
This is a repository copy of The use of a common location measure in the invariant 
coordinate selection and projection pursuit.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/104150/

Version: Accepted Version

Article:

Alashwali, F and Kent, JT orcid.org/0000-0002-1861-8349 (2016) The use of a common 
location measure in the invariant coordinate selection and projection pursuit. Journal of 
Multivariate Analysis, 152. pp. 145-161. ISSN 0047-259X 

https://doi.org/10.1016/j.jmva.2016.08.007

© 2016, Elsevier. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


The use of a common location measure in the invariant coordinate selection and

projection pursuit

Fatimah Alashwalia,∗, John T. Kentb

aPrincess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
bUniversity of Leeds, Leeds, United Kingdom

Abstract

Invariant coordinate selection (ICS) and projection pursuit (PP) are two methods that can be used to detect clustering

directions in multivariate data by optimizing criteria sensitive to non-normality. In particular, ICS finds clustering

directions using a relative eigen-decomposition of two scatter matrices with different levels of robustness; PP is a

one-dimensional variant of ICS. Each of the two scatter matrices includes an implicit or explicit choice of location.

However, when different measures of location are used, ICS and PP can behave counter-intuitively. In this paper we

explore this behavior in a variety of examples and propose a simple and natural solution: use the same measure of

location for both scatter matrices.

Keywords: Cluster analysis, Invariant coordinate selection, Projection pursuit, Robust scatter matrices, Location

measures, Multivariate mixture model.

1. Introduction1

Consider a multivariate dataset, given as an n × p data matrix X, and suppose we want to explore the existence2

of any clusters. One way to detect clusters is by projecting the data onto a lower dimensional subspace for which the3

data are maximally non-normal. Hence, methods that are sensitive to non-normality can be used to detect clusters.4

One set of methods based on this principle is invariant coordinate selection (ICS), introduced by Tyler et al. [17],5

together with a one-dimensional variant called projection pursuit (PP), introduced by Friedman and Tukey [5]. ICS6

involves the use of two scatter matrices, S 1 = S 1(X) and S 2 = S 2(X) with S 2 chosen to be more robust than S 1.7

An eigen-decomposition of S −1
2

S 1 is carried out. If the data can be partitioned into two clusters, then typically the8

eigenvector corresponding to the smallest eigenvalue is a good estimate of the clustering direction. The main choice9

for the user when carrying out ICS is the choice of the two scatter matrices.10

However, in numerical experiments based on a simple mixture of two bivariate normal distributions, some strange11

behavior was noticed. In certain circumstances, ICS, and its variant PP, badly failed to pick out the right clustering12

direction. Eventually, it was discovered that the cause was the use of different location measures in the two scatter13

matrices. The purpose of this paper is to explore the reasons for this strange behavior in detail and to demonstrate the14

benefits of using common location measures.15

Section 2 gives some examples of scatter matrices and reviews the use of ICS and PP as clustering methods.16

Section 3 sets out the multivariate normal mixture model with two useful standardizations of the coordinate system.17

Section 4 demonstrates in the population setting an ideal situation where ICS and PP work as expected and where18

an analytic solution is available — the two-group normal mixture model where the two scatter matrices are given by19

the covariance matrix and a kurtosis-based matrix. Some examples with other robust estimators are given in Sections20

5–6, which show how ICS and PP can go wrong when different location measures are used and how the problem is21

fixed by using a common location measure. Further issues, including unbalanced mixtures and heteroscedasticity, are22

discussed in Section 7.23
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Notation. Univariate random variables, and their realizations, are denoted by lowercase letters, x, say. Multivariate24

random vectors, and their realizations, are denoted by lowercase bold letters, x, say. A capital letter, X, say is used for25

n × p data matrix containing p variables or measurements on n observations; X can be written in terms of its rows as26

X = (x⊤1 , . . . , x
⊤
n )⊤,

with ith row x⊤
i
= (xi1, . . . , xip), i = 1, . . . , n.27

2. Background28

2.1. Scatter matrices29

A scatter matrix S (X), as a function of an n× p data matrix X, is a p× p affine equivariant positive definite matrix.30

Following Tyler et al. [17], it is convenient to classify scatter matrices into three classes depending on their robustness.31

(1) Class I: is the class of non-robust scatter matrices with zero breakdown point and unbounded influence function.32

Examples include the covariance matrix defined below in (1) and the kurtosis-based matrix in (2).33

(2) Class II: is the class of scatter matrices that are locally robust, in the sense that they have bounded influence34

function and positive breakdown points not greater than 1/(p + 1). An example from this class is the class of35

multivariate M-estimators, such as the M-estimate for the t-distribution, e.g., [4, 8].36

(3) Class III: is the class of scatter matrices with high breakdown points such as the Stahel-Donoho estimate, the37

minimum volume ellipsoid (mve) and the constrained M-estimates, e.g., [7, 18] .38

Each scatter matrix has an implicit location measure. Let us look at the main examples in more detail, and note what39

happens in p = 1 dimension. The labels in parentheses are used as part of the notation later in the paper.40

The sample covariance matrix (var) is defined by41

S =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)⊤, (1)

where for convenience here a divisor of 1/n is used, and where x̄ is the sample mean vector. The implicit measure of42

location is just the sample mean.43

The kurtosis-based matrix (kmat) is defined by44

K =
1

n

n
∑

i=1

{(xi − x̄)⊤S −1(xi − x̄)}(xi − x̄)(xi − x̄)⊤. (2)

