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On robustness of discrete time optimal filters

M. L. Kleptsyna∗ & A. Yu. Veretennikov†

August 28, 2016

Abstract

A new result on stability of an optimal nonlinear filter for a Markov chain

with respect to small perturbations on every step is established. An exponen-

tial recurrence of the signal is assumed.

1 Introduction

Stability of optimal filters is a topical research area in the last three or even more
decades. In this direction, a lot has been understood and achieved under the “uniform
ergodicity” assumptions due to the method by Atar and Zeitouni (see [?]) based
on the Birkhoff metric (also known as projective or Hilbert metric). This method
under such assumptions guarantees an exponential rate, with which the optimal
filter algorithms “forgets” wrong – or unspecified – initial conditions. The method
has been extended to the “non-uniform ergodic” case (see [?]) by combining the
application of Birkhoff metric with a modified version of the coupling method, which
leaded to exponential and polynomial rates, with which the algorithm may “forget”
wrong initial data. However, an unspecified initial distribution is not the only option
for an unspecified model. Small errors on each step of the algorithm (in discrete time
case) is one more possibility to “spoil” the model and it is quite a natural option. In
the “uniformly ergodic” case this issue was also studied, see [?]. The “non–uniformly
ergodic” case is still waiting for its investigation and our goal here is to attack this
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problem. In our setting only “uniformly small” errors are allowed; the conditions
on the densities of the noise both in the signal and in the observations look a bit
too strict, so that new studies will be required to weaken conditions so as to include
wider classes of processes.

The setting described earlier is not only insteresting as such: it may also serve as
a base for studying unspecified models with an unknown parameter. In such models,
observations should allow to estimate the parameter. Once the estimator is, at least,
consistent, there is a hope that the filtering algorithm for a model with an estimate
instead of the “true parameter” may be close enough to the exact model. Hence,
the previous studies hopefully could be applied. This programme – again in the
“uniform” case – was realised in [?, ?], where it was assumed that the estimator sat-
isfies certain large deviation conditions. However, in many examples “non-uniform”
conditions are more than natural. Hence, a large part of the problem with unknown
parameters remains open and requires further investigations. We restrict ourselves
to the case of exponential recurrence and exponential moments for the signal and
postpone other cases – like a polynomial one – till further research.

The paper consists of four sections: I – introduction; II – the main result, remarks
and examples, auxiliary results; III – proof of the Lemma 1; IV – proof of the main
result.

2 Main Result, Examples, Auxiliary results

We consider the following model, with a non-observed (Markov) state process {Xn,
n ≥ 0} and an observation process {Yn, n ≥ 1}, taking value in R

d and R
ℓ respec-

tively. We assume that the state sequence {Xn, n ≥ 0} is defined as a homogeneous
Markov chain with transition probability kernel Q(x, dx′), i.e.:

P[Xn ∈ dx′|X0:n−1]|Xn−1=x = P[Xn ∈ dx′|Xn−1]|Xn−1=x = Q(x, dx′), (1)

for all n ≥ 1, and with initial distribution µ0.

We also assume (cf. [?]) that given the state sequence {Xn, n ≥ 0}, the observa-
tions {Yn, n ≥ 1} are independent, that the conditional distribution of Yn depends
only on Xn, and that the conditional probability distribution P[Yn ∈ dy|Xn = x] is
absolutely continuous with respect to the Lebesgue measure, i.e.:

P[Yn ∈ dy|Xn = x] = Ψ(x, y) dy, (2)

for some Borel measurable with respect to the couple (x, y) function Ψ. The basic
example which is to be covered will be the following:
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The basic example covered by the model in (??)–(??) is a discrete time filter for a
Hidden Markov chain (Xn) with values in the Euclidean space Rd, with conditionally
Markov observations (Yn) also from R

ℓ satisfying the system

Xn+1 = Xn + b(Xn) + ξn+1, n ≥ 0, (3)

Yn = h(Xn) + Vn, n ≥ 1, (4)

where (ξn, Vn) is a sequence of IID random vectors of dimension d+ ℓ with densities
qξ(x), qV (y), b(·) is a d-dimensional vector-function, h(·) an ℓ-dimensional vector-
function, that is,

Q(x, dx′) = qξ((x
′ − x− b(x))) dx′, (5)

and
Ψ(x, y) = qv(y − h(x)) (6)

(recall that qξ and qv stand for the densities of ξ1 and V1 respectively).
The problem addressed in this paper is as follows. Assume that the exact param-

eters of the model (??)–(??) — i.e., the initial distribution µ0, the transition kernel
Q(x, dx′) and the conditional density of the observations Ψ(x, y) — are known with
some errors or that we know only an approximations to the exact characteristics
of this model. Hence, the statistician is unable to use the exact optimal filtering
algorithm for estimation of Xn at each time n, and he is left to apply a filtering
algorithm with wrong parameters and with additional errors in the algorithm itself.

