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Abstract—Directional distributions play an important role in
describing uncertainty in spherical coordinates. A review is
given of some standard distributions on the sphere which arise
as special cases of the Fisher-Bingham distribution. A new
distribution, called the “extreme FB5” distribution, is introduced
to describe semi-concentrated behavior on the sphere, that is,
patterns of data that are unimodal and concentrated near a
great circle. This behavior is particularly relevant to tracking
problems. Properties of the new distribution are discussed and
methods are given for simulation and estimation. Two simple
error propagation illustrations are given to demonstrate the
usefulness of the new model.

I. INTRODUCTION

Methods for directional distributions are becoming increas-

ingly important in space tracking and related applications [1].

Conventionally approximate Euclidean coordinates have often

been used on the sphere, but severe distortions can occur

in certain circumstances. The motivation for this work is to

improve the representation of the state uncertainties of space

objects and to improve the prediction of the locations of these

objects after some user-defined time interval.

Current methods of space object tracking, based upon

angles-only data have two main limitations: (a) the angular

errors are modelled as i.i.d. Gaussian, and (b) the estimation of

the space object trajectory assumes the angular data constitute

proper vector measurements in Euclidean space. Neither of

these assumptions is actually true, though for small errors, the

assumptions have been shown to be approximately valid.

Two major challenges in space object tracking are (a) the

ability to accurately associate space object detections with

unique space objects and (b) the ability to accurately predict

where any space object will be as a function of time. The

work presented here attempts to demonstrate that representing

the angular uncertainty on the sphere, as opposed to treating

it as a Euclidean vector, yields more precise estimates and

predictions for space object state error uncertainty. This in

turn aids in space object data and track association, especially

as the number of simultaneous detections increases.

Uncertainty propagation has been investigated in detail

in orbital debris research, particularly in how it applies to

collision probability computation and Bayesian estimation.

Junkins, Akella, and Alfriend [2] studied the general prob-

lem of non-linear error propagation in orbital mechanics and

showed that the choice of coordinates has a significant impact

on how fast errors become non-Gaussian. Fujimoto, Scheeres,

and Alfriend [3] developed analytical techniques to propagate

uncertainty in the two-body problem using the concept of

state transition tensors. Aristoff, Horwood, and Poore [4], [5]

discussed the use of implicit Runge-Kutta methods and the

Gauss von Mises distribution to better capture the evolution

of the orbit uncertainty in angular coordinates. Valli et al.

[6] derived a method for nonlinear propagation of uncertainty

in celestial mechanics based on differential algebra. Several

authors [7], [8], [9], [10] have investigated the use of Gaussian

mixture models for uncertainty propagation and Bayesian

estimation. However, the majority of this research has been

focused on propagating uncertainty in Cartesian or orbital

element coordinates, ignoring the directional nature of the

space orbital debris tracking problem.

In this paper we review and illustrate the use of various

special cases of the Fisher-Bingham distribution on the sphere.

In particular, we propose a new version of this distribution

which is more appropriate in the semi-concentrated setting.

We describe its basic properties, methods of estimation and

simulation, and give two examples to illustrate its potential

importance in tracking problems.

II. FISHER-BINGHAM DISTRIBUTIONS

The Fisher-Bingham distribution on the unit sphere S2 =
{x ∈ R

3 : xT x = 1} in R
3 is an important distribution. In its

most general form, it has probability density

f(x) ∝ exp{νT x + xTAx}

with respect to the uniform distribution on the sphere, µ(dx),
say. If x is written in polar coordinates x1 = sin θ cosφ, x2 =
sin θ sinφ, x3 = cos θ, where θ ∈ [0, π] denotes the colatitude

and φ ∈ [0, π) denotes the longitude, then the uniform measure

takes the form µ(dx) = sin θ dθ dφ/(4π). When the density

is used in integration, the notation f(x)µ(dx) is shorthand

for f(x) sin θdθ dφ/(4π). However, working in Euclidean

coordinates is generally more insightful than working in polar

coordinates.

The parameters of the density are the vector ν(3 × 1) and

the symmetric matrix A(3×3). It is often convenient to write

ν = κν0 where κ > 0 is a concentration parameter and ν0 is



a unit 3-vector. The parameter matrices A and A+ λI define

the same density since λxT x = λ is constant and can be

absorbed in the normalizing constant. For the purposes of this

paper, the normalizing constants will be suppressed with the

“proportional to” (∝) notation.

