal distribution, determined by whether

the rovers initial (random) search direction is correct. When

assisted by the UAV the rover always chooses the correct

direction, resulting in a unimodal distribution.

The mean completion time of the UAV assisted results is

approximately midway between the two means of the rover



only results due to the time taken for the UAV to find the

target. The variance of the UAV assisted results is an order of

magnitude higher than that for the rover alone due to a higher

variability in flight times; this is especially true when landing

on the helipad where good visual lock must be acquired in

order to execute the manoeuvre.

Whilst this behaviour can somewhat be anticipated, use of

the UAV will always succeed more quickly. The nature of

this interaction is key to the speed. In this case the larger, and

more inaccessible the object, the larger the benefit of using

the UAV. The rover always travels twice the distance required

when it initially picks an incorrect direction, and any travel

is redundant when there is no object. The UAV, providing

information through a symbiotic relationship, always enables

the rover to take the correct decision and travel the minimum

distance, even with no object.

VI. CONCLUSIONS

The results presented in this paper illustrate one scenario

in which a modified AR.Drone 2.0 UAV can be used to assist

a robot exploration task. An additional speed improvement

could be achieved by allowing the rover to begin moving

before the UAV returns to land, having the UAV either land

on a moving helipad [19] or wait for the rover to reach

the target before landing. The techniques in this paper link

with the Model-Based Framework for developing safe and

verifiable algorithms [20], and are developed within the same

Matlab framework.

This achievement has been assisted by adding an addi-

tional camera to the Parrot AR.Drone 2.0. In this case the

camera is mounted to face downwards, although it can be

mounted in any orientation desired. This provides a video

stream capable of being used for vision-based control of the

UAV. This provides a resources that can be used to plan

and execute a mission, providing redundancy in cameras

that can be exploited allowing vehicles to autonomously

reconfigure [21], [22], in the case of failure or needing to

perform different tasks; for example forward navigation, and

hovering above a target as shown.

It has been demonstrated that a rover assisted by a UAV is

able to complete the task in a consistent time, with significant

improvements over the worst case rover-only results. The

particular scenario used is a simplification of a real world

scenario, which contains precisely one target in one of two

reachable locations. The benefits of UAV assistance will

become more significant in more complex scenarios. For

example, if there is no target in either location the rover need

not waste time exploring them. Alternatively, if the locations

are not reachable by simply traversing the obstacle, the UAV

can additionally provide course routing assistance.
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cost mav platform AR.Drone in experimental verifications of methods
for vision based autonomous navigation,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2012.
[14] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of

a low-cost quadrocopter,” in Intelligent Robots and Systems (IROS),

2012 IEEE/RSJ International Conference on, 2012, pp. 2815–2821.
[15] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[16] J.-S. Pleban, R. Band, and R. Creutzburg, “Hacking and securing the
AR.Drone 2.0 quadcopter: investigations for improving the security
of a toy,” in Mobile Devices and Multimedia: Enabling Technologies,

Algorithms, and Applications. International Society for Optics and
Photonics, 2014.

[17] M. Daugaard and T. Thyregod, “Semi-autonomous indoor navigation
for an airborne robot,” Master’s thesis, Aarhus University, 2012.

[18] R. Bischoff, U. Huggenberger, and E. Prassler, “KUKA youBot-a
mobile manipulator for research and education,” in IEEE International

Conference on Robotics and Automation (ICRA), 2011, pp. 1–4.
[19] O. McAree, J. Clarke, and W.-H. Chen, “Development of an au-

tonomous control system for a small fixed pitch helicopter,” in 2nd

International Conference on Advanced Computer Control (ICACC),
2010.

[20] O. McAree, J. M. Aitken, and S. Veres, “A model based design
framework for safety verification of a semi-autonomous inspection
drone,” in Proceedings of the UKACC International Conference on

Control (CONTROL), 2016.
[21] L. A. Dennis, M. Fisher, J. M. Aitken, S. M. Veres, Y. Gao, A. Shaukat,

and G. Burroughes, “Reconfigurable autonomy,” KI-Künstliche Intel-

ligenz, vol. 28, no. 3, pp. 199–207, 2014.
[22] J. M. Aitken, S. M. Veres, and M. Judge, “Adaptation of system

configuration under the robot operating system,” Proceedings of the

19th world congress of the international federation of automatic

control (IFAC), 2014.


