
This is a repository copy of Analysis and design methods for energy geostructures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/104016/

Version: Accepted Version

Article:

Bourne-Webb, P, Burlon, S, Javed, S et al. (2 more authors) (2016) Analysis and design 
methods for energy geostructures. Renewable and Sustainable Energy Reviews, 65. pp. 
402-419. ISSN 1364-0321 

https://doi.org/10.1016/j.rser.2016.06.046

© 2016, Elsevier. Licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1 

 

9 June 2016 

ANALYSIS and DESIGN METHODS for ENERGY GEOSTRUCTURES 

AUTHORS: 

Bourne-Webb, Peter 

CERIS, ICIST, Instituto Superior Técnico, Universidade de Lisboa, Portugal 

peter.bourne-webb@tecnico.ulisboa.pt 

Burlon, Sebastien 

IFSTTAR, Marne la Vallée, France. 

Javed, Saqib 

Chalmers University of Technology, Sweden 

Kuerten, Sylvia 

RWTH Aachen University, Germany 

Loveridge, Fleur 

University of Southampton, United Kingdom.  

 

Main text: 10900 

No. Tables: 2 

No. Figures: 16 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

2 

 

ABSTRACT: 

Based on discussions at the international workshop on “Thermoactive geotechnical systems for 

near-surface geothermal energy”, hosted at École Polytechnique Fédérale de Lausanne (EPFL), 

Switzerland (http://www.olgun.cee.vt.edu/workshop/), this article attempts to provide a broad 

overview of the analysis methods used for evaluation of systems that use either boreholes or geo-

structures for heat exchange. It identifies commonalities where knowledge transfer from the former 

to the latter can be made, and highlights where there are significant differences that may limit this 

cross-fertilization. The article then focusses on recent developments and current understanding 

pertaining to the analysis of the thermo-mechanical interaction between a geostructure and the 

ground, and how this may be incorporated into the geotechnical design of energy geostructures. 
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NOTATION: 

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers 

BHE  Borehole Heat Exchanger 

CTE  Coefficient of Thermal Expansion 

DFI  Deep Foundations Institute 

DST  Duct Ground Heat Storage 

EGS  Energy Geostructure(s) 

FEA  Finite Element Analysis 

GSHP  Ground Source Heat Pump 

HDPE  High Density Polyethylene 

MLS  Moving Line Heat Source 

PHE  Pile Heat Exchanger 

RTD  Return Time Distribution 

SBM  Superposition Borehole Model 

SGE  Shallow Geothermal Energy 
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SPF  Seasonal Performance Factor 

TBM  Tunnel Boring Machine 

THM  Thermo-Hydro-Mechanical 

UTES  Underground Thermal Energy Storage 

SYMBOLS 

MW th Mega-Watts thermal  

H borehole length 

Qk Action effect ݍሶ  heat flux 

rb borehole radius 

r* dimensionless geometry factor 

T Temperature (of borehole wall) at time t 

T0  Initial temperature (of borehole wall) 

Tin  Inlet fluid temperature 

Tout  Outlet fluid temperature 

T Temperature change in pile 

t* dimensionless time factor 

 

 soil thermal diffusivity 

T linear coefficient of thermal expansion of pile 

 strain 

e elastic strain 

th thermal strain 

 ground thermal conductivity 

ねi variable action factors 
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1. INTRODUCTION 

The use of the ground as a means for managing the thermal loads within buildings is a well-

established technology and borehole heat exchange systems have been used for several decades, 

especially following the “oil shocks” of the 1970s.  

Worldwide installed Ground Source Heat Pump (GSHP) capacity is estimated to have increased 

nearly twenty-fold between 1995 and 2010, from about 1854 MWth to 35236 MW th and more than 

doubled from 15384 MWth in 2005 [1]. To the end of 2012, installed capacity of GSHP and 

Underground Thermal Energy Storage (UTES) systems in Europe, was estimated to total 

approximately 16500 MWth [2]. Lund et al. [1] annualise the growth in this period to a rate of about 

20% and Antics et al. [2] suggest that growth within the geothermal energy sector in Europe, which 

is dominated by GSHP systems, was estimated to be about 30% in the two years to 2015. 