Note that outlying observations are given higher weight than for the covariance matrix, so that K is less robust than45

S . Again the implicit measure of location is just the sample mean. When p = 1, the scatter matrix S −1K reduces to 346

plus the usual univariate kurtosis.47

The M-estimator of scatter based on the multivariate tν-distribution for fixed ν is the maximum likelihood estimate48

obtained by maximizing the likelihood jointly over scatter matrix Σ and location vector µ. If both parameters are49

unknown and ν ≥ 1, then under mild conditions on the data, the mle of (µ,Σ), is is the unique stationary point of the50

likelihood. Similarly, if ν ≥ 0 and µ is known, the mle of Σ is the unique stationary point of the likelihood; see Kent51

et al. [8]. In either case, an iterative numerical algorithm is needed. Note that when µ is to be estimated as well as Σ,52

the mle of µ is the implicit measure of location for this scatter matrix. For this paper we limit attention to the choice53

ν = 2 (and label it below by t2).54

The minimum volume ellipsoid (mve) estimate of scatter S mve, introduced by Rousseeuw [14], is the ellipsoid55

that has the minimum volume among all ellipsoids containing at least half of observations, and its implicit estimate56

of location, x̄mve, say, is the center of that ellipsoid. Calculating the exact mve requires extensive computation.57

In practice, it is calculated approximately by considering only a subset of all subsamples that contain 50% of the58

observations, e.g., [9, 18]. If the location vector is specified, the search is limited to ellipsoids centered at this location59

measure.60
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When p = 1, the mve reduces to the lshorth, defined as the length of the shortest interval that contains at least61

half of observations. The corresponding estimate of location, x̄lshorth, say, is the midpoint of this interval. Calculating62

the lshorth around a known measure of location is trivial; just find the length of the interval that contains half of63

observations centered at this location measure. The lshorth was introduced by Grubel [6], building on an earlier64

suggestion of Andrews et al. [3] to use x̄lshorth, which they called the shorth, as a location measure.65

The minimum covariance determinant estimate of scatter (mcd), S mcd, say, is defined as the covariance matrix of66

half of observations with the smallest determinant. The mcd location measure, x̄mcd, say, is the sample mean of those67

observations. The mcd can be calculated approximately by considering only a subset of all subsamples that contain68

at least half of observations, e.g., Rousseeuw and Driessen [15]. The mcd estimate of scatter with respect to a known69

location measure µ is defined as the covariance matrix about µ of half of observations with the smallest determinant.70

Recall that the covariance matrix about µ for a dataset is given by S + (µ − x̄)(µ − x̄)⊤, where S and x̄ are the sample71

covariance matrix and mean vector of the dataset.72

When p = 1, the mcd reduces to a truncated variance, vtrunc, say, defined as the smallest variance of half the73

observations. Its implicit measure of location, x̄trunc, say, is the sample mean of that interval. Also, a modified74

definition of vtrunc using a known location measure is trivial and does not require any search; just find the interval that75

contains half of observations centered at the given location measure and calculate the variance.76

Routines are available in R [13] to compute (at least approximately) these robust covariance matrices and their77

implicit location measures, in particular, tM from the package ICS [10] for the multivariate t-distribution, cov.rob78

from the package MASS [19] for mve, and CovMcd from the package rrcov [16] for mcd. Modified versions of these79

routines have been written by us to deal with the case of known location measures.80

2.2. Invariant coordinate selection and projection pursuit81

Given an n × p data matrix X, the ICS objective function is given by the ratio of quadratic forms82

κICS(a) =
a⊤S 1a

a⊤S 2a
, a ∈ Rp, (3)

where S 1 = S 1(X) and S 2 = S 2(X) are two scatter matrices. By convention, S 2 is chosen to be more robust than83

S 1. The intuition behind this convention is as follows. Under a balanced elliptically symmetric model, the population84

center is always uniquely defined. In the clustering direction the data will appear to have shorter tails, for the same85

reason that kurtosis is negative in this direction (see Section 4) than in the perpendicular directions, and hence we86

expect a more robust estimator to give a larger estimate of scatter, relative to a less robust estimator, in this direction87

than in the perpendicular direction.88

For exploratory statistical analysis, attention is focused on the choices for a maximizing or minimizing κICS(a).89

These values can be calculated analytically as the eigenvectors of S −1
2

S 1 corresponding to the maximum/minimum90

eigenvalues.91

The original ICS method did not make a strong distinction between the largest and the smallest eigenvalues.92

However for clustering purposes between two groups, when the mixing proportion is not too far from 1/2, it is the93

minimum eigenvalue which is of interest; see Section 4.94

The method of PP can be regarded as a one-dimensional version of ICS. It looks for a linear projection a to95

maximize or minimize the criterion,96

κPP(a) =
s1(Xa)

s2(Xa)
, (4)

where s1 = s1(Xa) and s2 = s2(Xa) are two one-dimensional measures of spread. In general, optimizing κPP(a)97

must be carried out numerically. Searching for a global optimum is computationally expensive, and the complexity98

of the search increases as the dimension p increases. Alternatively, we can search for a local optimum starting from a99

sensible initial solution, such as the ICS optimum direction.100

Both ICS and PP are equivariant under affine transformations. That is, if X is transformed to U = 1nh⊤ + XQ⊤,101

where Q(p × p) is nonsingular and h is a translation vector in R
p, then for both ICS and PP the new optimal vector b,102

say, for U is related to the corresponding optimal vector a for X by103

b ∝ Q−⊤a. (5)
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For numerical work it is convenient to have an explicit notation for the different choices in ICS and PP. If Scat1104

and Scat2 are the names of two types of multivariate scatter matrix, each computed with its own implicit location105

measure, then the corresponding versions of ICS and PP will be denoted106

ICS : Scat1 : Scat2, and PP : Scat1 : Scat2.