Under such conditions, the goal is to investigate the asymptotic behaviour of this
error in the available algorithm in the long run. It follows from the earlier results on
the subject – see [?] – that it is sufficient to work with errors in the kernels assuming
that initial distribution µ0 is known exactly. (If not, it may be tackled by using the
methods and results from [?].) More precisely the setting will be explained in the
section ?? below.

Throughout the paper, we denote the wrong transition kernel and conditional
density of the observations by P (x, dx′) and by Ξ(x, y) respectively. Assumptions
will be stated in the form of Q,P and Ψ,Ξ; also, examples will be provided in terms
of the coefficients and properties of the original system (??)–(??).

In most cases in the sequel we will be using one single integration sign for single
or for mutiple integrals (except in certain cases for double integrals where a single
sign my be confusing). Also, we will often drop the area of integration if it is the
whole space, i.e., Rd, or Rdn, or likewise, except in cases where it may be confusing
or where we want to emphasize the dimension.
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2.1 Assumptions and main result

To explain the main problem addressed in this paper in detail, we should formulate
what exact and especially wrong filtering algorithms are. Let us start with the
exact one. The problem of nonlinear filtering is to compute at each time n the
conditional probability distribution µn of the stateXn given the observation sequence
Y1:n = {Y1, Y2, . . . Yn, }, i.e.:

µn(A) = µY
n (A) = P[Xn ∈ A | Y1, . . . Yn].

Using Bayes’ formula, the exact posterior filtering conditional measure can be
represented as a probability measure for any Y via the following random non-linear
operator S̄Y,µ0

n , applied to the initial measure µ0 (as usual, we write the operator on
the right from the measure, see the end of the formua below),

µn(dxn) = µY
n (dxn) = Pµ0(Xn ∈ dxn | Y1, . . . Yn)

=

∫

Rnd

Q(xn−1, dxn)
n−1∏

i=1

Q(xi−1, dxi)d
µ0

i Ψ(xi, Yi)µ0(dx0)

=
1

cY,µ0
n

∫

Rnd

n∏

i=1

Q(xi−1, dxi)Ψ(xi, Yi)µ0(dx0) =: µ0S̄
Y,µ0
n (dxn), (7)

where n–variate integration is taken over dx0 . . . dxn−1. Recall that here Ψ(xi, yi) is a
conditional density of Yi at yi given Xi = xi (see (??)), and Q(x, dx′) is a transition
kernel for the Markov chain Xn, n ≥ 0. The random normalization constant cµ0

n is
defined as follows,

cY,µ0

i = Eµ0

i∏

j=1

Ψ(Xj, yj)

∣∣∣∣∣
y1=Y1,...yi=Yi

, (8)

and, correspondingly,

cµ0

i−1

cµ0

i

=
Eµ0

(∏i−1
j=1 Ψ(Xj, yj)

)

Eµ0

(∏i

j=1 Ψ(Xj, yj)
)

∣∣∣∣∣∣
y1=Y1,...yi=Yi

.

Hence, the definition (??) maybe rewritten as

cµ0
n = cY,µ0

n =

∫

R(n+1)d

n∏

i=1

Q(xi−1, dxi)Ψ(xi, Yi)µ0(dx0). (9)
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It is also convenient to let
cY0 = 1.