While the borehole heat exchange technique is well established, continuing research and 

development is focussed on reducing installation costs, i.e. speed/ease of installation, improved 

borehole heat transfer and heat pump efficiency, and more refined models for use in design [3, 4, 5]. 

The GSHP and UTES installations referred to in the above figures are entirely borehole based 

systems; increasingly, however, designers and developers are looking to use engineering structures 

where heat absorber pipes are integrated within structures in contact with the ground, as the means 

for providing thermal exchange with the ground. These applications have been referred to variously 

as energy foundations, thermo-active ground structures [6], geothermal piles, heat exchanger piles 

and energy geostructures [7] - this latter will be used here. 

Potentially, this use of energy geostructures (EGS), that are in any case needed to support buildings 

(i.e. raft/mat foundations, piles) or the ground itself (i.e. retaining walls and tunnels), Figure 1, can 

help to facilitate the implementation of GSHP technology on confined urban sites and reduce the 

initial capital costs of installation, by eliminating borehole construction [6]. 

The first application of heat exchange via foundation elements was in Austria and Switzerland; 

shallow foundation elements such as ground bearing slabs and shallow basement walls were first 

utilised for energy exchange, and these were quickly followed by bearing piles (mid-1980s), 

diaphragm walls (mid-1990s) and then tunnels (early-2000s) [6, 8]. Subsequently, and in particular 

since the late 1990s, many projects have been completed in Germany, the United Kingdom, and an 

increasing number of other countries in Europe and around the World. No collated figures are 

available; however, the thermal capacity of EGS currently installed is a small fraction of the total 
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shallow geothermal installed – maybe in the range of 100 to 200 MWth, or less than 1% of total 

installed capacity. 

While this application for heat exchange with the ground is proving compelling on a number of 

grounds and has already been used in a number of differing configurations, its uptake has been 

impeded by many of the same factors that have affected the uptake of borehole heat exchangers – 

initial capital cost, a lack of visibility amongst potential end-users, legislators and design 

professionals, a need for a more fundamental understanding of material and component response to 

thermal loading, and a lack of validated analysis and design procedures. 

These problems were highlighted and explored during an international workshop on “Thermoactive 

geotechnical systems for near-surface geothermal energy”, hosted at École Polytechnique Fédérale 

de Lausanne (EPFL), Switzerland in March 2013 (http://www.olgun.cee.vt.edu/workshop/). About 

70 individuals from both research and industrial backgrounds attended the workshop, and this paper 

results from the discussions relating to the issue of the validation of design tools for energy 

geostructures, see [9] for a report on this particular session and the same issue of the DFI Journal 

for reports on the other sessions of the workshop. 

This article attempts to provide a broad overview of the analysis methods used for evaluation of 

both borehole heat exchanger (BHE) and EGS heat exchange systems, to identify commonalities 

where knowledge transfer from the former to the latter can be made, and to highlight where there 

are significant differences that may limit this cross-fertilization. The article then focusses on recent 

developments and current understanding pertaining to the analysis of the thermo-mechanical 

interaction between the geostructure and the ground, and how this may be incorporated into the 

geotechnical design of EGS. 

2. ANALYSIS OF HEAT EXCHANGE WITH THE GROUND 

2.1. Overview 

Design analysis for BHE systems has chiefly involved the use of analytical and semi-

analytical solutions within which assumptions have been made that allow the heat exchange 

calculations to be carried out in a manageable timeframe. This is particularly important for the 

increasing use of hourly time steps for heat pump system analysis in routine practice. Such short 

time intervals would lead to excessive computation demands and timeframes for full numerical 

simulation. The analytical methods, outlined in Section 2.3, have been implemented in a number of 

easy to use programmes, the validation of which is considered in Section 2.3.7. 
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Thermal design analysis for energy geostructures presents new challenges. Pile heat exchangers 

(PHE) comprise the most common form of EGS and current design analysis tends to assume that 

the thermal response of PHE is equivalent to that of BHE (Section 2.4). However, PHE can be 

constructed in a number of ways (Figure 2) and can vary in size from 15 cm to 3 m diameter and 

from 10 to 60 m in length with larger diameters and smaller length-to-diameter ratios compared to 

BHEs.  