The full Fisher-Bingham distribution has 8 parameters and

can be denoted FB8. However, the parameters cannot be easily

interpreted; hence it is helpful to consider restrictions on the

parameters. Important special cases include the following.

• The Fisher distribution, A = 0 (also known as the

von Mises-Fisher distribution when the dimension of

the sphere is allowed to be more general). If we write

ν = κν0 where κ ≥ 0 and ν0 is a unit vector, then this

distribution has concentration parameter κ and (provided

κ > 0) modal direction ν0. The density is invariant under

rotations of the sphere about the ν0 axis. Hence it can

be described as “isotropic”. Under high concentration it

behaves as an isotropic bivariate normal distribution in

the tangent plane to the sphere at the modal direction.

• The Bingham distribution (ν = 0). This density has

antipodal symmetry (f(x) = f(−x)) and so is use-

ful for modelling axes (= unsigned directions). Let

A = ΓΛΓT be the spectral decomposition of A. Here

Λ = diag(λmax, λmid, λmin) contains the eigenvalues in

decreasing order, and the columns of the 3×3 orthogonal

matrix Γ =
[

γ(max) γ(mid) γ(min)

]

contain the cor-

responding eigenvectors. Without loss of generality, the

eigenvalues may be shifted by a common value without

affecting the distribution. Two common special cases,

both characterized by a concentration parameter β > 0,

are the bimodal case (λmax = β > λmid = λmin = 0) with

the mode along the ±γ(max) axis, and the girdle case

(λmax = λmid > λmin = −β) with the mode at all points

on the great circle perpendicular to the ±γ(min) axis.

The Bingham distribution can also exhibit intermediate

behavior.

• The “aligned” Fisher-Bingham distribution (FB6). This

is a 6-parameter sub-family of FB8, obtained when ν0

equals one of the eigenvectors of A. It is still has

too many parameters for the parameters to be easily

interpreted, but it forms the basis for the following two

special cases.

• The “balanced” 5-parameter Fisher-Bingham distribution,

FB5b (also known as the Kent or Fisher-Bingham-Kent

distribution) [11]. The FB5b distribution is a special case

of FB6 where ν = γ(mid) and where λmax = β, λmid =
0, λmin = −β, for some β ≥ 0. The adjective “balanced”

has been added to the name here to distinguish this

distribution from another 5-parameter choice given below.

Write κ as κb for clarity in this setting. Provided κb ≥ 2β,

the density has a mode in the ν direction. The contours

of constant probability are oval-shaped with the major

axis pointing along the γ(mid) axis and the minor axis

pointing along the γ(min) axis. Under high concentration

the distribution is approximately bivariate normal and

concentrated near the modal direction ν.

• The new distribution introduced in this paper can be

called the “extreme” 5-parameter Fisher-Bingham distri-

bution, FB5e. The FB5e distribution is another special

case of FB6, but is better suited to describing unimodal

data concentrated near a great circle. In this case ν =
γ(max) with λmax = λmid = 0 ≥ λmin = −δ. Write κ as κe

in this setting for clarity. This distribution can be viewed

as a combination of a Fisher and a girdle Bingham, where

the mode of the Fisher lies on the great circle mode of

the Bingham.

The next section will discuss in more detail the properties

of FB5e and give a comparison to FB5b.

III. FURTHER DETAILS ABOUT THE FB5B AND FB5E

DISTRIBUTION

A. High concentration

To study the asymptotic bivariate normal behavior of any

unimodal distribution on the sphere under high concentration,

it suffices to take a second order Taylor series of the log density

in tangent coordinates at the modal direction. Then the 2 ×
2 second derivative matrix represents the inverse covariance

matrix. We shall investigate this limiting behavior for the FB5b

and FB5e distributions.

B. Behavior of the FB5b distribution

The FB5b distribution is unimodal, provided 2β/κb ≤ 1.

The easiest way to see this property is to follow every line of

longitude from the mode (at the north pole, say) to the south

pole and to note that the probability density is decreasing on

these lines.

On the other hand, if 2β/κb > 1, the FB5b density has

two equal modes equi-spaced about ν0, a bit like two rabbit

ears. Such behavior is generally unappealing, thus limiting the

usefulness of the distribution in such cases.