Now, the “wrong filtering algorithm ” can be formulated more precisely as follows.
Recall that it is assumed that we do not know the transition kernel Q(x, dx′) and the
conditional density of the observations Ψ(x, y) exactly, but only some approximations
P (x, dx′) and Ξ(x, y) respectively. Hence we can define another sequence of measures
(µ

′

n(A))n≥1 as follows:

µ
′

n(dxn) = µ′Y
n (dxn) =

∫

Rnd

n∏

i=1

P (xi−1, dxi)d̃
µ0

i Ξ̃(xi, Yi)µ0(dx0)

(10)

=
1

c̃Y,µ0
n

∫

Rnd

n∏

i=1

P (xi−1, dxi)Ξ(xi, Yi)µ0(dx0) =: µ0S̃
Y,µ0
n (dxn),

where the “wrong” normalizing constant c̃Y,µ0
n can be defined as follows:

c̃Y,µ0
n =

∫

R(n+1)d

n∏

i=1

P (xi−1, dxi)Ξ(xi, Y i)µ0(dx0).

The measure µ
′,Y is nothing else but the conditional measure of X

′

given the ob-
servation Y ′ (see (??)–(??)) with observations Y

′

replaced by the “real” observations
Y . This replacement will turn out to be correctly defined thanks to the assumption
(A3) – see below – due to which the conditional distributions given Y and given Y ′

are equivalent in the sense of equivalent measures. Note that without this condition
the issue of well-posedness of this replacement would arise since, for example, it may
be impossible to substitute the values taken from a “wrong distribution” if this dis-
tribution is singular with respect to the actual one. The property of equivalence of
measures is standard in the area – cf. [?] – and it removes this “obstacle”. We do
not discuss here what kind of consequences could be met without this assumption.

The problem under consideration is to estimate the behaviour of the difference,

Eµ0‖µ
′,Y
n − µY

n ‖TV
, n ≥ 0,

in the long run. We may not hope that this discrepancy goes to zero as n → ∞,
but just that under certain conditions it may remain small for all values of n, if the
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actual and “wrong” models are close enough in some particular quantitative sense.
Hence, we aim to establish an upper bound to the quantity

sup
n≥0

Eµ0‖µ
′,Y
n − µY

n ‖TV
≤ ?

with such a right hand side that it remains small if the “wrong model” is close enough
to the exact one.

Assumptions

Naturally, we will need certain assumptions.

(A1) — bounded (small) perturbations of the kernels —

We assume that

ln( sup
x, x′, z, y

Q(x, dx′)Ψ(z, y)

P (x, dx′)Ξ(z, y)
) + ln( sup

x, x′, z, y

P (x, dx′)Ξ(z, y)

Q(x, dx′)Ψ(z, y)
) = q < ∞.

(A2) — local “mixing” —

We assume that for any R > 0

CR =: sup
DR

(
Q(x0, dx

′)

Q(v0, dx′)
,
P (x0, dx

′)

P (v0, dx′)

)
< ∞, (11)

with DR := {(x0, v0, x
′) : |x0|, |v0|, |x

′| ≤ R}.

(A3) — positiveness of conditional densities —

Ψ(x, y) > 0, Ξ(x, y) > 0, ∀ x, y.

(A4) — condition of exponential recurrence in terms of the transition kernels:

there exist ρ ∈ (0, 1), R,K, c > 0 such that for |x| > R,

(∫
exp(c|x′|)Q(x, dx′)

)
∨

(∫
exp(c|x′|)P (x, dx′)

)
≤ ρ exp(c|x|), (12)
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and for |x| ≤ R,

(∫
exp(c|x′|)Q(x, dx′)

)
∨

(∫
exp(c|x′|)P (x, dx′)

)
≤ K. (13)

This condition may be also re-written as follows in terms of the mean values
a(x) := E

Q
xX1 and |a′(x)| := |EP

xX1| (generally speaking, with different ρ < 1
and K < ∞):

|a(x)| ≤ ρ|x|+K, & |a′(x)| ≤ ρ|x|+K.

Here as usual, E
µ stands for the expectation with respect to a probability

measure µ.

(A5) — uniformly small influence of observations: there exists δ > 0 such that

sup
x,y,x′

Ψ(x, y)

Ψ(x′, y)
∨ sup

x,y,x′

Ξ(x, y)

Ξ(x′, y)
≤ 1 + δ,

and for ρ from (A4)
(1 + δ)ρ < 1. (14)

Although the assumption (A4) requires explicitly exponential or lighter tails of the
noise in the signal, we give examples with both exponential and polynomial tails
showing in what situations the assumption (A5) may be verified, with a hope that
polynomial examples may be useful in the future. Also note that the assumption
(A2) is used essentially in the auxiliary results, which are briefly reminded below with
some small changes; hence, the role this assumption will be practically invisible and
to appreciate it the reader should have a look at earlier papers such as [?]. However,
very briefly, we could not hope to estimate the total variation distance between two
measures if, say, transition measures of the signal process from different states were
singular; hence, some codnition of this sort is indispensable, and the particular form
of this condition in terms of ratios suits the use of the Birkhoff metric technique.