A number of other types of EGS have been suggested and applications using retaining walls and 

tunnels have been installed (Section 2.5). Clearly, these types of systems deviate far from the simple 

rotational symmetry assumptions made for BHE, although the planar nature of retaining walls and 

the cylindrical nature of tunnels can still be exploited by analytical methods. Ground anchors have 

also been proposed and trialled as a means for heat exchange with the ground however, in principle, 

these will function in a similar manner to piles. 

2.2. Considerations in the analysis of heat exchange 

 Energy geostructures can take a number of forms depending on whether they are installed 

within piled foundations, retaining walls, tunnels or other structures in contact with the ground.  

The following sections provide an overview of the general considerations required of a complete 

solution for heat exchange with the ground. 

2.2.1. Heat transport in the soil 

Heat transfer in the ground will be dominated by conduction and available analytical 

solutions assume this is the only mechanism for heat flow. Groundwater flow can influence heat 

transfer by additional advection but for the case of thermal energy storage, flows must be 

substantial for this effect to be significant, as the advection merely shifts the position of the 

underground thermal store [10]. Nonetheless, analytical solutions for simplified cases of forced 

convection do exist [11] and these are discussed in Section 2.3.7, although it is perhaps more 

common to use numerical techniques in these cases.  

2.2.2. Heat transport within the ground heat exchanger body 

Similarly, heat transfer within the heat exchanger is usually considered to be a diffusive 

process (i.e. dominated by conduction). Some solutions solve the diffusion equations directly, but it 

is more common to instead use a thermal resistance [12]. Thermal resistance is often regarded as the 

inverse of thermal conductivity, but also includes the influences of the geometry of the heat 

exchanger. If the heat exchanger can be assumed to be at a thermal steady state then the thermal 

resistance can be taken as constant. This represents a constant temperature difference between the 
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absorber pipes and the structure edge and is a useful simplification. However, the greater the cross-

sectional area of the heat exchanger, the less valid this assumption becomes as it can take 

considerable time to reach thermal steady state.  

2.2.3. Heat transfer and transport within the absorber pipes 

Heat transfer in the absorber pipe systems can also be calculated with the help of thermal 

resistances, which is common in all analytical methods [6, 13, 14]. Here, heat conduction in the 

pipe walls as well as the heat convection in the fluid inside the pipe has to be considered. Due to the 

high flow rates in the pipes, heat conduction in the fluid can be neglected. The formulation of the 

thermal resistance can be developed from the thermo-mechanical basis for tube flow [6]. 

2.2.4. Surface boundary conditions 

The temperature at the ground surface is influenced by seasonal fluctuations. Generally, it can 

be said, that the ground temperature “follows” the air temperature with a temporal phase shift. 

Furthermore, there is a damping effect such that below a depth of about 10 m to 20 m, no 

significant temperature fluctuation occurs as a result of diurnal and seasonal surface temperature 

changes. EGS are normally constructed entirely or partially within this zone, and whether these 

temperature fluctuations should be taken into account depends on whether there is a structure 

directly overlying the EGS, e.g. the building the piles are supporting, or whether the surface is open 

to the air, e.g. as can be the case behind a retaining structure. 

The surface temperature fluctuation may be modelled as either a time-varying temperature 

boundary condition (i.e. Dirichlet condition) [6], or a time-varying heat flux (i.e. Neumann 

condition). The latter condition can be calculated with the help of the energy balance at the ground 

surface, which ensures thermal equilibrium is maintained between global and solar radiation, 

reflection, evaporation and transmission [15, 16]. 

Alternatively, if a building or other structure is present at the ground surface then alternative 

boundary conditions need to be considered. Field studies have shown that a small heat flux may 

exist between buildings and the ground and also that seasonal variations in atmospheric temperature 

only affected the soil mass within the first few metres from the edge of the building [17]. 

For numerical applications, the use of a temperature boundary condition at the surface is 

recommended for stability reasons. The time sequence of the surface temperature can be calculated 

with the help of the energy balance at the ground surface. The components of the energy balance 

can be calculated using the climatic parameters for the location of the energy geostructure (e.g. air 

temperature, global radiation, wind velocity, humidity, etc.). 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 

 

EGS are normally constructed within cities or urban areas. Therefore, additional heat sources in the 

ground such as buildings, tunnels or sewers have to be considered [18]. Furthermore, the urban heat 

island effect can lead to very high background temperature in the ground [19]. Consequently, the 

initial ground temperature and its variation due to the presence of potential sources/sinks has to be 

determined according to the particular conditions applicable at a given site. 