Note that PP is based on the univariate versions of Scat1 and Scat2. For example, ICS based on the covariance matrix107

and the minimum volume ellipsoid will be denoted by ICS:var:mve. Other choices for scatter matrices have been108

summarized in Section 2.109

When a common location measure is imposed on Scat1 and Scat2, then this restriction will be indicated by the110

augmented notation111

ICS : Scat1 : Scat2 : Loc,

and similarly for PP. In this paper the only choice used for the location measure is the sample mean (mean). For112

example, ICS based on the covariance matrix and the minimum volume ellipsoid, both computed with respect to the113

mean vector, is denoted114

ICS : var : mve : mean.

3. The two-group multivariate normal mixture model115

The simple model used to demonstrate the main points of this paper is the two group multivariate normal mixture116

model, with density117

f (x) = qφp(x,µ1,Ω) + (1 − q)φp(x,µ2,Ω),

where φp is the multivariate normal density, µ1 and µ2 are two mean vectors, Ω is a common covariance matrix, and118

0 < q < 1 is the mixing proportion. Even in this simple case, major problems with ICS and PP can arise.119

Since ICS and PP are affine equivariant, we may without loss of generality choose the coordinate system so that120

µ1 = αe1, µ2 = −αe1, Ω = Ip,

where e1 = (1, 0, . . . , 0)⊤ is a unit vector along the first coordinate axis, and α > 0. That is, µ1 and µ2 lie equally121

spaced about the origin along the first coordinate axis, and the covariance matrix of each component equals the identity122

matrix.123

A random vector x from the mixture model can also be given a stochastic representation,124

x = αse1 + ǫ,

where ǫ ∼ Np(0, Ip) independently of an indicator variable s,125

s =

{

1 with probability q

−1 with probability (1 − q)
.

Moments under the mixture model are calculated most simply in terms of this stochastic representation. In particular,126

µx = E(x) = qµ1 + (1 − q)µ2 = (2q − 1)αe1, E(xx⊤) = α2e1e⊤1 + Ip,

so that the covariance matrix is127

Σx = var(x) = E(xx⊤) − µxµ
⊤
x = 4q(1 − q)α2e1e⊤1 + Ip. (6)

For practical work it is also convenient to consider a standardization for which the overall covariance matrix is the128

identity matrix. That is, define a new random vector129

y = C−1x, (7)
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where C−1 = diag(1/c1, . . . , 1/cp), where c1 = {1 + 4q(1 − q)α2}1/2, and c2 = . . . = cp = 1. Then y has a stochastic130

representation131

y = δse1 + η,

where132

δ = α/{1 + 4q(1 − q)α2}1/2, (8)

and133

η ∼ Np(0, diag(σ2
η, 1, . . . , 1))

where the first diagonal term σ2
η has two equivalent formulas,134

σ2
η = {1 + 4α2q(1 − q)}−1 or σ2

η = 1 − 4q(1 − q)δ2

The first two moments of y are135

µy = (2q − 1)δe1, Σy = Ip.

4. A population example: PP based on the kurtosis and ICS based on the kurtosis-based matrix and the co-136

variance matrix137

In this section we look at ICS:kmat:var and PP:kmat:var in the population case. In this setting it is possible to138

derive analytic results. Note that since kmat is based on fourth moments it is less robust than the variance matrix;139

hence kmat is listed first.140

Recall the kurtosis of a univariate random variable u, say, with mean µu, is defined by141

kurt(u) =
E{(u − µu)4}

[

E{(u − µu)2}
]2
− 3.

The univariate kurtosis is zero when the random variable has normal distribution. For non-normal distributions the142

kurtosis lies in the interval [−2,∞] and is often nonzero. In particular, the kurtosis takes the following possible values:143

(1) kurt(u) = 0; satisfied under normality.144

(2) kurt(u) < 0; this case is called sub-Gaussian.145

(3) kurt(u) > 0; this case is called super-Gaussian.146

The sub-Gaussian case appears in distributions flatter than the normal and have thinner tails; one example is the147

uniform distribution. On the other hand, the super-Gaussian case appears in distributions that are more peaked than148

the normal distribution and have longer tails; examples include t, and Laplace distributions.149

Define a balance parameter ψ(q) = |q−1/2|. Peña and Prieto [11] studied the population version of PP:kmat:var and150

showed that when the mixing proportion is not too far from 1/2, more precisely, if q(1−q) > 1/6, i.e., ψ(q) < 1/
√

12,151

then minimizing the PP objective function picks out the correct clustering direction. Similarly, if q is far from half,152

i.e., ψ(q) > 1/
√

12, then maximizing the objective function picks out the correct clustering direction.153

Their result can be derived simply as follows. Let a ∈ R
p be a unit vector. Write a⊤x = αa1s + v, where154

v = a⊤ǫ ∼ N(0, 1) is independent of s. The moments of s are E(s) = E(s3) = m, say, where155

m = 2q − 1, (9)

and E(s2) = E(s4) = 1. Hence, var(s) = σ2, say, where156

σ2 = 4q(1 − q). (10)

Then157

kurt(s) = −6 + 4/σ2.