In the sequel it will be helpful to define the “conditional kernels”

Q̄y,µ(x, dx′) := Q(x, dx′)
Ψ(x′, y)∫∫

Q(x, dx1)Ψ(x1, y)µ(dx)
, (15)
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and

P̄ y,µ(x, dx′) := P (x, dx′)
Ξ(x′, y)∫∫

P (x, dx1)Ξ(x1, y)µ(dx)
. (16)

In the calculus below the variable y will play the role of Yi for some i. Also, slightly
abusing notations where it does not look confusing, we will use y for the vector
(y1, . . . , yn), and likewise Y will be used as a short notation for (Y1, . . . , Yn). We also
emphasize that for multiple integrals the unique sign of integration is used except
for the double integrals where it may be confusing. Also, if there is no domain of
integration, then the (in all cases definite) integral is taken over the whole space.

Also, we will be usng the notation (X
′,Y
n ), which will stand for a Markov process

with transition probabilities given by the (non-homogeneous) transition kernels

P̄ ′
n := P̄ y,µ|

(y=Yn,µ=µ
′,Y
n )

, n = 0, 1, . . . , (17)

where the sequence of measures µ
′,Y
n was defined earlier in (??); note that the latter

coincides with the sequence of marginal distributions of the process (X
′,Y
n ) at time

n; also note that generally speaking, the processes (X ′
n) and (X

′,Y
n ) are different.

The following theorem is the main result of the paper.

Theorem 1. Let

∫
eǫ|x| µ0(dx) < ∞. Then, under the assumption (A2) – (A5)

above, there exists a constant C > 0 such that for any model satisfying also (A1) the
following bound holds true:

sup
n

Eµ0‖µ
′,Y
n − µY

n ‖TV
≤ Cq. (18)

Emphasize that here the constant C does not depend on q. Also, note that q
may be an arbitrary value greater than zero; however, the problem is, of course,
meaningful if q is small.

2.2 Remarks and examples

Remark 1. Assumption (A1) is valid for the model (??)–(??) with qv = qξ =
C exp(−|x|) and with any Borel function b̃ such that b̃(x) = b(x) if |x| > K for some
K ≥ 0. It would be also nice to localize this condition, see the Remark ?? in the
sequel; we leave it till further studies.
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Remark 2. Let us show how the assumption (A5) may be checked in some examples.

Example 1. Let qv(y) ∼ c(1+ |y|)−m, |y| → ∞. Assume that supx |h(x)| ≤ δ′ and
this δ′ is small. Then for |y| → ∞,

Ψ(x, y)

Ψ(x′, y)
=

qv(y − h(x))

qv(y − h(x′))

∼
(1 + |y − h(x)|)−m

(1 + |y − h(x′)|)−m
=

(1 + |y − h(x′)|)m

(1 + |y − h(x)|)m

=

(
1 + |y − h(x′)|

1 + |y − h(x)|

)m

≤

(
1 + |y|+ δ′

1 + |y| − δ′

)m

=

(
1 + δ′/(1 + |y|)

1− δ′/(1 + |y|)

)m

≈ 1 + 2mδ′/(1 + |y|) ≤ 1 + 2mδ′.

For y bounded, the ratio remains close to one if δ′ is small enough.

Example 2. Let gv(y) ∼ c exp(−|y|) as |y| → ∞ (equavalent, i.e., the ratio
converges to one), and let gv be continuous. Then, for |y| large enough we have,

Ψ(x, y)

Ψ(x′, y)
=

qv(y − h(x))

qv(y − h(x′))

=
qv(y − h(x))/c exp(−|y − h(x)|)

qv(y − h(x′))/c exp(−|y − h(x′)|)

c exp(−|y − h(x)|)

c exp(−|y − h(x′)|)

∼ exp(−|y − h(x)|+ |y − h(x′)|) ≤ exp(2δ′) ≈ 1 + 2δ′.

And for |y| bounded the ratio remains close to one due to continuity.