2.2.5. Geostructure thermal boundary conditions 

Many analytical models developed for use with BHE assume either a constant temperature 

or constant heat flux conditions at the borehole wall. A constant flux condition is perhaps more 

common and this is often adopted with PHE as well. However, it is known that the actual flux is 

likely to depend on the depth and ground conditions [20, 21].  

Environmental conditions inside tunnels or other air-voids such as basement rooms are an important 

factor for the calculation of heat exchange and the choice of boundary condition will have a major 

influence on the predicted heat flow. For example, analysis has shown that the heat flow from the 

tunnel air is about 30% of the total heat flow available for exploitation [22]. 

2.2.6.  Geometric effects 

Many of the classical analytical solutions (see Section 2.3.1) make the assumption that the 

heat exchanger is of infinite length in order to simplify the mathematics involved. However, axial 

effects are of increasing importance with shorter heat exchangers such as PHE and end effects need 

to be taken into account, especially in the long term.  

2.2.7. Thermal interactions 

Many analytical methods are developed for a single heat exchanger. However, vertical BHE 

typically exist in fields (groups) and it is necessary to use superposition to determine the group 

effect of many heat exchangers. An important aspect of relevance for geostructures is that the 

arrangement of PHE and other structures are not necessarily regular and hence symmetry cannot 

always be relied upon to simplify superposition.  

Thermal interference can also occur between the individual pipes within a heat exchanger [23]. This 

will be particularly important at small pipe spacing, lower flow rates and longer heat exchangers 

[12]. Depending on the geometry of the geostructure and installed pipes, taking account of this 

effect may be important. 

2.2.8. Load aggregation 

Applied thermal loads are never constant in real operating GSHP systems. If every change in 

load was accounted for computation timescales would increase to unmanageable levels. Hence, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

9 

 

some form of load aggregation is normally carried out. A useful review of techniques in this area is 

provided in [24].  

Each of the considerations discussed above require different modelling scales. For calculations of 

the temperature change and heat transport in the ground a large scale is necessary (metre range). For 

describing the heat transfer between EGS, the soil and the pipe system a smaller scale (centimetre 

scale) has to be employed. There exist analytical approaches for the individual aspects mentioned 

above however and these can be implemented in numerical solutions, so the computational times 

can be reduced for most practical applications. 

2.3. Borehole Heat Exchangers 

We commence first with a review of relevant methods for BHE analysis as these are often 

adopted or modified for use with PHE. For the analysis methods reviewed in this section, no 

mathematical expressions are given in the text. Readers are instead referred to more specialised 

literature, e.g. [25, 26, 27], for precise mathematical formulation and inter-model comparison of 

these methods. 

2.3.1. Classical Analytical and semi-analytical methods 

Classical analytical models for designing and analysing BHEs include line-source [28] and 

cylindrical-source [29] solutions. The classical line- and cylindrical-source models provide 

solutions to the radial transient heat transfer problem in the ground: 

 The line-source model treats the radial heat transfer in a plane perpendicular to the vertical 

borehole. The borehole is assumed to be a line source of constant heat output and of infinite 

length surrounded by an infinite homogeneous ground. 

 The cylindrical-source model assumes the borehole to be an infinitely long hollow cylinder 

surrounded by homogeneous ground and having constant heat-flux across its outer boundary.  

Various discrepancies occur when applying these two classical solutions to model borehole heat 

transfer. These solutions not only ignore the end-effects of their heat sources (i.e. finite length of 

BHE), but also do not account for the thermal properties of the borehole components (fluid, pipe 

circuit, borehole infill). Consequently, they must be combined with a series of thermal resistances to 

account for these aspects of the heat transfer.  