Next consider the high concentration behavior. That is, let

κb get large with the ratio 2β/κb < 1 held fixed. The inverse

variance matrix of the limiting bivariate normal distribution

(with an appropriate orientation for the coordinates in the

tangent plane) takes the form

Σ−1 =

[

κb − 2β 0
0 κb + 2β

]

.

C. Behavior of the FB5e distribution

The dependence of FB5e on δ is different from the depen-

dence of FB5b on β. In particular, for any choice of δ ≥ 0,

the FB5e density is unimodal with the mode in the direction

ν0.

Under high concentration, FB5e mimics the bivariate normal

distribution, just as FB5b. However, the formula for the

inverse covariance matrix is different. For FB5e, the inverse

covariance matrix takes the form

Σ−1 =

[

κe 0
0 κe + 2δ

]

.
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Simulated FB5e distribution

Fig. 1. Simulation results for FB5e with parameters κe = 4, δ = 500.
Points on the front half of the sphere are plotted in black; points on the back
in gray.

The FB5e density is better able than FB5b to describe data

which lie very near a great circle, but whose projection onto

the great circle have a unimodal distribution (in fact an approx-

imate von Mises distribution). Fig. 1 with κe = 4, δ = 500
shows a random sample from an FB5e density. The mode

lies on the equator and the data are tightly clustered near the

equator. The range of the data along the equator roughly fills

a semicircle. It is not possible to create this pattern with the

FB5b distribution.

D. Confounding

As argued above, the FB5e distribution provides a useful

alternative to FB5b in the semi-concentrated case. However,

when the ellipticity is not too extreme, both models can be

used to describe a dataset, and there will be little difference

between the two models. That is, the question of model choice

is important in certain settings, and irrelevant in others. A

more systematic study is needed to be more precise in these

conclusions.

IV. SIMULATION ISSUES

A powerful new simulation methodology for Fisher-

Bingham distributions has recently been developed [12]. The

basis for the methodology is an acceptance/rejection technique

for the Bingham distribution using an angular central Gaussian

(ACG) envelope.

The ACG distribution is straightforward to describe and

to simulate on the unit sphere in p-dimensional Euclidean

space, for any p ≥ 2. Let Σ be a positive definite covariance

matrix and let Y ∼ Np(0,Σ) denote a p-variate normal

random vector with mean 0 and covariance matrix Σ. Set

X = Y /||Y ||, where ||Y ||2 =
∑p

j=1 Y
2
j , to be the projection

of Y onto the unit sphere. Then the distribution of Y is

called the angular central Gaussian distribution. Its probability

density function is given by

fACG(x) =
|Σ|−1/2

(xT Σ−1x)
p/2

(with respect to the uniform distribution on the sphere) [13],

[14]. By a suitable choice of Σ for a given concentration matrix

A for a Bingham distribution, it is possible to ensure efficiency

of at least 52% (i.e. an average of not more than 1/0.52 ≈
2 simulations from the ACG envelope are needed for each

accepted value from the Bingham distribution).

Further this simulation method can be extended to the

Fisher-Bingham distributions. The inequality (1− t)2 ≥ 0 for

all real t leads to the bound

κt ≤
κ

2
+
κ

2
t2

for all κ ≥ 0 and means that the general Fisher-Bingham

density can be bounded above by a multiple of the Bingham

density,

exp{κxT ν0 + xTAx} ≤ exp{κ/2 + xTA(0)x},

where t = xT ν0 and A(0) = (κ/2)ν0ν
T
0 + A, and in turn

the Bingham density can be bounded by the ACG density.

When the Fisher-Bingham distribution is aligned and unimodal

(which includes FB5b with 2β/κb ≤ 1 and FB5e for all

κe ≥ 0 and δ ≥ 0), we expect the efficiency of the simulation

method to be reasonably efficient at all levels of concentration.

A simple simulation study shows that the lowest efficiency for

FB5e is about 26% when κe is large, whatever the value of δ,

and is higher for small values of κe.

Similar considerations apply to FB5b. However, for FB5b,

there is also a more efficient purpose-built simulation proce-

dure [15], [16].