Remark 3. It would be interesting to replace the Assumption (A1) by a local as-
sumption of the type,

ln( sup
x, x′, z, y∈K

Q(x, dx′)Ψ(z, y)

P (x, dx′)Ξ(z, y)
) + ln( sup

x, x′, z, y∈K

P (x, dx′)Ξ(z, y)

Q(x, dx′)Ψ(z, y)
) = qK < ∞

with qK small, perhaps, in addition to

ln( sup
x, x′, z, y

Q(x, dx′)Ψ(z, y)

P (x, dx′)Ξ(z, y)
) + ln( sup

x, x′, z, y

P (x, dx′)Ξ(z, y)

Q(x, dx′)Ψ(z, y)
) = q < ∞,
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(with q arbitrary and finite) and to change the current statement of the Theorem ??

to one of the following bounds,

Eµ0‖µ
′,Y
n − µY

n ‖TV
< CqK + ln sup

x∈K
Ex exp(ατ̂), (19)

or,
Eµ0‖µ

′,Y
n − µY

n ‖TV
< CqK + q ln sup

x∈K
Ex exp(ατ̂). (20)

At the moment it is a conjecture that one of the bounds (??–??) or something close
to it may hold true under less rigorous conditions than those in the Theorem ??,
including also Gaussian densities.

Remark 4. Sufficient conditions for the assumption (A4) in terms of the system
(??)–(??) and its approximation

X ′
n+1 = X ′

n + b̃(X ′
n) + ξ′n+1, n ≥ 0, (21)

Y ′
n = h̃(X ′

n) + V ′
n, n ≥ 1, (22)

may be offered as follows.

(A4′) — another condition of exponential recurrence: there exist r > 0, N > 0 such
that for |x| ≥ N ,

|x+ b(x)| ∨ |x+ b̃(x)| ≤ |x| − r,

and for any R > 0

sup
|x|≤R

|x+ b(x)| ∨ sup
|x|≤R

|x+ b̃(x)| < ∞,

and
Eξ1 = Eξ′1 = 0,

and finally, there exists ǫ > 0 such that

E exp(ǫ|ξ1|) + E exp(ǫ|ξ′1|) < ∞.

Apparently, (A4′) implies the following: there exists a constant C < ∞ such that for
any probability measure µ,

sup
y

∫ ∫
eǫ|x

′|µQ̄y,µ(x, dx′)µ(dx) ≤ C

∫
eǫ|x|µ(dx).
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Equivalently, we could say that for any probability measure µ we have,

sup
ω

Eµ

(
eǫ|X1||Y1

)
≤ C

∫
eǫ|x|µ(dx). (23)

The same holds true for the approximation kernel P . It follows from [?, ?] that under
the assumption (A4′), the assumption (A4) holds true.

2.3 Auxiliary results

In [?] it was proved, in particular, that under the “exponential” assumptions equiv-
alent to (A4) the following estimate holds true:

Eµ0‖µ0S̄
Y,µ0
n − ν0S̄

Y,ν0
n ‖TV ≤ C exp(−C ′n). (24)

Here µ0S̄
Y,µ0
n is defined by (??).

We will need some modification of (??). Recall that the proof of this estimate
was based on the inequalities (14) and (20) from [?]. In turn, (14)/[?] followed from
(11) and (12)/[?], while (20)/[?] was a corollary from the results about mixing for
the recurrent and ergodic signal process. What is important for the present paper,
is that the basic inequality (12) [?] admits an improved version under the condition
that the initial Birkhoff distance (13) between measures µ0 and ν0 is finite:

ρ(µ0, ν0) < ∞.

In [?] this was not assumed and there was no reason for using such an improved
version; on the contrary, the absence of this assumption allowed to cover a wider
class of processes. However, now this will be important and the new version we need
is as follows:

ρ(µn, νn) ≤ ρ((µn, νn), (νn, µn)) ≤ Cπk−1
R ρ(µ0, ν0), (25)

with some C > 0 and πR < 1. We do not explain here what are exactly k, µn, νn,
et al. because it would require to copy several pages from [?], but use the notations
from [?] verbatim. The point is that as a result of these improvements, we now
formulate a version of Theorem 1 from [?] as follows.

