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Abstract

A set V in a domain U in C
n has the norm-preserving extension property if

every bounded holomorphic function on V has a holomorphic extension to U with
the same supremum norm. We prove that an algebraic subset of the symmetrized
bidisc

G
def
= {(z + w, zw) : |z| < 1, |w| < 1}

has the norm-preserving extension property if and only if it is either a singleton,
G itself, a complex geodesic of G, or the union of the set {(2z, z2) : |z| < 1} and
a complex geodesic of degree 1 in G. We also prove that the complex geodesics in
G coincide with the nontrivial holomorphic retracts in G. Thus, in contrast to the
case of the ball or the bidisc, there are sets in G which have the norm-preserving
extension property but are not holomorphic retracts of G. In the course of the
proof we obtain a detailed classification of the complex geodesics in G modulo
automorphisms of G. We give applications to von Neumann-type inequalities for
Γ-contractions (that is, commuting pairs of operators for which the closure of G
is a spectral set) and for symmetric functions of commuting pairs of contractive
operators. We find three other domains that contain sets with the norm-preserving
extension property which are not retracts: they are the spectral ball of 2×2 matri-
ces, the tetrablock and the pentablock. We also identify the subsets of the bidisc
which have the norm-preserving extension property for symmetric functions.
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Preface

The symmetrized bidisc is just one domain in C
2, but it is a fascinating one

which amply repays a detailed study. In the absence of a Riemann mapping the-
orem in dimensions greater than one there is a choice between studying broad
classes of domains and choosing some special domains. From the work of Oka on-
wards there has developed a beautiful and extensive theory of general domains of
holomorphy; however, in such generality there can be no expectation of a detailed
analytic function theory along the lines of the spectacularly successful theory of
functions on the unit disc, which is one of the pinnacles of twentieth century anal-
ysis. For this reason the general theory is complemented by the study of functions
on special domains such as the ball and the polydisc [42, 43], or more generally
Cartan domains [30, 26]. Thereafter it seems natural to investigate inhomogeneous
domains for which a detailed function theory is possible. The symmetrized bidisc
G in C

2 is emphatically one such. It is inhomogeneous, but it has a 3-parameter
group of automorphisms. It is closely related to the bidisc, being the image of the
bidisc under the polynomial map (λ1+λ2, λ1λ2). Its geometry and function theory
have many resemblances to, but also many differences from, those of the bidisc. It
transpires that many quantities of interest for G, for example the Kobayashi and
Carathéodory distances, can be calculated in a fairly explicit form.

We originally started studying the symmetrized bidisc in connection with the
spectral Nevanlinna-Pick problem, an interpolation problem for analytic 2 × 2-
matrix-valued functions subject to a bound on the spectral radius. This problem
is of interest in certain engineering problems. We can claim only partial success
in resolving the interpolation problem, but we happened on a rich vein of function
theory, which was of particular interest to specialists in the theories of invariant
distances [32] and models of multioperators [18].

In this paper we determine the holomorphic retractions of G and the sub-
sets of G which permit the extension of holomorphic functions without increase
of supremum norm. The methods we use are of independent interest: we analyse
the complex geodesics of G, and show that there are five qualitatively different
types thereof. The type of a complex geodesic D can be characterized in two quite
different ways. One way is in terms of the intersection of D with the special variety

R def
= {(2z, z2) : |z| < 1}.

R is itself a complex geodesic of G, uniquely specified by the property that it is
invariant under every automorphism of G. Remarkably, the type of D can also
be characterized by the number of Carathéodory extremal functions for D from
a certain one-parameter family of extremals. In contrast, for the bidisc, one can
define types of complex geodesics in an analogous way, and one finds that there are
only two types.

vii





CHAPTER 1

Introduction

A celebrated theorem of H. Cartan states the following [21].

Theorem 1.1. If V is an analytic variety in a domain of holomorphy U and
if f is an analytic function on V then there exists an analytic function on U whose
restriction to V is f .

In the case that the function f is bounded, Cartan’s theorem gives no informa-
tion on the supremum norm of any holomorphic extension of f . We are interested
in the case that an extension exists with the same supremum norm as f .

Definition 1.2. A subset V of a domain U has the norm-preserving extension
property if, for every bounded analytic function f on V , there exists an analytic
function g on U such that

g|V = f and sup
U

|g| = sup
V

|f |.

Here V is not assumed to be a variety; to say that f is analytic on V simply
means that, for every z ∈ V there exists a neighborhood W of z in U and an
analytic function h on W such that h agrees with f on W ∩ V .

There are at least two reasons to be interested in the norm-preserving extension
property, one function-theoretic and one operator-theoretic. In the case that U is
the bidisc, the description of the solutions of an interpolation problem for holomor-
phic functions on U leads to norm-preserving extensions, while knowledge of the
sets having the norm-preserving extension property in the bidisc also leads to an
improvement of Ando’s inequality for pairs of commuting contractions [2, Section
1].

The subsets of the bidisc D
2 having the norm-preserving extension property

were identified in [2]. In this memoir we shall do the same for the symmetrized
bidisc. Let C denote the complex field and D the unit disc {z ∈ C : |z| < 1}. The
symmetrization map is the map π : C2 → C

2 given by

π(λ1, λ2) = (λ1 + λ2, λ1λ2), λ1, λ2 ∈ C,

and the symmetrized bidisc is the set

G = π(D2)

= {(z + w, zw) : z, w ∈ D} ⊂ C
2.

Retracts of a domain have the norm-preserving extension property. A (holo-
morphic) retraction of U is a holomorphic map of ρ : U → U such that ρ ◦ ρ = ρ,
and a retract in U is a set which is the range of a retraction of U . Evidently, for
any retraction ρ, a bounded analytic function f on ran ρ has the analytic norm-
preserving extension f ◦ ρ to U . Two simple types of retracts of U are singleton
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2 1. INTRODUCTION

sets and the whole of U ; these retracts are trivial. Hyperbolic geometry in the sense
of Kobayashi [34] provides an approach to the construction of nontrivial retracts.
A complex geodesic of U is the range V of a holomorphic map k : D → U which
has a holomorphic left inverse C. Here, since C ◦ k is the identity map idD on D,
clearly k ◦ C is a retraction of U with range V .

To summarize, for a subset V of a domain U , the statements

(1) V is a singleton, a complex geodesic or all of U ,
(2) V is a retract in U ,
(3) V has the norm-preserving extension property in U

satisfy (1) implies (2) implies (3). It was shown in [2] that, in the case that U is
the bidisc D

2, the converse implications also hold. One might conjecture that the
same is true for a general domain in D

2; however, the two main results of the paper
show that, for the symmetrized bidisc, (2) implies (1) but (3) does not imply (2).

Theorem 1.3. A subset V of G is a nontrivial retract of G if and only if V is
a complex geodesic of G.

Since complex geodesics in G are algebraic sets, as we prove in Theorem 5.4
below, it follows that retracts in G are algebraic sets.

A flat geodesic of G is a complex geodesic of G which is the intersection of G
with a complex line: see Proposition 4.10.

Theorem 1.4. V is an algebraic subset of G having the norm-preserving ex-
tension property if and only if either V is a retract in G or V = R ∪ D, where
R = {(2z, z2) : z ∈ D} and D is a flat geodesic in G.

Sets of the form R∪D are not retracts of G, but nevertheless have the norm-
preserving extension property(see Theorem 10.1).

Theorems 1.3 and 1.4 have applications to the function theory of the bidisc, the
theory of von Neumann inequalities for commuting pairs of operators and the com-
plex geometry of certain domains in dimensions three and four. These applications
are given in Chapters 13 to 15. They are briefly described in the next chapter.

It should be mentioned that there is a substantial theory of holomorphic ex-
tensions that refines Cartan’s Theorem 1.1. However, as far as we know the results
in the literature barely overlap the theorems in this paper. Previous authors (with
the exception of [2]) do not consider such a stringent condition as the preservation
of the supremum norm, and they typically consider either other special domains,
such as polydiscs or polyhedra [13, 40, 24], or strictly pseudoconvex domains [29]
(note that G is not smoothly embedded in C

2).



CHAPTER 2

An overview

Much of this memoir is devoted to the proof of the main result, Theorem 1.4
from the introduction.

Neither necessity nor sufficiency is trivial. Sufficiency is proved in Chapters 5
and 10. In the former it is shown that complex geodesics in G are algebraic sets
and that nontrivial retracts are complex geodesics. In the latter the Herglotz Rep-
resentation Theorem is used to show that R∪D has the norm-preserving extension
property. The proof of necessity in Theorem 1.4 takes up the remainder of Chapters
3 to 12.

The principal tool is the theory of hyperbolic complex spaces in the sense of
Kobayashi [34]. The Carathéodory and Kobayashi extremal problems are described
in Section 3.1. There is a substantial theory of these two problems in the special
case of the symmetrized bidisc; the relevant parts of it are described in Chapters 3
and 4. More of the known function theory of G, with citations, is given in Appendix
A.

There are two versions of the Carathéodory and Kobayashi extremal problems,
one for pairs of points and one for tangent vectors. In order to treat both versions
of the problems simultaneously we introduce the terminology of datums. A datum
in a domain U is either a pair of points in U or an element of the tangent bundle
of U ; the former is a discrete datum, the latter an infinitesimal datum. If V is a
subset of U and δ is a datum in U then δ contacts V if either

(1) δ = (s1, s2) is discrete and both s1 and s2 lie in V , or
(2) δ = (s, v) is infinitesimal and either v = 0 and s ∈ V , or there exist two

sequences of points {sn} and {tn} in V such that sn 6= tn for all n, sn → s,
tn → s and

tn − sn
‖tn − sn‖

→ v0,

for some unit vector v0 collinear with v.

A datum δ is degenerate if either δ = (s1, s2) is discrete and s1 = s2 or δ = (s, v) is
infinitesimal and v = 0. An important property of G is that every nondegenerate
datum δ in G contacts a unique complex geodesic of G, denoted by Dδ.

The proof of necessity in Theorem 1.4 is based on an analysis of the datums
that contact a subset V of G having the norm-preserving extension property. We
divide the nondegenerate datums in G into five types, called purely unbalanced, ex-
ceptional, purely balanced, royal and flat. The definitions of these types (Definition
3.4 in Section 3.3) for a datum δ are in terms of the Carathéodory extremal func-
tions for the datum δ. We use another special feature of G: for every nondegenerate
datum in G there is a solution Φω of the Carathéodory extremal problem having

3



4 2. AN OVERVIEW

the form

Φω(s) =
2ωs2 − s1

2− ωs1
, for s = (s1, s2),

for some ω ∈ T, where T denotes the unit circle in C (Theorem A.4). For royal
and flat datums, every Φω is a Carathéodory extremal for δ. If there are exactly
two values of ω ∈ T for which Φω is extremal for δ, then δ is said to be purely
balanced. If there is a unique ω ∈ T for which Φω is extremal for δ, then we say
that δ is either purely unbalanced or exceptional, depending on whether a certain
second derivative is zero. The strategy is to consider the consequences for V of the
hypothesis that a datum of each of the five types in turn contacts V .

To put this plan into effect we have to establish several results about types
of datum. Firstly, according to Theorem 3.6, every nondegenerate datum in G
is of exactly one of the five types. A second important fact is that the type of
a nondegenerate datum δ can be characterized in terms of the geometry of the
complex geodesic Dδ; this is the gist of Chapters 6 and 7, and it requires some
detailed calculations. The upshot is (Theorem 7.1) that the type of a datum δ is
determined by the number and location of the points of intersection of D−

δ and the
royal variety R− = {(2z, z2) : |z| ≤ 1} (that is, whether these points belong to G
or ∂G). This result has two significant consequences: (1) the type of a datum is
preserved by automorphisms of G, and (2) if two nondegenerate datums contact
the same complex geodesic then they have the same type. We may therefore define
the type of a complex geodesic D to be the type of any nondegenerate datum that
contacts D, whereupon the complex geodesics of G are themselves partitioned into
five types. In particular, R is the sole geodesic of royal type, and the geodesics of
flat type are precisely the complex lines

(2.1) Fβ
def
= {(β + β̄z, z) : z ∈ D}

for β ∈ D. These flat geodesics constitute a foliation of G. Theorem 7.8 gives
concrete formulae for each of the five types of geodesics modulo automorphisms of
G.

Here is a rough outline of the proof of necessity in Theorem 1.4. Let V be an
algebraic set in G having the norm-preserving extension property. We may assume
that V is neither a singleton set nor G. We must show that either V is a complex
geodesic in G or V = R∪D for some flat geodesic D.

Chapter 9 proves some consequences of the assumption that V has contact with
certain types of datum. Lemma 9.5 states that if some flat, royal or purely balanced
datum δ contacts V then Dδ ⊆ V . According to Lemma 9.10, if a flat datum δ
contacts V then V is the flat geodesic Dδ (which is a retract in G) or V = R∪Dδ,
while Lemma 9.11 states that if a royal datum contacts V then either V = R or
V = R∪D for some flat geodesic D. Hence Chapter 9 reduces the problem to the
case that neither a flat nor a royal datum contacts V . By Lemma 12.2, if a purely
balanced datum δ contacts V then V is the purely balanced geodesic Dδ.

In Chapter 11 and in Chapter 12 it is shown that if no flat datum contacts V
then V is a properly embedded planar Riemann surface of finite type, meaning that
the boundary of V has finitely many connected components. Finite connectedness
is proved with the aid of real algebraic geometry, specifically, from the permanence
properties of semialgebraic sets, which follow from the Tarski-Seidenberg Theorem.
By a classical theorem on finitely connected domains [22, Theorem 7.9], V is con-
formally equivalent to a finitely-circled domain R in the complex plane, meaning
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that the boundary ∂R is a union of finitely many disjoint circles. In Lemma 12.3
we prove that if ∂R has a single component then V is a nontrivial retract in G and
so is a complex geodesic of G. To complete the proof it remains to show that, if V
has no contact with any flat, royal or purely balanced datum, then ∂R has a single
component. This task is achieved by a winding number argument that depends on
known properties of Ahlfors functions for the domain R; this argument takes up
Sections 12.1 and 12.2.

Finally, some applications of the main results are presented in the last three
chapters. In Chapter 13 we identify the symmetric subsets of the bidisc which have
the symmetric extension property (roughly, the norm-preserving extension property
for symmetric functions). In Theorem 13.5 we show that there are six mutually
exclusive classes of such sets and we give explicit formulae for them.

In Chapter 14 we give two applications of Theorem 1.4 to the theory of spectral
sets. Theorem 14.4 states that the sets V of Theorem 13.5 are the only symmetric
algebraic sets of D2 for which the inequality

‖f(T )‖ ≤ sup
V

|f |

holds for all bounded symmetric holomorphic functions f on V and all pairs of
commuting contractions T subordinate to V (subordination is the condition needed
to ensure that f(T ) be well defined).

For any set A of bounded holomorphic functions on a set V ⊆ C
2, we say that

V is an A-von Neumann set if

‖f(T )‖ ≤ sup
V

|f |

for all f ∈ A and all pairs T of commuting contractions which are subordinate to
V . Here subordination is the natural notion that ensures that the operator f(T )
be well defined. In Theorem 14.4 we show that if V is a symmetric algebraic subset
of D2 and A is the algebra of all bounded symmetric holomorphic functions on V
then V is an A-von Neumann set if and only if V belongs to one of the six classes
of sets which are described by explicit formulae in Theorem 13.5.

For the second application we need to introduce a variant of the notion of A-von
Neumann set that is adapted to G. Consider a subset V of G and let A be a set
of bounded holomorphic functions on V . We say that V is a (G,A)-von Neumann
set if V is a spectral set for every Γ-contraction T subordinate to V . Here a Γ-
contraction is a pair of commuting operators for which Γ is a spectral set. Let A be
the algebra of all bounded holomorphic functions on V . In Theorem 14.7 we show
that if V is algebraic then V is a (G,A)-von Neumann set if and only if either V is
a retract in G or V = R∪D, where D is a flat geodesic in G (as in equation (2.1)
above).

In Chapter 15 we observe that in any domain which containsG as a holomorphic
retract there are sets that have the norm-preserving extension property but are not
retracts. In particular this observation applies to the 2 × 2 spectral ball (which
comprises the 2× 2 matrices of spectral radius less than one) and two domains in
C

3 known as the tetrablock and the pentablock.
In a digression in Section 5.2 we show that our geometric method based on

uniqueness of solutions of certain Carathéodory problems can be used to give an
alternative proof of a result of Heath and Suffridge [28] on the retracts of the bidisc
(they all have the form of either a singleton, D2 itself or a complex geodesic).
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Appendix A gathers together the relevant known facts about the geometry and
function theory of G, with references and a few proofs. Appendix B is intended to
help the reader absorb the notions of the five types of complex geodesic by means
of a table of their main properties and a series of cartoons.



CHAPTER 3

Extremal problems in the symmetrized bidisc G

In this chapter we shall set out our notation and give a brief exposition of
some known properties of the Carathéodory and Kobayashi extremal problems on
the symmetrized bidisc. We introduce the notion of a datum, which permits the
simultaneous analysis of the discrete and infinitesimal versions of the Kobayashi
and Carathéodory problems.

If U is an open set in C
n, then by a datum in U we mean an ordered pair δ

where either δ is discrete, that is, has the form

δ = (s1, s2)

where s1, s2 ∈ U , or δ is infinitesimal, that is, δ is an element of the tangent bundle
TU of U , and so has the form

δ = (s, v)

where s ∈ U and v is a tangent vector to U at s. We identify the tangent vector

v1
∂

∂s1
+ · · ·+ vn

∂

∂sn
with (v1, . . . , vn) ∈ C

n.

If δ is a datum, we say that δ is degenerate if either δ is discrete and s1 = s2 or δ
is infinitesimal and v = 0, and nondegenerate otherwise. If U ⊆ C

n1 and Ω ⊆ C
n2

are two open sets we denote by Ω(U) the set of holomorphic mappings from U into
Ω. Furthermore, if F ∈ Ω(U), s ∈ U , and v ∈ C

n1 , we denote by DvF (s) the
directional derivative at s of F in the direction v.

For any set X we denote by idX the identity map on X.
If U and Ω are domains, F ∈ Ω(U), and δ is a datum in U , we define a datum

F (δ) in Ω by
F (δ) = (F (s1), F (s2))

when δ is discrete and by

F (δ) = F∗δ = (F (s), DvF (s))

when δ is infinitesimal.
Note that if U, V and W are domains, δ is a datum in U and F ∈ V (U), G ∈

W (V ), then

(3.1) (G ◦ F )(δ) = G(F (δ)).

Let δ be a datum in D. We define the modulus of δ, denoted by |δ|, by

|δ| =
∣

∣

∣

∣

z1 − z2
1− z̄2z1

∣

∣

∣

∣

,

when δ = (z1, z2) is discrete, and by

|δ| = |c|
1− |z|2

7



8 3. EXTREMAL PROBLEMS IN THE SYMMETRIZED BIDISC G

when δ = (z, c) is infinitesimal.
Thus | · | is the pseudohyperbolic distance on D in the discrete case and the

Poincaré metric on the tangent bundle of D in the infinitesimal case.
For any domain U , the group of automorphisms of U will be denoted by AutU .

We shall make frequent use of the Blaschke factor Bα, defined for α ∈ D by

Bα(z) =
z − α

1− ᾱz
for z ∈ D.

3.1. The Carathéodory and Kobayashi extremal problems

If U is a domain (an open set in C
n for some n) and δ is a datum in U , then

we may consider the Carathéodory Optimization Problem, that is, to compute the
quantity |δ|car defined by

|δ|car = sup
F∈D(U)

|F (δ)|.

In the sequel we shall refer to this problem as Car(δ). The notation suppresses the
dependence of both |δ|car and Car(δ) on U . However, this will not be a cause for
confusion, as the domain U will always be clear from the context. We say that C
solves Car(δ) if C ∈ D(U) and

|δ|car = |C(δ)|.
In [32, Section 2.1], the function |·|car, when applied to discrete datums, is called the
Möbius pseudodistance for U , while, when applied to infinitesimal datums, | · |car is
called the Carathéodory-Reiffen pseudometric for U . For any nondegenerate datum
δ in U , there exists C ∈ D(U) that solve Car(δ) [34].

If U is a domain and δ is a datum in U , then we may also consider the Kobayashi
Extremal Problem for δ, that is, to compute the quantity |δ|kob defined by
(3.2)
|δ|kob = inf{|ζ| : ζ is a datum in D and there exists f ∈ U(D) such that f(ζ) = δ}.
In the sequel we shall refer to this problem as Kob(δ). We say that k solves Kob(δ)
if k ∈ U(D) and there is a datum ζ in D such that

k(ζ) = δ and |δ|kob = |ζ|.
In [32, Section 3.1], for discrete datums, the function tanh−1 | · |kob is called the
Lempert function for U . In [32, Section 3.5], for infinitesimal datums, the function
| · |kob is called the Kobayashi-Royden pseudometric for U .

A domain U is said to be taut if the space U(D) is normal (for example, [32,
Section 3.2]). If U is a taut domain then, for any nondegenerate datum δ in U ,
there exists k ∈ U(D) that solve Kob(δ) [32, Section 3.2].

G is a hyperconvex domain [32, Remark 7.1.6] and therefore taut [32, Remark
3.2.3]. Hence |δ|kob is attained for any datum δ in G.

It is immediate from the Schwarz-Pick Lemma that, for any nondegenerate
datum δ in a domain U , |δ|car ≤ |δ|kob.

Proposition 3.1. Let h ∈ U(D), C ∈ D(U) be such that C ◦ h = idD. If ζ is
a datum in D and δ = h(ζ) then h solves Kob(δ).

For then

|δ|car ≥ |C(δ)| = |C ◦ h(ζ)| = |ζ| ≥ |δ|kob ≥ |δ|car
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and so |ζ| = |δ|kob.

3.2. The Carathéodory extremal problem Car(δ) for G

We say that a set C ⊆ D(U) is a universal set for the Carathéodory problem on
U if, whenever δ is a nondegenerate datum in U , there exists a function C ∈ C such
that C solves Car(δ).

On the bidisc, the two co-ordinate functions constitute a universal set for the
Carathéodory problem. On G, there is a one-parameter family that constitutes a
universal set.

Definition 3.2. The function Φ is defined for (z, s1, s2) ∈ C
3 such that zs1 6= 2

by

(3.3) Φ(z, s1, s2) =
2zs2 − s1

2− zs1
.

We shall write Φz(s) as a synonym for Φ(z, s1, s2) where s = (s1, s2).

Φω does belong to D(G) for every ω ∈ T: see Proposition A.1 in Appendix A.
The following statement is in Theorem 1.1 (for discrete datums) and Corollary 4.3
(for infinitesimal datums) in [5].

Theorem 3.3. The set C = {Φω : ω ∈ T} is a universal set for the Carathéodory
problem on G.

Theorem 3.3 provides a concrete way of analyzing the Carathéodory problem
on G. Indeed, if, for a nondegenerate datum δ, we define a function ρδ on the circle
by the formula

(3.4) ρδ(ω) = |Φω(δ)|2, ω ∈ T,

then Theorem 3.3 implies that

(3.5) |δ|2car = max
ω∈T

ρδ(ω).

3.3. Five types of datum δ in G

The following definition formalizes five qualitative cases for the behavior of the
Carathéodory extremal problem for G.

Definition 3.4. Let δ be a nondegenerate datum in G. We say that δ is

(1) purely unbalanced if ρδ has a unique maximizer ω0 = eit0 and

d2

dt2
ρδ(e

it)
∣

∣

t=t0
< 0;

(2) exceptional if ρδ has a unique maximizer ω0 = eit0 and

d2

dt2
ρδ(e

it)
∣

∣

t=t0
= 0;

(3) purely balanced if ρδ has exactly two maximizers in T;
(4) royal if ρδ is constant and C(s) = 1

2s
1 solves Car(δ);

(5) flat if ρδ is constant and C(s) = s2 solves Car(δ).

Finally, we say that δ is balanced if δ is either exceptional, purely balanced, or royal
and we say that δ is unbalanced if δ is either purely unbalanced or flat.
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It may be helpful to look at the cartoons in Appendix B at this point; they
provide visual images of geodesics of the five types.

Pentachotomy Theorem 3.6. If δ is a nondegenerate datum in G, then
exactly one of the cases (1) to (5) in Definition 3.4 obtains. In particular, either δ
is balanced or δ is unbalanced and not both.

Proof. Case 1: δ is discrete.
(i) Suppose that ρδ is constant on T. By Theorem A.14 either (a) (s1j )

2 = 4s2j for

j = 1, 2 or (b) there exists β ∈ D such that s1j = β + β̄s2j for j = 1, 2. In case (a)

we may write sj = (2zj , z
2
j ) where zj =

1
2s

1
j . We then find that

Φω(sj) = −zj
independently of ω, and so, by equations (3.4) and (3.5),

|δ|2car = ρδ(ω) = |Φω(δ)|2 = |(Φω(s1),Φω(s2))|2 = |(−z1,−z2)|2 = |(z1, z2)|2 = |( 12s11, 12s12)|2.
Since the function C(s) = 1

2s
1 belongs to D(G), it follows that C solves Car(δ),

and so, according to Definition 3.4, δ is a royal datum.
In case (b) we have sj = (β + β̄zj , zj), where zj = s2j . A simple calculation

shows that, for any ω ∈ T,

Φω(sj) = mω(zj) for j = 1, 2,

for some mω ∈ AutD. Again by equations (3.4) and (3.5),

|δ|2car = sup
ω

|Φω(δ)|2 = |(Φω(s1),Φω(s2))|2 = |(mω(z1),mω(z2))|2 = |(z1, z2)|2 = |(s21, s22)|2.

Hence C(s) = s2 solves Car(δ), and so δ is a flat datum.
(ii) Now suppose that ρδ is not constant on T. It is clear from the definition of

ρδ,

ρδ(e
it) = |Φeit(s1, s2)|2 =

∣

∣

∣

∣

∣

Φeit(s1)− Φeit(s2)

1− Φeit(s2)Φeit(s1)

∣

∣

∣

∣

∣

2

,

that the function t 7→ ρδ(e
it) is smooth and 2π-periodic, and so attains its maximum

over [0, 2π) at some point t0, which is a critical point satisfying

d2

dt2
ρδ(e

it)
∣

∣

t=t0
≤ 0.

In fact, by Theorem A.13, ρδ attains its supremum over T at either one or two
points. In the former case δ is either purely unbalanced or exceptional, and in
the latter case δ is purely balanced. We have shown that, for any nondegenerate
discrete datum δ in G, at least one of (1) to (5) is true.

Conditions (1), (2) and (3) are clearly mutually exclusive. Moreover, since they
together correspond to ρδ being nonconstant on T, they are inconsistent with (4)
and (5). It remains to show that δ cannot be both flat and royal. If it is, then
by the calculations above there exists β ∈ D such that both s1 and s2 lie in the
intersection of the sets

{(β + β̄z, z) : z ∈ D} and {s ∈ G : (s1)2 = 4s2}.
Thus the equation

(β + β̄z)2 = 4z
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has two distinct roots for z ∈ D; this is easily seen to be false. Hence a nondegen-
erate discrete datum cannot be both royal and flat. We have shown that exactly
one of the cases (1) to (5) obtains for any discrete datum δ.

Case 2: δ = (s1, v) is a nondegenerate infinitesimal datum in G.
(i) Suppose that ρδ is constant on T. By Theorem A.15, ρδ is constant on T if and
only if one of the following conditions holds:
(a) there exists z ∈ D such that s1 = (2z, z2) and v is collinear with (1, z),
(b) there exist β, z ∈ D such that s1 = (β + β̄z, z) and v is collinear with (β̄, 1).
Thus, according to Definition 3.4, δ is a royal datum in case (a) and a flat datum
in case (b).
(ii) Now suppose that ρδ is not constant on T. Let δ = (s1, v). By the definition of
ρδ, for ω ∈ T,

ρδ(e
it) = |Φeit(s1, v)|2 = |(Φeit(s1), DvΦeit(s1))|2 =

|DvΦeit(s1)|2
(1− |Φeit(s1)|2)2

.

It is clear that the function t 7→ ρδ(e
it) is smooth and 2π-periodic, and so attains

its maximum over [0, 2π) at some point t0, which is a critical point satisfying

d2

dt2
ρδ(e

it)
∣

∣

t=t0
≤ 0.

By Theorem A.13, ρδ attains its supremum over T at either one or two points.
In the former case δ is either purely unbalanced or exceptional, and in the latter
case δ is purely balanced. We have shown that, for any nondegenerate infinitesimal
datum δ in G, at least one of (1) to (5) is true.