It can be checked that kurt(s) < 0 provided φ(q) < 1/
√

12.158
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Next, we use the property that if u1, u2 are independent random variables with the same variance, and if δ1, δ2 are159

coefficients satisfying δ2
1
+ δ2

2
= 1, then160

kurt(δ1u1 + δ2u2) = δ4
1kurt(u1) + δ4

2kurt(u2).

Applying this result to a⊤x yields161

kurt(a⊤x) =
a4

1
α4σ4

(α2a2
1
σ2 + 1)2

kurt(s). (11)

Provided kurt(s) < 0, (11) is minimized when a2
1

is maximized, that is, if a2
1
= 1, so that a = ±e1 picks out the first162

coordinate axis.163

The ICS calculations proceed similarly. First note that E(x1) = αm, and the first diagonal term in Σx, defined in164

(6), can be expressed in terms of σ2, defined in (10), as α2σ2 + 1.165

The first factor in the population version of K defined in (2), Kx, say, is given by166

(x − µx)⊤Σ−1
x (x − µx) =

(x1 − αm)2

1 + α2σ2
+ x2

2 + . . . + x2
p = D2, say,

where m is defined in (9). Note that D2 is an even function in x2, . . . , xp. Hence by symmetry all the off-diagonal167

terms in Kx vanish. The first diagonal term is given by168

E{D2(x1 − αm)2} = (1 + α2σ2)(p + 2) +
α4σ4kurt(s)

(1 + α2σ2)
.

The remaining diagonal terms, j = 2, . . . , p are given by169

E(D2x2
j ) = p + 2.

Hence Σ−1
x Kx reduces to170

diag

{

p + 2 +
kurt(s)α4σ4

(1 + α2σ2)
, p + 2, . . . , p + 2

}

.

These diagonal values are the eigenvalues. Hence provided kurt(s) < 0, κICS is minimized when a = e1, that is, when171

a picks out the clustering direction.172

If p = 2, we can write a unit vector as a = (cos θ, sin θ)⊤, and since a and −a define the same axis, we can173

parameterize the ICS and PP objective functions in terms of θ, −π/2 ≤ θ ≤ π/2. Plots of κICS(θ) and κPP(θ) for α = 3174

and q = 1/2, 0.85 and 1/2 + 1/
√

12 are shown in Figure 1.175

For numerical work, especially when the underlying mixture model is unknown, the only feasible standardization176

is to ensure the overall variance matrix Σy is the identity rather than the within-group variance matrix. In terms of the177

population model of this section, it means working with y from (7) rather than x. If p = 2 and b ∝ (cos φ, sin φ)⊤, say,178

is also written in polar coordinates, then from (5) and (7) a and b are related by179

b ∝ Ca;

hence, φ and θ are related by180
(

cos φ

sin φ

)

∝
(

c1 0

0 c2

) (

cos θ

sin θ

)

.

Thus,181

tan φ = c tan θ,

where c = c2/c1.182

The plot of the ICS and PP objective functions in Figure 2 shows that there is a sharper minimum in φ coordinates183

than in θ coordinates because under our mixture model c is less than 1. If x is scaled as in (7) with c1 > c2, i.e., c > 1,184

then there will be a wider minimum in φ.185
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Figure 1: Plot of the population criteria κICS(θ) (red dotted line), and κPP(θ) (solid black line) versus θ, for q = 1/2, 0.85 and

1/2 + 1/
√

12, and α = 3.
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Figure 2: Plot of the population criteria κICS(φ) (red dotted line), and κPP(φ) (solid black line) versus φ, for q = 1/2, and δ = 0.95.
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5. The effect of using a common location measure on ICS and PP186

As mentioned earlier in Section 2.2, the ICS and PP criteria are expected to have similar behavior to the kurtosis-187

based criteria in Section 4. Namely, they are expected to be minimized in the clustering direction when the mixing188

proportion is not too far from 1/2.189

However, when applying ICS with at least one robust estimate of scatter (mainly from Class III), some peculiar190

behavior was observed on many datasets. In particular, the ICS criterion was often maximized in the clustering191

direction rather than minimized.192

Here is an explanation. Under the two-group mixture model with one group slightly bigger than the other, a class193

III scatter matrix will typically home in on the larger group, with its corresponding location measure at the center of194

this group and its estimate of the scatter matrix capturing the spread of this group. The other scatter matrix (Class I195

or II) will measure the overall scatter of the data with its corresponding location measure at the overall center of the196

data. The result is erratic behavior in κICS and κPP.197

Imposing a common location measure on the two scatter matrices fixes this problem. Here is a population example198

in p = 2 dimensions to illustrate the issues in greater detail.199

In this example we look at ICS:var:mve for the population bivariate normal mixture model in Section 3, with200

q = 1/2 and any value of α > 0, i.e., 0 ≤ δ ≤ 1, where δ is given in (8). Standardize the coordinate system so that the201

overall covariance matrix is the identity, Σy = I2. Let Σmve denote the population minimum volume ellipsoid scatter202

matrix.203

Then it turns out that Σmve is the within-group covariance matrix for (either) one of the groups,204

Σmve =

(

1 − δ2 0

0 1

)

, (12)

where 0 ≤ δ ≤ 1 is given in (8). The implicit estimate of the center of the data will be given by the center of either205

group, ±δe1; both values fit equally well.206
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Figure 3: For δ = 0.9, plots of the population criterion of: (a) ICS:var:mve vs. φ, and (b) ICS:var:mve:mean .