A further consequence of these underlying assumptions regarding geometry of the heat sources is 

that both these solutions are inaccurate when determining the short-term response of a borehole heat 

exchanger. This inaccuracy becomes important when either short time step analysis (e.g. hourly) is 

carried out or when the capacitance of the heat exchanger is large (e.g. in large diameter piles). 
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Nevertheless, many practitioners and researchers have used the classical line- and cylindrical-source 

models for design and analysis of BHE systems.  

2.3.2. ASHRAE Handbook Method  

The ASHRAE Handbook method to design BHEs is based on the approach of [30]. This 

relatively simple method uses a set of equations derived from the cylindrical source model to size 

the ground loop. The model assumes constant heat flux across the borehole outer boundary, ignores 

the end effects of the borehole, and disregards the thermal capacities of the circulating fluid and the 

grouting. Another limitation is that the estimation of thermal short-circuiting inside a borehole and 

thermal interactions between boreholes is quite ambiguous and has not been able to be 

independently validated by other researchers [31, 32]. Generally the method does not perform well 

compared to other approaches (Section 2.3.8). Some of these issues of the ASHRAE method have 

been recently addressed by [33]. 

2.3.3. Superposition borehole model 

The Superposition Borehole Model (SBM) [34] is one of the mostly commonly used models 

in design and analysis of BHEs. The SBM solves transient radial-axial heat transfer in a borehole 

heat exchanger using the finite difference numerical technique. The model is based on a finite line-

source approach and develops thermal response solutions to a stepped heat pulse. 

The non-dimensional form of thermal response functions, obtained from the SBM, are more 

commonly known as g-functions. The model obtains g-functions for multiple BHEs (Figure 3) in a 

numerically exact way. The thermal interactions between adjacent boreholes are accounted for by 

spatial superposition of numerical solutions with radial-axial heat transfer for each borehole. The 

main limitation of the numerically calculated g-functions lies in the fact that due to an absence of 

borehole geometry detail in the model, they are only valid for times greater than 200 hours [35]. 

Another practical aspect of the g-functions is that these functions need to be computed numerically, 

which is a time-consuming and computationally-intensive task. Hence, these functions are pre-

computed for various borehole geometries and configurations and then stored as databases in 

building energy analysis software.   

The SBM has been implemented in several stand-alone programs and simulation software including 

Earth Energy Designer (EED) and the Ground Loop Heat Exchanger Program (GLHEPro), among 

others. Both design tools determine the long-term response of the BHE to the monthly heating and 

cooling loads using the above-discussed g-function approach. Short-term response due to the peak 

loads is calculated differently in each program however.  
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Building energy simulation software with the SBM implemented includes HVACSIM+, eQuest, 

EnergyPlus, TRNSYS and Polysun. Some of these programmes have also extended the g-functions 

obtained from the SBM to short time steps. The implementation of the SBM in building energy 

simulation software differs from the BHE field design tools in that it uses hourly values of heating 

and cooling loads instead of monthly aggregated values. This allows for a more detailed and 

accurate thermal analysis of the BHEs. 

2.3.4. Analytical g-functions 

Analytical g-functions have been developed to address the flexibility issue of numerically computed 

g-functions from the SBM. [34] developed an analytical g-function expression, which was later 

adopted by [36]. These methods use a constant value of borehole wall temperature, taken at the 

middle of the finite line-source. Alternative analytical g-functions have been developed using the 

integral mean temperature along the finite line-source [37]; this provided a better match to the 

numerically calculated g-functions, but requires the solution of a complicated double integral. 

Simplifying the problem to a single integral [38] present a closed form formula for analytical g-

functions and extend the analytical finite line-source approach to model multiple boreholes. Using 

the finite line-source solution and SBM boundary conditions [39] have also developed semi-

analytical g-functions.  

2.3.5. Duct ground heat storage model 

The Duct Ground Heat Storage (DST) model [40] is another widely used numerical model 

for design and thermal analysis of underground energy storage systems with borehole heat 

exchangers. The DST model solves the heat transfer problem of BHEs placed uniformly within a 

cylindrical underground thermal energy system. The model uses spatial superposition of three 

different heat transfer solutions to determine the ground temperature. The first solution accounts for 

the long-term heat transfer between the storage volume and the undisturbed ground. The second 

solution considers the short-term heat transfer of each borehole to its surrounding ground inside the 

storage volume. The third solution accounts for steady-flux heat transfer between circulating fluid 

in a borehole and the ground surrounding the borehole. The first and second solutions are 

determined numerically using the finite-difference method, while the third solution is determined 

analytically.   