Theorem 2 Let

∫
eǫ|x| µ0(dx) < ∞. Then under the assumptions (A2) – (A4),

the following bound holds true: there exist constants C,C(µ), α, ǫ > 0 such that

Eµ0‖µ0S̄
Y,µ0
n − ν0S̄

Y,ν0
n ‖TV ≤ C(µ0) exp(−αn)ρ(µ0, ν0), (26)
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with

C(µ) ≤

∫
exp(ǫ|x|)µ(dx).

Note that the Theorem does not use the condition (A1) here because the statement
relates only to the identical kernels: P ≡ Q, and also Ξ ≡ Ψ, in which case (A1)
holds automatically with q = 0.

Also note that both versions – the Theorem 2 above and the Theorem ?? from [?] –
could be combined with the help of the value 1 ∧ ρ(µ0, ν0) in the right hand side.

Lemma 1. Assume (A4) and (A5). Then for the “conditional kernel” P̄ y,µ defined
by (??) the following bounds holds true: for |x| large enough,

sup
y

|

∫
ec|x

′|P̄ y,µ(x, dx′)| ≤ ρ′ec|x|, (27)

and with any R > 0 for |x| ≤ R,

sup
y

|

∫
ec|x

′|P̄ y,µ(x, dx′)| ≤ K ′, (28)

with ρ′ = ρ(1 + δ) and K ′ = (1 + δ)K. Moreover, since ρ′ < 1 (see the Assumption
(A5)), the following inequality holds true,

sup
t≥0

Exe
c|X

′,Y
t | ≤ K ′′ + ec|x|, (29)

with K ′′ = K ′/(1− ρ′).

3 Proof of auxiliary Lemma

Proof of Lemma ??.
Let us check the inequality (??). We have due to (A5) and (A4), if |x| > R, then

sup
y

∫
ec|x

′|P̄ y,µ(x, dx′)| = sup
y

∫
ec|x

′|P (x, dx′)
Ξ(x′, y)∫∫

P (x, dx1)Ξ(x1, y)µ(dx)

(A5)

≤ (1 + δ)

∫
ec|x

′|P (x, dx′)|
(A4)

≤ (1 + δ)ρec|x| = ρ′ec|x|,
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indeed, with ρ′ = (1 + δ)ρ < 1. Now let us verify the inequality (??). If |x| ≤ R,
then we have,

sup
y

∫
ec|x

′|P̄ y,µ(x, dx′) = sup
y

∫
ec|x

′|P (x, dx′)
Ξ(x′, y)∫∫

P (x, dx1)Ξ(x1, y)µ(dx)

(A5)

≤ (1 + δ)

∫
ec|x

′|P (x, dx′)|
(??)

≤ (1 + δ)K = K ′.

Further, denote F̂n = σ(Y1, . . . , Yn;X
′,Y
0 , . . . , X

′,Y
n ). We estimate,

E
(
ec|X

′,Y
n ||F̂n−1

)
≤ ρ′ec|X

′,Y
n−1| +K ′,

and in a similar manner by induction,

Exe
c|X

′,Y
n | ≤

K ′

1− ρ′
+ (ρ′)nec|x| ≤

K ′

1− ρ′
+ ec|x|.

The Lemma ?? is proved.

4 Proof of Theorem ??

1. We will use the Birkhoff metric for positive measures, see [?], and also [?], [?]
(where it is called the Hilbert metric; one more synonym is the projective metric),

ρ(µ, ν) =

{
ln

(inf s : µ ≤ sν)
(sup t : µ ≥ tν)

, if finite,

+∞, otherwise.
(30)

Another equivalent definition reads,

ρ(µ, ν) =

{
ln sup(dµ/dν) + ln sup(dν/dµ), if finite,
+∞, otherwise.

Similarly to (??), for any measure µ we can define the following nonlinear operators
S̄Y
k:n: for any k < n,

µS̄k:n(A) = µS̄Y
k:n(A) =

1

cYk:n

∫

R(n−k)d

1(xn ∈ A)
n∏

j=k+1

Q(xj−1, dxj)Ψ(xj, yj)µ(dxk)|y=Y ,

13



with a normalizing constant ck:n (which depends on µ as well):

ck:n = cYk:n =

∫

R(n−k)d

n∏

j=k+1

Q(xj−1, dxj)Ψ(xj, yj)µ(dxk)|y=Y , k < n,

and for k = n we let
µS̄Y

n:n(A) = µY (A).