Figure 3 (a) shows that the ICS:var:mve estimate of clustering direction is (0, 1)⊤, i.e., φ = ±π/2. However, the207

true direction of group separation direction is (1, 0)⊤, i.e., φ = 0.208

Next consider ICS:var:mve:mean, i.e., the common mean version of the previous example. The overall mean of209

the data is at the origin. When Σmve is constrained to have its location measure at the origin, then the ICS criterion210

now picks out the true clustering direction. In order to give an analytic proof of this result, we restrict attention to the211

the limiting case of the balanced mixture model, i.e., when δ = 1, q = 1/2. Hence, the group components will lie on212

two parallel vertical lines with means213

µ1 = (1, 0)⊤, µ2 = (−1, 0)⊤,
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and within-group covariance matrix214
(

0 0

0 1

)

.

In this setting, the following theorem gives population version of the MVE matrix.215

Theorem 1. Consider the limiting balanced bivariate normal mixture model,216

y = se1 + ze2,

where s = ±1, each with probability 1/2, independent of z ∼ N(0, 1), and e1 = (1, 0)⊤, e2 = (0, 1)⊤. This model is217

standardized with respect to the “total” coordinates; i.e., E(y) = 0 and var(y) = I2. The model can also be described218

in terms of a mixture of two normal distributions, concentrated on the vertical lines y1 = 1 and y1 = −1 as shown in219

Figure 4.220

The minimum volume ellipsoid mve of y, Σmve, say, takes the form221

Σmve = ctΣt =

(

2 0

0 2d2

)

,

where d = Φ−1(.75) = 0.674, the 75th quantile of the standard normal distribution. Hence the dominant eigenvector222

is e1.223

Theorem 1 is proved in the Appendix. The ellipse of Σmve is plotted in Figure 4. Figure 3 (b) shows that the224

criterion of ICS:var:mve:mean, κICS:µ(φ) picks out the correct clustering direction e1.
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Figure 4: Plot of the ellipse of Σmve with its location measure forced at the origin superimposed on a mixture of two normal

distributions concentrated on the vertical lines y1 = 1 and y1 = −1.

225

Like ICS, PP can fail to detect the clustering direction if applied using different location measures. If the projection226

direction separates the data into two groups with one slightly bigger than the other, then the more robust measure of227

spread will measure the spread of the larger group. In Section 6, we give a detailed numerical example of the problem228

arising from using two different location measures in PP:var:mcd, and how the problem is fixed by using a common229

location measure.230
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6. Numerical examples231

Overview232

In this section, we give numerical examples that demonstrate different ways in which ICS and/or PP can go wrong.233

We also show the beneficial effect of using common location measures in these examples. We use one simulated data234

set and apply different ICS and PP methods, with and without imposing a common location measure (the mean).235

A two-dimensional data set of size n = 500 is generated from the balanced mixture model, defined in Section 3,236

with q = 1/2, and α = 3, so that δ = 0.95. Thus the two groups are well-separated and no sensible statistical method237

should have any problem finding the two clusters. All calculations are done after standardization with respect to the238

“total” coordinates. That is, the data matrix Y(500 × 2) is standardized to have sample mean 0 and sample covariance239

matrix I2.240

The ICS and PP methods used are:241

(1) (PP,ICS):var:t2 with corresponding criteria κ1
ICS

, and κ1
ICS

.242

(2) (PP,ICS):var:mcd with corresponding criteria κ2
ICS

, and κ2
PP

.243

(3) (PP,ICS):var:mve with corresponding criteria κ3
ICS

, and κ3
PP

.244

(4) (PP,ICS):t2:mcd with corresponding criteria κ4
ICS

, and κ4
PP

.245

(5) (PP,ICS):t2:mve with corresponding criteria κ5
ICS

, and κ5
PP

.246

When imposing the mean as the common location measure, the ICS and PP criteria will be denoted by κ
j

ICS:mean
and247

κ
j

PP:mean
, where j = 1, . . . , 5.248

To understand the behavior of ICS and PP, their criteria are plotted against −π/2 ≤ φ ≤ π/2. The plots are shown249

in Figure 5. From the panels in Figure 5, we make the following remarks based on the simulated data set:250

(1) Panel (a) shows that ICS:var:t2 and PP:var:t2 work well since ȳ and ȳt2 are approximately equal. Hence,251

imposing a common location measure has little effect, as shown in (b).252

(2) Panels (c), (e), (g), (i) show examples when ICS and/or PP go wrong because of the difference in the location253

measures.254

(3) Using a common location measure fixes the problem in panel (d) for (PP, ICS):var:mcd, panel (f) for (PP,255