The DST model was originally distributed as a FORTRAN program, which is still available. Later, 

it was implemented in TRNSYS [41] and is now distributed commercially as Type 557 [42]. A 

stand-alone TRNSED application of the DST model, called PILESIM2 also exists and is available 

commercially (see also Section 2.4.3) [43]. Despite its complex mathematical formulation, software 
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implementations of the DST model are computationally very efficient even for large-sized systems. 

A significant limitation of the model lies in its inability to model irregular borehole-field 

configurations and non-uniform borehole lengths. 

2.3.6. Short-Time Analysis 

Temperature response functions (g-functions) have been extended to short time-scales [44]. 

As with the SBM’s g-function approach, the temperature response functions of [44] also needed to 

be pre-computed for individual cases and then stored in design and simulation software as 

databases.  

Using a radial numerical model [45] also developed temperature response functions for short time-

scales. The model accounts for thermal properties of circulating fluid, pipe, grout, and the 

surrounding ground and is a major improvement on existing analytical models. A purely analytical 

method to determine borehole fluid temperature for time scales from minutes to decades was 

obtained by combining the short- and long-time temperature response functions [45]. The method 

uses superposition of heat pulses in a similar manner to the SBM; however, it removes the 

important limitation of having to use a constant or steady state resistance. The principal limitation 

of the method lies in its assumption of having uniform heat flux in all boreholes. More recently, a 

new analytical method to the problem addressed by [45] has also been presented by [46].  

2.3.7. Influence of groundwater flow 

The Line and Cylinder Source models, as well as SBM and analytical g-functions are all 

based on heat transport by conduction. If significant groundwater flow exists, convection and an 

additional heat transport occur. For consideration of this additional heat transport a higher thermal 

conductivity value could be used [47, 48]. This is however a significant oversimplification because 

the characteristic timescales for conduction and convection are very different. 

A model for the prediction of the thermal resistance of a borehole in contact with groundwater was 

developed by [49, 50]. The model is based on Moving Line heat Source (MLS) theory and was 

coupled with the infinite line source theory. Further developments were presented by [11] where the 

MLS was coupled with the finite line-source model in order to include axial effects. 

The software PILESIM and implementation of the DST model includes the effects of groundwater 

by making two simple two-dimensional approximations. The first approximation is to the global 

problem of heat transfer into and out of the heat store, where the maximum convective energy is 

then limited to that which would be released by changing the temperature of the heat store to that of 

the undisturbed groundwater temperature. PILESIM then also implements increased heat transfer 

due to convection at the local level surrounding each duct in the store  by using the steady state heat 
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transfer for a cylinder at given temperature in a saturated porous media [51]. It must be stressed 

however that although both these groundwater approximations are included within the software, 

[42] indicates that the accuracy of the underlying assumptions has not been checked. 

2.3.8. Validation of Borehole Design Tools and Approaches 

Although a number of models and design tools for sizing and modelling of borehole heat 

exchangers have been developed over the years, only a few have been validated at all, and even 

fewer have been validated against actual field data. Most validation efforts have focused on inter-

model comparison. Analytical g-functions have been compared favourably with SBM by a number 

of authors [52, 53, 54, 39]. Common design tools have been evaluated using measured data from 

different installations to calibrate the DST model [55, 56]. The calibrated model was then used as a 

benchmark for comparing the design tools. This showed that borehole design lengths varied by 

between ±8% and ±16%, respectively, among different design programs.  

The SBM-based design tool GLHEPro and the ASHRAE handbook method have been validated 

using operational data from four different installations in the USA and Europe [57]. Actual on-site 

parameters, real thermal loads, and temperature constraints obtained from the experimental 

measurements taken over several years were used for the validation. For all four cases, the 

GLHEPro design tool predicted the borehole lengths to within 6% of the actual borehole depths. 

However, the ASHRAE handbook method resulted in design borehole depths ranging from -21% 

(undersized) to 103% (oversized) of the actual depths, Figure 4. 