Conditions (1), (2) and (3) are clearly mutually exclusive. Moreover, since they
together correspond to ρδ being nonconstant on T, they are inconsistent with (4)
and (5). It remains to show that δ cannot be both flat and royal. If it is, then there
exists z ∈ D such that

s1 = (2z, z2) and v is collinear with (1, z),

and there exists β ∈ D such that

s1 = (β + β̄z2, z2) and v is collinear with (β̄, 1).

Thus (1, z) is collinear with (β̄, 1), and so 1 = β̄z, which is impossible for z, β ∈ D.
Hence a nondegenerate infinitesimal datum cannot be both royal and flat. We have
shown that exactly one of the cases (1) to (5) obtains for δ. �

We shall have more to say about the above classification scheme of datums us-
ing the relation (3.5). Later, in Theorem 7.1 we shall give necessary and sufficient
geometrical conditions for a datum to be one of the five types in Definition 3.4. Ad-
ditionally, the balanced/unbalanced dichotomy is characterized in geometric terms
in Section 8 (Theorem 7.1 below).

Let δ be a datum in G. Observe that if C solves Car(δ), then, as automorphisms
of D act as isometries in the pseudohyperbolic metric, m ◦ C also solves Car(δ).
Thus the solution to Car(δ) is never unique. This motivates the following definition.

Definition 3.5. If δ is a nondegenerate datum in G, we say that the solution
to Car(δ) is essentially unique, if whenever C1 and C2 solve Car(δ) there exists
m ∈ AutD such that C2 = m ◦ C1.
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3.4. The Kobayashi extremal problem Kob(δ) for G

Let δ be a datum in G. Just as solutions to Car(δ) are never unique, nor are
solutions to Kob(δ): if m ∈ AutD and f solves Kob(δ), then f ◦m solves Kob(δ).
This suggests the following analog of Definition 3.5.

Definition 3.6. If δ is a nondegenerate datum in a domain U , we say that the
solution to Kob(δ) is essentially unique, if, whenever f1 and f2 solve Kob(δ), there
exists m ∈ AutD of D such that f2 = f1 ◦m.

It is easy to see that if U is strictly convex and the boundary of U is smooth
then the solution of any Kobayashi extremal problem in U is essentially unique
[32, Proposition 11.3.3]. On the other hand, if U is merely assumed to be convex,
it does not follow that Kobayashi extremals are essentially unique – witness the
example U = D

2. It is noteworthy that for G, despite its non-convexity, solutions
of Kobayashi problems are nevertheless essentially unique. For discrete datums,
the following result is contained in [6, Theorem 0.3]. For infinitesimal datums it is
proved in Appendix A – see Theorem A.10.

Theorem 3.7. If δ is a nondegenerate datum in G then the solution to Kob(δ)
is essentially unique.

Remark 3.8. This theorem implies that if, for some nondegenerate datum δ
in G, two solutions to Kob(δ) agree at some nondegenerate datum in D then they
coincide.



CHAPTER 4

Complex geodesics in G

In Section 4.1 we establish some facts required for the proof of Theorem 7.1.
We begin with some generalities. In the present context it is convenient to use
the term ‘geodesic’ to denote a set, rather than a holomorphic map on D (as for
example in [34]). For the latter notion we reserve the term ‘complex C-geodesic’.

4.1. Complex geodesics and datums in G

Definition 4.1. Let U be a domain and let D ⊂ U . We say that D is a
complex geodesic in U if there exists a function k ∈ U(D) and a function C ∈ D(U)
such that C ◦ k = idD and D = k(D).

Kobayashi [34, Chapter 4, Section 6], following [46], defines a complex C-
geodesic in a domain U to be a map k ∈ U(D) such that, for every nondegenerate
datum ζ in D,

|k(ζ)|car = |ζ|.
It follows easily from the Schwarz-Pick Lemma that k ∈ U(D) is a complex C-
geodesic if and only if k has a holomorphic left inverse. Thus a map k is a complex
C-geodesic if and only if k(D) is a complex geodesic in the sense of Definition 4.11.

A notable advance in the hyperbolic geometry of domains in C
n was the seminal

theorem of Lempert [36] to the effect that the Carathéodory and Kobayashi metrics
agree on any bounded convex domain U : | · |kob = | · |car in U . It implies that if δ
is a nondegenerate datum in a bounded convex domain U ⊆ C

n, then there exists
a solution C to Car(δ) and a solution k to Kob(δ) such that

(4.1) C ◦ k = idD.

This result guarantees a plentiful supply of complex geodesics in bounded convex
domains.

The relationship between datums in U and complex geodesics in U can be
cleanly described using the notion of contact.

Definition 4.2. Let U be a domain, let V be a subset of U and let δ be a
datum in U . Then δ contacts V if either

(1) δ = (s1, s2) is discrete and s1 ∈ V and s2 ∈ V , or
(2) δ = (s, v) is infinitesimal and either v = 0 and s ∈ V , or there exist two

sequences of points {sn} and {tn} in V such that sn 6= tn for all n, sn → s,
tn → s and

tn − sn
‖tn − sn‖

→ v0,

for some unit vector v0 collinear with v.

1Kobayashi also uses the term ‘complex geodesic’, in a sense which differs slightly from ours,
though the difference is not significant for the domains studied in this paper.

13
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Remark 4.3. If a datum δ in U contacts a set V ⊆ U , then, for any holomorphic
map F on U , the value of F (δ) only depends on F |V . It is obvious for discrete δ
and for the infinitesimal datum δ = (s, 0). Consider a nondegenerate infinitesimal
datum δ = (s, v) that contacts a subset V of U . Then there exist two sequences of
points {sn} and {tn} in V such that sn 6= tn for all n, sn → s, tn → s and

tn − sn
‖tn − sn‖

→ v0,

for some unit vector v0 collinear with v. Note that

tn = sn +
tn − sn

‖tn − sn‖
‖tn − sn‖,

and so, for any domain Ω and F ∈ Ω(U),

F (s) = lim
n→∞

F (sn) and DvF (s) = lim
n→∞

F (tn)− F (sn)

‖tn − sn‖
.

Thus F (δ) is determined by F |V .

The notion of contact permits Lempert’s discovery to be expressed in the fol-
lowing geometric fashion:

For every nondegenerate datum δ in a bounded convex domain U there is a
complex geodesic in U that δ contacts.

The following proposition relates the concept of contact to holomorphic maps
on D.

Proposition 4.4. Let U be a domain in C
n.

(1) If f ∈ U(D) and ζ is a datum in D then f(ζ) contacts f(D);
(2) if k is a complex C-geodesic in U and δ is a datum in U that contacts k(D),

then there exists a datum ζ in D such that δ = k(ζ).

Proof. (1) The statement is trivial for discrete datums. Let ζ = (z, v) be an
infinitesimal datum in D. If f ′(z)v = 0 then f(ζ) = (f(z), 0), which contacts f(D).
Consider the case that f ′(z)v 6= 0. Let

un = z +
1

n
v, vn = z +

1

2n
v.

For n a sufficiently large integer, un and vn are in D, and we may define sn =
f(un), tn = f(vn) in U . Clearly sn → f(z), tn → f(z). Since

sn − tn =
1

2n
f ′(z)v + o(1/n)

and f ′(z)v is nonzero, sn 6= tn for sufficiently large n, and

sn − tn
‖sn − tn‖

=
(2n)−1f ′(z)v + o( 1

n
)

‖(2n)−1f ′(z)v + o( 1
n
)‖

→ f ′(z)v

‖f ′(z)v‖ ,

which is collinear with f ′(z)v. Thus f(ζ) contacts f(D).
(2) Let k be a complex C-geodesic. Then k has a left inverse C ∈ D(U). Let

V = k(D). We have

k ◦ C|V = idU |V
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Since δ contacts V , by Remark 4.3,

(k ◦ C)(δ) = idU (δ) = δ.

Let ζ = C(δ). Then ζ is a datum in D and, by equation (3.1), k(ζ) = δ. �

4.2. Uniqueness of complex geodesics for each datum in G

An important fact in the function theory of G is that Lempert’s conclusion
(| · |kob = | · |car) holds for G, even though G does not satisfy any of the various
convexity hypotheses of versions of Lempert’s theorem: G is not convex (nor even
biholomorphic to a convex domain [23]).

Theorem 4.5. For any datum δ in G, |δ|kob = |δ|car.
For discrete datums this is [5, Corollary 5.7]. In fact, since G is taut, it follows

that equality also holds for infinitesimal datums [32, Proposition 11.1.7]. See also
[32, Theorem 7.1.16].

The following property of G plays a fundamental role in this paper.

Theorem 4.6. For every nondegenerate datum δ in G there exists a unique
complex geodesic D in G such that δ contacts D. Moreover D = k(D) where k
solves Kob(δ).

Proof. Let δ be a nondegenerate datum in G. Let k solve Kob(δ) and C solve
Car(δ). Then there exists a datum ζ in D such that k(ζ) = δ and

|ζ| = |δ|kob = |δ|car = |C(δ)| > 0.

Thus C◦k ∈ D(D) and |C◦k(ζ)| = |ζ|. By the Schwarz-Pick Lemma, C◦k ∈ AutD.
Let D = k(D). Then D is a complex geodesic in G and δ = k(ζ) contacts D as
desired.

To prove uniqueness, let D′ be any complex geodesic of G that is contacted by
δ. By Definition 4.1 there exists h ∈ G(D) and F ∈ D(G) such that F ◦ h = idD
and D′ = h(D). Since δ contacts h(D), by Proposition 4.4, there exists a datum ζ ′

in D such that h(ζ ′) = δ. Since F ◦ h = idD we have |ζ ′| = |δ| = |ζ|, and so h, k are
both solutions of Kob(δ). By Theorem 3.7, h = k ◦m for some m ∈ AutD. Thus
D′ = h(D) = k(D) = D. �

As a consequence of Theorem 4.6 we may unambiguously attach to each datum
in G a unique complex geodesic.

Definition 4.7. For any nondegenerate datum δ in G the unique complex
geodesic in G that is contacted by δ is denoted by Dδ.

4.3. Flat C-geodesics

The symmetrized bidisc has the remarkable property that it is foliated by the
ranges of its complex C-geodesics of degree one. For any β ∈ D we introduce the
function fβ : D → C

2 given by

(4.2) fβ(z) = (β + β̄z, z)

and the set

(4.3) Fβ = fβ(D) = {(β + β̄z, z) : z ∈ D}.
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Proposition 4.8. For any β ∈ D the map fβ is a complex C-geodesic of G.

Proof. By Proposition A.1, fβ maps D into G. Thus fβ ∈ G(D), and clearly
fβ has a holomorphic left inverse, to wit the co-ordinate function s2. Hence fβ is a
complex C-geodesic of G. �

It follows of course that Fβ is a complex geodesic of G.
The following proposition implies thatG is foliated by the flat geodesics Fβ , β ∈

D, in G. The proof is a simple calculation.

Proposition 4.9. If s ∈ G then there is a unique β ∈ D such that s ∈ Fβ.
Moreover β is given by

β =
s1 − s̄1s2

1− |s2|2 .

The fact that β so defined lies in D is contained in Proposition A.1.

Proposition 4.10. The following statements are equivalent for a complex C-
geodesic k of G.

(1) deg(k) = 1;
(2) k = fβ ◦m for some β ∈ D and m ∈ AutD;
(3) k(D) is the intersection of G with a complex line;
(4) k(D) is contained in the intersection of G with a complex line.

Proof. (1)⇔(2) The complex C-geodesics of G are explicitly described in
[6, 41]: they are Γ-inner functions of degree one or two, and those of degree one
are precisely of the form in (2).
(2)⇒(3)⇒(4) is trivial. Conversely, suppose that k(D) is contained in the inter-
section of a complex line with G. Let ω ∈ T be such that Φω is a left inverse of

k. Then m
def
= Φω ◦ k ∈ AutD. By Theorem A.7 and Proposition A.8, k2 is a

non-constant Blaschke product, ϕ say, of degree 1 or 2, and

(4.4) k1 = k1k2 on T.

Since k(D) lies in a complex line we can write k = (a + bϕ, ϕ) for some a, b ∈ C.
Moreover the relation (4.4) implies that b = ā. Hence

(4.5) k = (a+ āϕ, ϕ).

Since ϕ is nonconstant it has a zero z0 in D. Since k(z0) = (a, 0) and k(z0) ∈ G,
we have a ∈ D. Differentiate the identity

(2ωϕ− a− āϕ)(z) = m(z)(2− ωa− ωāϕ(z))

and substitute z = z0 to show that ϕ′(z0) 6= 0 and thus that z0 is a simple zero
of ϕ. Since k has a holomorphic left inverse, k is injective, and therefore z0 is the
only zero of ϕ in D. Hence ϕ has degree 1 and so ϕ ∈ AutD. Equation (4.5) shows
that statement (2) holds. Thus (4) implies (2). �

In the light of Proposition 4.10 we shall call any complex C-geodesic of degree
one a flat C-geodesic of G. There is no conflict with the notion of flat datum, as
introduced in Definition 3.4, for the following reason.

Proposition 4.11. A nondegenerate datum δ in G is a flat datum if and only
if there is a flat C-geodesic k that solves Kob(δ).
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Proof. Suppose that δ is a flat datum. Since ρδ is constant on T, Theorems
A.14 and A.15 imply that δ contacts either R or Fβ for some β ∈ D. In the former
case the function C(s) = 1

2s
1 solves Car(δ), which implies that the datum δ is both

royal and flat, contrary to the Pentachotomy Theorem. Hence δ contacts Fβ , and
the flat C-geodesic k = fβ solves Kob(δ).

Conversely, suppose that fβ ◦ m solves Kob(δ) for some β ∈ D, m ∈ AutD;
then so does fβ . Since C ◦ fβ = idD, where C(s) = s2, it follows that C solves
Car(δ). A simple calculation shows that, for any ω ∈ T,

Φω ◦ fβ = mω for some mω ∈ AutD.

Since δ contacts fβ(D), by Proposition 4.4, δ = fβ(ζ) for some nondegenerate
datum ζ in D. We have, in view of the definition (3.4),

ρδ(ω) = |Φω(δ)|2 = |Φω ◦ fβ(ζ)|2 = |mω(ζ)|2 = |ζ|2.
Hence ρδ is constant on T. Thus δ is a flat datum. �

4.4. Rational Γ-inner functions

Let us recall some notions and results from [10]. The closure of G in C
2 will

be denoted by Γ; thus

Γ = {(z + w, zw) : z, w ∈ D
−}.

The distinguished boundary of Γ is denoted by bΓ.

Definition 4.12. A rational Γ-inner function is a rational analytic map h :
D → Γ with the property that h maps T into the distinguished boundary bΓ of Γ.

All complex C-geodesics in G are rational Γ-inner functions (Theorem A.7).
For any rational Γ-inner function h, the second component h2 is a finite Blaschke

product. The degree deg(h) is equal to the degree of h2 (in the usual sense). The
following notion will play an important role.

Definition 4.13. Let h be a rational Γ-inner function. A royal node of h is a
point λ ∈ D

− such that h(λ) ∈ R−. A royal point of h is a point of h(D−) ∩R−.

The following result is [10, Theorem 1.1]. Observe that λ ∈ D
− is a royal node

of h if and only if h1(λ)2 = 4h2(λ).

Theorem 4.14. If h is a nonconstant rational Γ-inner function then either
h(D−) = R− or h has exactly deg(h) royal nodes, counted with multiplicity.

Here multiplicity is defined as follows.

Definition 4.15. Let h be a rational Γ inner function. If σ is a zero of (h1)2−
4h2 of order ℓ, we define the multiplicity #σ of σ (as a royal node of h) by

#σ =







ℓ if σ ∈ D

1
2ℓ if σ ∈ T.

Lemma 4.16. Let δ be a nondegenerate datum in G, let k solve Kob(δ) and
suppose that k2 is a Blaschke product of degree 2. Let ω ∈ T. The following
conditions are equivalent:

(i) ω is a maximiser of ρδ on T;
(ii) (2ω̄, ω̄2) is in k(D)− ∩ ∂R;
(iii) Φω solves Car(δ).



18 4. COMPLEX GEODESICS IN G

Proof. By the definition of ρδ, (i) ⇔ (iii).
(ii) ⇒ (iii). Suppose (ii), and let τ ∈ D

− be such that k(τ) = (2ω̄, ω̄2). By the
Maximum Modulus Principle, τ ∈ T. Consider the rational function

(4.6) Φω ◦ k(λ) = 2ωk2(λ)− k1(λ)

2− ωs(λ)

which is inner, by Proposition A.3. By [8, Corollary 6.10] k1, k2 are rational func-
tions having the same denominator and therefore Φω ◦ k has apparent degree 2,
the degree of k. However, as λ → τ , both the numerator and the denominator
of the right hand side of equation (4.6) tend to zero. Hence both numerator and
denominator are divisible by λ − τ , and so Φω ◦ k is a rational inner function of
degree at most one.

Suppose that Φω ◦k is constant. Then k(D) is contained in a complex line, and
so, by Proposition 4.10, k has degree one, contrary to hypothesis. Thus Φω ◦ k is a
rational inner function of degree exactly one, which is to say that Φω ◦ k ∈ AutD.

Since k solves Kob(δ) there exists a datum ζ ∈ D such that k(ζ) = δ and
|ζ| = |δ|kob. By the invariance of | · | under automorphisms,

|Φω ◦ k(ζ)| = |ζ|.
Therefore

|Φω(δ)| = |Φω ◦ k(ζ)| = |ζ| = |δ|kob = |δ|car.
Hence Φω solves Car(δ). Thus (ii) implies (iii).

(iii) ⇒ (ii). Let Φω solve Car(δ). Then Φω ◦ k ∈ AutD has degree one. Thus

Φω ◦ k =
2ωk2 − k1

2− ωk1

has a cancellation at some point τ ∈ D
− (that is, λ− τ divides both numerator and

denominator). By Theorem A.6, τ ∈ T, τ is a royal node for k and k(τ) = (2ω̄, ω̄2).
Therefore (2ω̄, ω̄2) is in k(D)− ∩ ∂R. �

Proposition 4.17. Let k be a rational Γ-inner function of degree 2. Then k
is a complex C-geodesic of G if and only if k has a royal node in T.

Proof. Let k be a complex C-geodesic, so that k has a holomorphic left inverse
C. Pick a nondegenerate datum ζ in D. By Proposition 3.1, k solves Kob(δ), where
δ = k(ζ). Let ω be a maximizer of ρδ in T. By Lemma 4.16, there exists z ∈ T

such that k(z) = (2ω̄, ω̄2). Then z is a royal node of k in T.
Conversely, suppose that k has a royal node z ∈ T, so that k(z) = (2ω̄, ω̄2) for

some ω ∈ T. By Lemma 4.16, Φω solves Car(δ). Since | · |kob = | · |car, it follows
that Φω is a holomorphic left inverse of k modulo AutD. Hence k is a complex
C-geodesic of G. �



CHAPTER 5

The retracts of G and the bidisc D
2

As was observed in the introduction, there are inclusions between the collec-
tions of complex geodesics, holomorphic retracts and sets with the norm-preserving
extension property in a general domain. In this chapter we prove Theorem 1.3, to
the effect that the nontrivial retracts in G are the complex geodesics. By way of
a digression, we show that a similar geometric argument can be used to establish
the (known) description of the retracts in D

2. Furthermore, we show by an explicit
construction that complex geodesics in G are zero sets of polynomials of degree at
most 2.

5.1. Retracts and geodesics of G

Let U be a domain. We say that ρ is a retraction of U if ρ ∈ U(U) and ρ◦ρ = ρ.
A set R ⊆ U is a retract in U if there exists a retraction ρ of U such that R = ran ρ.
We say that a retraction ρ and the corresponding retract R are trivial if either ρ is
constant (and R is a singleton set) or ρ = idU (and R = U).

A particularly simple way that a nontrivial retraction can arise is if C ∈ D(U),
k ∈ U(D) and C ◦ k = idD. In that event, if we set ρ = k ◦ C, then ρ ∈ U(U) and

(5.1) ρ ◦ ρ = (k ◦ C) ◦ (k ◦ C) = k ◦ (C ◦ k) ◦ C = k ◦ idD ◦ C = k ◦ C = ρ.

Therefore, if U has dimension greater than one, ρ is a nontrivial retraction and the
complex geodesic ran k = ran ρ is a nontrivial retract. Thus, on general domains in
dimension greater than one, complex geodesics are nontrivial retracts. The question
arises: for which domains is the converse of this statement true? See for example
[28, 33]. It is true for the symmetrized bidisc.

Theorem 5.1. A map ρ ∈ G(G) is a nontrivial retraction of G if and only if
ρ = k ◦ C for some C ∈ D(G) and k ∈ G(D) such that C ◦ k = idD. Thus R is a
nontrivial retract in G if and only if R is a complex geodesic in G.

Proof. Let ρ be a retraction of G that is neither constant nor idG and let
R = ran ρ. As ρ is not constant, there exists a pair s1, s2 of distinct points in ρ(G).
Let δ be the nondegenerate discrete datum (s1, s2) in G.

Choose a datum ζ in D and k ∈ G(D) such that k solves Kob(δ) and k(ζ) = δ.
Since ρ|R is the identity, ρ(δ) = δ, and so both k and ρ ◦ k solve Kob(δ). Moreover
k(ζ) = δ = ρ ◦ k(ζ). By Remark 3.8, ρ ◦ k = k. Therefore

Dδ = k(D) = ρ ◦ k(D) ⊆ R.

If Dδ 6= R then there exists t ∈ R \ Dδ. By the argument in the foregoing
paragraph, for any s ∈ Dδ, the complex geodesic through t and s is contained in

19
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R, that is, D(t,s) ⊆ R. In particular, as s1 6= s2, the geodesics D1
def
= D(t,s1) and

D2
def
= D(t,s2) are contained in R. Furthermore, Theorem 4.6 implies that D1 6= D2.
Choose kj to solve Kob(t, sj) and a vector vj tangent to Dj , j = 1, 2 at t. Since

D1 6= D2, it follows from Theorem 4.6 that v1, v2 are not collinear. Since ρ acts as
the identity map on R,

Dρ(t)vj = vj , j = 1, 2.

Hence Dρ(t) is an invertible linear transformation. By the Inverse Function Theo-
rem ρ(G) contains a neighborhood of t in C

2. Since ρ is the identity on its range, ρ
agrees with idG on a nonempty open set. Thus ρ = idG, contrary to our assumption.
Hence R = Dδ. �

5.2. Retracts of D2

The argument used in the preceding section to characterize retractions in G
applies in any domain U in C

2 with the property that, for every nondegenerate
datum δ in U , the solution to Kob(δ) is essentially unique. The bidisc does not
have this property, but nevertheless, a variant of the argument is effective. We shall
exploit the fact that, for datums λ in D

2, the solution of Kob(λ) is not essentially
unique precisely when the solution of Car(λ) is essentially unique. Thereby we shall
obtain known results on retractions of D2 (see [28, 27, 33]) by simple geometric
methods.

Incidentally, the implications of uniqueness and nonuniqueness of solutions of
Carathéodory and Kobayashi problems in many domains (including G) are explored
in [35].

Definition 5.2. Let λ = (λ1, λ2) be a nondegenerate discrete datum in D
2.

Then λ is balanced, of type 1 or of type 2 according as

|(λ11, λ12)| = |(λ21, λ22)|, |(λ11, λ12)| > |(λ21, λ22)| or |(λ11, λ12)| < |(λ21, λ22)|
respectively. λ is unbalanced if λ is of type 1 or type 2.

If λ is a balanced datum in D
2 then the unique geodesic in D

2 that contacts
λ is a balanced disc in the sense of Definition 8.3. It is not hard to see that, for
the nondegenerate datum λ = (λ1, λ2) in D

2, the Kobayashi extremal problem
Kob(λ) has an essentially unique solution if and only if λ is balanced, whereas the
Carathéodory extremal problem Car(λ) has an essentially unique solution if and
only if λ is unbalanced.

Theorem 5.3. A subset R of D2 is a nontrivial retract in D
2 if and only if R

is a complex geodesic in D
2.

Proof. Since R is assumed to be nontrivial, in particular R is not a singleton.
Choose points λ1, λ2 ∈ R with λ1 6= λ2.

If λ = (λ1, λ2) is balanced, then by [2, page 293] the solution to Kob(λ) is
essentially unique. It then follows by the argument in the preceding section that
R = k(D) where k solves Kob(λ).

Now assume that λ is not balanced, say

(5.2) |(λ11, λ12)| > |(λ21, λ22)|.
Let ρ be a retraction of D

2 with ρ(D2) = R. Let f1, f2 : D2 → D be the first
and second co-ordinate functions. Since {f1, f2} constitutes a universal set for the
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Carathéodory problem on D
2, the inequality (5.2) shows that f1 solves Car(λ).

Since λ contacts R and ρ|R is the identity map, it is clear that f1 ◦ ρ also solves
Car(λ). By the essential uniqueness of solutions of Car(λ), there exists m ∈ AutD
such that f1 ◦ ρ = m ◦ f1. Apply this equation to the points λ1, λ2 ∈ R to obtain
the equations

λ11 = m(λ11) and λ12 = m(λ12).

The relation (5.2) shows that λ11 6= λ12, and thus m fixes a pair of distinct points in
D. Hence m = idD, and so

(5.3) f1 ◦ ρ = f1

on D
2. Thus ρ has the form

ρ(λ) = (λ1, ϕ(λ))

for some ϕ ∈ D(D2). Consequently, if for each fixed α ∈ D we define ϕα ∈ D(D) by
the formula,

ϕα(w) = ϕ(α,w), w ∈ D.

For any z ∈ D
2, the equation ρ ◦ ρ = ρ yields the relation

ρ(z1, ϕ(z)) = (z1, ϕ(z)).

Hence

(5.4) ϕ(z) = ϕ(z1, ϕ(z)), z ∈ D
2.

We claim that ϕα is a retraction of D. Indeed, for w ∈ D,

ϕα(ϕα(w)) = ϕ(α, ϕ(α,w))

= ϕ(α,w) (by equation (5.4))

= ϕα(w).

This proves that ϕα is a retraction of D for all α ∈ D.
Now retractions of D are either constant maps or idD. If there exists α0 ∈ D

such that ϕα0
= idD, then by continuity, ϕα = idD for all α in a neighborhood

of α0. But then ρ = idD, which contradicts the assumption that R is nontrivial.
Therefore, ϕα is constant for all α ∈ D.

For each α ∈ D, choose g(α) ∈ D where ϕα(w) = g(α) for all w ∈ D. Then

ρ(λ) = (λ1, ϕ(λ)) = (λ1, ϕλ1
(λ2)) = (λ1, g(λ1))

for all λ1 ∈ D. This proves that if we define k ∈ D
2(D) by the formula k(w) =

(w, g(w)), w ∈ D, then

R = ran ρ = ran k.

Since in addition, f1 ◦ k = idD, it follows that R is a geodesic.
If λ is not balanced and |(λ21, λ22)| > |(λ11, λ12)|, then the reasoning as above,

with the roles of the coordinates reversed, again yields the conclusion that R is a
geodesic. �
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5.3. Geodesics in G are varieties

The relation in equation (5.1) has another valuable application, namely to the
calculation of a quadratic polynomial that vanishes on a prescribed geodesic of G.

Theorem 5.4. For every complex geodesic D in G there exists a polynomial P
of total degree at most 2 such that D = {s ∈ G : P (s) = 0}.

If D is flat then we may choose P (s) = s1−β− β̄s2 for some β ∈ D. The result
therefore follows from the following more detailed statement.

Warning: in the next proposition superscript 2 is used for the square of a
number and for the second component in the same setting. For example, (s2)2 is
the square of the the second component of s = (s1, s2).

Proposition 5.5. Let δ be a nonflat nondegenerate datum in G, let ω ∈ T

be such that Φω solves Car(δ) and let k ∈ G(D) satisfy Φω ◦ k = idD. Then k2 is
expressible in the form

(5.5) k2 =
q∼

q

for some polynomial q of degree 2 that does not vanish on D
−, where q∼(z) =

z2q(1/z̄).
Let

(5.6) P (s) = (2− ωs1)2
q̃ ◦ Φω(s)− s2q ◦ Φω(s)

ω2s2 − 1
.

Then

(1) P is a polynomial of total degree 2 that vanishes on Dδ;
(2) P is irreducible;

(3) P (s) = (s2)2P (s1/s2, 1/s2) and
(4) Dδ = {s ∈ G : P (s) = 0}.

Proof. Proposition A.8 in the Appendix contains the statement that k2 is
expressible in the form (5.5) for some polynomial q of degree at most 2 that does
not vanish on D

−. Since δ is not flat, deg k2 = 2, which is to say that deg(q∼) = 2.
By equation (5.1), k◦Φω is a retraction onto ran k = Dδ. Therefore, for s ∈ Dδ,

(k ◦ Φω)(s) = s.