V. ESTIMATION

Maximum likelihood estimation is awkward for the FB8

distribution because the normalizing constant is difficult to

compute efficiently. However, for certain subfamilies of FB8

maximum likelihood estimation is much more tractable. Cases

where tractable formulations for the normalizing constant are

available include the Fisher, Bingham and FB5b cases [11],

[17]. A tractable formulation for FB5e is still to be worked

out.

But due to recent developments, there is now a tractable

alternative to maximum likelihood estimation for all versions

of the FB8 distribution. In [18] the score matching estimator

of [19], [20] has been adapted to exponential family models

on the sphere. The new estimator depends just on sample

moments of the data and is quick and easy to compute.

Numerical evidence suggests it generally has good efficiency

compared to the maximum likelihood estimator.

Here is a sketch of the main steps for for FB5b and FB5e,

starting from a dataset of unit vectors xi, i = 1, . . . , n. The

first two steps are the same as in [11].

(a) Find the mean direction x0 ∝
∑

xi, where x0 is scaled

to be a unit vector. Find a 3×3 rotation R1, say, taking x0



to a unit vector along the first coordinate axis, RT
1 x0 =

y0 =
[

1 0 0
]

, say. Let yi = RT
1 xi, i = 1, . . . , n.

(b) Let Sy = n−1
∑

yiy
T
i denote the second moment matrix

for the {yi}. Find a second rotation

R2 =





1 0 0
0 c s
0 −s c



 ,

where c = cosψ, s = sinψ, for some angle ψ, so that

(Sz)23 = (Sz)32 = 0 and (Sz)22 > (Sz)33 where we

set zi = RT
2 yi and Sz = n−1

∑

ziz
T
i is the second

moment matrix for the zi. That is, we have diagonalized

the lower 2× 2 block of Sy . Then the estimates of the 3

principal axes of the original xi data are the columns of

R1R2. Similarly the estimates of the 3 principal axes of

the transformed zi data are the three coordinate axes.

(c) The key step in the estimation procedure is the esti-

mation of κb and β (or κe and δ, respectively). In

each case a two dimensional set of linear equations is

set up where the coefficients involve second and fourth

moments of the Euclidean coordinates of the rotated data

zi = (zi1, zi2, zi3)
T , i = 1, . . . , n.

For FB5b the density in z = (z1, z2, z3)
T coordinates

takes the form

f(z) ∝ exp{κbz1 + β(z2
2 − z2

3)}.

From the data, define a 2-vector d(b) with entries

d
(b)
1 = 2

∑

zi1, d
(b)
2 = 6

∑

(z2
i2 − z2

i3),

and a 2 × 2 matrix W (b) with entries

w
(b)
11 =

∑

(1 − z2
i1),

w
(b)
12 = w

(b)
21 = −2

∑

{zi1(z
2
i2 − z2

i3)},

w
(b)
22 = 4

∑

{z2
i2 + z2

i3 − (z2
i2 − z2

i3)
2},

where all the sums are over i = 1, . . . , n. Then the

parameter estimates are
[

κ̂b

β̂

]

= (W (b))−1d(b).

For FB5e a similar set of computations is needed. The

density in z coordinates takes the form

f(z) ∝ exp{κez1 − δz2
3}.

From the data, define a 2-vector d(e) with entries

d
(e)
1 = 2

∑

zi1, d
(e)
2 = 6

∑

(
1

3
− z2

i3),

and a 2 × 2 matrix W (e) with entries

w
(e)
11 =

∑

(1 − z2
i1), w

(e)
12 = w

(e)
21 = 2

∑

zi1z
2
i3,

w
(e)
22 = 4

∑

(z2
i3 − z4

i3).

Then the parameter estimates are
[

κ̂e

δ̂

]

= (W (e))−1d(e).
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Example 1: Final positions

Fig. 2. Example 1. Final positions of a point cloud after error propagation.

Care is needed in the numerical formulation of these

equations in the setting of high concentration.

VI. ERROR PROPAGATION

A. Example 1

Here is a simple toy example to demonstrate the usefulness

of the new FB5e distribution. Consider an observer (at the

center of a transparent earth) making an observation on the

position and velocity of a space object. The object is known to

be in a circular orbit. Further suppose the velocity is measured

less accurately than the position. The objective is to predict

the object position at a later point in time.