ICS):var:mve, and panel(h) for (PP, ICS):t2:mcd.256

(4) From panel (j), using a common location measure in PP:t2:mve:mean does not seem to work well. The reason257

might be due to the unstable behavior of the mve and lshorth.258

(5) The plots generally suggest that PP will be more accurate than ICS, since the PP plots are narrower at the259

clustering direction than the ICS plot. This property has been confirmed empirically in Alashwali [2] for certain260

multivariate normal mixture models and choices of scatter matrix.261

(6) Similar patterns are seen with most simulated data sets from this model.262

10
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Figure 5: For δ = 0.95 and q = 1/2, plots of different ICS (red dashed curve) and PP (black solid curve) criteria without (left) and

with imposing a common location measure (right). 11



Behavior of ICS:var:mcd263

To gain a deeper understanding of the behavior of ICS:var:mcd in panel 5 (c) and the effect of forcing a common264

location measure on mcd in panel (d), we plot the ellipse of S mcd (both with and without imposing a common location265

measure) and superimpose it on the data points of our example. The plots are shown in panels 6 (a) and (b). The266

behavior in this example agrees with the interpretation given for the population example in Section 5.
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Figure 6: Plots of the ellipses of mcd scatter matrix based on (a) mcd location measure, and (b) the sample mean, superimposed on

data of size n = 500, distributed as mixtures of two normal distributions.

267

Behavior of PP:var:mcd268

The objective function for PP:var:mcd, has a similar problem to ICS; it is maximized rather than minimized near269

the correct clustering direction.270

To understand this behavior in more detail, we plot in Figure 7 one-dimensional histograms after projections by271

the following choices for the angle φ: 0◦, 15◦, 30◦, and 90◦. For each histogram, we plot the 50% of the data that272

has the smallest variance, and the corresponding location measure x̄trunc. The plots are repeated where the location273

measure is constrained at the sample mean x̄ = 0. Note that the shape of the histograms depends on of the projection274

directions. Also, as vtrunc gets smaller, the PP criterion κPP gets larger. From the panels of Figure 7, we make the275

following remarks:276

(1) The 0◦ projection produces two widely separated groups with one group is slightly bigger than the other. In this277

case, x̄trunc is at the larger group and vtrunc is essentially the variance of this group. Hence vtrunc takes its smallest278

value and κPP is largest.279

(2) The 15◦ projection produces two slightly separated groups with within-group variance is larger than in the 0◦280

projection. The value of vtrunc is larger than for 0◦.281

(3) The 30◦ projection produces one group, with a pseudo-uniform distribution. The value of vtrunc is larger than282

for 15◦.283

(4) The 90◦ projection produces one normally distributed group. The value for vtrunc becomes small again.284

Constraining the mean to be at the origin fixes the problem. The value of vtrunc steadily decreases from 0◦ to 90◦.285
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Figure 7: Histograms of 0◦, 15◦, 30◦ and 90◦ projections. Left panels show the vectors of 50% of data with the smallest variance

(the blue lines), and its location measure (the red lines), right panels show the 50% of data with the smallest variance computed

around the mean 0.
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Table 1: Estimates of θ̂ICS in degrees for simulated data sets with n = 500, q = 0.6 and 0.85, α = 3, and equal covariance matrices.

Method q = 0.6 (min) q = 0.85(max)

ICS:var:t2 1.02 -2.05

ICS:var:t2:mean 1.09 -0.05

ICS:var:mcd 88.87 -1.29

ICS:var:mcd:mean 2.90 19.31

ICS:var:mve 33.00 0.13

ICS:var:mve:mean 0.89 0.98

ICS:t2:mcd 89.44 -1.04

ICS:t2:mcd:mean 3.77 23.58

ICS:t2:mve 88.53 0.65

ICS:t2:mve:mean 0.77 1.26

7. Further issues286

So far, we have investigated the importance of using a common location measure in the performance of ICS based287

on robust estimates of scatter under mixtures of two balanced normal distributions. In this section, we discuss some288

further issues regarding ICS performance including lack of balance, heteroscedasticity, and the importance of robust289

estimates.290

Lack of balance291

Recall from Section 4 that under mixtures of two normal distributions with S 1 = K and S 2 = S , if q is close to292

half, then κICS is minimized in the clustering direction, whereas if q is far from half then κICS is maximized in the293

clustering direction. In this section, we want to explore the extent to which this behavior continues to hold for other294

choices of S 1 and S 2.295

Several data sets were simulated from the mixture model defined in Section 3 with n = 500, α = 3, and dif-296

ferent choices of q. After standardizing the data as in (7), the following ICS methods are applied: ICS:var:t2,297

ICS:var:t2:mean, ICS:var:mcd, ICS:var:mcd:mean, ICS:var:mve, ICS:var:mve:mean, ICS:t2:mcd, ICS:t2:mcd:mean,298

ICS:t2:mve, and ICS:t2:mve:mean for q = 0.6 (near half), 0.85 (far from half),. Table 1 shows a comparison of the299

clustering direction estimates of the ICS methods. The simulation results can be summarized as follows:300

(1) if q is close enough to 1/2, then minimization is still appropriate.301

(2) if q is far enough from 1/2, then maximization is appropriate. In this case, forcing a common location measure302

is unnecessary, because the Class II and III estimates of location will be at the center of the larger group, and303

the Class I estimate of location will be close to the center of the larger group.304

(3) several simulations for different values of q suggest that robust ICS methods have the same balance parameter305

φ(q) = 1/
√

12 as discussed in Section 4.306

Heteroscedasticity307

Following Peña et al. [12], consider the heteroscedstic model:308

qN(µ1,Ω) + (1 − q)N(µ2,Ω + ∆Ω),

where ∆Ω is the added perturbation. Without loss of generality assume µ1 = (α, 0)⊤, µ2 = (−α, 0)⊤, Ω = I2.309
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To investigate the effect of heteroscedasticity, restrict attention to the balanced case (q = 1/2) in p = 2 dimensions,310

with three different scenarios for ∆ j, j = 1, . . . , 4,311

∆1 = diag(0.5, 1.5),∆2 = diag(1, 1.5), ∆3 = diag(1, 3), and ∆4 = diag(2, 1.5).