2.3.9. Numerical thermal analysis of BHE 

Full numerical thermal analysis of BHE should in theory be able to deliver a completely 

general solution to the problem that takes into account each of the considerations detailed in 

Section 2.2. Each individual component and its respective thermal properties can be represented, 

fluid transport in the pipes can be modelled, correct initial temperature and boundary conditions 

applied, thermal exchanges to the ground below and at the ground surface can be captured along 

with real ground variation. 

However, full three-dimensional (3D) analysis is computationally expensive and most early work 

was either based on a two-dimensional (2D) slice approach [58, 35, 44] or carried out on a 2D 

radial-axial plane, as was the case for the derivation of the SBM [31]. The horizontal slice approach 

was applied to an instrumented GSHP pilot project in Hong Kong [59] where, in spite of the 

simplifying assumptions, comparisons with the measured temperatures on the walls of the heat 

exchange pipes were generally within about 6%.  
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To undertake a complete 3D analysis of the problem, in addition to the problem geometry, the 

solution should involve the coupling of the fluid flow problem within the heat exchange pipes with 

the heat transfer problem throughout the remainder of the problem domain. To deal with this 

problem various approaches have been used to approximate the fluid flow and associated heat 

transfer to the remaining elements forming the BHE, i.e. the heat exchanger pipe walls, grout infill 

and surrounding soil/rock mass. Primarily, this focuses on reducing the dimensions of either the 

heat exchanger pipes or the entire borehole such that they can be represented as a one-dimensional 

(1D) element within the numerical model. 

1D representations of the BHE have been used within a 3D representation of the remaining 

components within the problem domain [60, 61]. In a similar approach, the heat exchanger pipe was 

replaced by a 1D element that solves the fluid flow and heat transfer equations for the heat 

exchanger pipe, to yield the surface temperature of the pipe which is coupled to the heat flow 

problem in the main solution domain [62].  

Alternatively, a single layer of cells can be used to represent the fluid circulation within the heat 

exchanger pipe with the thermal properties of the cells adjusted to ensure that the full thermal mass 

of the fluid within the pipe is represented [21]. Again, this is a 1D representation of the problem and 

the authors showed that there was an unavoidable, mesh dependent error of 7% to 10% in the 

Return Time Distribution (RTD) due to the 1D representation that is likely to also be present in 

other 1D models. This appears to have little effect in the steady-state where the model was able to 

estimate borehole thermal resistance to within 0.1% of an analytical solution based on the multi-

pole method.  

Taking the simplification process a step further, the entire BHE can be reduced to a line element 

[63, 64]. Not only is the fluid flow and associated heat exchange approximated; in this element, the 

interactions between the heat exchanger pipes and the borehole wall via the grout are included. The 

approach has been developed further to include only a single a term that accounts for the thermal 

capacity of the grout body [65, 66]. The proposed method has been validated against a fully 

discretized finite element model where in terms of predicted heat flow, the new model is in 

agreement with the full simulation in a period of time from 15 minutes to three hours [67]. 

2.4. Pile Foundations 

2.4.1. Overview 

 In practice, analytical approaches used for the assessment of the thermal capacity of pile 

foundations are commonly based on the methods developed for borehole heat exchangers [68]. This 

is due to the superficial similarity between the two types of heat exchanger and also due to an 
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absence of many validated alternatives. However, it is important to understand that piles are 

different to boreholes in a number of important respects: 

 As discussed in Section 2.1, different boundary conditions may be required, 

 Piles may be installed on a semi-regular, or irregular grid to suit structural column requirements, 

 Not all piles installed in a given scheme will necessarily be of the same length, 

 The aspect (length to diameter) ratio will be different. For boreholes this is typically between 

500 and 2000, while most constructed piles fall between 15 and 50 [69]. The consequence of the 

smaller aspect ratio is that axial effects will become important at shorter time periods. 

 The larger diameter of most pile foundations compared to boreholes also has important 

consequences. The larger cross section of the heat exchanger means the potential for inclusion 

of more heat transfer pipes and more options for how these are arranged. These details will 

influence the early time temperature response of the heat exchanger, making short time step 

analysis more important. This is particularly pertinent as the greater volumes of concrete means 

that the heat exchanger is rarely at a thermal steady state and consequently there is significant 

short term thermal storage of heat within the pile concrete. 