To model this situation we use skew symmetric matrices to

generate rotation matrices. If

S =





0 s12 −s13
−s12 0 s23
s13 −s23 0



 ,

is skew symmetric, then the matrix exponential

G = exp(S) = I + (sin θ)S0 + (1 − cos θ)S2
0

is a rotation matrix. Here θ = (s212 + s213 + s223)
1/2) and S0 =

S/θ. The elements of S are measured in radians.

For our purposes we use two random rotation matrices based

on skew symmetric matrices. For SA, suppose s12 = 0 and that

s13 and s23 are independent N(0, 0.001) random variables,

that is, mean 0 and variance 0.001. For SB suppose that

s13 = 0 and that s23 ∼ N(0, .001) and s12 ∼ N(4π, 0.25) are

independently normally distributed. Then GA represents the

effect of perturbing the current location of the object from the

north pole and GB represents the motion of the object (shifted

to the north pole) after one unit of time. Let the vector given

by the first column of GAGB denote the position of the object

at one time step into the future. If there were no errors, the
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Example 2: Initial positions

Fig. 3. Example 2. Initial positions of a cloud of points, with latitude and
longitude given in degrees.
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Example 2: Final positions

Fig. 4. Example 2. Final positions of a cloud of points. The points lie close
to, but not exactly on, the equator.

object would make two orbits of the earth (4π = 2 · 2π) and

return to its current position at the north pole.

A plot of 1000 simulated points under this model is given

in Fig. 2, where for presentational purposes the mode has

been moved to the equator. Comparing this figure to Fig. 1

confirms visually that the FB5e distribution provides a useful

description.

B. Example 2

Next, we consider a more realistic space debris problem

where we wish to map the uncertainty in an object’s trajectory

down to the surface of a sphere. A potential application

would be the future prediction of an object’s pointing direction

with respect to a terrestrial sensor. In this example, a space

object is in a zero-inclination circular orbit located nominally

400km below the geosynchronous (GEO) orbit. We assume

that the object has an initial Gaussian distribution with a

standard deviation of 100 km in position and 2 m/s in velocity

(assumed uniform in all three directions). Then 5000 particles

drawn from the initial distribution were propagated for 14

sidereal days. The particle clouds pre- and post-propagation

were projected onto the sphere and each data set was used to

estimate a pre- and post-propagation FB5e based on the score

matching estimator. The resulting pre- and post-distributions

have the following set of estimated parameters:

Initial estimates: κ̂e = 1.69e10, δ̂ = 0.05e10,

Final estimates: κ̂e = 68.0, δ̂ = 2.67e6.

For visualization, both clouds of points have been rotated

to be centered on the equator at the “Greenwich Meridian”.

The plots are given in Figures 3 and 4. The initial cloud is

highly concentrated near a single point on the sphere; hence a

blow-up is shown in figure 3 to see the detail. Note the small

range in the horizontal and vertical coordinates.

The final cloud lies very near the equator. There is a a

spread of about 30o along the equator and a very small spread

perpendicular to the equator. With a suitable blow-up of the

latitude axis, a figure similar to Figure 3 would be obtained.

Note that κ̂ = 1.69e10 and κ̂e + 2δ̂ = 1.78e10 are

approximately equal and are very large, reflecting the fact that

the distribution is initially concentrated and isotropic. At the

end of the 14 day propagation the distribution has become

elongated along a great circle, with very small uncertainty

in the projected cross-track direction. This is what one gen-

erally expects in orbital uncertainty propagation, where the

uncertainty grows in the in-track direction. Future work on

this example will focus on adding a terrestrial angles-only

sensor and instead of just propagating the uncertainty, we

will implement a modified UKF that employs an FB5e-based

sensor error statistics. We will then use such a filter to better

predict a space object’s location into the future.

VII. CONCLUSION

The paper has reviewed the Fisher-Bingham distribution on

the sphere and a variety of its special cases. A new special

case, the extreme 5-parameter Fisher-Bingham distribution

(FB5e) has been introduced to model semi-concentrated data

on the sphere, where the distribution is unimodal but spread

out close to a great circle. Recent advances in simulation and

estimation for all the Fisher Bingham distributions have been

summarized.

The motivation for FB5e comes from space tracking, where

it is not unusual for distribution of the predicted angular

location of a space object to have a a semi-concentrated form.

Two simple examples have been given to illustrate the potential

usefulness of FB5e. Work is underway to extend the analysis

to more realistic orbital models.
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