Writing k = (k1, k2) and s = (s1, s2), we obtain the equations

(5.7) k1 ◦ Φω(s) = s1 and k2 ◦ Φω(s) = s2

for all s ∈ Dδ.
By Proposition A.8, k2(ω̄) = ω̄2, and therefore

(5.8) q∼(ω̄) = ω̄2q(ω̄).

Substitute z = Φω(s) into equation (5.5) and use the second equation in (5.7) to
obtain

(5.9) q∼ ◦ Φω(s) = s2q ◦ Φω(s)

for all s ∈ Dδ. By virtue of equation (3.3), if Q∼ and Q are defined by the formulas

(5.10) Q∼(s) = (2− ωs1)2q∼ ◦ Φω(s) and Q(s) = (2− ωs1)2q ◦ Φω(s),
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then Q∼ and Q are quadratic polynomials in two variables, and equation (5.9)
becomes

(5.11) Q∼(s) = s2Q(s) for all s ∈ Dδ.

Also, note that if s = (s1, ω̄2) and s1 6= 2ω̄, then

Φω(s) =
2ωω̄2 − s1

2− ωs1
= ω̄,

so that equations (5.10) and (5.8) imply that

(5.12) Q∼(s) = (2− ωs1)2q∼(ω̄) = (2− ωs1)2ω̄2q(ω̄) = ω̄2Q(s).

Equations (5.11) and (5.12) together imply that

(5.13) Q∼(s)− s2Q(s)

is a polynomial that vanishes on both Dδ and {s : s2 = ω̄2}. It follows that

(5.14) P (s) =
Q∼(s)− s2Q(s)

ω2s2 − 1

is a well-defined polynomial that vanishes on Dδ. From equation (5.14) one can
derive an explicit formula for P in terms of q:

P (s) = −q(ω̄)(s1)2 + 2q′(ω̄)s1s2 − 2q′′(0)(s2)2

+ 2q′(ω̄)s1 + 4(2Re q(0)− q(ω̄))s2 − 2q′′(0).(5.15)

Note that, by equation (5.8), q(ω̄) is real.
P has total degree 2, and so (1) holds.

(2) Suppose P is not irreducible. Since P has degree 2, the zero set of P is the
union of two complex lines. If Dδ is contained in only one of the complex lines
then, by Proposition 4.10, δ is a flat datum, contrary to hypothesis. Hence both
lines meet Dδ. Since Dδ is connected, Dδ contains the common point, k(z0) say,
of the two lines. Thus both lines have the complex tangent k′(z0) at k(z0), and so
the two lines coincide. Again Dδ is contained in a complex line, and so Proposition
4.10 applies again to show that δ is a flat datum, contrary to hypothesis. Thus P
is irreducible.

(3) Note that, for any s ∈ G,

Φω

(

s1

s2
,
1

s2

)

= 1/Φω(s).

Thus

P (s1/s2, 1/s2) = (2− ωs1/s2)2
q̃ ◦ Φω

(

s1

s2
, 1

s2

)

− 1/s2 q ◦ Φω

(

s1

s2
, 1

s2

)

ω2/s2 − 1

= (2− ωs1/s2)2
s2 q̃(1/Φω(s))− q(1/Φω(s))

ω2 − s2
.

By definition, q∼(z) = z2q(1/z̄), hence

q̃(1/Φω(s)) =
q ◦ Φω(s)

Φω(s)2
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and

q(1/Φω(s)) =
q̃ ◦ Φω(s)

Φω(s)2
.

Therefore

(s2)2P (s1/s2, 1/s2) =
(2ωs2 − s1)2

1− ω2s2

(

s2 q̃(1/Φω(s))− q(1/Φω(s))
)

=
(2ωs2 − s1)2

1− ω2s2

(

s2
q ◦ Φω(s)

Φω(s)2
− q̃ ◦ Φω(s)

Φω(s)2

)

= P (s).

Statement (3) holds.

(4) From statement (1), Dδ ⊂ P−1({0}). It is easy to see from the definition (5.6)
of P that, for every s ∈ G,

P (s) = (2− ωs1)2
q̃ ◦ Φω(s)− s2q ◦ Φω(s)

ω2s2 − 1

=
(2− ωs1)2

ω2s2 − 1

[

q̃ ◦ Φω(s)

q ◦ Φω(s)
− s2

]

q ◦ Φω(s)

=
(2− ωs1)2

ω2s2 − 1
q ◦ Φω(s)

[

k2 ◦ Φω(s)− s2
]

.

Recall that the polynomial q does not vanish on D
−, and (2−ωs1)2

ωs2−1 6= 0 for all s ∈ G.

By assumption, k ∈ G(D) satisfies Φω ◦k = idD. We claim that, for each s ∈ G,
the equation k2 ◦ Φω(s) = s2 implies that k1 ◦ Φω(s) = s1. For every z ∈ D,

2ωk2(z)− k1(z)

2− ωk2(z)
= z.

Hence
2ωk2(Φω(s))− k1(Φω(s))

2− ωk2(Φω(s))
= Φω(s)

and, since k2 ◦ Φω(s) = s2, we have

2ωs2 − k1(Φω(s))

2− ωs2
= Φω(s).

This implies that

2ωs2 − k1(Φω(s)) = 2ωs2 − s1, and so k1 ◦ Φω(s) = s1.

Therefore

{s ∈ G : P (s) = 0} = {s ∈ G : k2 ◦ Φω(s) = s2}
= {s ∈ G : k2 ◦ Φω(s) = s2 and k1 ◦ Φω(s) = s1}.

Thus, by the equations (5.7), Dδ = {s ∈ G : P (s) = 0}. �

Lemma 5.6. Let δ be a balanced datum in G, let Φω1
and Φω2

solve Car(δ) with
ω1 6= ω2, and let k solve Kob(δ). Choose m1, m2 ∈ AutD such that

m1 ◦ Φω1
◦ k = idD and m2 ◦ Φω2

◦ k = idD,

and then let C1 and C2 be defined by

C1 = m1 ◦ Φω1
and C2 = m2 ◦ Φω2

.
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There exists a nonzero constant c such that

C1(s)− C2(s) =
cPδ(s)

(2− ω1s1)(2− ω2s1)

for all s ∈ G, where Pδ is defined by equation (5.6).

Proof. Simply observe that

(2− ω1s
1)(2− ω2s

1)(C1(s)− C2(s))

is a quadratic polynomial that vanishes on ran k and that

ran k = Dδ = {s ∈ G : Pδ(s) = 0}.
�





CHAPTER 6

Purely unbalanced and exceptional datums in G

The most delicate aspect of the geometric characterization of types of datum
in Theorem 7.1 below is the distinction between purely unbalanced and exceptional
datums, depending as it does on whether or not a certain second derivative is zero.
In this chapter we calculate the relevant second derivatives.

Let us recall the following elegant parametrization of solutions to Kob(δ) due
to Pflug and Zwonek [41, Theorem 2 part (ii)].

Proposition 6.1. Let δ be a nondegenerate datum in G and assume that Dδ ∩
R = ∅. If k solves Kob(δ) then there exist m1, m2 ∈ AutD such that

(6.1) k = (m1 +m2,m1m2).

Proposition 6.2. Let δ be a nondegenerate datum in G and suppose that
D−

δ ∩R− is the singleton set {(2ω̄0, ω̄
2
0)} for some ω0 ∈ T. Then

(6.2)
d2

dt2
ρδ(e

it)
∣

∣

eit=ω0
= 0.

Proof. Let k solve Kob(δ), so that there is a datum ζ in D such that k(ζ) = δ
and |ζ| = |δ|kob. Then k(D) = Dδ, k(D

−) = D−
δ and Φω0

solves Car(δ) by Lemma
4.16.

Since k has no royal nodes in D, by Proposition 6.1, k = (m1 + m2,m1m2)
for some m1,m2 ∈ AutD. Replace k by k ◦ m−1

1 : then we may write k(z) =
(z +m(z), zm(z)), where m = cBα for some c ∈ T and α ∈ D. Consider any royal
node τ ∈ D

− of k. The royal nodes of k are the fixed points of m in D
−, and so,

since k(τ) ∈ E,

k(τ) = (2τ, τ2) = (2ω̄0, ω̄
2
0).

Thus τ = ω̄0. Hence k has the unique royal node ω̄0, and so m has the unique fixed
point ω̄0, and this fixed point lies in T.

It is elementary that, for the function m = cBα,

(1) m has a unique fixed point which lies in T if and only if c 6= 1 and |α| = 1
2 |1−c|,

and
(2) m has two fixed points which lie in T if and only if |α| > 1

2 |1− c|.
For our chosen m, alternative (1) holds, and so |α| = 1

2 |1− c| > 0.

For 1 ≤ r < |α|−1 let mr = cBrα. Then mr ∈ AutD and m1 = m. For r > 1,
since |rα| > 1

2 |1 − c|, mr has two fixed points lying in T. These fixed points are
easily seen to be

τ±(r) =
1− c±

√

(1− c)2 + 4r2|α|2c
2rᾱ

.

27
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When r = 1 the discriminant in this formula is zero, since m1 has a unique fixed
point, and so (1− c)2 = −4|α|2c. Hence

(6.3) τ±(r) =
1− c

2rᾱ
(1± i

√

r2 − 1) ∈ T.

These two fixed points are distinct when r > 1 and coincide with τ when r = 1.
Let

(6.4) kr(z) = (z +mr(z), zmr(z))

for z ∈ D, 1 ≤ r < |α|−1. Then kr is a rational Γ-inner function of degree 2 having
royal nodes τ±(r) ∈ T. Since k1r and k2r have the same denominator, Φω ◦ kr is also
rational of degree at most 2, for any ω. Moreover, Φω◦kr is inner, by Proposition A.3
in the Appendix. When ω = τ±(r), the numerator and denominator of Φω ◦ kr(z)
both vanish at z = τ±(r). Thus cancellation occurs, and so Φ

τ±(r)
◦ kr has degree

1. Thus kr has the left inverse Φ
τ±(r)

modulo AutD, which is to say that kr is a

complex C-geodesic of G.
Let δr = kr(ζ), 1 ≤ r < |α|−1. Then kr solves Kob(δr) and Φ

τ±(r)
solves

Car(δr). Hence the point τ±(r) is a maximizer for ρδr , and consequently

(6.5)
d

dt
ρδr (e

it)
∣

∣

eit=τ±(r)
= 0.

For 1 ≤ r < |α|−1 define Fr : T → R by

Fr(ω) =
d

dt
ρδr (e

it)
∣

∣

eit=ω

=
d

dt
|Φeit(δr)|2

∣

∣

eit=ω
.

By equation (6.5),

(6.6) Fr(τ±(r)) = 0.

From the formula (3.2) for Φω it is easy to see that

|Φω(δr)| = |gr(ω)| for ω ∈ T

for some fractional quadratic function gr in which the coefficients depend contin-
uously (indeed, polynomially) on r. It follows that gr → g1 in C∞(T) as r → 1.
Now

Fr(ω) =
d

dt
|gr(eit)|2

∣

∣

eit=ω

= −2 Im
(

ωg′r(ω)gr(ω)
)

.

Consequently Fr → F1 in C∞(T) as r → 1.
Let

Gr(t) = Fr(e
it)

for t ∈ R and write

τ = eit0 , τ±(r) = eit±(r),

where t±(r) is close to t0 for r close to 1. Our goal (6.2) is to show that G′
1(−t0) = 0.

We have, for any t ∈ R,

Gr(t) = Gr(−t0) + (t+ t0)G
′
r(−t0) + 1

2 (t+ t0)
2G′′

r (θ)



6. PURELY UNBALANCED AND EXCEPTIONAL DATUMS IN G 29

for some θ = θ(r, t) ∈ R. By equation (6.6), Gr(−t±(r)) = 0. Therefore

0 = Gr(−t+(r))−Gr(−t−(r))
= (t−(r)− t+(r))G

′
r(−t0) +A+(r)(t0 − t+(r))

2 +A−(r)(t0 − t−(r))
2

for some real numbers A±(r) which are uniformly bounded for all r, t, say byK > 0.
Thus, for r > 1,

|G′
r(−t0)| ≤ K

(t0 − t+(r))
2 + (t0 − t−(r))

2

|t−(r)− t+(r)|
Now |t0−t±(r)| and |t+(r)−t−(r)| are asymptotic to |τ−τ±(r)| and |τ+(r)−τ−(r)|
respectively as r → 1, and from equation (6.3) it is easy to see that all these
quantities are asymptotic to

√
r − 1. It follows that G′

r(−t0) → 0 as r → 1. Since
Gr → G1 with respect to the C1 norm, it follows that G′

1(−t0) = 0, as required. �

We shall need the following calculation.

Lemma 6.3. If a datum δ in G contacts R then Φω(δ) is independent of ω ∈ T.

Proof. If δ is discrete it has the form (s1, s2) where sj = (2zj , z
2
j ) for some

zj ∈ D, j = 1, 2. One then finds that Φω(δ) = (−z1,−z2) for all ω ∈ T. If δ is
infinitesimal then δ = (s1, v) where s1 = (2z1, z

2
1) for some z1 ∈ D and v = λ(1, z1)

for some λ 6= 0. A straightforward calculation (more details are in the proof of
Theorem A.15) yields

Φω(δ) = (−z1,− 1
2λ).

In either case, Φω(δ) does not depend on ω. �

For every m ∈ AutD we define a map m̃ ∈ G(G) by

(6.7) m̃(z + w, zw) = (m(z) +m(w),m(z)m(w)) for all z, w ∈ D.

Every automorphism of G is of the form m̃ for some m ∈ AutD, by Theorem A.11.
We use the notation f∨(z) = f(z̄) for any function f on D.

Lemma 6.4. Let m = cBα ∈ AutD for some c ∈ T and α ∈ D. For any ω ∈ T

(6.8) Φω ◦ m̃ = m1 ◦ Φ(m∨)−1(ω)

where m1 = cB−α. Consequently, for any nondegenerate datum δ in G and any
m ∈ AutD,

(6.9) ρm̃(δ) = ρδ ◦ (m∨)−1.

If m(z) = cBα(z) then (m∨)−1(ω) = B−ᾱ(cω).

Proof. The identity (6.8) is a matter of verification. If ω1 = (m∨)−1(ω) then

ρm̃(δ)(ω) = |Φω ◦ m̃(δ)|2 = |m1 ◦ Φω1
(δ)|2 = |Φω1

(δ)|2 = ρδ(ω1) = ρδ ◦ (m∨)−1(ω).

�

Lemma 6.5. Let δ be a nondegenerate datum in G and let m = cBα ∈ AutD
for some c ∈ T and α ∈ D. If ρδ attains its maximum over T at ω0 then ρm̃(δ)

attains its maximum at m∨(ω0) and

(6.10)
d2

dt2
ρm̃(δ)(e

it)
∣

∣

eit=m∨(ω0)
=

|1− αω0|4
(1− |α|2)2

d2

dt2
ρδ(e

it)
∣

∣

eit=ω0
.
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Proof. It is immediate from equation (6.9) that ρm̃(δ) attains its maximum
at m∨(ω0).

Let ω0 = eit0 and define

rδ(t) = ρδ(e
it)

for t ∈ R. Since rδ attains its maximum over R at t0, we have

(6.11) r′δ(t0) = 0.

Let τ(·) be defined as a smooth function of t in a neighborhood of t0 by

eiτ(t) = (m∨)−1(eit) =
ceit + ᾱ

1 + cαeit
.

Then

(6.12) τ ′(t) =
1− |α|2

|1 + cαeit|2 .

From equation (6.9) we have

rm̃(δ)(t) = ρm̃(δ)(e
it) = ρδ ◦ (m∨)−1(eit) = ρδ(e

iτ(t)) = rδ ◦ τ(t).
Hence, by equation (6.12), for all t ∈ R,

r′m̃(δ)(t) = r′δ ◦ τ(t)τ ′(t) = r′δ ◦ τ(t)
1− |α|2

|1 + cαeit|2 .

Differentiate again to obtain

(6.13) r′′m̃(δ)(t) =
1− |α|2

|1 + cαeit|4
(

|1 + cαeit|2 d
dt
r′δ ◦ τ(t)− r′δ ◦ τ(t)

d

dt
|1 + cαeit|2

)

.

Note that

eit = m∨(ω0) ⇔ (m∨)−1(eit) = ω0 ⇔ eiτ(t) = eit0 .

Let t1 be such that τ(t1) = t0. Then e
it1 = m∨(ω0) and, by equation (6.11),

r′δ ◦ τ(t1) = r′δ(t0) = 0.

Hence the final term on the right hand side of equation (6.13) vanishes when t = t1,
and we have

r′′m̃(δ)(t1) =
1− |α|2

|1 + cαeit1 |2
d

dt
r′δ ◦ τ(t)

∣

∣

t=t1

=
1− |α|2

|1 + cαm∨(ω0)|2
r′′δ ◦ τ(t1)τ ′(t1)

=
(1− |α|2)2

|1 + cαm∨(ω0)|4
r′′δ (t0).(6.14)

Now

1 + cαm∨(ω0) =
1− |α|2
1− αω0

,

and so equation (6.14) becomes

r′′m̃(δ)(t1) =
|1− αω0|4
(1− |α|2)2 r

′′
δ (t0).

The last equation is equivalent to equation (6.10). �
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Lemma 6.6. If D is a complex geodesic in G such that

(6.15) D− ∩R− = {(0, 0), (2, 1)}

then D = kr(D) for some r ∈ (0, 1), where

(6.16) kr(z) =
1

1− rz
(2(1− r)z, z(z − r)) for z ∈ D.

Proof. Let δ be a nondegenerate datum that contacts D and let k solve
Kob(δ). Then D = k(D). Since (0, 0) ∈ k(D) and (2, 1) ∈ k(D−) we may as-
sume (composing k with an automorphism of D if necessary) that k(0) = (0, 0) and
k(1) = (2, 1). By [41, Remark 2], k can be written in the form

k(λ) =
1

1− ᾱλ

(

2τ(1− |α|)λ, τ2λ(λ− α)
)

for some τ ∈ T and α ∈ D. Since k(1) = (2, 1) we have

τ(1− |α|)
1− ᾱ

= 1 =
τ2(1− α)

1− ᾱ
.

It follows that 1− |α| = |1− α|, and so 0 ≤ α < 1 and τ = 1. Thus

k(λ) =
1

1− αλ
(2(1− α)λ, λ(λ− α)) .

If α = 0 then k(D) = R, contrary to the hypothesis (6.15). Thus 0 < α < 1. �

Proposition 6.7. If δ is a nondegenerate datum in G such that D−
δ ∩ R−

consists of two points, one lying in R and one lying in the boundary ∂R of R, then

d2

dt2
ρδ(e

it)
∣

∣

eit=1
< 0.

Proof. First consider the case that

(6.17) D−
δ ∩R− = {(0, 0), (2, 1)}.

Let k solve Kob(δ). By Lemma 6.6, k = kr as in equation (6.16) for some r ∈ (0, 1).
Suppose that δ is a discrete datum. Then δ = k(ζ) for some discrete datum ζ in
D, say ζ = (z1, z2) for some distinct points z1, z2 ∈ D. Let ω = eit throughout the
proof. Observe that

Φω ◦ k(z) = ωz
z − γ(ω)

1− γ(ω)z

where

(6.18) γ(ω) = r1 + (1− r)ω.

Here γ ∈ D if ω ∈ T \ {1}, while γ(1) = 1 and Φ1 ◦ k(z) = −ωz. Moreover

(6.19) |γ(ω)|2 = 1− 2r(1− r)(1− cos t).
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We wish to differentiate with repect to t the function

1− ρδ(e
it) = 1− |Φω(δ)|2

= 1− |Φω ◦ k(ζ)|2

= 1−
∣

∣

∣

∣

∣

Φω ◦ k(z1)− Φω ◦ k(z2)
1− Φω ◦ k(z2)Φω ◦ k(z1)

∣

∣

∣

∣

∣

2

=
(1− |Φω ◦ k(z1)|2)(1− |Φω ◦ k(z2)|2)

|1− Φω ◦ k(z2)Φω ◦ k(z1)|2
.(6.20)

We have

1− Φω ◦ k(z2)Φω ◦ k(z1) = (1− z̄2z1)

(

1 +
z̄2z1(1− |γ|2)

(1− γ̄z̄2)(1− γz1)

)

(6.21)

=
(1− z̄2z1)(1− γ̄z̄2 − γz1 + z̄2z1)

(1− γ̄z̄2)(1− γz1)
.(6.22)

By equation (6.20),

log(1− ρδ(ω)) =
1
2 log(1− |Φω ◦ k(z1)|2)2 + 1

2 log(1− |Φω ◦ k(z2)|2)2

− log |1− Φω ◦ k(z2)Φω ◦ k(z1)|2.(6.23)

Consequently

(6.24)
d
dt
(1− ρδ(ω))

1− ρδ(ω)
= 1

2 I +
1
2 II− III

where

I =
d
dt
(1− |Φω ◦ k(z1)|2)2
(1− |Φω ◦ k(z1)|2)2

,

II =
d
dt
(1− |Φω ◦ k(z2)|2)2
(1− |Φω ◦ k(z2)|2)2

,(6.25)

III =
d
dt
|1− Φω ◦ k(z2)Φω ◦ k(z1)|2

|1− Φω ◦ k(z2)Φω ◦ k(z1)|2
.

Let us calculate III. From equations (6.18) and (6.19) we have

(6.26)
dγ

dt
= i(1− r)ω,

d|γ|2
dt

= −2r(1− r) sin t.

Thus, on differentiating equation (6.21) we obtain

d

dt
(1− Φω ◦ k(z2)Φω ◦ k(z1)) =

2r(1− r)z̄2z1(1− z̄2z1)

(1− γ̄z̄2)2(1− γz1)2)
×

(6.27)

((1− z̄2)(1− z1) sin t+ i(1− r)(z̄2 − z1)(1− cos t)) .

On combining equations (6.27) and (6.22) we find that

(6.28)
d

dt
|1− Φω ◦ k(z2)Φω ◦ k(z1)|2 =

4r(1− r)|1− z̄2z1|2
|1− γz1|2|1− γz2|2

ReA(t, z1, z2)



6. PURELY UNBALANCED AND EXCEPTIONAL DATUMS IN G 33

where

A(t, z1, z2) =
z̄2z1(1− γ̄z̄1 − γz2 + z̄1z2)

(1− γ̄z̄2)(1− γz1)
×

((1− z̄2)(1− z1) sin t+ i(1− r)(z̄2 − z1)(1− cos t)) .(6.29)

Now use equations (6.22) and (6.29) to deduce that
(6.30)

III = 4r(1− r)Re

{

z̄2z1 ((1− z̄2)(1− z1) sin t+ i(1− r)(z̄2 − z1)(1− cos t))

(1− γ̄z̄2 − γz1 + z̄2z1)(1− γ̄z̄2)(1− γz1)

}

.

By equation (6.24),

d

dt
ρδ(ω) = −(1− ρδ(ω))(

1
2 I +

1
2 II− III).

We shall differentiate this equation and put t = 0, ω = 1. Since ω = 1 is a
maximizer for ρδ, the point t = 0 is a critical point of ρδ(e

it), and ρδ(1) = |δ|2car.
Thus

(6.31)
d2

dt2
ρδ(ω)

∣

∣

t=0
= −(1− |δ|2car)

d

dt
( 12 I +

1
2 II− III)

∣

∣

t=0
.

In view of equations (6.18) and (6.26), at the point t = 0,

γ = 1,
dγ

dt
= i(1− r) and

d|γ|2
dt

= 0.

Hence

d

dt
III
∣

∣

t=0
= 4r(1− r)Re

{

z̄2z1
d

dt

(1− z̄2)(1− z1) sin t+ i(1− r)(z̄2 − z1)(1− cos t)

(1− γ̄z̄2 − γz1 + z̄2z1)(1− γ̄z̄2)(1− γz1)

}

∣

∣

t=0

= 4r(1− r)Re
z̄2z1

(1− z̄2)(1− z1)
.

Since I, II are the special cases of III obtained when z2 = z1 and z1 = z2
respectively, it follows that

d

dt
I
∣

∣

t=0
=

4r(1− r)|z1|2
|1− z1|2

,

d

dt
II
∣

∣

t=0
=

4r(1− r)|z2|2
|1− z2|2

.

By equation (6.31),

d2

dt2
ρδ(ω)

∣

∣

t=0
= −(1− |δ|2car)2r(1− r)

( |z1|2
|1− z1|2

+
|z2|2

|1− z2|2
− 2Re

z̄2z1
(1− z̄2)(1− z1)

)

= −(1− |δ|2car)2r(1− r)

∣

∣

∣

∣

z1
1− z1

− z2
1− z2

∣

∣

∣

∣

2

< 0.

We have proved Proposition 6.7 for discrete datums δ in the case that

D−
δ ∩R− = {(0, 0), (2, 1)}.

Now consider the case that δ is an infinitesimal datum. Then δ = k(ζ) for some
infinitesimal datum ζ ∈ TD, say ζ = (z, v) where v 6= 0. We find that

Φω ◦ k(ζ) =
(

ωzBγ̄(z),−ωv
γ̄ − 2z + γz2

(1− γz)2

)
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where γ is given by equation (6.18) and Bγ̄ is a Blaschke factor. Therefore

|Φω ◦ k(ζ)| = |v| |γ̄ − 2z + γz2|
|1− γz|2(1− |zBγ̄(z)|2)

=
|v| |γ̄ − 2z + γz2|

(1− |z|2)(1− 2Re(γz) + |z|2) .

Hence

log ρδ(ω) = log |Φω ◦ k(ζ)|2

= 2 log
|v|

1− |z|2 + log |γ̄ − 2z + γz2|2 − 2 log(1− 2Re(γz) + |z|2),

and so

(6.32)
d

dt
ρδ(ω) = ρδ(ω)(I− 2II)

where

I =
d
dt
|γ̄ − 2z + γz2|2
|γ̄ − 2z + γz2|2 ,

II =
d
dt
(1− 2Re(γz) + |z|2)
1− 2Re(γz) + |z|2 .

Now, by equations (6.26),

(6.33)
d

dt
(γ̄ − 2z + γz2) = −i(1− r)(ω̄ − ωz2),

and therefore

(6.34) I = 2(1− r) Im
ω̄ − ωz2

γ̄ − 2z + γz2
.

Likewise

(6.35) II =
2(1− r) Im(ωz)

1− 2Re(γz) + |z|2 .

Differentiate equation (6.32) and set t = 0. Since 0 is a critical point of ρδ(e
it)

and ρδ(1) = |δ|2car,

(6.36)
d2

dt2
ρδ(ω)

∣

∣

t=0
= |δ|2car

(

d

dt
I− 2

d

dt
II

)

∣

∣

t=0
.

From equations (6.34), (6.33) and (6.26) one has

d

dt
I
∣

∣

t=0
= −2(1− r)Re

−2z + r(1 + z)2

(1− z)2
,

while
d

dt
II
∣

∣

t=0
= 2(1− r) Im

d

dt

ωz

1− 2Re(γz) + |z|2
∣

∣

t=0

=
2(1− r)

|1− z|4 {|1− z|2 Re z − 2(1− r)(Im z)2}.

Hence, by equation (6.36),

d2

dt2
ρδ(ω)

∣

∣

t=0
= −2(1− r)|δ|2car(III + rIV)
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where

III = Re

{

2z

|1− z|2 − 2z

(1− z)2

}

− 4(Im z)2

|1− z|4
= 0,

IV = Re
(1 + z)2

(1− z)2
+

4(Im z)2

|1− z|4

=
(1− |z|2)2
|1− z|4 .

Thus

d2

dt2
ρδ(ω)

∣

∣

t=0
= −2r(1− r)|δ|2car

(1− |z|2)2
|1− z|4

< 0.

We have proved the conclusion of the Proposition in the case that D−
δ ∩R− =

{(0, 0), (2, 1)}. Now consider the general case: suppose that

(6.37) D−
δ ∩R− = {(2α, α2), (2ω̄0, ω̄

2
0)}

for some α ∈ D, ω0 ∈ T. Let

m = Bα(ω̄0)Bα ∈ AutD.

Since m̃ is an automorphism of G and δ contacts Dδ, the datum m̃ contacts m̃(Dδ),
and therefore

m̃(D−
δ ) = D−

m̃(δ), m̃(R−) = R−

and so
m̃(D−

δ ∩R−) = D−
m̃(δ) ∩R−.

Hence, in view of the equation (6.37),

D−
m̃(δ) ∩R− = m̃({(2α, α2), (2ω̄0, ω̄

2
0)}) = {(0, 0), (2, 1)}.

By the above special case,

d2

dt2
ρm̃(δ)(e

it)
∣

∣

eit=1
< 0.

It follows from Lemma 6.5 that

d2

dt2
ρδ(e

it)
∣

∣

eit=ω0
< 0.