As usual, (conditional) Markov kernels Q̄y(x, dx′) determine operators on measures:
we write,

µQ̄y(A) :=

∫

R2d

1(x′ ∈ A)Ψ(x, y)Q(x, dx′)µ(dx)
∫

R2d

Ψ(x, y)Q(x, dx′)µ(dx)
,

and similarly,

µP̄ y(A) :=

∫

R2d

1(x′ ∈ A)Ξ(x, y)P (x, dx′)µ(dx)
∫

R2d

Ξ(x, y)P (x, dx′)µ(dx)
.

Now we have a simple identity, which will play the key role in the proof:

µ
′,Y
n − µY

n =
n∑

k=1

(µ
′,Y
k S̄Y

k:n − µ
′,Y
k−1S̄

Y
k−1:n). (31)

It was noted in [?] that the following important property holds true:

µ
′,Y
k−1S̄

Y
k−1:n = (µ

′,Y
k−1Q̄

Yk)S̄Y
k:n; (32)

recall that the operator Q̄Yk reads,

µQ̄Yk(dx′) =

∫
Q(x, dx′)Ψ(x′, Yk)µ(dx)

∫∫
Q(x, dx1)Ψ(x1, Yk)µ(dx)

.

14



For the reader’s convenience we recall the reasoning. Indeed,

µS̄Y
k:n =

1

cYk:n
µSY

k:n,

where the linear non-normalized operator SY
k:n is defined as follows:

µSY
k:n(A) =

∫

R(n−k)d

1(xn ∈ A)
n∏

j=k+1

Ψ(xj, Yj)Q(xj−1, dxj)

Therefore, we have,

µSY
k:n(A) =

∫

R(n−k−1)d

1(xn ∈ A)
n∏

j=k+2

Ψ(xj, Yj)Q(xj−1, dxj)·

·

∫

Rd

Q(xk, dxk+1)Ψ(xk+1, Yk+1)µ(dxk) = νSY
k+1:n(A), (33)

with the non-normalized measure ν(dxk+1) defined by the formula

ν(dxk+1) =

∫

Rd

Q(xk, dxk+1)Ψ(xk+1, Yk+1)µ(dxk)

Hence,

µS̄Y
k:n =

µSY
k:n

cµ,Yk:n

=
νSY

k+1:n

cµ,Yk:n

=
νSY

k+1:n

cν,Yk+1:n

·
cν,Yk+1:n

cµ,Yk:n

. (34)

Also note (follows from the calculus with A = R
d) that

cµ,Yk:n = cν,Yk+1:n,

because

µSY
k:n(R

d) =

∫

R(n−k−1)d

1(xn ∈ R
d)

n∏

j=k+2

Ψ(xj, yj)Q(xj−1, dxj)·

·

∫

Rd

Q(xk, dxk+1)Ψ(xk+1, yk+1)µ(dxk)|y=Y = νSY
k+1:n(R

d). (35)

The equation (??) implies that

µS̄k:n =
νSk+1:n

cνk+1:n

=
(ν/ν(Rd))Sk+1:n

cνk+1:n/ν(R
d)

=
ν̃Sk+1:n

cν̃k+1:n

,
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with

ν̃(dx′) = ν̃Yk(dx′) =
ν(dx′)

ν(Rd)
= µQ̄Yk(dx′) =

∫
Q(x, dx′)Ψ(x′, Yk)µ(dx)

∫∫
Q(x, dx1)Ψ(x1, Yk)µ(dx)

.

So, indeed, the announced important property (??) holds true.

Further, since µ
′,Y
n S̄n:n = µ

′,Y
n and µ0S̄0:n = µY

n and because µ
′,Y
0 = µ0 and

µ
′,Y
0 S̄0:n = µ0S̄0:n = µY

n , we obtain,

µ
′,Y
n − µY

n =
n∑

k=1

(µ
′,Y
k−1P̄ S̄k:n − (µ

′,Y
k−1Q̄)S̄k:n), (36)

where µ
′,Y
k−1Q̄ = µ′

k−1Q̄
Yk , µ

′,Y
k−1P̄ = µ

′,Y
k−1P̄

Yk . So, it follows that

‖µ
′,Y
n − µY

n ‖TV ≤
n∑

k=1

‖µ′
k−1P̄ S̄k:n − (µ

′,Y
k−1Q̄)S̄k:n‖TV ,

and

Eµ0‖µ
′,Y
n − µY

n ‖TV ≤
n∑

k=1

Eµ0‖µ
′,Y
k−1P̄

Yk S̄k:n − (µ
′,Y
k−1Q̄

Yk)S̄k:n‖TV . (37)