In the simulation study, N = 500 datasets of size n = 500 were simulated under each scenario for α = 1, 2, and 3. All312

data set are standardized as in (7) to have the identity matrix as the total covariance matrix. The following methods313

are applied: ICS:kmat:var, ICS:var:t2:mean, ICS:var:mcd:mean, ICS:var:mve:mean. Note that the different location314

measures version of the used ICS methods have the same problems that appear under equal covariance mixture model315

(see Section 6). Each method gives a set of estimates of the clustering direction as follows: θ̂1, . . . , θ̂500, with the true316

clustering direction at θ0 = 0. To compare the performances of the four methods, we use the following measure of317

spread:318

v̂(θ̂) =
1

N

N
∑

k=1

sin2(θ̂k − θ0), (13)

If the distribution of θ̂ is concentrated around θ0, then v(θ̂) = 0. If the distribution of θ̂ is concentrated around θ0 + π/2319

or θ0 + 3π/2, then v(θ̂) = 1. If θ̂ is uniformly distributed, then v(θ̂) = 1/2. Figure 8 shows plots of v̂(θ̂) for the
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(c) j = 3
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(d) j = 4

Figure 8: Plot of v̂(θ̂) for estimates of clustering directions estimated by the methods ICS:kmat:var:mean, ICS:var:t2:mean,

ICS:var:mcd:mean, and ICS:var:mve:mean versus α = 1, 2 and 3 for four different heteroscedastic models labeled by j = 1, . . . , 4.

320

four different methods. The plots show that forcing a common location measure works well under the heteroscedastic321
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model. Also, the methods ICS:kmat:var and ICS:var:t2 have the best performance for all ∆ j among all other methods322

used in this study.323

Importance of robust estimators324

In this section, we compare the performance of different ICS methods using robust estimates of scatter versus325

ICS:kmat:var under mixtures of long-tailed distributions.326

The data sets used in this section are simulated from the following model. Suppose that the clustering direction is327

along the first coordinate axis. Let x = (x1, x2)⊤ be a bivariate random vector, where x1 follows a balanced mixture of328

two t distributions with ν degrees of freedom, and x2 follows a standard normal distribution. The random variable x1329

can be written as:330

x1 = αs + z,

where α, and s are defined in Section 3, and z is a t random variable with ν degrees of freedom. The first and third331

moments of z are equal to zero, the second and fourth moments are given by, e.g., Ahsanullah et al. [1],332

E(z2) =
ν

ν − 2
, E(z4) =

3ν2

(ν − 2)(ν − 4)
.

The kurtosis of z is 6/(ν − 4) for ν > 4. Following our model in Section 3, we first standardize with respect to the333

within-group variance, i.e., x1 can be written as:334

x1 = αs + u,

where u = z
√

(ν − 2)/ν. The second moment of u is 1 and its fourth moment is 3(ν − 2)/(ν − 4). The kurtosis of u is335

6/(ν − 4).336

The kurtosis of x1 is given by:

kurt(x1) =
α4

(α2 + 1)2
kurt(s) +

1

(α2 + 1)2
kurt(u)

= − 2α4

(α2 + 1)2
+

1

(α2 + 1)2

(

6

ν − 4

)

.

We want to explore settings in which each mixture component has positive kurtosis and the mixture has zero or337

negative kurtosis. Let ν = 7; then the kurtosis of each mixture component is 9.8 and the kurtosis of x1 is338

kurt(x1) =
1

(α2 + 1)2

(

−2α4 + 2
)

.

For α = 1, the kurtosis equals to zero, and as α increases the kurtosis decreases (takes negative values).339

The simulation is repeated N = 500 times for each α = 1, 2, and 3, and sample size n = 500. The following340

ICS methods are applied: ICS:kmat:var; ICS:var:t2:mean; ICS:var:mcd:mean; ICS:var:mve:mean. To compare the341

performances of the ICS methods, we use (13). Figure 9 shows plots of v̂(θ̂) versus α = 1, 2, and 3. The plots show342

that for small α, robust ICS methods especially ICS:var:t2:mean are more accurate than ICS:kmat:var.343

8. Conclusion344

This paper has clarified several issues about role of the location measure when ICS and PP are used for two-group345

cluster analysis. The key observation is that if the mixing proportion q is near 1/2 (the balanced case) and the two346

scatter measures use different location measures, then ICS and PP are prone to erratic behavior. This problem is most347

severe when one scatter matrix comes from Class I and the other comes from Class II or III. The solution is to modify348

the definition of the scatter matrices to ensure they both use the same measure of location. The clustering direction349

can be found by minimizing the ICS and PP criteria, respectively.350
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Figure 9: Plot of v̂(θ̂) for estimates of clustering directions estimated by the methods ICS:kmat:var, ICS:var:t2:mean,

ICS:var:mcd:mean, and ICS:var:mve:mean versus α = 1, 2 and 3 for balanced mixtures of two t7 distributions.