�





CHAPTER 7

A geometric classification of geodesics in G

All geodesics in a domain U are coequal for Euclidean geometry, in the sense
that they are all properly embedded analytic discs, and so conformally equivalent.
However they can differ from the point of view of the intrinsic geometry of U . Say
two geodesics D1 and D2 are equivalent in U (written D1 ∼ D2) if there exists
an automorphism τ of U such that τ(D1) = D2. In the case when U = B, the
unit ball in C

n, the group of automorphisms acts transitively on the set of complex
geodesics, and so there is a single equivalence class. In G, on the other hand, we
identify five distinct species of geodesic, and three of these five species consist of
one-parameter families of pairwise inequivalent geodesics (Theorem 7.8), while the
remaining two species comprise a single equivalence class.

In this chapter we prove a geometric characterization of the type of a datum δ
(in the sense of Definition 3.4) in terms of the intersection of the complex geodesic
Dδ with the royal variety (more precisely, with the intersection of the corresponding
closures). The result is Theorem 7.1. It has two important consequences: firstly, the
type of a datum is preserved by automorphisms of G (Corollary 7.2), and secondly,
if two datums contact the same geodesic then they have the same type (Corollary
7.3). The correspondence between nondegenerate datums and geodesics therefore
permits a classification of geodesics too into five types. Recall the Pentachotomy
Theorem 3.6, which states that, for a nondegenerate datum δ in G, exactly one of
the cases (1) to (5) in Definition 3.4 holds.

The definitions of the five types of datum are not, at a first glance, geometric
in character: it is not immediately apparent that types are preserved by automor-
phisms of G. However, the following theorem characterizes types of datums purely
in terms of the geometry of G.

Theorem 7.1. Let δ be a nondegenerate datum in G and let E = D−
δ ∩ R−.

Then

(1) E consists of two points, one lying in R and one lying in ∂R ⇐⇒ δ is purely
unbalanced;

(2) E consists of a single point that lies in ∂R ⇐⇒ δ is exceptional;
(3) E consists of two points, both lying in ∂R ⇐⇒ δ is purely balanced;
(4) E consists of a single point that lies in R ⇐⇒ δ is flat;
(5) E = R− ⇐⇒ δ is royal.

Proof. By Theorem 4.6, there exists a solution k of Kob(δ) and Dδ = k(D).
By Theorem A.7, this k is a rational Γ-inner function and k2 is a Blaschke product
of degree 1 or 2. Since k is Γ-inner, k(T) ⊆ bΓ.

If k(D−) 6= R− ∩ Γ, by Theorem 4.14, k(D−) meets R− exactly deg(k) times,
that is, once or twice, counted with multiplicity.

37
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(4) Suppose that E consists of a single point s1 = k(z1) that lies in R (thus in
G rather than ∂G). Now z1 is a simple zero of the rational function R = (k1)2−4k2

in D. For suppose it has multiplicity greater than 1. By [10, Proposition 3.5], the
zeros of R are symmetric with respect to T, and it follows that R has at least
4 zeros lying off T. However, since deg(k) ≤ 2, R has degree at most 4, and so
deg(R) = 4, deg(k) = 2 and k has no royal nodes in T. This contradicts the fact
(see Proposition 4.17) that any complex C-geodesic of degree 2 has a royal node
in T. Hence z1 is the unique royal node of k and is simple. By Theorem 4.14, the
complex C-geodesic k has degree 1. Thus there is a flat complex C-geodesic that
solves Kob(δ). By Proposition 4.11, δ is a flat datum.

Conversely, suppose δ is a flat datum. By Proposition 4.11, there is a flat com-
plex C-geodesic, which has degree 1, that solves Kob(δ). By Theorem 4.14, k has
exactly one royal node, counted according to multiplicity. However, by Proposition
4.10, any flat complex C-geodesic has the form fβ ◦m for some β ∈ D, m ∈ AutD
and so has a royal node in D, by Proposition 7.7. Hence k has a single royal node,
which lies in D, and so E consists of a single point that lies in R. The equivalence
(4) is proved.

(5) Suppose E = R−. Then R− = D−
δ ∩R− and so R− ⊆ D−

δ = k(D−). Thus
the holomorphic function (k1)2 − 4k2 has uncountably many zeros in D, and so
vanishes identically. Thus Dδ = R, and so δ contacts R. By Lemma 6.3, Φω(δ)
is independent of ω. Thus ρδ is constant on T, and so δ is either flat or royal.
However, by statement (4), δ is not flat, and so δ is royal.

Conversely, suppose that δ is royal: ρδ is constant on T and C(s) = 1
2s

1 solves
Car(δ). Thus Φω solves Car(δ) for all ω ∈ T.

Define h ∈ G(D) by h(z) = (2z, z2). Then C ◦ h = idD. We claim that there
exists a datum ζ in D such that h(ζ) = δ. In the case that δ is discrete, say
δ = (s1, s2), Theorem A.14 asserts that s1 and s2 either both lie in R or both
lie in {(β + β̄z, z) : z ∈ D} for some β ∈ D. If the second alternative holds then
C1(s) = s2 is easily seen to solve Car(δ), and so δ is both flat and royal, contrary
to Theorem 3.6. Thus s1, s2 both lie in R, so that s1 = h(z1), s2 = h(z2) for some
z1, z2 ∈ D. Hence δ = h(ζ) where ζ = (z1, z2).

In the case that δ is infinitesimal, say δ = (s1, v), Theorem A.15 asserts that
either (a) there exists z1 ∈ D such that s1 = (2z1, z

2
1) and v is collinear with (1, z1),

or (b) there exist β, z1 ∈ D such that s1 = (β + β̄z1, z1) and v is collinear with
(β̄, 1), say v = c(β̄, 1), c 6= 0.

We claim that (b) does not hold. For suppose it does. Let η be the datum
(z1, c) in D and let C1(s) = s2. Then h(η) = δ and C1 ◦ h = idD. It follows that
C1 solves Car(δ), and therefore δ is both royal and flat, again contrary to Theorem
3.6. Hence (a) holds. Now, if ζ is the datum (z1,

1
2c) in D then h(ζ) = δ.

Thus, in either case, there is a datum ζ in D such that h(ζ) = δ. By Lemma
3.1, since C ◦ h = idD, it follows that h solves Kob(δ). Hence Dδ = h(D) = R, and
so E = R−. Thus the equivalence (5) holds.

(3) Suppose E consists of two points, both in ∂R. If deg(k) = 1 then, as
is shown in the proof of (4) above, δ is flat and hence E ∩ ∂R = ∅, contrary to
hypothesis. Thus deg(k) = 2. By Lemma 4.16, ρδ has exactly two maximizers in
T, which is to say that δ is purely balanced.
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Conversely, suppose that δ is purely balanced, so that ρδ has exactly two max-
imizers, say ω1 6= ω2 in T. Then once again δ is not flat and so deg(k) = 2. By
Lemma 4.16,

D−
δ ∩ ∂R = k(D)− ∩ ∂R = {(2ω̄1, ω̄

2
1), (2ω̄2, ω̄

2
2)}.

Hence E contains two distinct points in ∂R. Since k has exactly 2 royal nodes, by
Theorem 4.14, it follows that k has no royal points inG, and so E = {(2ω̄1, ω̄

2
1), (2ω̄2, ω̄

2
2)}.

Thus the equivalence (3) holds.

(1) Suppose that E consists of two points, one in R and one, say (2ω̄0, ω̄
2
0),

in ∂R. By statement (4) above, δ is not flat and hence, by Propositions 4.11 and
4.10, deg(k) = 2. By Lemma 4.16, ρδ has the unique maximizer ω0 in T, and by
Proposition 6.7,

(7.1)
d2

dt2
ρδ(e

it)
∣

∣

eit=ω0
< 0.

By definition, δ is purely unbalanced.
Conversely, suppose that δ is purely unbalanced, so that ρδ has a unique max-

imizer, say ω0 in T, and the inequality (7.1) holds. By Proposition 6.2, E 6=
{(2ω̄0, ω̄

2
0)}. Thus k has a second royal node z0 ∈ D

− such that k(z0) 6= (2ω̄0, ω̄
2
0).

If z0 ∈ T then k(z0) ∈ ∂R and, by Lemma 4.16, ρδ has a second maximizer in T,
contrary to the assumption that δ is purely unbalanced. Hence z0 ∈ D, so that
k(z0) ∈ R. Thus E contains two points, one in R and one in ∂R. Since k has
at most two royal nodes, by Theorem 4.14, E consists of these two points. The
equivalence (1) is proved.

(2) Since deg(k) is one or two, by Theorem 4.14, either k(D) = R or k has
one or two royal nodes. There are thus five possibilities for E, as described in the
statements (1)-(5). Thus E consists of a single point lying in ∂R if and only if
E is not of the forms described in statements (1), (3), (4) and (5). Consequently
E consists of a single point lying in ∂R if and only if δ is not purely unbalanced,
purely balanced, flat or royal, which in turn is so if and only if δ is exceptional, by
Theorem 3.6. �

Corollary 7.2. The type of a datum in G is holomorphically invariant: if δ
is a nondegenerate datum in G and m̃ ∈ AutG then δ and m̃(δ) are of the same
type.

The statement is immediate from Theorem 7.1 and the fact that every au-
tomorphism m̃ of G extends continuously to a bijective self-map of Γ (Corollary
A.12).

Corollary 7.3. The type of a complex geodesic is unambiguously defined: if
δ1, δ2 are nondegenerate datums in G and Dδ1 = Dδ2 then δ1 and δ2 have the same
type.

This statement too is clear from Theorem 7.1.
The following geometric characterization of balanced geodesics in G is an im-

mediate corollary of Theorem 7.1 and Definition 3.4.
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Proposition 7.4. If δ is a nondegenerate datum in G, then δ is unbalanced
if and only if Dδ meets R in a single point. δ is balanced if and only if either
Dδ ∩R = ∅ or Dδ = R.

In the light of Theorem 7.1, the terms flat, exceptional, purely unbalanced,
purely balanced, and royal (as introduced in Definition 3.4) are all terms that refer
not only to qualitative properties of the Carathéodory extremal problem associ-
ated with a given datum δ but also to geometric properties of the unique geodesic
associated with δ.

Definition 7.5. A geodesic D in G is said to be flat, or of flat type, if there is
a nondegenerate flat datum δ in G such that D = Dδ. Analogous definitions apply
for exceptional, purely unbalanced, purely balanced and royal geodesics.

Proposition 7.6. The flat geodesics in G are the sets Fβ (defined in equation
(4.3)) for β ∈ D.

Proof. Let D be a flat geodesic in G and let δ be a flat datum such that
D = Dδ. By Proposition 4.11 there is a flat C-geodesic k that solves Kob(δ), and
by Proposition 4.10, k = fβ ◦m for some β ∈ D and m ∈ AutD. Hence

D = Dδ = k(D) = fβ(D) = Fβ .

�

Proposition 7.7. The closure of a flat geodesic meets the closure of the royal
variety R− exactly once, and the common point lies in R.

Proof. Consider the flat geodesic Fβ = fβ(D) where β ∈ D. The royal nodes
of fβ are the points z ∈ D

− such that (β + β̄z, z) ∈ R−, that is, such that

(7.2) (β + β̄z)2 = 4z.

If β = 0 then the unique royal node of fβ is 0 and F−
0 ∩R− = {(0, 0)}. If β 6= 0 then

the equation (7.2) has two distinct roots in C which are symmetric with respect
to the unit circle. Hence there is no root in T and exactly one root in D. Thus
F−

β ∩R− consists of a single point, which belongs to R. �

The type of a complex geodesic is defined in terms of solutions of the Carathéodory
extremal problem. It follows, though, that every solution k of a Kobayashi problem
has a type, and one can ask for a characterization of types directly in terms of
the complex C-geodesic k ∈ G(D). Recall that two geodesics D1,D2 are equivalent
(written D1 ∼ D2) if there exists an automorphism m̃ of G such that m̃(D1) = D2.

Theorem 7.8. Let D be a complex geodesic of G.

(1) D is purely unbalanced if and only if D ∼ kr(D) for some r ∈ (0, 1) where

kr(z) =
1

1− rz
(2(1− r)z, z(z − r)) for all z ∈ D;

(2) D is exceptional if and only if D ∼ hr(D) for some real number r > 0, where

hr(z) = (z +mr(z), zmr(z))(7.3)

and

(7.4) mr(z) =
(r − i)z + i

r + i− iz
for z ∈ D;
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(3) D is purely balanced if D ∼ gr(D) for some r ∈ (0, 1), where

gr(z) = (z +Br(z), zBr(z)) for all z ∈ D;

(4) D is flat if and only if D ∼ k(D) where k(z) = (0, z);
(5) D is royal if and only if D ∼ k(D) where k(z) = (2z, z2).

Moreover, in statements (1), (2) and (3), the corresponding geodesics are pairwise
inequivalent for distinct values of r in the given range.

Proof. (1) The royal nodes of kr are 0 and 1 and the corresponding royal
points are (0, 0) and (2, 1). Thus k(D)− ∩R− = {(0, 0), (2, 1)}. Hence, if D ∼ k(D)
then D− ∩ R− consists of a point in R and another in ∂R. By Theorem 7.1, D is
purely unbalanced.

Conversely, let D be purely unbalanced. By Theorem 7.1,

D− ∩R− = {(2α, α2), (2τ, τ2)}
for some α ∈ D and τ ∈ T. Choose m ∈ AutD such that m(α) = 0 and m(τ) = 1.
Then m̃(D−) ∩ R− = {(0, 0), (2, 1)}. By Lemma 6.6, m̃(D) = kr(D) for some
r ∈ (0, 1), and then D = m̃−1(kr(D)) ∼ kr(D).

To prove pairwise inequivalence of the geodesics kr(D), 0 < r < 1, suppose
that kr(D) ∼ kr′(D) for some pair r, r′. Then there exists m1 ∈ AutD such that
m̃1(kr(D)) = kr′(D). According to [34, Corollary 4.6.4], in a general domain Ω,
if f, g are complex C-geodesics in Ω having the same range then there is an au-
tomorphism α of Ω such that g = f ◦ α. Hence there exists m2 ∈ AutD such
that

kr′ = m̃1 ◦ kr ◦m2.

Since m̃−1
1 preserves the royal variety, m2 maps the royal nodes of kr′ to the royal

nodes of kr. These royal nodes are 0 and 1 for both functions, and so m2 leaves
both 0 and 1 fixed. Hence m2 = idD and kr′ = m̃1 ◦ kr. Similarly, m̃1 maps
the royal points of kr′ to the royal points of kr, which implies that m1 also fixes
the points 0 and 1, and som1 = idD. Thus kr = kr′ , which easily implies that r = r′.

(2) We first show that hr(D) is an exceptional geodesic for any r ∈ R\{0}. Let

τ =
r − i

r + i
and α = 1

2 (1− τ̄).

Then τ ∈ T \ {−1, 1} and α ∈ D \ {0}, and we have mr = τBα ∈ AutD.
Moreover, since |1 − τ | = 2|α|, it follows that the equation mr(z) = z has a

unique root in T, which is to say that hr has a unique royal point in ∂R, and no
royal points in R. By Theorem 3.7, hr(D) is an exceptional geodesic in G.

Conversely, suppose that D is an exceptional geodesic in G. By Theorem 7.1,
D− ∩ R− consists of a single point in ∂R, which we may take (replacing D by an
equivalent geodesic) to be (2, 1). Let k be a complex C-geodesic in G such that
D = k(D). Since D ∩ R = ∅, Proposition 6.1 implies that we can assume that
k(z) = (z +m(z), zm(z)) for some m ∈ AutD, and since the royal points of this k
are the points (2z, z2) where z ∈ D

− satisfies m(z) = z, we infer that m has the
unique fixed point 1 in D

−. Any such automorphism has the form m = τBα for
some α ∈ D \ {0} and τ ∈ T \ {−1, 1} such that 1− τ = 2ᾱ.

Let

r = i
1 + τ

1− τ
.
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Then r ∈ R \ {0} and

α = 1
2 (1− τ̄) = − i

r − i
.

One may then verify that m = mr, and so k = hr for some r ∈ R \ {0}. Now

m−1
r (z) =

(r + i)z − i

r − i+ iz
= m−r(z)

and

hr ◦m−1(z) = (z +m−1
r (z), zm−1

r (z)) = h−r(z).

Thus, for any r ∈ R \ {0}, hr(D) = h−r(D). Hence D ∼ hr(D) for some r > 0.
Suppose that hr(D) ∼ hr′(D) for some r, r′ > 0. We shall show that r = r′.

The equivalence implies that there exist a1, a2 ∈ AutD such that

(7.5) hr′ = ã2 ◦ hr ◦ a1.
Since a1, ã2 fix the common royal nodes and points respectively of hr, hr′ , neces-
sarily a1(1) = 1 = a2(1).

Equation (7.5) can be written

(z +mr′(z), zmr′(z)) = ã2 ◦ (a1(z) +mr ◦ a1(z), a1(z)mr ◦ a1(z))
= (a2 ◦ a1(z) + a2 ◦mr ◦ a1(z), (a2 ◦ a1(z)) (a2 ◦mr ◦ a1(z)))

for all z ∈ D. It follows that, for every z, either

a2 ◦ a1(z) = z and a2 ◦mr ◦ a1(z) = mr′(z)

or

a2 ◦ a1(z) = mr′(z) and a2 ◦mr ◦ a1(z) = z.

Therefore either

(7.6) a2 ◦ a1 = idD and a2 ◦mr ◦ a1 = mr′

or

(7.7) a2 ◦ a1 = mr′ and a2 ◦mr ◦ a1 = idD.

If the alternative (7.6) holds, then a2 = a−1
1 and

(7.8) mr ◦ a1 ◦m−r′ = a1.

Let a1 = cBγ for some c ∈ T and γ ∈ D. Since a1(1) = 1,

c =
1− γ̄

1− γ
.

In view of equation (7.8) we have mr ◦ a1 ◦m−r′(γ) = 0, and therefore

a1 ◦m−r′(γ) = − i

r − i
.

On writing out this equation in detail we obtain

1− γ̄

1− γ

(r′ + i− iγ)γ − i− γ(r′ − i)

(−γ̄(r′ + i) + i)γ + γ̄i+ r′ − i
= − i

r − i
.

This equation simplifies to r = r′.
The remaining possibility is that the alternative (7.7) holds. In this case we

may write

m−r′ ◦ a2 ◦ a1 = idD, m−r′ ◦ a2 ◦mr ◦ a1 = m−r′ .
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Let b = m−r′ ◦ a2. Then the last equation becomes

b ◦ a1 = idD, b ◦mr ◦ a1 = m−r′ .

Since m−r′ and a2 both fix 1, so does the automorphism b, and we may therefore
apply the first alternative, with a2 replaced by b, to deduce that r = −r′ Since
r, r′ > 0, this cannot happen. Thus the first alternative (7.6) holds and r = r′.

(3) Suppose that D ∼ gr(D) for some r ∈ (0, 1). Since Br has the fixed points
1 and −1, gr has the royal nodes 1,−1 and g(D)− meets R− in the royal points
(±2, 1). By Theorem 7.1, g(D) and consequently D are purely balanced geodesics.

Conversely, suppose that D is purely balanced. By Theorem 7.1, D− ∩ R−

consists of a pair of points in ∂R, and we may take these points to be (2, 1) and
(−2, 1). Choose a complex C-geodesic k such that D = k(D). Since D ∩R = ∅, by
Proposition 6.1 we can assume that k(z) = (z+m(z), zm(z)) for some m ∈ AutD.
The fixed points ofm are the royal nodes of k, which are ±1. It follows thatm = Br

and hence k = gr for some nonzero r ∈ (−1, 1). Since

gr ◦B−r = g−r,

we conclude that D ∼ gr(D) for some r in (0, 1).
Suppose that gr(D) ∼ gr′(D). Then there exist a1, a2 ∈ AutD such that

(7.9) gr′ = ã2 ◦ gr ◦ a1,
and moreover a1, a2 map the set {−1, 1} of royal nodes of gr and gr′ to itself. Hence
either a1 or −a1 fixes both 1 and −1, and so a1 = ±Bγ for some γ ∈ (−1, 1). Then
a1(γ) = 0.

It follows from equation (7.9) that either

a2 ◦ a1 = idD and a2 ◦Br ◦ a1 = Br′

or

(7.10) a2 ◦ a1 = Br′ and a2 ◦Br ◦ a1 = idD.

Consider the first alternative. Then a2 = a−1
1 and B−r ◦ a1 = a1 ◦B−r′ . Since

B−r ◦ a1(γ) = B−r(0) = r,

we have

±Bγ ◦B−r′(γ) = r.

Since r′ and γ are real, B−r′(γ) = B−γ(r
′), and so

r = ±Bγ ◦B−γ(r
′) = ±r′.

Since r, r′ > 0, we have r = r′.
If the second alternative (7.10) holds, then

(B−r′ ◦ a2) ◦ a1 = idD and (B−r′ ◦ a2) ◦Br ◦ a1 = B−r′ ,

and so, by the first alternative, r = −r′. Again this contradicts r, r′ > 0, and so we
deduce that r = r′.

(4) and (5) follow from Theorem A.11. �
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Remark 7.9. By Definition 3.4, for a nondegenerate datum δ, there is a unique
solution of Car(δ) among the Φω if and only if δ is either purely unbalanced or
exceptional. Hence the complex C-geodesics kr and hr described in (1) and (2) of
Theorem 7.8 have unique holomorphic left inverses (modulo AutD) of the form Φω.
In fact more is true: Kosiński and Zwonek [35, Theorem 5.3] show that the kr and
hr have unique holomorphic left inverses (modulo AutD) of any form.



CHAPTER 8

Balanced geodesics in G

In studying sets V with the norm-preserving extension property in G we shall
exploit intersections of V with balanced and flat geodesics. Recall that a datum is
defined to be balanced if it is exceptional, purely balanced or royal. We shall say
that a complex geodesic is balanced if it is contacted by a nondegenerate balanced
datum.

One characterization of balanced datums is given in Proposition 7.4 above;
another is afforded by Proposition 8.2 below. The following is a simple observation.

Lemma 8.1. Let δ be a nondegenerate datum in G and let k be a solution to
Kob(δ) such that

k = (m1 +m2,m1m2)

where m1,m2 ∈ AutD. Then the royal nodes of k are the solutions of m1 = m2 in
D

− and the roots of this equation in C are symmetric with respect to T.

Proposition 8.2. If δ is a nondegenerate datum in G and k is a solution to
Kob(δ), then δ is balanced if and only if k factors through the bidisc, that is, there
exists f ∈ D

2(D) such that k = π ◦ f . Furthermore, if f = (m1,m2) and k = π ◦ f
then m1,m2 ∈ AutD and exactly one of the following statements holds:

(1) m1 = m2 and δ is royal;
(2) the equation m1(z) = m2(z) has exactly two solutions in T and δ is purely

balanced;
(3) the equation m1(z) = m2(z) has exactly one solution in T (which is of multi-

plicity two) and δ is exceptional.

Proof. Fix a datum δ in G and a solution k to Kob(δ). Assume that δ is
balanced. By Theorem 7.1 either Dδ ∩ R = ∅ or Dδ = R. If Dδ = R, then there
exists m ∈ AutD such that k(z) = (2m(z),m(z)2) = (π ◦f)(z) where f : D → D

2 is
defined by f(z) = (m(z),m(z)). If Dδ ∩R = ∅ then, by Proposition 6.1, there exist
m1,m2 ∈ AutD such that k = π ◦ f where f is defined by f(z) = (m1(z),m2(z)).
Thus, in either case, k factors through the bidisc.

To prove the converse, suppose that f ∈ D
2(D) and k = π ◦ f but that δ is

not balanced, so that δ is either flat or purely unbalanced. Since k is Γ-inner, the
components of f are inner.

If δ is flat, then since C(s) = s2 solves Car(δ), C ◦ k ∈ AutD. This implies
that f1f2 has degree 1. Since f1 and f2 are inner, it follows that either f1 or f2 is
constant. But then k = π ◦ f maps D into ∂G, contradicting the fact that k solves
Kob(δ).

If δ is purely unbalanced then deg f1f2 = deg k2 = 2. Hence, since the ar-
gument in the previous paragraph implies that neither f1 nor f2 is constant,
deg f1 = deg f2 = 1. Thus m1,m2 ∈ AutD. By Theorem 7.1, k has one royal

45
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node in T and one in D. By Lemma 8.1, the quadratic equation m1 = m2 has a
root in D and another in T, and its roots are symmetric with respect to T. The
equation thus has at least 3 distinct roots, which implies that m1 and m2 coincide,
and so that δ is royal. This is a contradiction. Hence, if k factors through the bidisc
then δ is balanced.

Suppose now that δ is balanced and k = π ◦ (m1,m2), where m1,m2 ∈ D(D).
Since k is Γ-inner, m1 and m2 are inner, and degree considerations show that
m1,m2 ∈ AutD. Thus k is a rational Γ-inner function of degree 2 and is a complex
C-geodesic of G. By Proposition 4.17, k has a royal node in T.

By Lemma 8.1, the royal nodes of k are the solutions of m1 = m2 in D
− and

the roots of this equation in C are symmetric with respect to T. There are exactly
three possible cases for the roots of the quadratic equation m1 = m2, given that
there is a root in T.

(1) There are infinitely many roots. Then m1 coincides with m2 and k(D) = R.
By Theorem 7.1, δ is royal.

(2) The equation m1 = m2 has exactly two solutions in T. Then k has exactly
two royal nodes in T. By Theorem 7.1, δ is purely balanced.

(3) The equationm1 = m2 has exactly one solution in T, which is of multiplicity
two. Then k has a unique royal node, which lies in ∂R. By Theorem 7.1, δ is
exceptional. �

The term ‘balanced’ in Definition 3.4 was suggested by a similar notion for the
bidisc.

Definition 8.3. A balanced disc in D
2 is a set of the form {(w,m(w)) : w ∈ D}

for some m ∈ AutD.

According to [2, Definition 1.17], a nondegenerate discrete datum λ = (λ1, λ2)
in D

2 is said to be balanced if the hyperbolic distance between the first co-ordinates
of λ1 and λ2 is equal to the hyperbolic distance between the second co-ordinates of
λ1 and λ2; otherwise λ is unbalanced. It was noted in [2] that, for a nondegenerate
discrete datum λ in D

2, the solution to Kob(λ) is essentially unique if and only
if λ is balanced, and in that case the unique geodesic of D2 that contacts λ is a
balanced disc. Any geodesic in D

2 of the form (m1,m2)(D), where m1,m2 ∈ AutD
is a balanced disc. The following lifting property of certain geodesics in G will be
exploited in Section 9.

Proposition 8.4. Let δ be a nondegenerate datum in G that is either balanced
or flat. There exists a balanced disc D in D

2 such that Dδ = π(D).

Proof. Suppose that δ is a balanced datum. By Proposition 8.2, Dδ is of the
form π(D) where D = (m1,m2)(D) for some m1,m2 ∈ AutD. This D is a balanced
disc in D

2.
Consider the case of a flat datum δ. Note that

{0} × D = F0

is a flat geodesic. If D = {(z,−z) : z ∈ D} then D is a balanced disc in D
2, and

π(D) = {(0,−z2) : z ∈ D} = F0.

Now consider the general flat geodesic Fβ , where β ∈ D. According to Theorem
A.11, there exists m ∈ AutD such that m̃(F0) = Fβ , where m̃ is the automorphism
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of G given by
m̃(z + w, zw) = (m(z) +m(w),m(z)m(w)).

Let
Dm = {(m(z),m(−z)) : z ∈ D}.

Then Dm is a balanced disc in D
2, and

π(Dm) = {(m(z) +m(−z),m(z)m(−z)) : z ∈ D} = m̃(π(D)) = m̃(F0) = Fβ .

�

Note that the image under π of a balanced datum in D
2 need not be a balanced

datum in G – it can be flat.





CHAPTER 9

Geodesics and sets V with the norm-preserving

extension property in G

We say that a set A ⊆ C
2 is an algebraic set if there exists a set S of polynomials

in two variables such that

A = {λ ∈ C
2 : p(λ) = 0 for all p ∈ S}.

We say that a set V ⊆ C
2 is an algebraic set in G if there exists an algebraic set A

in C
2 such that V = A∩G. If V is an algebraic set in G and f is a complex valued

function defined on V , then we say that f is holomorphic on V if f can be locally
extended to a holomorphic function on C

2, that is, if for each λ ∈ V there exists a
neighborhood U of λ in C

2 and a holomorphic function F defined on U such that
F (µ) = f(µ) for all µ ∈ V ∩ U .

We recall Definition 1.2 from the introduction: a subset V of G has the norm-
preserving extension property if every bounded holomorphic function f on V has
a holomorphic extension to G of the same supremum norm. An immediate conse-
quence of the definition is the following.