2. By virtue of the Theorem 2 under our assumptions we have,

Eµ,ν‖µS̄
Y,µ
0:n − νS̄Y,ν

0:n ‖TV ≤ C(µ, ν)e−αnρ(µ, ν),

where α does not depend on the initial measures, while C(µ, ν) admits a bound

C(µ, ν) ≤

∫
(ec|x|µ(dx) + ec|x

′|ν(dx′)).

with some c > 0.

Also recall that due to the Lemma ??,

sup
t≥0

Eν0e
ǫ|X

′,Y
t | ≤ K +

∫
eǫ|x

′|ν0(dx
′), (38)
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with a non-random K, and a similar bound holds true for the exact conditional
process X:

sup
t≥0

Eν0e
ǫ|XY

t | ≤ K +

∫
eǫ|x

′|µ0(dx
′). (39)

3. Further, all of the above imply that

Eµk,νk

(
‖µkS̄

Yk+1,...,Yn

k:n − νkS̄
Yk+1,...,Yn

k:n ‖TV | Y1, . . . , Yk

)

≤ C(µk, νk)e
−α(n−k)ρ(µk, νk)

(40)

≤ Ce−α(n−k)ρ(µk, νk)

∫
ec|x|(µY1,...,Yk

k (dx) + νY1,...,Yk

k (dx)),

where the constants C and α are non-random and do not depend on k. Denote

D(µ, ν) :=

∫
ec|x|(µ(dx) + ν(dx)).

By virtue of the inequalities (??) and (??) together with (??)–(??), we have,

Eµ0‖µ
′,Y
n − µY

n ‖TV

≤

n∑

k=1

C Eµ0D(µ
′,Y
k , µ

′,Y
k−1Q̄

Yk)e−α(n−k) sup
ω

ρ(µ
′,Y
k , µ

′,Y
k−1Q̄

Yk)

≤ Cq

n∑

k=1

Eµ0D(µ
′,Y
k , µ

′,Y
k−1Q̄

Yk)e−α(n−k).

But µ
′,Y
k = µ

′,Y
k−1P̄

Yk (a similar operator but with the wrong kernel), so we obtain

ρ(µ
′,Y
k , µ

′,Y
k−1Q̄

Yk) = ρ(µ
′,Y
k−1P̄

Yk , µ
′,Y
k−1Q̄

Yk) ≤ q,

by the assumption (A1). Thus,

Eµ0‖µ
′,Y
n − µY

n ‖TV ≤

n∑

k=1

Cq e−α(n−k)
Eµ0D(µ

′,Y
k , µ

′,Y
k−1Q̄

Yk). (41)

17



4. It remains to estimate the term Eµ0D(µ
′,Y
k , µ

′,Y
k−1Q̄

Yk) so as to show that it does
not exceed some finite constant uniformly in k. We have,

Eµ0D(µ
′,Y
k , µ

′,Y
k−1Q̄

Yk) = Eµ0

∫
ec|x|µ

′,Y
k (dx) + Eµ0

∫
ec|x|µ

′,Y
k−1Q̄

Yk(dx).

Here the first term in the right hand side satisfies the bound

(sup
k

)Eµ0

∫
ec|x|µ

′,Y
k (dx) ≤ K ′′ +

∫
ec|x|µ0(dx) < ∞,

according to the bound (??) of the Lemma ?? and to the assumption of the Theorem∫
eǫ|x| µ0(dx) < ∞.

Let us inspect the second part of the right hand side. We have,

Eµ0

∫
eǫ|x|µ′

k−1Q̄
Yk(dx) = Eµ0

∫
ec|xk|µ′

k−1Q̄
Yk(dxk)

(A5)

≤ (1 + δ)Eµ0

∫
ec|xk|(µ′

k−1Q)(dxk)

≤ K(1 + δ) + (1 + δ)Eµ0

∫
ec|x|µ′

k−1(dx)

(??)

≤ K ′ +K ′ + (1 + δ)

∫
ec|x|µ0(dx) < ∞,

according again to (??) and to the assumption (A5). The Theorem ?? is proved.
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