In the unbalanced case when q is far from 1/2, the situation is simpler. The clustering direction is found by351

maximizing the ICS or PP criteria, respectively, and in this case it does not matter whether or not a common location352

parameter is used.353

Most of paper focuses on the use of normal distributions for the mixture components. It is also possible to reach354

some conclusions when the mixture components have longer tails. In this setting it is beneficial for one of the scatter355

matrices to be robust. In particular, if q = 1/2 then ICS:var:t2:mean outperforms ICS:kmat:var.356

Appendix357

In this appendix we shall prove Theorem 1. In particular, we show that the population version of the mve, con-358

strained to be centered at the origin, is given by359

Σmve =

[

2 0

0 d2

]

,

where d = Φ−1(.75) in terms of the cumulative distribution function of the N(0, 1) distribution.360

First let u1 < u2 be two possible values for y2 and consider an ellipse based on a matrix Σ with inverse Σ−1 = Ω,361

y⊤Ωy = 1, (A.1)

which intersects the vertical line passing through (1, 0)⊤, at these points,362

[

1 u1

]

Ω

[

1

u1

]

= 1,
[

1 u2

]

Ω

[

1

u2

]

= 1. (A.2)

By symmetry the ellipse also intersects the points (−1,−u1)⊤ and (−1,−u2)⊤. Note that Σ will be a candidate for the363

mve matrix if the interior of the ellipse covers 50% of the probability mass, that is,364

Φ(u2) = Φ(u1) + 1/2. (A.3)

If u1 and u2 are finite, then necessarily u1 < 0 and u2 > 0.365

The proof will proceed in two stages. First, for fixed u1, u2 satisfying (A.3), we choose Σ to minimize det(Σ) (or366

equivalently maximize det(Ω)). Secondly, we optimize over the choice of u1, u2.367

Thus, start with a fixed pair of values u1, u2 satisfying (A.3). If y = (1, u)⊤ represents a point on one of the vertical368

lines, then the intersection with the ellipse (A.1) can be written369

ω11 + 2ω12u + ω22u2 = 1,
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or equivalently as the quadratic equation in u,370

Au2 + Bu +C = 0,

where A = ω22, B = 2ω12, C = ω11 − 1. If this ellipse passes through (1, u1)⊤ and (1, u2)⊤, then then u1, u2 are roots371

of the quadratic equation, so372

u1, u2 =
−B ±

√
B2 − 4AC

2A
. (A.4)

In particular, setting M = (u1 + u2)/2 to be the mean of the roots, and P = u1u2 to be the product of the roots, we have373

M = − B

2A
= −ω12

ω22

, P =
C

A
=
ω11 − 1

ω22

. (A.5)

Let us try to maximize det(Ω) subject to the ellipse satisfying (A.2). Start with an arbitrary ω22 > 0. Then (A.5)374

determines the remaining elements of Ω,375

ω12 = −Mω22, ω11 = 1 + Pω22.

Hence376

det(Ω) = ω11ω22 − ω2
12 = ω22 − Qω2

22,

where377

Q = M2 − P =
1

4
(u1 − u2)2 > 0. (A.6)

Maximizing det(Ω) with respect to the choice of ω22 leads to ω22 = 1/(2Q) and378

det(Ω) = 1/(4Q).

The remaining task is to choose u1 < 0 (which determines u2 > 0 by (A.3)) to maximize det(Ω), or equivalently,379

to minimize Q in (A.6).380

Recall a basic result from calculus. If t = f (u) and u = g(t) are monotone functions which are inverse to one381

another, then g( f (u)) = u. Differentiating two times yields the relation between the derivatives,382

g′ = 1/ f ′, g′′ = − f ′′/{ f ′}3.

In particular, consider f (u) = Φ(u), with derivatives f ′(u) = φ(u) and f ′′(u) = −uφ(u), where φ(u) is the probability383

density function of N(0, 1). Then g(t) = Φ−1(t) with derivatives g′(t) = 1/φ(u) and g′′(t) = u/{φ(u)}2, where u =384

Φ−1(t).385

With this notation, write u1 = g(t) for 0 < t < 1/2. Then u2 = g(t + 1/2). Write φ1 = φ(u1), φ2 = φ(u2). The

quantity Q in (A.6), treated as a function of t, has derivatives

Q′ =
1

2

{

u1u′1 − u1u′2 − u′1u2 + u2u′2
}

=
1

2
{u1(1/φ1 − 1/φ2) + u2(1/φ2 − 1/φ1)} ,

Q′′ =
1

2

{

u1u′′1 + (u′1)2 − u1u′′2 − 2u′1u′2 − u′′1 u2 + u2u′′2 + (u′2)2
}

=
1

2

{

u2
1/φ

2
1 + 1/φ2

1 − u1u2/φ
2
2 − 2/(φ1φ2) − u1u2/φ

2
1 + u2

2/φ
2
2 + 1/φ2

2

}

=
1

2

{

(1/φ1 − 1/φ2)2 + u2
1/φ

2
1 − u1u2/(1/φ

2
1 + 1/φ2

2) + u2
2/φ

2
2

}

.

If u1 = −d, then u2 = d and φ1 = φ2 so that the first derivative vanishes. For all (0 < t < 1/2), the second derivative386

is positive, so the function is convex. Hence Q is minimized for u1 = −d, u2 = d. Then M = 0,Q = −P = d2 and the387

optimal Σ becomes388

Σ = Ω−1 =

[

2 0

0 2d2

]

,
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as required.389
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