Proposition 9.1. Any subset of G that has the norm-preserving extension
property is connected.

Proof. If not, choose two distinct components V1 and V2 of V . The norm-
preserving extension property of V ensures the existence of a function F ∈ C(G)
such that supG |F | = 1, F = 0 on V1 and F = 1 on V2, contrary to the Maximum
Principle. �

The following is a slight strengthening of an observation in the introduction.

Proposition 9.2. If R is a retract in G then R is an algebraic set in G having
the norm-preserving extension property.

Proof. By Theorem 5.1 R is a geodesic. Hence, by Proposition 5.5, R is an
algebraic set. If ρ is a retraction of G with range R and f is a bounded holomorphic
function on V then f ◦ ρ is a holomorphic extension of f to G with the same
supremum norm as f . �

We initially hoped to prove the converse of Proposition 9.2 for G. After all,
in the bidisc it is true that sets with the norm-preserving extension property are
retracts [2]. However, it transpires that there are algebraic sets with the norm-
preserving extension property in G which are not retracts; we call them anomalous
sets. They are described in Lemma 9.10 below.

This chapter investigates some of the geometric consequences of the norm-
preserving extension property. The argument will eventually culminate in Lemma
11.2, to the effect that if V is an algebraic set in G that has the norm-preserving
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extension property and if V is not anomalous then V is a properly embedded finitely
connected Riemann surface.

9.1. V and Car(δ)

In this section we prove a technical result about solutions of the Carathéodory
problem for datums that contact a set V having the norm-preserving extension
property.

Lemma 9.3. Let w0 ∈ D and let D = {z ∈ D : |z − w0| > r} for some r
such that 0 < r < 1 − |w0|. For any nondegenerate datum δ in D there exists a
holomorphic map β : D → D such that

(9.1) |β(δ)|D > |δ|.
We use the notation | · |D to emphasize that β(δ) is being regarded as a datum

in D.

Proof. We can assume that w0 = 0. Consider first the case of a nondegenerate
discrete datum δ = (z1, z2). We shall choose t > 0 and g ∈ C(D) such that
g(z1) = g(z2) = 0 and the function z − tg(z) maps D into a disc of radius R < 1;
then the function

β(z) = R−1(z − tg(z))

will have the desired properties.
Let

ε =
1

2(1 + |z1|)(1 + |z2|)
.

Consider the Laurent expansion of the rational function z/((z− z1)(z− z2)), which
is analytic in an annulus containing T. A suitable partial sum of the expansion is
a rational function h ∈ C(D) such that

(9.2)

∣

∣

∣

∣

h(z)− z

(z − z1)(z − z2)

∣

∣

∣

∣

< ε

for all z ∈ T, and the only poles of h are at 0 and ∞. Let

(9.3) g(z) = (z − z1)(z − z2)h(z) for z ∈ D−.

g is analytic in D and g(z1) = g(z2) = 0. Multiply the inequality (9.2) by |(z −
z1)(z − z2)| to deduce that, for z ∈ T,

|z̄g(z)− 1| < ε sup
|z|=1

|(z − z1)(z − z2)|

≤ ε(1 + |z1|)(1 + |z2|)
= 1

2 .

Hence, for z ∈ T,
Re(z̄g(z)) > 1

2 .

Consequently, for z ∈ T,

|z − tg(z)|2 = 1− 2tRe(z̄g(z)) + t2|g(z)|2

< 1− t+ t2 sup
T

|g|2.(9.4)

Let M = sup|z|=r |g(z)|. For |z| = r we have

|z − tg(z)| ≤ r + tM.



9.2. V AND BALANCED DATUMS 51

Hence we can choose R ∈ (0, 1) and t so small that |z − tg(z)| < R < 1 for all z in
both the inner and outer bounding circles of D, and so, by the Maximum Principle,
for all z in D. Consideration of the points z1, z2 shows that R > max{|z1|, |z2|},
and it follows that

|β(δ)|D = |(β(z1), β(z2))| =
∣

∣

∣

(z1
R
,
z2
R

)
∣

∣

∣
> |(z1, z2)| = |δ|.

Now consider the nondegenerate infinitesimal datum (z1; 1) in D. The proof
is similar: construct t > 0 and g ∈ C(D) such that g(z1) = g′(z1) = 0 and the
function z− tg(z) maps D into a disc of radius R < 1. The rest of the construction
is as in the discrete case, with z2 = z1. �

Lemma 9.4. Let V ⊆ G have the norm-preserving extension property and let δ
be a nondegenerate datum in G that contacts V . If C is a solution to Car(δ) then
C(V ) is dense in D.

Proof. Let C be a solution to Car(δ) and let ζ = C(δ). If C(V ) is not dense
in D then there exist w0 ∈ D and r satisfying 0 < r < 1 − |w0| such that if D is
defined to be {z ∈ D : |z − w0| > r}, then C(V ) ⊆ D and ζ is a nondegenerate
datum in D. By Lemma 9.3 there exists a holomorphic map β : D → D such that
|β(ζ)| > |ζ|. The map f0 = β ◦ (C|V ) is well defined and holomorphic from V to
D. Consequently, since V has the norm-preserving extension property, there exists
a holomorphic map F : G → D

− satisfying F |V = f0. By the Open Mapping
Theorem, F (G) ⊂ D, and so F is a candidate for Car(δ). But C is a solution to
Car(δ) and

|F (δ)| = |f0(δ)| by Remark 4.3

= |(β ◦ C)(δ)|
= |(β(C(δ))| by equation (3.1)

= |β(ζ)|
> |ζ|
= |C(δ)|
= |δ|car.

This contradiction shows that C(V ) is dense in D. �

9.2. V and balanced datums

Here is another technical result concerning datums that contact a set with the
norm-preserving extension property.

Lemma 9.5. Let V be an algebraic set in G that has the norm-preserving exten-
sion property. Let δ be a nondegenerate datum in G such that there exist distinct
points ω1, ω2 ∈ T for which Φω1

,Φω2
solve Car(δ) (so that δ is either flat, royal or

purely balanced). If δ contacts V then Dδ ⊆ V .

Proof. Pick ω1, ω2 ∈ T where ω1 6= ω2 and Φω1
and Φω2

both solve Car(δ).
Fix any solution k to Kob(δ), choose m1, m2 ∈ AutD such that

m1 ◦ Φω1
◦ k = idD and m2 ◦ Φω2

◦ k = idD,

and then let C1 and C2 be defined by

C1 = m1 ◦ Φω1
and C2 = m2 ◦ Φω2

;
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then

C1 ◦ k = idD = C2 ◦ k.
Define C by

C = 1
2C1 +

1
2C2.

Claim 9.6. If τ ∈ T, τ 6= C2(2ω̄1, ω̄
2
1), and τ 6= C1(2ω̄2, ω̄

2
2), then there exists

s0 ∈ D−
δ ∩ V − such that s0 6= (2ω̄1, ω̄

2
1), s0 6= (2ω̄2, ω̄

2
2), and

C1(s0) = C2(s0) = τ.

To prove this claim, fix τ ∈ T \ {C2(2ω̄1, ω̄
2
1), C1(2ω̄2, ω̄

2
2)}. By construction,

C solves Car(δ). Therefore, by Lemma 9.4 there exists a sequence of points {sn}
in V such that C(sn) → τ . Passing to a subsequence if necessary we may further
assume that sn → s0 ∈ ∂G. Since C(sn) → τ , it follows that both C1(sn) → τ
and C2(sn) → τ . But then C1(sn)− C2(sn) → 0. Consequently, by Lemma 5.6, it
follows that Pδ(sn) → 0. Since Pδ is continuous, it follows that Pδ(s0) = 0, that is,
that s0 ∈ D−

δ . Since it is also the case that s0 ∈ V −, it follows that s0 ∈ D−
δ ∩ V −.

To see that s0 6= (2ω̄1, ω̄
2
1), assume to the contrary that s0 = (2ω̄1, ω̄

2
1). Since

C2 = m2 ◦ Φω2
is continuous on a neighborhood of (2ω̄1, ω̄

2
1), it follows that

C2(2ω̄1, ω̄
2
1) = C2(s0) = lim

n→∞
C2(sn) = τ,

contradicting the assumption that τ 6= C2(2ω̄1, ω̄
2
1). That s0 6= (2ω̄2, ω̄

2
2) follows in

similar fashion. This completes the proof of Claim 9.6.
Now fix τ ∈ T with τ 6= C2(2ω̄1, ω̄

2
1) and τ 6= C1(2ω̄2, ω̄

2
2). Let s0 be as in the

claim. Since s0 ∈ D−
δ , there exists η ∈ T such that s0 = k(η). But then

τ = C1(s0) = C1(k(η)) = (C1 ◦ k)(η) = η,

so that

k(τ) = k(η) = s0 ∈ V −.

This proves that

k(T \ {C2(2ω̄1, ω̄
2
1), C1(2ω̄2, ω̄

2
2)}) ⊆ V −.

By continuity, k(T) ⊆ V −. Since V is algebraic there is a set S of polynomials such
that

V = G ∩ {s : p(s) = 0 for all p ∈ S}.
Hence p ◦ k = 0 on T for all p ∈ S, and by the Maximum Principle, p ◦ k = 0 on D

for all p ∈ S. Thus Dδ = k(D) ⊆ V , as was to be proved. �

Remark 9.7. The above proof remains valid if V , rather than being assumed
to be an algebraic set, is only assumed to be relatively polynomially convex.

9.3. V and flat or royal datums

In this section we show that if a set V having the norm-preserving extension
property contacts either a flat datum or a royal datum then V has one of three
concrete forms. To do this we first prove a result about the closest point in G to a
flat or royal geodesic.
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Lemma 9.8. Let δ be a nondegenerate datum in G such that Φω solves Car(δ)
for all ω ∈ T (so that δ is flat or royal).

(i) If t ∈ G \ Dδ then
inf

s∈Dδ

|(s, t)|car
is attained at some point s0 ∈ Dδ. Furthermore,

(ii) there are at least two values of ω ∈ T such that Φω solves Car((s0, t)) (so
that the datum (s0, t) is either flat, royal or purely balanced);

(iii) if Dδ is flat and t ∈ R then s0 ∈ R;
(iv) if Dδ is flat and t /∈ R then the datum (s0, t) is purely balanced.

Proof. (i) Let k solve Kob(δ) and let ω1 ∈ T be such that Φω1
◦ k = idD. The

function ϕ on Dδ defined by
ϕ(s) = |(s, t)|car

is continuous and ranϕ ⊆ (0, 1). Note that

ϕ(s) = |(s, t)|car = sup
ω∈T

|(Φω(s),Φω(t))|

≥ |(Φω1
(s),Φω1

(t))| .(9.5)

Let w1 = Φω1
(t) and let s = k(z), z ∈ D. We have

ϕ(s) ≥ |(Φω1
◦ k(z), w1)|

= |(z, w1)| .(9.6)

Therefore

1− ϕ(s)2 ≤ 1− |(z, w1)|2

=
(1− |z|2)(1− |w1|2)

|1− w̄1z|2

≤ (1− |z|2)1 + |w1|
1− |w1|

.(9.7)

It is clear that ϕ(s) → 1 as s→ ∂G in Dδ. Hence the function ϕ̃ defined by

ϕ̃(s) =

{

ϕ(s) if s ∈ Dδ

1 if s ∈ ∂G ∩ D−
δ

is continuous on the closure Dδ of Dδ in G, and ran ϕ̃ ⊆ (0, 1]. Note that k(D−) =
Dδ, and so Dδ is compact. Hence ϕ̃ attains its infimum at some point s0 ∈ Dδ. It
is clear that s0 is not in k(T), since ϕ̃(D) ⊆ (0, 1) and |ϕ̃(s)| = 1 for all s ∈ k(T).
Thus s0 ∈ Dδ.

(ii) Suppose that there exists a unique ω0 ∈ T such that

(9.8) |Φω0
((s0, t))| = sup

ω∈T

|Φω((s0, t))| = |(s0, t)|car.

Let k be a solution to Kob(δ) and let s0 = k(z0).
Since δ is assumed to be flat or royal, for each ω ∈ T, Φω ◦ k is in AutD and

therefore has no critical points. For any direction w ∈ C,

Dw |Φω0
((k(z), t))|2

∣

∣

z=z0
= Dw |(Φω0

◦ k(z),Φω0
(t))|2

∣

∣

z=z0

=
d

dy
|B ◦ Φω0

◦ k(z0 + yw)|2
∣

∣

∣

y=0

= 2Re{w(B ◦ Φω0
◦ k)′(z0)B ◦ Φω0

◦ k(z0)},(9.9)
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where

B(z) =
z − Φω0

(t)

1− Φω0
(t)z

.

Now

|B ◦ Φω0
◦ k(z0)| = |B ◦ Φω0

(s0)| = |(s0, t)|car 6= 0.

Since, further, B′ and (Φω0
◦ k)′ are never zero on D,

(B ◦ Φω0
◦ k)′(z0)B ◦ Φω0

◦ k(z0) 6= 0.

By equation (9.9), there is some direction w0 such that Dw0
|Φω0

((k(z), t))|2
∣

∣

z=z0
is

nonzero. After scaling w0, we can assume that

(9.10) Dw0
|Φω0

((k(z), t))|2
∣

∣

z=z0
= 1.

For x ∈ [−π, π] and y in some sufficiently small neighborhood I of 0, let

f(x, y) = |Φeixω0
((k(z0 + yw0), t))|2 .

Choose a sequence (yj) in I, with yj < 0, such that yj → 0.

Claim 9.9. There is a sequence (xj) in [−π, π] such that, for each j, f(x, yj)
attains its maximum at x = xj , and xj → 0.

Indeed, suppose not. Choose, for each j, any point xj at which f(x, yj) attains
its maximum over [−π, π], then pass to a subsequence such that xj converges to
some point x0. By supposition, x0 6= 0, and so eix0ω0 6= ω0. We have k(z0+yjw0) →
s0, and therefore

f(xj , yj) = max
−π≤x≤π

f(x, yj)

= max
−π≤x≤π

|Φeixω0
((k(z0 + yjw0), t))|2(9.11)

= |(k(z0 + yjw0), t)|2car
→ |(s0, t)|2car.

Hence

f(x0, 0) = |(s0, t)|2car.
Thus ω1 = eix0ω0 is a second value of ω for which Φω solves Car((s0, t)), contrary
to hypothesis. This establishes the Claim.

The function f has the following properties.

(1) f is real analytic on [−π, π]× I;

(2) ∂f
∂y

(0, 0) = 1;

(3) f(x, 0) has a unique global maximum over [−π, π], which is at x = 0.

Consider the power series expansion of f about (0, 0). In view of statement (3)
there exists n ≥ 1 and ρ > 0 such that

d2n

dx2n
f(x, 0)

∣

∣

∣

x=0
= −ρ

is the first nonzero derivative of f(x, 0) at x = 0. There also exist analytic functions
ϕ(x), ψ(x, y) such that ψ(0, 0) = 0 and

(9.12) f(x, y) = |(s0, t)|2car + y − ρx2n + x2n+1ϕ(x) + yψ(x, y)
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in a neighborhood of (0, 0). Consequently

∂f

∂x
(x, y) = −2nρx2n−1 + (2n+ 1)x2nϕ(x) + x2n+1ϕ′(x) + y

∂ψ

∂x
(x, y)

near (0, 0). As xj is a maximiser for f(x, yj), xj is a critical point of f(x, yj). That
is,

0 = −2nρx2n−1
j + (2n+ 1)x2nj ϕ(xj) + x2n+1

j ϕ′(xj) + yj
∂ψ

∂x
(xj , yj).

It follows that

x2n−1
j = O(yj).

Since xj → 0,

−ρx2nj + x2n+1
j ϕ(xj) = x2n−1

j (−ρxj + x2jϕ(xj)) = o(yj),

and, since ψ(0, 0) = 0,

yjψ(xj , yj) = o(yj).

Hence the series expansion (9.12) yields

f(xj , yj) = |(s0, t)|2car + yj + o(yj),

and therefore (since yj < 0) f(xj , yj) < |(s0, t)|2car for some j.
However, for all j we have, by the calculation (9.11),

f(xj , yj) = |(k(z0 + yjw0), t)|2car
≥ |(s0, t)|2car

by choice of s0 as a closest point in Dδ to t. This is a contradiction, and so part (i)
of the lemma is proved.

(iii) Suppose t ∈ R, say t = (2w,w2) for some w ∈ D. Without loss of generality
we may assume that Dδ is the flat geodesic F0 = {(0, z) : z ∈ D}. This is because
the automorphisms of G fix R, permute the flat geodesics (by Proposition A.11)
and preserve the Carathéodory distance. We claim that (0, 0) is the closest point
in F0 to t.

We must show that, for every z ∈ D,

|(t, (0, 0))|car ≤ |(t, (0, z))|car.
Now

|(t, (0, 0))|car = sup
ω∈T

∣

∣

(

Φω(2w,w
2),Φω(0, 0)

)
∣

∣

= sup
ω∈T

|(−w, 0)|

= |w|.
Furthermore

|(t, (0, z))|car = sup
ω∈T

∣

∣

(

Φω(2w,w
2),Φω(0, z)

)
∣

∣

= sup
ω∈T

|(−w, ωz)|

= sup
ω∈T

∣

∣

∣

∣

ωz + w

1 + w̄ωz

∣

∣

∣

∣

.
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Suppose z 6= 0. Choose ω ∈ T and r > 0, such that ωz = rw. Then

|(t, (0, z))|car ≥
∣

∣

∣

∣

ωz + w

1 + w̄ωz

∣

∣

∣

∣

=

∣

∣

∣

∣

(1 + r)w

1 + r|w|2
∣

∣

∣

∣

> |w|
= |(t, (0, 0))|car.

Hence (0, 0) is a closest point to t in Dδ (in fact it is the unique closest point). Thus
s0 ∈ R.

(iv) Since t /∈ R, by (ii) the datum (s0, t) is either flat or purely balanced. If
the datum (s0, t) is flat then the Dδ = D(s0,t) and so t ∈ Dδ. This is a contradiction
to the assumption that t ∈ G \ Dδ. Therefore the datum (s0, t) is purely balanced.

�

Lemma 9.10. Let V be an algebraic set in G having the norm-preserving ex-
tension property. If δ is a flat datum in G that contacts V then either V = Dδ,
V = R∪Dδ or V = G.

Proof. Since δ contacts V , it follows from Lemma 9.5 that Dδ ⊆ V .
Suppose that V 6= Dδ. Then there exists a point v0 ∈ V such that v0 /∈ Dδ.

Consider two cases: (1) v0 /∈ R, and (2) v0 ∈ R.
Case (1): v0 /∈ R. By Lemma 9.8 there exists a point s0 ∈ Dδ which is the

closest point of Dδ to v0 and a pair ω1, ω2 of distinct points in T such that both
Φω1

and Φω2
solve Car(γ), where γ = (s0, v0). According to Definition 3.4 the

datum γ is either flat, purely balanced or royal. Now γ is not royal, since v0 /∈ R.
Nor is γ flat; indeed, if γ is flat, then Dγ and Dδ are flat geodesics through s0 and
hence coincide, contrary to the fact that v0 ∈ Dγ \Dδ. Hence γ is purely balanced,
which is to say that there are exactly two values of ω for which Φω solves Car(γ).
Consequently, by Lemma 9.5, Dγ ⊆ V . Corollary 8.4 now implies that there is a
balanced disc D in the bidisc such that π(D) = Dγ .

Consider the case that Dδ is the flat geodesic given by equation (4.2) with
β = 0, that is,

Dδ = F0 = {(0, z) : z ∈ D}.
By inspection,

Dδ = π(B)

where B is the balanced disc in D
2 given by

(9.13) B = {(z,−z) : z ∈ D}.
Let λ0 = (z0,−z0) ∈ B be such that π(λ0) = s0. We can assume that also
λ0 ∈ D, for certainly D contains one of the (at most two) points of π−1(s0), and
we may replace D by the balanced disc {(λ2, λ1) : (λ1, λ2) ∈ D} if necessary. Thus
λ0 ∈ D ∩B.

Choose µ0 ∈ D such that π(µ0) = v0. Since v0 /∈ R, µ0 does not lie in the
diagonal set ∆ in D

2, defined by ∆ = {(z, z) : z ∈ D}. Since λ0, µ0 belong to the
balanced disc D in D

2,

|(z0, µ1
0)| = |(−z0, µ2

0)| = |(z0,−µ2
0)|.
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The locus of points z ∈ D such that

|(z, µ1
0)| = |(z,−µ2

0)|
is a geodesic (zt)t∈R through z0 in the Poincaré disc (this statement is obvious if
µ1
0 = r, µ2

0 = −r for some r > 0, and the general case follows upon application of
a suitable automorphism of D). Thus

|(zt, µ1
0)| = |(zt,−µ2

0)| = |(−zt, µ2
0)|.

Let λt = (zt,−zt). Then (λt) is a curve in B such that (λt, µ0) is a balanced pair
for all t. Let the unique geodesic of D2 passing through λt and µ0 be Dt (see the
comment preceding Corollary 8.4). Dt is the balanced disc having the form

(9.14) Dt = {(w,mt(w)) : w ∈ D}
where mt is the unique automorphism of D such that

(9.15) mt(µ
1
0) = µ2

0 and mt(zt) = −zt.
Clearly mt depends continuously on t ∈ R.

We claim that if t1 6= t2 then Dt1 ∩Dt2 = {µ0}. Suppose, to the contrary, that
the intersection contains a point ν 6= µ0. Then, for some w1, w2 ∈ D,

(w1,mt1(w1)) = ν = (w2,mt2(w2)) 6= µ0.

Thus w1 = w2 and so

mt1(w1) = mt2(w1)

and either w1 6= µ1
0 or mt1(w1) 6= µ2

0.
If w1 6= µ1

0 then mt1 ,mt2 are automorphisms of D taking the same values at
the distinct points w1 and µ1

0. Hence mt1 = mt2 and so Dt1 = Dt2 . Thus Dt1 is a
balanced disc containing the two distinct points λt1 , λt2 . The balanced disc B also
contains these two points, and so, by uniqueness, Dt1 = B. It follows that µ0 ∈ B,
and so, by application of π, we have v0 ∈ Dδ, a contradiction. We deduce that
w1 = µ1

0 and mt1(w1) 6= µ2
0. That is, mt1(µ

1
0) 6= µ2

0, contrary to equation (9.15).
Hence Dt1 ∩Dt2 = {µ0}.

Since D is the balanced disc in D
2 containing λ0 and µ0, again by uniqueness,

D0 = D. Hence π(D0) = Dγ and so

(9.16) π(D0) is a purely balanced geodesic in G.

Now D0 = {(w,m0(w)) : w ∈ D}. By Proposition 6.1, m0 has two distinct fixed
points in T. It follows that there is a neighborhood I of 0 in R such that mt has two
distinct fixed points in T for all t ∈ I. Then, for t ∈ I, π(Dt) is a purely balanced
geodesic in G containing the distinct points v0 = π(µ0) and π(λt), both of which
belong to V . Hence

π(Dt) = Dδt where δt = (v0, π(λt)).

The nondegenerate discrete datum δt contacts V . By Lemma 9.5, Dδt ⊆ V for all
t ∈ I.

Now, since λt ∈ B, we have π(λt) ∈ F0 ∩ Dδt for all t ∈ R. Hence, for t ∈ I
and β in a neighborhood N of zero,

(9.17) Fβ meets Dδt and Dδt ⊂ V.

Since v0 /∈ F0, we may ensure (replacing N by a smaller neighborhood of 0 if
necessary) that v0 /∈ Fβ for all β ∈ N .
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Since Dδt = π(Dt), statement (9.17) implies that there exists λβt ∈ Dt \ {µ0}
such that π(λβt) ∈ Fβ ∩ Dδt ⊆ V for β ∈ N, t ∈ I. Since distinct Dts meet only at
µ0, for fixed β ∈ N , the points λβt, t ∈ I, are pairwise distinct. Since each point of
G has at most two preimages in D

2 under π, it follows that the set {π(λβt) : t ∈ I}
is an uncountable subset of Fβ ∩ V .

We can now show that V = G.
Suppose that p is a polynomial that vanishes on V . Then, for β ∈ N , p vanishes

at the uncountably many points π(λβt), t ∈ I, in the one-dimensional disc Fβ , and
hence p|Fβ = 0. Since the union of the discs Fβ , for β ∈ N , is a neighborhood of
zero in C

2, we have p = 0. Thus every polynomial that vanishes on V is the zero
polynomial. Therefore, since V is an algebraic set in G, V = G.

We have shown that V = G in the case that Dδ is the flat geodesic F0. If Dδ

is the flat geodesic Fβ , for some β ∈ D, then the same conclusion can be deduced
from the case β = 0 by the application of an automorphism of G, with the aid of
Theorem A.11 in the Appendix. This concludes the proof of the lemma in Case
(1).

Case (2): v0 ∈ R. By Lemma 9.8(ii) the closest point s0 to v0 in Dδ lies in R.
Hence the nondegenerate discrete datum γ = (s0, v0) is royal and contacts V . By
Lemma 9.5, Dγ ⊆ V , that is, R ⊆ V . Hence R∪Dδ ⊆ V .

If V 6= R∪Dδ then there exists a point v1 ∈ V \ (R∪Dδ). By Case (1), V = G.
We have shown that, if V 6= Dδ, then in Case (1) V = G and in Case (2) either

V = R∪Dδ or V = G. �

Lemma 9.11. Let V be an algebraic set in G having the norm-preserving ex-
tension property. If a royal datum contacts V then either V = R, V = R∪Dδ for
some flat datum δ or V = G.

Proof. By Lemma 9.5, R ⊆ V . Suppose that V 6= R. There exists a point
t0 ∈ V \R. By Lemma 9.8 there is a point s0 ∈ R such that the datum δ = (s0, t0)
is either flat, royal or purely balanced. Since t0 /∈ R, δ is not royal. Neither is δ
purely balanced, because Dδ meets R at the point s0 ∈ G, and Theorem 7.1(4)
applies. Hence δ is flat. Again by Lemma 9.5, Dδ ⊆ V . Hence, by Lemma 9.10,
either V = R∪Dδ or V = G. �



CHAPTER 10

Anomalous sets R∪D with the norm-preserving

extension property in G

Lemmas 9.10 and 9.11 imply that, among sets that contact a flat or royal datum,
the only possible anomalous algebraic sets having the norm-preserving extension
property are sets of the form R∪D for some flat complex geodesic D. This chapter
will be devoted to the proof that such sets do indeed have the norm-preserving
extension property.

Theorem 10.1. If

V = R∪D
for some flat geodesic D of G then V has the norm-preserving extension property.

Section 10.1 contains a number of definitions and lemmas to be used in the
proof of Theorem 10.1 and the proof of the theorem is executed in Section 10.2.

10.1. Definitions and lemmas

Definition 10.2. Let U be a domain and assume that V ⊆ U . We say that
a function f : V → C is Herglotz on V if f is analytic on V and Re f(s) > 0 for
all s ∈ V . We say that V has the Herglotz-preserving extension property if every
function f that is Herglotz on V has an extension to a function that is Herglotz on
U .

Lemma 10.3. Let U be a domain and assume that V ⊆ U . Then V has the
Herglotz-preserving extension property if and only if V has the norm-preserving
extension property.

Proof. The formula

ϕ(z) =
1 + z

1− z
defines a conformal automorphism of the Riemann sphere which maps D onto the
right halfplane {w ∈ C : Rew > 0}. Consequently, if V ⊆ U and f is an analytic
function on V , then

f is Herglotz on V ⇐⇒ |ϕ−1 ◦ f(s)| < 1 for all s ∈ V.

Since this statement holds when V = U as well, the lemma follows immediately.
�

Definition 10.4. If f is a complex valued function on R∪F0 we define func-
tions on D by the formulas

(10.1) fF (z) = f(0, z) and fR(z) = f(2z, z2).
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Lemma 10.5. Let f be a complex valued function defined on R∪F0. Then f is
analytic on R∪F0 if and only if fF and fR are analytic on D and fF (0) = fR(0).

Proof. Clearly, if f is analytic on R∪F0, then fF and fR are analytic on D

and fF (0) = fR(0). Conversely, assume that fF and fR are analytic on D and

fF (0) = η = fR(0).

It is immediate from the first formula in (10.1) that f is analytic at each point
s = (0, z) ∈ F0 \ {(0, 0)}. Likewise, the second formula in (10.1) implies that f
is analytic at each point s = (2z, z2) ∈ R \ {(0, 0)}. To see that f is analytic at
s = (0, 0), define F by the formula

F (s) = fR
(

1
2s

1
)

+ fF
(

s2 − 1
4 (s

1)2
)

− η

and observe that F is a holomorphic extension of f to a neighborhood of (0, 0). �

Definition 10.6. For τ = (τ1, τ2) ∈ T
2 we define fτ : R ∪ F0 → D by the

formula

fτ (s) =

{

τ1z if s = (0, z) ∈ F0,
τ2z if s = (2z, z2) ∈ R.

Lemma 10.7. The function fτ is analytic on R∪ F0 for any τ ∈ T
2. Further-

more, if a complex-valued function Ψτ is defined on G by the formula

(10.2) Ψτ (s) = −τ2Φω(s), s ∈ G,

where ω = −τ̄2τ1, then Ψτ is a norm-preserving analytic extension of fτ to G.

Proof. By Lemma 10.5 fτ is analytic on R∪ F0 and, clearly,

sup
s∈R∪F0

|f(s)| = 1.

Also, as Φω is a Carathéodory extremal function on G,

(10.3) sup
s∈G

|Ψτ (s)| = sup
s∈G

|Φω(s)| = 1.

It is a simple to show from Definition 3.2 that fτ = Ψτ |(R ∪ F0). This fact also
implies that fτ is analytic on R∪ F0. �

Lemma 10.8 (A Herglotz Representation Theorem for R ∪ F0). A function
h : R∪F0 → C is a Herglotz function on R∪F0 satisfying h(0, 0) = 1 if and only
if there exists a probability measure µ on T

2 such that

(10.4) h(s) =

∫

T2

1 + fτ (s)

1− fτ (s)
dµ(τ)

for all s ∈ R ∪ F0.

Proof. Lemma 10.7 asserts that fτ is analytic on R ∪ F0 for each τ ∈ T
2.

Consequently, as supR∪F0
|fτ | ≤ 1 and fτ (0, 0) = 0, it follows that the function

s 7→ 1 + fτ (s)

1− fτ (s)
, s ∈ R ∪ F0,

is a Herglotz function on R∪F0 that assumes the value 1 at (0, 0) for each τ ∈ T
2.

Hence, if h is defined by equation (10.4), then h is Herglotz function on R ∪ F0

satisfying h(0, 0) = 1.
Now assume that h is a Herglotz function on R∪F0 satisfying h(0, 0) = 1. By

Lemma 10.5 it follows that the functions hF and hR are analytic on D. In addition
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hF (0) = 1, hF (0) = 1, and both hF and hR have positive real part on D. Therefore,
by the classical Herglotz Representation Theorem there exist probability measures
(i.e. finite positive Borel measures with total variation 1) µF and µR on T such
that

(10.5) hF (z) =

∫

τ1∈T

1 + τ1z

1− τ1z
dµF (τ1)

and

(10.6) hR(z) =

∫

τ2∈T

1 + τ2z

1− τ2z
dµR(τ2)

for all z ∈ D. We define a probability measure µ on T
2 by dµ(τ) = dµF (τ1)dµR(τ2).

Observe that if s = (0, z) ∈ F0, then Definition 10.4 and formula (10.5) imply
that

h(s) = hF (z) =

∫

τ1∈T

1 + τ1z

1− τ1z
dµF (τ1).

Therefore, since µR has total variation 1, Fubini’s Theorem implies that

h(s) =

∫

τ2∈T

h(s) dµR(τ2)

=

∫

τ2∈T

(

∫

τ1∈T

1 + τ1z

1− τ1z
dµF (τ1)

)

dµR(τ2)

=

∫

τ∈T2

1 + τ1z

1− τ1z
dµ(τ).

But since s = (0, z) ∈ F0,
1 + τ1z

1− τ1z
=

1 + fτ (s)

1− fτ (s)
.

where fτ is as in Definition 10.6. Therefore, equation (10.4) holds when s ∈ F0.
If s = (2z, z2) ∈ R, then by repeating the argument in the previous paragraph

using the representation (10.6) for hR one shows that equation (10.4) holds when
s ∈ R as well. �

10.2. The proof of the norm-preserving extension property for R∪D
We first observe that Theorem A.11 guarantees that the group of automor-

phisms of G acts transitively on the flat geodesics in G and fixes R. Therefore, it
suffices to prove Theorem 10.1 in the special case when D = F0.

Observe next that Lemma 10.3 implies that it suffices to prove that R∪F0 has
the Herglotz-preserving extension property. However, if U is a general domain, V
is a subset of U , and f is a Herglotz function on V , then

h =
f − i Im f(0, 0)

Re f(0, 0)

is a Herglotz function on V satisfying h(0, 0) = 1. Therefore, as

f = (Re f(0, 0))h+ i Im f(0, 0),

to establish the Herglotz-preserving extension property for V , it suffices to show
that every Herglotz function h on V satisfying h(0, 0) = 1 has a Herglotz extension
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to U . Hence, the proof of Theorem 10.1 will be complete if we can show that every
Herglotz function h on R∪F0 satisfying h(0, 0) = 1 has a Herglotz extension to G.

Fix a Herglotz function h on R ∪ F0 satisfying h(0, 0) = 1. By Lemma 10.8
there exists a probability measure on T

2 such that equation (10.4) holds. Define a
function g on G by the formula

(10.7) g(s) =

∫

τ∈T2

1 + Ψτ (s)

1−Ψτ (s)
dµ(τ)

where for each τ ∈ T
2, Ψτ is the function defined by the formula (10.2).

First, note that Ψτ is analytic on G for each τ ∈ T
2 and that τ 7→ Ψτ is a

continuous map from T into C(G) (endowed with the topology of locally uniform
convergence). Therefore,

(10.8) g is a well defined analytic function on G.

Next, note that since equation (10.3) implies that, for each τ ∈ T
2,

Re
1 + Ψτ (s)

1−Ψτ (s)
> 0

for all s ∈ G, and µ is a probability measure, necessarily the function g defined in
equation (10.7) satisfies

(10.9) Re g(s) > 0 for all s ∈ G.

Finally, note that Lemma 10.7 asserts that fτ = Ψτ |(R∪ F0) for each τ ∈ T
2.

Consequently,
1 + fτ (s)

1− fτ (s)
=

1 + Ψτ (s)

1−Ψτ (s)

for each τ ∈ T
2 and each s ∈ R∪F0. Therefore, using equations (10.4) and (10.7),

for each s ∈ R ∪ F0, we have

h(s) =

∫

T2

1 + fτ (s)

1− fτ (s)
dµ(τ)

=

∫

T2

1 + Ψτ (s)

1−Ψτ (s)
dµ(τ)

= g(s).

This completes the proof of Theorem 10.1. �



CHAPTER 11

V and a circular region R in the plane

In the light of Lemma 9.10 the study of algebraic sets V in G that have the
norm-preserving extension property can be reduced to the case where V does not
have contact with any flat datum. Our goal in this section is to show, under these
assumptions, that V is a properly embedded planar Riemann surface of finite type
[meaning that the boundary of V has finitely many connected components].

Lemma 11.1. Let V be an algebraic set in G with the norm-preserving extension
property. If s is an isolated point in V then V = {s}.

This statement follows from Proposition 9.1.
Recall that the map β : G→ D was defined in Proposition 4.9 by the formula

(11.1) β(s) =
s1 − s1s2

1− |s2|2 for s ∈ G.

Lemma 11.2. Let V be an algebraic set in G having the norm-preserving ex-
tension property. If V is not a singleton and V does not have contact with any
flat datum, then V is a Riemann surface properly embedded in G and β|V is a
homeomorphism onto its range.

Proof. Clearly, as V is assumed not to have contact with any flat datum,
V 6= G. Therefore, if V is not a singleton, it follows from Lemma 11.1 that V has
no isolated points and so is a one-dimensional algebraic set in G. We first prove
that V has no singular points, and as a consequence that V is a one-dimensional
complex manifold properly embedded in G. We then show that β|V is an open
mapping. As Proposition 4.9 implies that β|V is injective, it follows that β|V is a
homeomorphism onto its range.

V has no singular points. Fix s0 ∈ V and choose a neighborhood U0 of s0 and
a holomorphic function ζ on U0 such that

(11.2) V ∩ U0 = Zζ ,

where Zζ denotes the zero set of ζ in U0. Let β0 = β(s0). Introduce local coordi-
nates (z, w) at s0 by setting

s = s0 + z(β̄0, 1) + w(1,−β0),
and define η by

η(z, w) = ζ(s).

Now, since (β̄0, 1) points in the flat direction at s0, there does not exist ε > 0 such
that η is identically zero on the set {(z, 0) : |z| < ε}; else V contacts the flat in-
finitesimal datum (s0, (β̄0, 1)), contrary to hypothesis. Therefore, η(z, 0) has a zero
of finite positive order, ℓ say, at z = 0. Consequently, by the Weierstrass Prepara-
tion Theorem, there exist analytic functions of one variable b1, . . . , bℓ, defined on a
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neighborhood εD of zero, for some ε > 0, and vanishing at zero, and a holomorphic
function h(z, w) on (εD)2 such that if Pw is the pseudopolynomial

Pw(z) = zℓ + b1(w)z
ℓ−1 + . . .+ bℓ(w),

then

(11.3) η(z, w) = Pw(z)h(z, w) and h(z, w) 6= 0

on (εD)2. Evidently, it will be the case that s0 is not a singular point of V if Pw

has a unique irreducible factor, which has degree 1.
To see that Pw has a unique irreducible factor, assume to the contrary that Qw

and Rw are distinct irreducible monic factors of Pw in the ring

R = C(εD)[z]

of pseudopolynomials. Since the zeros of a polynomial depend continuously on its
coefficients, there exists δ > 0 such that the zeros of the polynomial Pw(·) lie in D

−

whenever |w| < δ. It follows that the zeros of Qw(·) and Rw(·) also lie in D
− when

|w| < δ.
If the restrictions of Qw, Rw to (εD)× n−1

D are equal, for some n > 1/δ, then
in fact Qw = Rw on (εD)2. Since Qw and Rw are distinct, for each n > 1/δ, there
exists wn ∈ n−1

D such that Qwn
(·) 6= Rwn

(·). As Qwn
(·), Rwn

(·) are distinct monic
polynomials, their zero sets are not identical, and so there exist complex numbers
xn and yn such that xn 6= yn and

Qwn
(xn) = 0 = Rwn

(yn).

Since xx, yn ∈ D
−, by passing to a subsequence if necessary, we may assume that

the sequences {xn} and {yn} converge. Since, for all n, Qwn
(xn) = 0, we have

Pwn
(xn) = 0 and thus

0 = lim
n→∞

Pwn
(xn)

= lim
n→∞

xℓn + lim
n→∞

b1(wn)x
ℓ−1
n + . . .+ lim

n→∞
bℓ(wn) = ( lim

n→∞
xn)

ℓ.

Therefore xn → 0 and, similarly, yn → 0. Finally, define sn, tn ∈ V by setting

sn = s0 + xn(β̄0, 1) + wn(1,−β0)
and

tn = s0 + yn(β̄0, 1) + wn(1,−β0).
With the above constructions we have sn → s0 and

tn − sn
‖tn − sn‖

=
yn − xn
‖yn − xn‖

(β̄0, 1)

‖(β̄0, 1)‖
.

After passage to a further subsequence one infers that there exists χ ∈ T such that

tn − sn
‖tn − sn‖

→ χ
(β̄0, 1)

‖(β̄0, 1)‖
,

which is a flat direction at s0. Thus V is contacted by the flat infinitesimal datum
(s0, (β̄0, 1)), contrary to assumption. This completes the proof that Pw does not
have a distinct pair of irreducible factors.

To see that each of the irreducible factors of Pw has degree 1, assume to the
contrary that Qw is an irreducible factor and degQw = d ≥ 2. Since Qw is ir-
reducible, there exists ε > 0 such that for each w with 0 < |w| < ε the equation
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Qw(z) = 0 has exactly d distinct roots. Thus we may choose sequences {wn}, {xn},
and {yn} such that wn → 0 and

xn 6= yn and Qwn
(xn) = 0 = Qwn

(yn)

for all n. By the argument of the previous paragraph, these sequences lead to a
contradiction to the assumption that V does not have contact with a flat datum.

We have shown that η(z, w) = (z + b1(w))
kh(z, w) for some positive integer k.

Thus

(11.4) V ∩ U0 = Zζ = {s ∈ U0 : z + b1(w) = 0}
and V ∩ U0 = f(N) for some neighborhood N of 0 in C, where

(11.5) f(w) = s0 − b1(w)(β̄0, 1) + w(1,−β0).
Thus s0 is not a singular point of V . Hence V has no singular points.

β|V is an open mapping. As V is a one dimensional analytic set without
singular points, it follows that V is a Riemann surface. Since algebraic sets are
closed, the injection map of V into G is a proper embedding. There remains to
show that the function β|V is a homeomorphism onto its range. Clearly, β|V
is continuous. Furthermore, as V is assumed not to have contact with any flat
geodesic, it is clear from Proposition 4.9 that β|V is injective. We conclude the
proof that β is a homeomorphism by showing that β|V is an open mapping.

Firstly, for f as in equation (11.5),

df0 = (−b′1(0)β̄0 + 1, −b′1(0)− β0) dw0.

Secondly, the total complex differential of β at a general point s ∈ G is given by

dβ =
∂β

∂s1
ds1 +

∂β

∂s̄1
ds̄1 +

∂β

∂s2
ds2 +

∂β

∂s̄2
ds̄2

=
1

1− |s2|2 ds
1 − s2

1− |s2|2 ds̄
1 +

−s̄1 + s1s̄2

(1− |s2|2)2 ds
2 + s2

s1 − s̄1s2

(1− |s2|2)2 ds̄
2

=
1

1− |s2|2
(

ds1 − s2ds̄1 − β̄ds2 + s2βds̄2
)

=
1

1− |s2|2
(

ds1 − β̄ds2 − s2(ds̄1 − βds̄2)
)

.(11.6)

Thirdly, observe that if f = (f1, f2) is given by equation (11.5), then

(df1)0 = (−b′1(0)β̄0 + 1)dw0 and (df2)0 = (−b′1(0)− β0)dw0,

and so

(df1 − β̄0df
2)0 = (−b′1(0)β̄0 + 1)− β̄0(−b′1(0)− β0)dw0

= (1 + |β0|2)dw0.(11.7)

Similarly

(df̄1 − β0df̄2)0 = (1 + |β0|2)dw̄0.(11.8)

Therefore, by virtue of equations (11.6), (11.7) and (11.8),

d(β ◦ f)0 = C(dw0 − s20dw̄0)(11.9)

where

C =
1 + |β0|2
1− |s20|2

> 0.
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Let u(x, y), v(x, y) be the real and imaginary parts of β ◦ f(x+ iy) for x, y ∈ R.
It follows from equation (11.9) that the Jacobian determinant of β ◦ f at 0 is

∂(u, v)

∂(x, y)
(0) = C2 − |Cs20|2 = C2(1− |s20|2) > 0.

By the Inverse Function Theorem, β ◦ f is invertible in a neighborhood of s0 in V .
As the point s0 ∈ V is arbitrary, β|V is an open mapping, as was to be proved.

We have shown that V is a one-dimensional manifold. By Proposition 9.1, V
is connected, and so V is a Riemann surface. �

Lemma 11.3. If V is an algebraic set in G then β(V ) is a semialgebraic set
and ∂β(V ) has a finite number of components.

Proof. G is the set of points s ∈ C
2 such that

|s1 − s1s2|2 < (1− |s2|2)2,
and therefore G is a semialgebraic set. Since V = G ∩ A for some algebraic set A,
it follows that V is a semialgebraic set (see, for example, [20]). It is clear from the
definition of β that β is a regular mapping on G (that is, the real and imaginary
parts of β are rational functions whose denominators do not vanish on G). Hence β
is a semialgebraic map, and so, by [20, Proposition 2.2.7], β(V ) is a semialgebraic
set. It follows from [20, Proposition 2.2.2] that the boundary ∂β(V ) of β(V ) is
a semialgebraic set. By [20, Theorem 2.4.5], ∂β(V ) has finitely many connected
components. �

A circular region is defined to be a region in C whose boundary consists of
a finite number of disjoint nondegenerate circles. These domains are canonical
multiply connected domains, in the sense that every finitely connected planar do-
main is conformally equivalent to a circular region [22, Theorem 7.9]. A domain is
nondegenerate if none of its boundary components is a singleton set.

Lemma 11.4. Let V be an algebraic set in G having the norm-preserving exten-
sion property. If V does not have contact with any flat datum, then either V is a
singleton or there exists a circular region R in the plane and a bijective holomorphic
mapping σ : R→ V such that σ′(z) 6= 0 for all z ∈ R.

Proof. Suppose that V is not a singleton. By Lemma 11.2, V is a Riemann
surface and V is homeomorphic to β(V ), an open subset of D. Now any open
planar Riemann surface is conformally equivalent to a plane region R [12, Chapter
III, Paragraph 4]. By Lemma 11.3, ∂β(V ) has a finite number of components,
and so β(V ) is finitely connected. Since R is homeomorphic to β(V ), R is a
finitely connected plane region. We claim that R is nondegenerate. Suppose, to the
contrary, that there is some point z0 that is a singleton boundary component of R.
Let σ = (a, b) : R → V be a conformal map onto the Riemann surface V . Since
every bounded holomorphic function on R \ {z0} continues holomorphically to R,

s0
def
= lim

z→z0
(a(z), b(z))

exists. Furthermore, since z0 ∈ ∂R, s0 ∈ ∂V ⊆ ∂G. Hence there exists ω ∈ T

such that |Φω(s0)| = 1, for otherwise |Φω(s0)| < 1 for all ω ∈ T, which implies
that s0 ∈ G, by Proposition A.1. The holomorphic extension to R ∪ {z0} of Φω ◦ σ
has modulus at most 1 and attains its maximum modulus at the interior point z0,
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contrary to the Maximum Modulus Principle. Hence the boundary of R has no
singleton components, and so, by [22, Theorem 7.9], we can assume that R is a
circular domain. Then σ : R→ V is the required conformal map. �





CHAPTER 12

Proof of the main theorem

This chapter is devoted to the proof of Theorem 1.4. For convenience we repeat
the statement.

Theorem 12.1. V is an algebraic subset of G having the norm-preserving ex-
tension property if and only if either V is a retract in G or V is the union of R
and a flat geodesic in G.

By Proposition 9.2 and Theorem 10.1, if V is a retract in G or V = R ∪ D,
where D is a flat geodesic in G, then V is an algebraic subset of G with the norm-
preserving extension property. We shall prove the converse.

Accordingly, for the remainder of the chapter, fix a set V ⊆ G such that

(12.1) V is an algebraic set in G, and

(12.2) V has the norm-preserving extension property.

We wish to show that V is a retract in G or V = R ∪ D, where D is a flat
geodesic in G. This conclusion certainly follows if V is a singleton set or if V = G.
We may therefore assume that

(12.3) V is not a singleton set, and

(12.4) V 6= G.

If V has contact with a flat datum δ, then by Lemma 9.10, either V = G or V = Dδ,
both of which are retracts in G, or V = R∪Dδ. If V has contact with a royal datum
δ, then by Lemma 9.11, either V = R, V is the union of R and a flat geodesic in
G or V = G. We may therefore assume further that

(12.5) V does not have contact with any flat or royal datum.

By Lemma 11.4 there exists a circular region R in the plane and a bijective holo-
morphic mapping σ : R→ V such that σ′(z) 6= 0 for all z ∈ R.

Lemma 12.2. If V has contact with a purely balanced datum δ in G then (1)
V = Dδ and (2) V is a retract in G.

Proof. Suppose that V has contact with a purely balanced datum δ in G. By
Lemma 9.5, Dδ ⊆ V . Choose a solution k of Kob(δ), so that Dδ = k(D). Then k
is a rational Γ-inner function and so a fortiori proper as a map from D to V , and

hence f
def
= σ−1 ◦ k is a proper injective holomorphic map from D to R. By the

Open Mapping Theorem, f is a homeomorphism from D to f(D). We claim that
f(D) = R.

Suppose that f(D) 6= R. Choose a point w ∈ R \ f(D), a point u ∈ f(D) and a
continuous path γ from u to w in R. Let z0 = γ(t0) where t0 = sup{t : γ(t) ∈ f(D)}.
Then z0 ∈ (∂f(D)) ∩R.
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Pick a sequence (λn) in D such that f(λn) → z0. If (λn) has a subsequence
which converges to a limit µ in D then f(µ) = z0 and hence z0 ∈ f(D), a con-
tradiction. Hence |λn| → 1, and so, by the propriety of f , f(λn) tends to ∂R,
and so z0 ∈ ∂R, contrary to the fact that z0 ∈ R. Hence f(D) = R, and so
k(D) = σ ◦ f(D) = σ(R) = V . Thus Dδ = V , and so V is a retract in G (see
equation (5.1)). �

In the light of Lemma 12.2 we may further assume that

(12.6) V does not have contact with any purely balanced datum.

Let

(12.7) ∂R = ∂0 ∪ ∂1 ∪ · · · ∪ ∂n
be a decomposition of ∂R into its connected components, where ∂0 is the boundary
of the unbounded component of the complement of R−. We may take ∂0 to be the
unit circle.

Lemma 12.3. If n = 0 then V is a nontrivial retract in G and is a complex
geodesic of G.

Proof. Since n = 0 we have R = D. By assumption V is an algebraic subset of
G having the norm-preserving extension property, and thus the map σ−1 : V → D

has a holomorphic extension f : G→ D̄. By the Open Mapping Theorem, f(G) ⊂
D, and so σ ◦f is a holomorphic map from G to V which is the identity on V . That
is, V is a retract in G. By statements (12.3) and (12.4), V is neither a singleton nor
the whole of G, and so V is a nontrivial retract. By Theorem 5.1, V is a complex
geodesic in G. �

The rest of the proof consists of a demonstration that n = 0.
Suppose n 6= 0. Write σ = (a, b), so that a and b are holomorphic functions on

R and, for all z ∈ R, a′(z) and b′(z) are not both zero.

12.1. Preliminary lemmas

For ω ∈ T let fω = Φω ◦ σ : R→ D. Define A ⊆ D(R) by

A = {fω : ω ∈ T}.

Lemma 12.4. If ω1 6= ω2 then fω1
6= fω2

.

Proof. Assume, to the contrary, that ω1, ω2 are distinct point in T but fω1
=

fω2
. Straightforward manipulation of the equation

2ω1b− a

2− ω1a
=

2ω2b− a

2− ω2a

yields the relation a2 = 4b, so that V = σ(R) ⊆ R, contrary to the statement
(12.5). �

Lemma 12.5. A is a universal set for the Carathéodory Problem on R. Fur-
thermore, if ζ is a nondegenerate datum in R, then there exists a unique f ∈ A
that solves Car(ζ).
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Proof. If ζ is a datum in R then σ(ζ) is a datum in V . Furthermore, since
σ is biholomorphic, the holomorphic invariance of the Carathéodory metric implies
that

|ζ|R = |σ(ζ)|V .
Here we use a self-explanatory variant on the notation | · |car which indicates the
domain in question. Also, as V has the norm-preserving extension property,

|σ(ζ)|V = |σ(ζ)|G.
Therefore, if we view σ(ζ) as a datum in G and we choose ω ∈ T such that Φω

solves Car(σ(ζ)), then fω = Φω ◦ σ solves Car(ζ).
To see that fω is unique, assume to the contrary that fω1

and fω2
solve Car(ζ)

and ω1 6= ω2. Then Φω1
and Φω2

both solve Car(σ(ζ)). This means that σ(ζ) is a
flat, royal or purely balanced datum that contacts V , contrary to statements (12.5)
and (12.6). �

In the light of Lemma 12.3 it is clear that the proof of Theorem 1.4 will be
complete if we establish that n = 0. Assume to the contrary that

(12.8) n ≥ 1.

While A is a universal set for the Carathéodory Problem on R, by Lemma 12.5,
it is not necessarily the case that each f ∈ A solves Car(ζ) for some nondegenerate
datum ζ in R. Accordingly, we define a set E ⊆ T by

E = {ω ∈ T : fω solves Car(ζ) for some nondegenerate datum ζ in R}
It is well known that the Carathéodory extremal functions on R (the Ahlfors

functions) are (n+ 1)-valent inner functions that analytically continue to a neigh-
borhood of R− (for example, [25, Chapter 5, Theorem 1.6]). In particular the
functions fω, ω ∈ E enjoy these properties. Of course fω is nonconstant for ω ∈ E.

Lemma 12.6. There exist two datums ζ1 and ζ2 in R such that fω1
solves

Car(ζ1), fω2
solves Car(ζ2), and ω1 6= ω2.

Proof. Fix a datum ζ1 in R and let fω1
solve Car(ζ1). As f is (n+1)-valent,

there exist z1, z2 ∈ R such that z1 6= z2 and fω1
(z1) = fω2

(z2). Let ζ2 = (z1, z2).
As |fω1

(ζ2)| = 0, fω1
cannot possibly solve Car(ζ2). Therefore, the lemma follows

by choice of ω2 such that fω2
solves Car(ζ2). �

Lemma 12.7. If n ≥ 1 then E is an infinite set.

Proof. Assume to the contrary that E is finite.
Fix a nondegenerate discrete datum ζ1 = (z0, z1) in R and let fω1

solve Car(ζ1).
Since fω1

is (n + 1)-valent and n ≥ 1, there exists z2 ∈ R with z2 6= z1 and
fω1

(z1) = fω1
(z2). Construct a continuous curve γ : [1, 2] → R with γ(1) = z1 and

γ(2) = z2 and define a curve of discrete datums δt in R by the formula

ζt = (z0, γ(t)), 1 ≤ t ≤ 2.

Since Lemma 12.5 guarantees that for each t ∈ [1, 2] there exists a unique ω ∈ E
such that fω solves Car(ζt), it follows that there exists a well defined function
Ω : [1, 2] → E such that

fΩ(t) solves Car(ζt) for all t ∈ [1, 2].

Also, observe that by construction, Ω(1) = ω1.
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We claim that for each τ ∈ E, Ω−1({τ}) is an open subset of [1, 2]. To prove
this claim, fix τ0 = Ω(t0) ∈ E and note that since the solution to Car(ζt0) is unique,

(12.9) |fτ (ζt0)| < |fτ0(ζt0)| for all τ ∈ E \ {τ0}.
It follows by continuity, that equation (12.9) holds, with t0 replaced by t, for all t
in a neighborhood I of t0. But then,

fτ0 solves Car(ζt) for all t ∈ I,

that is, I ⊆ Ω−1({τ0}. This proves that Ω−1({τ}) is an open subset of [1, 2] for
each τ ∈ E.

Since Ω is continuous and [1, 2] is connected, Ω is constant. Hence

Ω(2) = Ω(1) = ω1

and fω1
solves Car(ζ2). But ζ2 is nondegenerate while |fω1

(ζ2)| = 0. �

12.2. σ : R→ V is analytic on R−

Lemma 12.8. The map σ extends holomorphically to a neighborhood of R−.

Proof. By Lemma 12.7 there exist distinct points ω1, ω2 ∈ E. Let

(12.10) f1 = fω1
=

2ω1b− a

2− ω1a
and f2 = fω2

=
2ω2b− a

2− ω2a
.

Solve these equations for a and b in terms of f1, f2:

a = 2
ω1f2 − ω2f1

ω2 − ω1 + ω1ω2(f2 − f1)

b =
f2 − f1 + (ω2 − ω1)f1f2
ω2 − ω1 + ω1ω2(f2 − f1)

.

Since f1 and f2 are holomorphic on a neighborhood of R−, a and b extend to
meromorphic functions defined on a neighborhood of R−. But a and b are bounded
on R, and so extend to holomorphic functions on a neighborhood of R−. �

Lemma 12.9. σ(∂R) is contained in the distinguished boundary bΓ of the closure
Γ of G, and therefore

|a| ≤ 2, |b| = 1 and a = āb on ∂R.

Proof. We are using the characterization of bΓ given in Proposition A.2. First
notice that as σ ∈ G(R), |a(z)| < 2 for all z ∈ R. By Lemma 12.8, σ extends
continuously to ∂R, and therefore |a(z)| ≤ 2 for all z ∈ ∂R. There remains to prove
that a = āb and |b| = 1 on ∂R.

Let f1 and f2 be as in Lemma 12.8, let E1 = {z ∈ ∂R : a(z) = 2ω̄1} and
E2 = {z ∈ ∂R : a(z) = 2ω̄2}. Clearly, Lemma 12.8 guarantees that E1 and E2 are
finite. As

f1 =
2ω1b− a

2− ω1a

is inner, it follows that |Φω1
(a(z), b(z))| = 1 for all z ∈ ∂R \ E1. Since, for such z,

(a(z), b(z)) ∈ Γ \ {(2ω̄1, ω̄
2
1)}, Proposition A.5 shows that

(12.11) ω1

(

a(z)− a(z)b(z)
)

= 1− |b(z)|2
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for all z ∈ ∂R \ E1. But Lemma 12.8 implies that a and b are continuous on
∂R. Therefore, equation (12.11) holds for all z ∈ ∂R. In similar fashion we deduce
that

(12.12) ω2

(

a(z)− a(z)b(z)
)

= 1− |b(z)|2 for all z ∈ ∂R.

Since ω1 6= ω2, it follows immediately from equations (12.11) and (12.12) that

(12.13) a(z)− a(z)b(z) = 0 and |b(z)| = 1

for all z ∈ ∂R. Thus σ(z) ∈ bΓ for all z ∈ ∂R. �

The following lemma gives an additional relationship between a and b that
must hold whenever ω ∈ E.

Lemma 12.10. If ω ∈ E and a(η) = 2ω̄ for some η ∈ ∂R, then b(η) = ω̄2. In
consequence

a(η)2 = 4b(η).

Proof. Suppose that b(η) 6= ω̄2. Then Φω is continuous at σ(η), and

fω =
2ωb− a

2− ωa

is bounded on a neighborhood of σ(η). Since 2−ωa = 0 at η, necessarily 2ωb−a = 0
at η, so that b(η) = ω̄2. �

Lemma 12.11. The set

F
def
= {ω ∈ T : 2ω̄ ∈ a(∂R)}

is finite.

Proof. If not then there is an infinite sequence (ωi) of distinct points in T

and a sequence (ηi) of distinct points in ∂R such that a(ηi) = 2ω̄i for each i.
Lemma 12.10 then implies that a(ηi)

2 = 4b(ηi) for all i. Hence, by Lemma 12.8,
a(η)2 = 4b(η) for all η ∈ R, so that σ(R) is contained in the royal variety R.
Then each datum in G that contacts V also contacts R, contrary to assumption
(12.5). �

Lemma 12.12. There exists ω ∈ E such that 2ω̄ /∈ a(∂R).

Proof. Lemma 12.7 asserts that E is infinite, while Lemma 12.11 states that
the subset F of E is finite. Therefore E \F is nonempty, that is, there exists ω ∈ E
such that 2ω̄ /∈ a(∂R). �

12.3. Degree considerations

For r = 0, . . . , n and ϕ a nonvanishing continuously differentiable complex-
valued function on ∂r we define

#r(ϕ) =
1

2πi

∫

∂r

ϕ′(z)

ϕ(z)
dz.

Here, in the decomposition (12.7) of the boundary of R, ∂r is oriented counter-
clockwise if r = 0 and clockwise if r > 0.

If ϕ is defined on ∂R we set

#(ϕ) =

n
∑

r=0

#r(ϕ).
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We note that if ϕ is a nonconstant inner function on R that extends to be holomor-
phic on a neighborhood U of R−, then #r(ϕ) ≥ 1 for each r so that #(ϕ) ≥ n+1.
Furthermore, since the cycle ∂0 + · · · + ∂n is clearly homologous to 0 in U , we
may apply the Argument Principle to deduce that in this case #(ϕ) is equal to the
number of zeros of ϕ in R (for example, [11, Chapter 4, Subsection 5.2]).

Lemma 12.13.

(12.14) #(b) = n+ 1.

Proof. By Lemma 12.12, there is an ω ∈ E such that 2ω̄ 6∈ a(∂R). Thus
ωa(z) 6= 2 for all z ∈ ∂R. It follows from Lemma 12.9 that |a(z)| ≤ 2 for all
z ∈ ∂R. Hence the curves

2− ωa

2− ωa
(z), z ∈ ∂r,

are well defined and do not meet the closed negative real axis for r = 0, . . . , n.
Therefore

#

(

2− ωa

2− ωa

)

= 0.

Since

(12.15) fω =
2ωb− a

2− ωa
=

2ωb− āb

2− ωa
= ωb

2− ωa

2− ωa
,

we have #(fω) = #(b). Now fω is not a constant function, for otherwise Φω ◦ σ is
a constant of unit modulus on R, and hence σ(R) ⊆ ∂G, which is false. Thus the
Ahlfors function fω for R has n+ 1 zeros counting multiplicity, so that

(12.16) #(fω) = n+ 1.

Therefore #(b) = n+ 1. �

Notice that the equation (12.15) is valid for all ω ∈ T \ F , and therefore the
index formula (12.16) is also valid for such ω.

Lemma 12.14. The set F of Lemma 12.11 is empty.

Proof. Assume to the contrary that ω0 ∈ F , say a(z0) = 2ω̄0 where z0 ∈ ∂R.
Since F is finite, there exists a sequence {ωi}i≥1 in T \ F such that ωi → ω0.
Consequently, fωi

→ fω0
uniformly on compact subsets of R. Furthermore, the

denominator of fωi
, 2− ωia, converges uniformly on a neighborhood U of R̄ to the

denominator of fω0
. Hence, by Hurwitz’s Theorem, 2 − ωia has a zero at a point

wi ∈ U , and since ωi /∈ F , we have wi /∈ R−. We can assume that wi → z0. Thus
fωi

has a pole at a point wi ∈ U \ R̄. By the Schwarz Reflection Principle, for
i ≥ 0, fωi

has a zero at a point zi ∈ R, where zi → z0. Now ωi /∈ F for each
i ≥ 1, and so the formula (12.16) obtains. Hence fωi

is an inner function on R of
minimal degree n+ 1. Since cancellation occurs in the limit fω0

of (fωi
), it follows

that #(fω0
) < n+1, and therefore #(fω0

) = 0, which is to say that fω0
is constant.

However, since ω0 ∈ E, there is a nondegenerate datum δ in R such that fω0
solves

Car(δ), which implies that fω0
is nonconstant, a contradiction. Hence F = ∅. �

Conclusion. It remains to show that n = 0. Suppose not.
By Lemma 12.14, the set F is empty. Therefore, on ∂R, |a| < 2 and

|4b− (4b− a2)| = |a2| < 4 = |4b|.
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Hence, by Rouché’s Theorem, 4b− a2 has the same number of zeros as b, which, in
view of Lemma 12.13, is to say that

#(4b− a2) = #(b) = n+ 1.

Since n ≥ 1, this implies that 4b − a2 has at least two zeros in R, and hence that
V = σ(R) meets R at least twice. Thus there exists a royal datum in G which
contacts V , contrary to statement (12.5).

We have established that n = 0. This completes the proof of Theorem 1.4.





CHAPTER 13

Sets in D
2 with the symmetric extension property

Motivation for the study of the norm-preserving extension property in a domain
of holomorphy is described in the introduction of [2]. One motive is to understand
the set of solutions of a Nevanlinna-Pick interpolation problem on D

2. Another is
to prove refinements of the inequalities of von Neumann [37] and Andô [14]. In
this section we shall apply the preceding results to obtain some statements relevant
to interpolation problems on D

2 having a symmetry property; in the next section
we shall apply our results to the theory of spectral sets of commuting pairs of
operators.

In [2, Theorem 1.20] Agler and McCarthy described all sets in the bidisc that
have the norm-preserving extension property. The following statement is contained
their result.

Theorem 13.1. An algebraic set V in D
2 has the norm-preserving extension

property if and only if V has one of the following forms.

(1) V = {λ} for some λ ∈ D
2;

(2) V = D
2;

(3) V = {(z, f(z)) : z ∈ D} for some f ∈ D(D);
(4) V = {(f(z), z) : z ∈ D} for some f ∈ D(D).

The authors also generalized the norm-preserving extension property in [2,
Definition 1.2] as follows.

Definition 13.2. Let Ω be a domain of holomorphy, V be a subset of Ω and
A be a collection of bounded holomorphic functions on V . Then V is said to have
the A-extension property (relative to Ω) if, for every f ∈ A, there is a bounded
holomorphic function g on Ω such that g|V = f and

sup
Ω

|g| = sup
V

|f |.

Let V be a symmetric algebraic set in D
2 (‘symmetric’ meaning that (λ1, λ2) ∈

V implies that (λ2, λ1) ∈ V ). LetH∞
sym(V ) denote the algebra of bounded holomor-

phic functions g on V which are symmetric, in the sense that g(λ1, λ2) = g(λ2, λ1)
for all (λ1, λ2) ∈ V . We say that V has the symmetric extension property if V has
the H∞

sym(V )-extension property. In this section we shall describe all symmetric

algebraic sets in D
2 that have the symmetric extension property. It is striking that

there are three species of set in D
2 that have the symmetric extension property but

do not resemble any of the types in Theorem 13.1.
The symmetric extension property in D

2 is closely related to the norm-preserving
extension property in G. We shall denote by t the transposition map t(λ1, λ2) =
(λ2, λ1).

77
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Lemma 13.3. A symmetric subset V of D2 has the symmetric extension property
if and only if π(V ) has the norm-preserving extension property in G.

Proof. Note that since V is symmetric, V = π−1(π(V )).
Suppose that V ⊆ D

2 has the symmetric extension property. Let f be a
bounded holomorphic function on π(V ); then f ◦π is a bounded symmetric function
on V . Moreover, f ◦ π is holomorphic on V . For consider any λ ∈ V . Since f is
holomorphic, there is a neighborhood U of π(λ) in G and a holomorphic function
g on U which agrees with f on U ∩ π(V ). Then g ◦ π is a holomorphic function on
the neighborhood π−1(U) of λ which agrees with f ◦ π on π−1(U) ∩ V . Thus f ◦ π
is a symmetric bounded holomorphic function on V . Since V has the symmetric
extension property, there exists a bounded holomorphic function f1 on D

2 which
agrees with f ◦ π on V and satisfies

sup
D2

|f1| = sup
V

|f ◦ π|.

Let f̃ = 1
2 (f1 + f1 ◦ t). Then f̃ is a symmetric bounded holomorphic function on

D
2 which agrees with f ◦ π on V and satisfies

sup
D2

|f̃ | = sup
V

|f ◦ π|.

There exists a holomorphic function F on G such that f̃ = F ◦ π. Then F agrees
with f on π(V ) and

sup
G

|F | = sup
D2

|f̃ | = sup
V

|f ◦ π| = sup
π(V )

|f |.

Hence π(V ) has the norm-preserving extension property in G.
Conversely, suppose that π(V ) has the norm-preserving extension property in

G. We must show that V has the symmetric extension property. To this end
consider any bounded symmetric holomorphic function f on V . There exists a
unique function F on π(V ) such that f = F ◦ π. We claim that F is holomorphic
on π(V ).

Consider any s ∈ π(V ) and let µ ∈ V be a preimage of s under π. Since f
is holomorphic on V there exists a neighborhood U of µ in D

2 and a holomorphic
function g on U such that f and g agree on U ∩V . We claim that both U and g can
be taken to be symmetric. Indeed, if t(µ) = µ then define U1 to be U ∩ t(U) and let
g1 = 1

2 (g + g ◦ t); then U1 is a symmetric neighborhood of µ and g1 is a symmetric
holomorphic function on U1 such that g1 and f agree on U1 ∩ V . If t(µ) 6= µ, let
U0 be an open ball centred at µ and contained in U such that U0 is disjoint from
t(U0), let U1 = U0 ∪ t(U0) and extend g to a symmetric holomorphic function on
U1 by g1(λ) = g ◦ t(λ) for λ ∈ t(U0). In either case U1 is a symmetric neighborhood
of µ and g1 agrees with f on U1 ∩ V .

The symmetric function g determines a holomorphic function H on the neigh-
borhood π(U) of s such that g = H ◦ π on U . Then H is a holomorphic function
on the neighborhood π(U) of s such that H and F agree on π(U) ∩ π(V ). Thus F
is bounded and holomorphic on π(V ).

Since π(V ) has the norm-preserving extension property, there exists a bounded

holomorphic function F̃ on G which extends F and satisfies

sup
G

|F̃ | = sup
π(V )

|F | = sup
V

|f |.
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Then F̃ ◦ π is a bounded holomorphic function on D
2 that extends f and has the

same supremum norm as f . Hence V has the symmetric extension property in
D

2. �

Lemma 13.4. If V is a symmetric algebraic set in D
2 then π(V ) is an algebraic

set in G.

Proof. Suppose that

V = {λ ∈ D
2 : f(λ) = 0 for all f ∈ S}

for some set S ⊆ C[λ1, λ2]. Since V is symmetric, for λ ∈ D
2 we have λ ∈ V if

and only if t(λ) ∈ V . Hence λ ∈ V if and only if both (f + f ◦ t)(λ) = 0 and
(f − f ◦ t)2(λ) = 0 for all f ∈ S. On replacing S by the set

{f + f ◦ t : f ∈ S} ∪ {(f − f ◦ t)2 : f ∈ S},
we may assume that S is a set of symmetric polynomials, and so can be expressed
in the form

S = {F ◦ π : F ∈ S♭}
for some set S♭ ⊆ C[s1, s2]. Then

π(V ) = {s ∈ G : F (s) = 0 for all F ∈ S♭}.
Hence π(V ) is an algebraic set. �

Recall that the notion of a balanced disc in D
2 was given in Definition 5.2. It

is a subset D of D2 having the form D = {(z,m(z)) : z ∈ D} for some m ∈ AutD.

Theorem 13.5. A symmetric algebraic set V in D
2 has the symmetric exten-

sion property if and only if one of the following six alternatives holds.

(1) V = {λ, t(λ)} for some λ ∈ D
2;

(2) V = D
2;

(3) V = D ∪ t(D) for some balanced disc D in D
2 such that D− meets the set

{(z, z) : z ∈ T};
(4) V = Vβ for some β ∈ D, where

(13.1) Vβ
def
= {(z, w) ∈ D

2 : z + w = β + β̄zw};
(5) V = ∆ ∪ Vβ for some β ∈ D, where ∆ = {(z, z) : z ∈ D};
(6) V = Vm,r for some r ∈ (0, 1) and m ∈ AutD, where

(13.2) Vm,r
def
= {(z, w) ∈ D

2 : Hr(m(z),m(w)) = 0}
and

(13.3) Hr(z, w)
def
= 2zw(r(z + w) + 2− 2r)− (1 + r)(z + w)2 + 2r(z + w).

Moreover, the six types of sets V in (1) to (6) are mutually exclusive.

Proof. Let V be a symmetric algebraic set in D
2. By Lemma 13.4, π(V ) is

an algebraic set in G. By Lemma 13.3, V has the symmetric extension property if
and only if π(V ) has the norm-preserving extension property in G. By Theorem
1.4, π(V ) has the norm-preserving extension property if and only if either π(V ) is
a retract in G or π(V ) = R∪D for some flat geodesic D of G.

Suppose that V has the symmetric extension property. Consider the two cases
(i) π(V ) is a retract and (ii) π(V ) = R∪D for some flat geodesic D.
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In case (ii), by Proposition 7.6, D = Fβ for some β ∈ D, and so V = π−1(R ∪
Fβ) = ∆ ∪ Vβ , as in alternative (5) of the theorem.

In case (i), by Theorem 1.3, the retracts in G are the singleton sets, G itself
and the complex geodesics in G. If π(V ) is either a singleton or G then alternative
(1) or (2) respectively holds.

The remaining possibility in case (i) is that π(V ) is a complex geodesic in G, so
that π(V ) = Dδ for some nondegenerate datum δ, of one of the five types described
in Definition 3.4. If δ is flat then D = Fβ for some β ∈ D, and V = Vβ , so
that alternative (4) holds. By Proposition 8.4, if δ is balanced then there exists a
balanced disc D in D

2 such that π(D) = π(V ), and hence V = D∪ t(D). Moreover,
if k solves Kob(δ), then k(z) = (z+m(z), zm(z)) for some m ∈ AutD, and the disc
D is given by {(z,m(z)) : z ∈ D}. Furthermore, since k has a royal node in T, the
disc D− meets {(z, z) : z ∈ T}. Thus alternative (3) holds.

There remains the case that π(V ) is a purely unbalanced geodesic. By Theorem
7.8, then π(V ) ∼ kr(D) for some r ∈ (0, 1), where

(13.4) kr(z) =
1

1− rz
(2(1− r)z, z(z − r)) for all z ∈ D.

Let hr(z) = kr(−z). Then hr(D) = kr(D) and one finds that Φ1 ◦ hr = idD. We
may apply Proposition 5.5 to write hr(D) as the zero set of a polynomial. We have
hr = q̃r/qr, where

qr(z) = 1 + rz, q̃r(z) = z(z + r).

As in equation (5.6), let

Pr(s) = (2− ωs1)2
q̃r ◦ Φω(s)− s2qr ◦ Φω(s)

s2 − ω̄2

= 2s2(rs1 + 2− 2r)− (1 + r)(s1)2 + 2rs1.

By Proposition 5.5, kr(D) = G∩P−1
r (0). Hence π(V ) = G∩m̃−1(P−1

r (0)) for some
m ∈ AutD. That is, there exist r ∈ (0, 1) and m ∈ AutD such that (z, w) ∈ V if
and only if

Pr(m(z) +m(w),m(z)m(w)) = 0.

Since the function Hr is defined in equation (13.3) so that Hr(z, w) = Pr(z+w, zw),
we have V = Vm,r, and alternative (6) of the theorem holds.

We have shown that if V has the symmetric extension property then V is of
one of the forms (1) to (6). We prove the converse. If either of alternatives (1) or
(2) holds, then π(V ) is a singleton or G respectively and so π(V ) has the norm-
preserving extension property. If (5) holds then π(V ) = R∪Fβ , and so, by Theorem
1.4, π(V ) has the norm-preserving extension property in G.

We claim that, in the remaining cases (3), (4) and (6), π(V ) is a complex
geodesic in G.

If (3) holds then D = {(z,m(z)) : z ∈ D} for some m ∈ AutD having a fixed
point in T. The map k(z) = (z + m(z), zm(z)) is a complex C-geodesic and so
π(V ) = π(D) = k(D) is a geodesic of degree 2.

If (4) holds and V = Vβ for some β ∈ D, then π(V ) is the flat geodesic Fβ .
If (6) holds and V = Vm,r for some m ∈ AutD and r ∈ (0, 1), then π(V ) ∼

kr(D), where kr is given by equation (13.4), and so, by Theorem 7.8, π(V ) is a
(purely unbalanced) geodesic in G. Thus π(V ) has the norm-preserving extension
property in G.
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In each of the six cases π(V ) has the norm-preserving extension property in G,
and therefore V has the symmetric extension property in D

2.
To see that the classes (1) to (6) of sets V in D

2 with the symmetric extension
property are mutually exclusive, one can simply consider the corresponding sets
π(V ). Our reasoning shows that, in cases (1) to (6), the corresponding set π(V )
is respectively (1) a singleton (2) G (3) an exceptional, purely balanced or royal
geodesic (4) a flat geodesic (5) R ∪ Fβ for some β and (6) a purely unbalanced
geodesic. �





CHAPTER 14

Applications to the theory of spectral sets

Two fundamental results in the harmonic analysis of operators on Hilbert space
[44] are the inequalities of von Neumann and Andô [37, 14], which can be expressed
by the statements

(1) the closed unit disc is a spectral set for every contraction, and
(2) the closed unit bidisc is a spectral set for every pair of commuting contractions.

In this chapter an operator means a bounded linear operator on a Hilbert space,
and a contraction means an operator of norm at most 1. A spectral set for a
commuting n-tuple T of operators is a set V ⊆ C

n such that σ(T ) ⊆ V and, for
every holomorphic function f in a neighborhood of V ,

‖f(T )‖ ≤ sup
V

|f |.

The terminology spektralische Menge is due to von Neumann [37]. Spectral sets
for commuting tuples of operators are commonly defined to be closed subsets of
C

n, but in [2] the notion was broadened considerably, with the goal of a refinement
of Andô’s and von Neumann’s inequalities.

Definition 14.1. Let V be a subset of Cn and T be an n-tuple of commuting
operators on a Hilbert space. T is subordinate to V if the spectrum σ(T ) is a subset
of V and every holomorphic function on a neighborhood of V that vanishes on V
annihilates T .

Clearly, if T is subordinate to V and g is the restriction to V of a holomorphic
function f on a neighborhood of V then we may uniquely define g(T ) to be f(T ),
where f(T ) is defined by the Taylor functional calculus. We denote by H∞(V ) the
algebra of functions f |V where f is bounded and holomorphic in some neighborhood
Uf of V . Thus, if T is subordinate to V then the map g 7→ g(T ) is a functional
calculus for H∞(V ).

Definition 14.2. Let V ⊆ C
n, let A ⊆ H∞(V ) and let T be an n-tuple of

commuting operators. V is an A-spectral set for T if T is subordinate to V and, for
every f ∈ A,

(14.1) ‖f(T )‖ ≤ sup
V

|f |.

Another formulation of Ando’s inequality is that D
2 is a spectral set for any

commuting pair of contractions whose joint spectrum is contained in D
2. Isolating

the role of D2 in this statement and generalizing it to arbitrary subsets of H∞(V ),
in [2, Definition 1.12] the authors introduced the following notion.
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Definition 14.3. Let V ⊆ C
2 and let A ⊆ H∞(V ). Then V is an A-von

Neumann set if the inequality

‖f(T )‖ ≤ sup
V

|f |

holds for all f ∈ A and all pairs T of commuting contractions which are subordinate
to V , in the sense of Definition 14.1.

Thus V is an A-von Neumann set if V is an A-spectral set for every pair T of
commuting contractions which is subordinate to V .

One of the main results of [2], Theorem 1.13, states that if V ⊆ D
2 and A ⊆

H∞(V ) then V is an A-von Neumann set if and only if V has the A-extension
property relative to D

2. In the case that V is a symmetric subset of D2 and A is
the algebra H∞

sym(V ) (see page 77), Theorem 13.5 enables us to give an explicit

description of the A-von Neumann sets in D
2.

Theorem 14.4. Let V be a symmetric algebraic set in D
2. Then V is an

H∞
sym(V )-von Neumann set if and only if V has one of the the six forms (1) to (6)

in Theorem 13.5.

Proof. By [2, Theorem 1.13], V is an H∞
sym(V )-von Neumann set in D

2 if and

only if V has the H∞
sym(V )-extension property relative to D

2. By Theorem 13.5, the
latter is so if and only if V has one of the six forms (1) to (6) in the theorem. �

The A-von Neumann sets of Definition 14.3 are very much tied to the bidisc.
One can define a similar notion for other subsets of C2. Let us illustrate with the
symmetrized bidisc.

Definition 14.5. A pair T of commuting bounded linear operators is a Γ-
contraction if Γ is a spectral set for T .

Let V ⊆ G and let A ⊆ H∞(V ). Then V is a (G,A)-von Neumann set if V is
an A-spectral set for every Γ-contraction T subordinate to V .

Theorem 14.6. Let V ⊆ G and let A ⊆ H∞(V ). Then V is a (G,A)-von
Neumann set if and only if V has the A-extension property relative to G.

Proof. Suppose that V has the A-extension property relative to G. Consider
any f ∈ A. There exists g ∈ H∞(G) such that g|V = f and

(14.2) sup
G

|g| = sup
V

|f |.

Let T be a Γ-contraction subordinate to V : then

‖g(T )‖ ≤ sup
G

|g|,

and so,by equation (14.2),

(14.3) ‖f(T )‖ = ‖g(T )‖ ≤ sup
Γ

|g| = sup
V

|f |.

This inequality holds for all f ∈ A, and so V is an A-spectral set for T . Since this
is true for every Γ-contraction T subordinate to V , it follows that V is a (G,A)-von
Neumann set.
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Conversely, suppose that V is a (G,A)-von Neumann set. We claim that
π−1(V ) is an A ◦ π-von Neumann set contained in D

2. Consider a commuting
pair of contractions T subordinate to π−1(V ). Then π(T ) is a Γ-contraction and

σ(π(T )) = π(σ(T )) ⊆ π(π−1(V )) = V.

Let us show that π(T ) is subordinate to V . Consider g holomorphic on a neighbor-
hood of V and such that g|V = 0. Then g ◦ π is holomorphic on a neighborhood
of π−1(V ) and is zero on π−1(V ). Since T is subordinate to π−1(V ), g ◦ π(T ) = 0
and hence π(T ) is subordinate to V .

By assumption, V is a (G,A)-von Neumann set, and so V is an A-spectral set
for π(T ). Therefore

(14.4) ‖f ◦ π(T )‖ ≤ sup
V

|f | = sup
π−1(V )

|f ◦ π|

for all f ∈ A. Thus, for all F ∈ A ◦ π,
(14.5) ‖F (T )‖ ≤ sup

π−1(V )

|F |

whenever T is a commuting pair of contractions subordinate to π−1(V ). That is,
π−1(V ) is an A ◦ π-von Neumann set in D

2.
By [2, Theorem 1.13], a subset W of D2 is an A ◦ π-von Neumann set if and

only if W has the A ◦ π-extension property relative to D
2. On applying this result

toW = π−1(V ) we deduce that π−1(V ) has the A◦π-extension property relative to
D

2. It follows that V has the A-extension property relative to G. Indeed, consider
f ∈ A ⊆ H∞(V ). Since π−1(V ) has the A◦π-extension property in D

2, there exists
a bounded holomorphic function g on D

2 which agrees with f ◦ π on π−1(V ) and
satisfies

sup
D2

|g| = sup
π−1(V )

|f ◦ π| = sup
V

|f |.

Let g̃ = 1
2 (g + g ◦ t). Then g̃ is a symmetric bounded holomorphic function on D

2

which agrees with f ◦ π on π−1(V ) and satisfies

sup
D2

|g̃| = sup
π−1(V )

|f ◦ π|.

There exists a holomorphic function F on G such that g̃ = F ◦ π. Then F agrees
with f on V and

sup
G

|F | = sup
D2

|g̃| = sup
π−1(V )

|f ◦ π| = sup
V

|f |.

Hence V has the A-extension property relative to G. �

The same theorem is stated in [19].
In the event that A = H∞(V ) for a subset V of G, we can describe all (G,A)-

von Neumann sets.

Theorem 14.7. Let V be an algebraic subset of G. Then V is a (G,H∞(V ))-
von Neumann set in G if and only if either V is a retract in G or V = R ∪ D for
some flat geodesic D in G, where R is the royal variety.

Proof. By Theorem 14.6, V is a (G,H∞(V ))-von Neumann set if and only
if V has the H∞(V )-extension property relative to G. By Theorem 1.4, the latter
holds if and only if either V is a retract in G or V = R ∪D for some flat geodesic
D in G. �





CHAPTER 15

Anomalous sets with the norm-preserving

extension property in some other domains

At little extra cost we can deduce from Theorems 1.3 and 1.4 that there are
anomalous sets having the norm-preserving extension property in some other do-
mains besides G – to wit, domains containing G as a retract. In particular, the
statement holds for the 2 × 2 spectral ball, the tetrablock and the pentablock,
defined below.

Lemma 15.1. If Ω is a domain in C
d such that G can be embedded in Ω as a

retract then there exist sets which have the norm-preserving extension property but
are not retracts in Ω.

Proof. G can be embedded in Ω as a retract if and only if there exist ι ∈ Ω(G)
and κ ∈ G(Ω) such that κ is a left inverse of ι.

Suppose such maps ι and κ exist. Let D be a flat geodesic in G and let
V = R ∪ D. By Theorem 1.4, V is a subset of G that has the norm-preserving
extension property. By Lemma 15.2 below, ι(V ) has the norm-preserving extension
property in Ω2.

However, ι(V ) is not a retract of Ω. For suppose that ρ is a retraction in Ω
with range ι(V ). Let

ρ1 = κ ◦ ρ ◦ ι : G→ G;

then

ρ1 ◦ ρ1 = κ ◦ ρ ◦ (ι ◦ κ) ◦ ρ ◦ ι.
Now ι ◦ κ acts as the identity mapping on ι(G), and so a fortiori on ran ρ. Hence

ρ1 ◦ ρ1 = κ ◦ ρ ◦ ρ ◦ ι
= κ ◦ ρ ◦ ι
= ρ1.

Thus ρ1 is a retraction on G with range κ ◦ ι(V ), which is V . Therefore V is a
nontrivial retract in G. This contradicts Theorem 1.3, since V is clearly not a
geodesic (it is not homeomorphic to a disc). Hence ι(V ) is not a retract of Ω2. �

Lemma 15.2. Let U1, U2 be domains and suppose that ι ∈ U2(U1), κ ∈ U1(U2)
satisfy κ◦ ι = idU1

. If a subset V of U1 has the norm-preserving extension property
in U1 then ι(V ) has the norm-preserving extension property in U2.

Proof. Consider a bounded holomorphic function f on ι(V ). Then f ◦ ι is
bounded and holomorphic on V , and so has a norm-preserving extension g to U1.
Thus g|V = f ◦ ι and

sup
U1

|g| = sup
V

|f ◦ ι| = sup
ι(V )

|f |.
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Now g ◦ κ is bounded and holomorphic on U2, and

sup
U2

|g ◦ κ| = sup
U1

|g| = sup
ι(V )

|f |.

Moreover, for any point of ι(V ), say ι(z) where z ∈ V ,

g ◦ κ(ι(z)) = g ◦ κ ◦ ι(z) = g(z) = f ◦ ι(z).
Hence g ◦ κ is a norm-preserving extension of f to U2. �

The n× n spectral ball is the set

Ωn
def
= {A ∈ C

n×n : r(A) < 1}
where r(·) denotes the spectral radius of a square matrix. The domain Ωn is of
interest principally in the theory of invariant distances and metrics [32, 38, 39,

15, 16]. Holomorphic interpolation from D to Ωn, the ‘spectral Nevanlinna-Pick
problem’, is a test case of the µ-synthesis problem of H∞ control (see for example
[17, 47]).

The symmetrized bidisc was introduced as a tool for the study of Ω2, and so it
is natural to consider the implications of our main theorems for the function theory
of Ω2.

There are many ways in which G can be embedded as a retract in Ω2. Let
κ : C2×2 → C

2 be defined by κ(A) = (trA, detA). Clearly a matrix A ∈ C
2×2

belongs to Ω2 if and only if κ(A) ∈ G. For any holomorphic function

(15.1) F : G→ GL2(C)

define a holomorphic map ιF : G→ Ω2 by

(15.2) ιF (s) = F (s)−1

[

0 1
−s2 s1

]

F (s).

Then κ ◦ ιF = idG, and so ιF is injective and ιF ◦ κ is a retraction in Ω2. Thus
ιF (G) is a retract in Ω2.

The tetrablock is the domain

E def
= {(a11, a22, detA) : A =

[

aij
]2

i,j=1
, ‖A‖ < 1}

in C
3. There are many equivalent characterizations of this domain [1]. It is easy

to show that the map ι : G→ E given by

ι(s) = ( 12s
1, 12s

1, s2)

is a holomorphic injection with left inverse

κ(z) = (z1 + z2, z3)

that maps E to G. Thus E contains G as a retract.
The pentablock is the domain

P = {(a21, trA, detA) : A =
[

aij
]2

i,j=1
, ‖A‖ < 1}

in C
3. The pentablock also admits numerous characterizations [9]. The map

ι : G→ P given by

ι(s) = (0, s1, s2)

has a left inverse κ : P → G given by κ(z1, z2, z3) = (0, z2, z3). Thus G is embed-
dable as a retract in P.
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The tetrablock and the pentablock are both of interest in the theory of invariant
distances [32] and in the analysis of special cases of the µ-synthesis problem [47, 9].

The following statement is an immediate consequence of Lemma 15.1.

Theorem 15.3. The 2×2 spectral ball Ω2, the tetrablock and the pentablock all
contain sets having the norm-preserving extension property which are not retracts
in the respective domains.

Remark 15.4. For a domain U in C
N , N ≥ 3, one cannot expect all nontriv-

ial retracts to be complex geodesics. For example, let Ω be one of the following
domains: the 2 × 2 spectral ball Ω2, the tetrablock and the pentablock. Then the
image of G under ι in Ω is a retract which is not a complex geodesic (since it has
complex dimension 2).





APPENDIX A

Some useful facts about the symmetrized bidisc

In this appendix we gather together some established properties of the sym-
metrized bidisc G relevant to the paper, with appropriate citations. We also prove
analogs for infinitesimal datums of some statements in the literature about discrete
datums. An alternative source for many of these results is [32, Chapter 7].

A.1. Basic properties of G and Γ

There are numerous criteria for a point of C2 to belong to G.

Proposition A.1. The following statements are equivalent for any s = (s1, s2) ∈
C

2.

(1) s ∈ G (that is, there exist z, w ∈ D such that s = (z + w, zw));

(2) |s1 − s1s2| < 1− |s2|2;
(3) |Φω(s)| < 1 for all ω ∈ T;
(4) there exists β ∈ D such that s1 = β + β̄s2;

(5) 2|s1 − s1s2|+ |(s1)2 − 4s2| < 4− |s1|2.

The proof of this proposition can be found in [5, Theorem 2.1]. The functions
Φω, ω ∈ T, in (3) are those introduced in Definition 3.2.

A simple calculation shows that, for any s ∈ G, the corresponding β in (4) is
unique and is given by

(A.1) β =
s1 − s1s2

1− |s2|2 .

Recall from Section 4.2 that Γ denotes the closure of G and bΓ the distinguished
boundary of Γ. It means that bΓ is the Shilov boundary of the uniform algebra of
continuous complex-valued functions on Γ that are analytic in G. The following
descriptions of bΓ are to be found in [5, Theorem 2.4, equation (2.1)].

Proposition A.2.

bΓ = {(z + w, zw) : |z| = 1 = |w|}
= {s ∈ C

2 : |s1| ≤ 2, |s2| = 1 and s1 = s1s2}.

A Γ-inner function is a holomorphic map h : D → G such that, for almost
all λ ∈ T with respect to Lebesgue measure, the radial limit limr→1− f(rλ) ∈ bΓ.
Rational Γ-inner functions were defined in Definition 4.12.

Proposition A.3. If k is a nonconstant Γ-inner function and ω ∈ T then
Φω ◦ k is an inner function.
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Proof. For if k∗ is the radial limit function of k then, for almost all τ ∈ T

there exist z, w ∈ T, not both equal to ω̄, such that k∗(τ) = (z + w, zw). Then

|Φω ◦ k∗(τ)| =
∣

∣

∣

∣

2ωzw − z − w

2− ω(z + w)

∣

∣

∣

∣

=

∣

∣

∣

∣

ωzw
2− ω̄w̄ − ω̄z̄

2− ωz − ωw

∣

∣

∣

∣

= 1.

�

The functions Φω, ω ∈ T, are central to the theory of G. Their most significant
property is the following.

Theorem A.4. The functions Φω, ω ∈ T, constitute a universal set for the
Carathéodory problem on G

This statement is in [5, Theorem 1.1 and Corollary 4.3].
It is easy to see that, for any ω ∈ T, the function Φω extends continuously to

Γ\{(2ω̄, ω̄2)} (but not to Γ). The range of the extended function is D−. It is useful
to know which points are mapped into T.

Proposition A.5. For any ω ∈ T and s ∈ Γ \ {(2ω̄, ω̄2)},
|Φω(s)| = 1 if and only if ω(s1 − s1s2) = 1− |s2|2.

The proof is a simple calculation and is given in [5, Theorem 2.5].

Theorem A.6. Let h = (s1, s2) be a nonconstant rational Γ-inner function
and let υ be a finite Blaschke product. Then Φυ ◦ h has a cancellation at ζ if and
only if the following conditions are satisfied: ζ ∈ T, ζ is a royal node for h and
υ(ζ) = 1

2s
1(ζ). Moreover Φυ ◦ h has at most one cancellation at any royal node ζ.

The proof of this theorem is given in [8, Theorem 7.12].

A.2. Complex C-geodesics in G

Recall from Section 4.1 that a map k ∈ G(D) is a complex C-geodesic if k has
a holomorphic left inverse. Such maps can be concretely described. The following
statement is [6, Lemma 1.1 and Theorem 1.2].

Theorem A.7. Let k : D → G be a complex C-geodesic of G. Then k2 is a
Blaschke product of degree 1 or 2, k extends to a continuous function on D

− which
maps T into bΓ and there exist a Möbius function υ and an ω0 ∈ T such that
Φω0

◦ k = υ. Furthermore,
k2 ◦ υ−1(ω̄0) = ω̄2

0

and, for all λ ∈ D,

k1(λ) = 2
ω0k

2(λ)− υ(λ)

1− ω0υ(λ)
.

A fortiori, k is a rational Γ-inner function.

The following statement is a simple corollary.

Proposition A.8. Let δ be a nondegenerate non-flat datum in G. If Φω solves
Car(δ), k solves Kob(δ) and k is normalised so that Φω ◦ k = idD, then k2 is a
Blaschke product of degree 2 and k(ω̄) = (2ω̄, ω̄2).
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Corollary A.9. A map k ∈ G(D) is a complex C-geodesic of G if and only if
there is a nondegenerate datum δ in G such that k solves Kob(δ).

The following uniqueness result for complex C-geodesics (stated in the intro-
duction as Theorem 3.7) plays a vital role in the paper.

Theorem A.10. If δ is a nondegenerate datum in G then the solution to Kob(δ)
is essentially unique.

Proof. For discrete datums this statement is contained in [6, Theorem 0.3];
we prove the infinitesimal case. Let δ = (s1, v) be a nondegenerate infinitesimal
datum in G. According to the definition (3.2),

|δ|kob = inf{|ζ| : ζ is a datum in D and there exists h ∈ G(D) such that h(ζ) = δ}.
Note that, for a datum ζ = (z1, w) in D and h ∈ G(D),

h(ζ) = (h(z1), Dwh(z1)) = (h(z1), wh
′(z1)).

Thus

h(ζ) = δ ⇔ h(z1) = s1, w(h1)′(z1) = v1 and w(h2)
′(z1) = v2.

Hence, for a datum δ = (s1, v) in G,

|δ|kob = inf
z1∈D,w∈C

{ |w|
1− |z1|2

: there exists h ∈ G(D) such that

h(z1) = s1, w(h
1)′(z1) = v1 and w(h2)′(z1) = v2

}

.

Pick an infinitesimal datum ζ = (z1, w) in D such that |ζ| = |δ|kob; then ζ is
nondegenerate. Let h = (s, p) solve Kob(δ) and satisfy h(ζ) = δ. Let Φω solve
Car(δ). Since | · |kob = | · |car on G, Φω ◦ h ∈ AutD. Say Φω ◦ h = q. Then, by [6,
Lemma 1.1], p is a Blaschke product of degree at most 2 and

(A.2) s = 2
ωp− q

1− ωq
.

Hence, if τ = q−1(ω̄) ∈ T, then (ωp − q)(τ) = 0, and so p(τ) = ω̄2. Thus p is a
Blaschke product of degree at most 2 which satisfies

p(z1) = s1, w(p)′(z1) = v2 and p(τ) = ω̄2.

These properties determine p uniquely.
Since q is an automorphism of D such that

q(ζ) = Φω ◦ h(ζ) = Φω(δ),

q is uniquely determined. Thus s is also uniquely determined by equation (A.2).
Hence there is a unique solution h of Kob(δ) for which h(ζ) = δ. It follows that
the solution of Kob(δ) is essentially unique. �

A.3. Automorphisms of G

For every m ∈ AutD we define a map m̃ ∈ G(G) by

(A.3) m̃(z + w, zw) = (m(z) +m(w),m(z)m(w)) for all z, w ∈ D.

It is easy to see that m̃ is an automorphism of G and that m 7→ m̃ is a homomor-
phism from AutD to AutG. In fact it is an isomorphism.

Theorem A.11. (1) Every automorphism of G is of the form m̃ for some m
in AutD.
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(2) Every automorphism of G leaves the royal variety R invariant.
(3) The automorphisms of G act transitively on the set of flat geodesics of G.

Statement (1) is [7, Theorem 4.1], proved by an operator-theoretic method; a
proof which uses Cartan’s Classification Theorem is given in [31] and [32]. Given
statement (1), statements (2) and (3) are easy to verify.

Corollary A.12. Every automorphism of G extends continuously to a bijec-
tive self-map of Γ.

It follows from Theorem A.11 and the fact that every automorphism of D

extends continuously to a bijective self-map of D−.
The automorphisms of G are linear fractional maps. If m = τBα for some

τ ∈ T, α ∈ D then, for s ∈ G,
(A.4)

m̃(s) =
1

1− ᾱs1 + ᾱ2s2
(

τ(−2α+ (1 + |α|2)s1 − 2ᾱs2), τ2(s2 − αs1 + α2)
)

.

A.4. A trichotomy theorem

Since the classification of datums in Definition 3.4 depends on the number of
functions Φω that solve the corresponding Carathéodory problem, it is important
to know what the possibilities are for this number.

Trichotomy theorem A.13. Let δ be a nondegenerate datum in G. Exactly
one of the following assertions is true.

(1) There is a unique ω ∈ T such that Φω solves Car(δ);
(2) there are exactly two points ω1, ω2 ∈ T such that Φω1

, Φω2
solve Car(δ);

(3) for all ω ∈ T, Φω solves Car(δ).

Moreover, all three possibilities do occur.

Proof. In the case that δ is a discrete datum, the statement is [6, Theorem
1.6]. We sketch a proof for a infinitesimal datum δ = (s1, v): it is a combination of
the arguments in [5, Section 4] and [6, Theorem 1.6], where fuller versions of the
reasoning can be found.

For κ ≥ 0 let Sκ, Pκ be the operators on the Hilbert space C2 (with its standard
inner product) given by

(A.5) Sκ =

[

s11 κv1

0 s11

]

, Pκ =

[

s21 κv2

0 s21

]

.

Sκ, Pκ are commuting operators and σ(Sκ, Pκ) = {s1} ⊂ G. Moreover the spectral
radius of Sκ is |s11|, which is less than 2. For any f ∈ D(G),

f(Sκ, Pκ) =

[

f(s1) κDvf(s1)
0 f(s1)

]

.

Hence

‖f(Sκ, Pκ)‖ ≤ 1 ⇔ κ|Dvf(s1)|
1− |f(s1)|2

≤ 1

⇔ κ|f(δ)| ≤ 1.
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Recall that G is said to be a spectral domain for the commuting pair (S, P ) if
σ(S, P ) ⊂ G and

‖f(S, P )‖ ≤ sup
G

|f |

for every f ∈ C(G). It follows that G is a spectral domain for (Sκ, Pκ) if and only
if κ|δ|car ≤ 1.

On the other hand, by [5, Theorem 3.2], G is a spectral domain for (Sκ, Pκ) if
and only if ‖Φω(Sκ, Pκ)‖ ≤ 1 for all ω ∈ T, or equivalently, if and only if

(A.6) (2− ωSκ)
∗(2− ωSκ)− (2ωPκ − Sκ)

∗(2ωPκ − Sκ) ≥ 0

for all ω ∈ T. The inequality (A.6) can be written

Re{ω(Sκ − S∗
κPκ)} ≤ 1− P ∗

κPκ.

In the event that ‖Pκ‖ < 1 (that is, κ|v2| < 1− |s21|2) we define

Tκ = (1− P ∗
κPκ)

−
1
2 (Sκ − S∗

κPκ)(1− P ∗
κPκ)

−
1
2 ;

in the case that ‖Pκ‖ = 1, we take Tκ to be the unique operator on ran(1− P ∗
κPκ)

such that

(1− P ∗
κPκ)

1
2Tκ(1− P ∗

κPκ)
1
2 = Sκ − S∗

κPκ.

Now the condition (A.6) can be written

Re{ωTκ} ≤ 1 for all ω ∈ T,

which is equivalent to the statement that the numerical range W (Tκ) is contained
in D

−. For the extremal choice κ = 1/|δ|car, W (Tκ) touches the unit circle at one
or more points ω, and these values of ω are precisely those for which Φω solves
Car(δ). Since Tκ has rank one or two, W (Tκ) is either an ellipse (with its interior),
a point or a line segment. It follows thatW (Tκ)∩T consists of either a single point,
a pair of points or the whole of T. Thus the three possibilities for the solutions Φω

of Car(δ) are as described in the theorem.
Examples to show that all three possibilities in Theorem A.13 do occur may be

found in the proof of [6, Theorem 1.6]. �

A.5. Datums for which all Φω are extremal

For the proof of the Pentachotomy Theorem in Section 3.3 it is required to
characterize the datums δ for which ρδ is constant on T, or in other words, for
which Φω is extremal for Car(δ) for all ω ∈ T. The next result is a re-statement of
[5, Theorem 5.5].

Theorem A.14. Let δ = (s1, s2) be a nondegenerate discrete datum in G. The
following statements are equivalent.

(1) Φω solves Car(δ) for every ω ∈ T;
(2) s1, s2 either both lie in the royal variety R or both lie in the set

Fβ = {(β + β̄z, z) : z ∈ D}
for some β ∈ D.

We also need the infinitesimal version of Theorem A.14.

Theorem A.15. Let δ = (s1, v) be a nondegenerate infinitesimal datum in G.
The following statements are equivalent.

(1) Φω solves Car(δ) for every ω ∈ T;
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(2) either (a) there exists z ∈ D such that s1 = (2z, z2) and v is collinear with
(1, z) or (b) there exist β, z ∈ D such that s1 = (β + β̄z, z) and v is collinear
with (β̄, 1).

Proof. First show that (2)⇒(1). By the definition of ρδ, for ω ∈ T,

ρδ(ω) = |Φω(s1, v)|2 = |(Φω(s1), DvΦω(s1))|2 .
Suppose (a) holds, that is, s1 = (2z, z2) and v = λ(1, z) for some z ∈ D and λ 6= 0.
One can see that Φω(s1) = −z and

D(1,z)Φω(s1) =

[

∂

∂s1
2ωs2 − s1

2− ωs1
+ z

∂

∂s2
2ωs2 − s1

2− ωs1

]

|s=(2z,z2)

=

[−2 + 2ω2s2 + 2zω(2− ωs1)

(2− ωs1)2

]

|s=(2z,z2)

= −1

2
.

Thus
Φω(δ) = (Φω(s1), Dλ(1,z)Φω(s1)) = (−z,− 1

2λ).

Hence
ρδ(ω) = |(−z,− 1

2λ)|2.
Thus (a) implies that ρδ is constant on T.

Suppose (b) holds, that is, s1 = (β + β̄z, z) and v is collinear with (β̄, 1) for
some β, z ∈ D.

Φω(s1) =
2ωz − (β + β̄z)

2− ω(β + β̄z)

= mω(z),

where

mω(z) = c
z − α

1− ᾱz
, c = ω

2− ω̄β̄

2− ωβ
∈ T and α =

β

2ω − β̄
∈ D.

Now

D(β̄,1)Φω(s1) =

[

β̄
∂

∂s1
2ωs2 − s1

2− ωs1
+

∂

∂s2
2ωs2 − s1

2− ωs1

]

|s=(β+β̄z,z)

=

[

β̄
−2(1− ω2s2)

(2− ωs1)2
+

2ω

2− ωs1

]

|s=(β+β̄z,z)

=
4ω(1− Re(ωβ))

(2− ω(β + β̄z))2
.

It is routine to check that

m′
ω(z) =

4ω(1− Re(ωβ))

(2− ω(β + β̄z))2
,

and so
Φω(δ) = (mω(z),m

′
ω(z)).

Therefore, for all ω ∈ T,

ρδ(ω) = |Φω(δ)|2 = |(mω(z),m
′
ω(z))|2 = |mω((z, 1))|2.
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Since the Poincaré metric on D is invariant under AutD,

ρδ(ω) = |(z, 1)|2 =
1

(1− |z|2)2 ,

which is independent of ω ∈ T. Thus (b) implies that ρδ is constant on T. Hence,
for each ω ∈ T, Φω solves Car(δ) in both cases (a) and (b).

Now we show that (1)⇒(2). Let δ = (s1, v) be a nondegenerate infinitesimal
datum in G and suppose that ρδ is constant on T. Write

s1 = (β + β̄p, p)

for some β, p ∈ D. Calculation shows that

|Φω(δ)| =
1

1− |p|2
∣

∣

∣

∣

−v1 + 2v2ω + (pv1 − s11v
2)ω2

β̄ − 2ω + βω2

∣

∣

∣

∣

.

Thus the rational function

(A.7) F (w) =
−v1 + 2v2w + (pv1 − s11v

2)w2

β̄ − 2w + βw2

has constant modulus, say C > 0, for w ∈ T. Hence

C2 = F (w)F (w)

= F (w)F (1/w̄)(A.8)

for all w ∈ T. Since the right hand side of equation (A.8) is a rational function of
w, the equation remains true for all w ∈ C for which F (w) and F (1/w̄) are finite.

First we consider the case that β = 0, when s1 = (0, p). Since |F | is constant
on T we have

| − v1 + 2v2w + pv1w2| = const

for w ∈ T. It follows that either v1 = 0 or v2 = 0 and p = 0. In the former case

δ =
(

(0, p), (0, v2)
)

and in the latter case
δ =

(

(0, 0), (v1, 0)
)

,

and the statement of the theorem holds.
Now consider the case that β 6= 0. We claim that cancellation occurs in the

fractional quadratic F . The zeros of the denominator β̄ − 2w + βw2 in the right
hand side of equation (A.7) are

w± =
1±

√

1− |β|2
β

.

Observe that w+w̄− = 1, that is, w+ and w− are symmetric with respect to T.
Moreover, |w+| > 1 and |w−| < 1.

Suppose there is no cancellation in equation (A.7). Then the points w± are
both poles of F . Equation (A.8) implies that 1

w̄+
and 1

w̄−
are zeros of F , that is,

w± are zeros of the numerator of F , contrary to assumption.
If there is only one cancellation in equation (A.7), say at w+ and not at w−,

then F (w+) is finite and w− is a pole of F . Since, by equation (A.8),

C2 = F (w+)F (w−),

we have F (w+) = 0.
There are only two cases to consider:
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Case 1: β 6= 0 and there exists exactly one cancellation in equation (A.7), which
is at w+ (when F (w+) = 0) or at w− (when F (w−) = 0). We shall show that in
this case the datum δ is such that s1 = (2z, z2) and v is collinear with (1, z) for
some z ∈ D.

Case 2: β 6= 0 and there exist 2 cancellations in equation (A.7), at both w+

and w−. We shall show that in this case the datum δ is such that s1 = (β + β̄z, z)
and v is collinear with (β̄, 1) for some β, z ∈ D.

Case 1. Let w0 be one of the roots of equation

(A.9) β̄ − 2w + βw2 = 0.

On taking the complex conjugate of this equation we obtain the system:

(A.10)

{

w2
0β +β̄ = 2w0

β +w̄0
2β̄ = 2w̄0,

which can be solved to give β = 2w̄0

1+|w0|2
.

If there exists exactly one cancellation in equation (A.7), which is at w0, then,
by L’Hôpital’s Rule,

(A.11) F (w0) =
2v2 + 2(pv1 − s11v

2)w0

−2 + 2βw0

Therefore, the facts that there exists exactly one cancellation in equation (A.7) at
w0 and that F (w0) = 0 yield the system

(A.12)

{

−v1 + 2v2w0 +(pv1 − s11v
2)w2

0 = 0
2v2 +2(pv1 − s11v

2)w0 = 0,

which is equivalent to

(A.13)

{

v1 = v2w0

(pv1 − s11v
2)w0 = −v2.

Since δ is nondegenerate v 6= 0. Hence v2 6= 0 and

(A.14)

{

v1 = v2w0

(pw0 − s11)w0 = −1.

Recall that

s11 = β + β̄p and β =
2w̄0

1 + |w0|2
.

Thus the equation (pw0 − s11)w0 = −1 implies that p = 1
w2

0

, and so s11 = 2
w0

. Hence

the datum δ =
(

( 2
w0
, 1
w2

0

), (1, 1
w0

)
)

for 1
w0

∈ D.

Case 2: there exist 2 cancellations in equation (A.7), at both w+ and w−.
Equation (A.8) implies that 1

w̄+
and 1

w̄−
are zeros of F , that is, w± are zeros of the

numerator of F . Therefore, there exists λ 6= 0 such that the numerator and the
denominator of F are connected by the following equation

(A.15) −v1 + 2v2w + (pv1 − s11v
2)w2 = −λ(β̄ − 2w + βw2).

Since s11 = β + β̄p, we have

−v1 + 2v2w + (pv1 − (β + β̄p)v2)w2 = −λβ̄ + 2λw − βλw2), w ∈ C.

Therefore, v1 = λβ̄, v2 = λ, pv1−(β+ β̄p)v2 = −βλ. Thus, v1 = β̄v2, pv1− β̄pv2 =
0. The datum δ =

(

(β + β̄p, p), v2(β̄, 1)
)

for some β, p ∈ D. �



APPENDIX B

Types of geodesic: a crib and some cartoons

The five types of datum δ and their associated complex geodesics Dδ play a
central role in the paper. The types are defined in Definition 3.4 on page 9, and
the geometric characterization of types in terms of the intersection of D−

δ with the
royal variety R− is contained in Theorem 7.1 on page 37. We are grateful to a
referee for a very good suggestion: to include a ‘crib sheet’ containing the essentials
of the terminology, and also cartoons to give the reader a visual representation of
the five types.

B.1. Crib sheet

Type of datum δ For how many ω ∈ T How many points Balanced?

and geodesic Dδ is Φω extremal? are in D−
δ ∩R−?

Purely Unique ω0, One in R, No

unbalanced d2ρδ

dt2
|ω0

< 0 one in ∂R

Exceptional Unique ω0, One (double)1 Yes
d2ρδ

dt2
|ω0

= 0 in ∂R

Purely Two Two, Yes
balanced both in ∂R

Flat All ω ∈ T One, in R No
C(s) = s2 solves
Car(δ)

Royal All ω ∈ T All of R− Yes
C(s) = 1

2s
1 solves

Car(δ)
1 In the sense that the multiplicity of the royal point is 2 – see Definition 4.15.

Balanced geodesics are those which are parallel to R, in the sense that they either
coincide with or are disjoint from R in G.
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B.2. Cartoons

We draw the intersection with R
2 of a representative of each type of geodesic.

The set G ∩ R
2 in the (s, p) plane is the interior of the isosceles triangle with

vertices (±2, 1) and (0,−1), as in Figure 1.

s

(2,1)(−2,1)

(0,−1)

p

Figure 1. The real symmetrized bidisc G ∩ R
2

The royal variety is the locus s2 = 4p, as in Figure 2.

Flat geodesics have the form s = β + β̄p for some β ∈ D. This locus meets
G ∩ R

2 if and only β is real, in which case its cartoon is as in Figure 3. A flat
geodesic has a unique royal point, which is in R.

Purely unbalanced geodesics, by Theorem 7.8, up to an automorphism of G,
have the form kr(D) for some r ∈ D, where

kr(z) =
1

1− rz
(2(1− r)z, z(z − r))

for some r ∈ (0, 1). The geodesic kr(D
−) has royal points (0, 0) in R and (2, 1) in

∂R. Taking r = 1
2 we obtain the curve

p =
s(3s− 2)

2(s+ 2)
, − 2

3 ≤ s ≤ 2,

s

p

Figure 2. The royal variety
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s

p

β

Figure 3. A flat geodesicCopy of purelyunbalanced

Copy of purelyunbalanced -- Sage http://localhost:8080/home/admin/8/print

1 of 1 08/08/16 16:47

Figure 4. A purely unbalanced geodesic

s

p

Figure 5. A purely balanced geodesic

which has graph as in Figure 4.

Purely balanced geodesics, up to automorphisms of G, are of the form gr(D),
for some r ∈ (0, 1), by Theorem 7.8, where

gr(z) = (z +Br(z), zBr(z)).

The geodesic gr(D
−) has the two royal points (±2, 1), both in ∂R. In Figure 5 we

have taken r = 1
2 .
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s

p

Figure 6. An exceptional geodesic

The remaining type of geodesic is the exceptional type. According to Theorem
7.8, up to automorphisms of G they have the form hr(D) for some r > 0, where

hr(z) = (z +mr(z), zmr(z))

and

mr(z) =
(r − i)z + i

r + i− iz
.

Any such geodesic hr(D
−) has the unique royal point (2, 1), and hr(z) ∈ R

2 for
any z lying on the circle of centre 1− ir and radius r. When r is chosen to be 1
the locus in Figure 6 results.
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function

Γ-inner, 17

analytic on a subset of a domain, 1

rational Γ-inner, 17

symmetric, 77

geodesics

equivalence of, 37

exceptional, 40, 41

flat, 40, 41

purely balanced, 40, 41

purely unbalanced, 40, 41

royal, 40, 41

types of, 40, 99
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Herglotz function, 59

Kobayashi extremal problem, 8

operator, 83

pentablock, 88
pentachotomy, 10

retract, 1, 19
retraction, 1, 19
royal node, 17

multiplicity of, 17
royal point, 17

semialgebraic set, 66

set
(G,A)-von Neumann, 84

A-spectral, 83
A-von Neumann, 84
algebraic, 49

anomalous, 49

spectral, 83
symmetric in D2, 77

spectral ball, 88
spectral Nevanlinna-Pick problem, 88
subordinate, 83

tetrablock, 88
theorem

(G,A)-von Neumann sets are sets with
A-extension property relative to G, 84

1.3, 2

algebraic sets in G which are
(G,H∞(V ))-von Neumann sets, 85

characterization of geodesics in terms of
solutions of Car(δ), 41

complex geodesics are varieties, 22

geometric classification of geodesics, 37

Lempert’s, 13
main, 2
retracts are complex geodesics in G, 19

symmetric algebraic sets in D2 which are
H∞

sym(V )-von Neumann sets, 84

symmetric algebraic sets in D2 with the

symmetric extension property, 79
uniqueness of complex geodesics for each

datum, 15
transposition map, 77
trichotomy, 94