As is the approach for BHE, the temperature changes in the ground associated with PHE are often 

calculated by some kind of g-function; either one of those described in Section 2.3 or a bespoke 

function for piles, see below. In most cases the pile is accounted for by using a thermal resistance, 

an assumption that is known to be conservative [70, 71] and better approaches are needed. 

2.4.2. Analysis methods 

 The only commercially available tool for pile foundation thermal analysis is the software 

PILESIM [46]. This tool is based on the DST Model described in Section 2.3.5, and assumes a large 

number of identical piles installed in a regular array to form a cylindrical store. It is unclear 

however what errors result from smaller or less regular pile group arrangements that are more 

representative of typical foundation layouts. 

Other analysis methods are mostly based on the g-function approach. [72] propose a solid cylinder 

model which differs from the hollow cylinder model by assuming heat flow both into the pile and 

into the ground from the circumference of a cylinder. Numerically derived pile g-functions have 

been developed that provide upper and lower bound solutions for typical PHE geometries and fall 

between the line-source and the solid cylinder model in the short term, Figure 5 [62]. In the long 

term, the pile response is equivalent to the SBM and is controlled by the aspect ratio [62].  

[73] have proposed composite g-functions based on superposition of infinite line sources in two 

media, the concrete and the ground. However, these two-region analytical models are complicated 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

16 

 

and the superposition must be derived for each and every arrangement of pipes. This would be a 

barrier to their routine adoption in design. They are also only applicable in the short-term due to the 

infinite length of the heat source. 

An alternative approach to cover the short term transient aspects is suggested by [70], who present 

upper and lower bound pile and concrete g-functions, which describe a step pulse response in the 

concrete. In this way, they account for the short term storage of heat within the pile concrete and 

consequently the validity of the analysis does not depend on the heat exchanger having reached a 

thermal steady state. Pile g-functions describing the temperature change in the ground surrounding 

the pile (Figure 5) are then combined with the concrete g-functions by superposition to obtain the 

total temperature response of the system.  

Finally, models have been developed based on resistance-capacitance models using an electrical 

analogy and capture the short term storage of heat within the pile concrete [74, 75].  

2.4.3. Validation of PHE Models 

 Only the DST which underpins PILESIM has been validated against operational energy pile 

data. Initially, however, the DST was validated against field data for small diameter (<50 mm) 

borehole thermal stores in Sweden [76]. It was only later that the approach was implemented for use 

with piles, and then validated using field data from Zurich Airport [77]. The validation focused on 

the overall heat exchange capacity of the system. Subsequently, independent analysis using finite 

element models was carried out suggesting that for regular arrangements of piles, the results 

provided by PILESIM are reasonable, Markiewicz, R. (2010, Pers. Comm.). 

The pile and concrete g-functions proposed in [74] have now been tested successfully against 

thermal response test data but await longer timescale validation [78]. Performance data for a plot of 

300 mm diameter energy piles against the software EED was tested by [68]. This approach, based 

on SBM, over-predicted the fluid temperature changes. This discrepancy is due to the short length 

(10 m) of the piles and the assumption of constant thermal resistance.  

2.4.4. Numerical thermal analysis of PHE 

In terms of examining the thermal behaviour of PHE, very limited examples of the 

application of any type of continuum numerical analysis are available. This is perhaps because the 

focus has been on the thermo-mechanical impact of these elements where somewhat more effort has 

been expended (Section 3.2.2). 

When looking at PHEs in comparison with the BHE problem discussed earlier, the same basic 

issues associated with full 3D numerical analysis occur, with significant geometric contrasts 
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between the diameter and length of the heat exchanger. In this case, as noted in Section 2.4.1, the 

length issue is not so great as most piles are less than about 30 m long but the diameter may vary 

between 0.15 m and 3 m, and the number of heat exchanger pipe loops varies with the pile size. For 

example, the pile and concrete g-functions developed by [70] were developed on the basis of 2D & 

3D FEA, considering 0.3, 0.6 & 1.2 m diameter, piles with 2, 4 or 8 heat exchanger pipes 

respectively and length to diameter ratios of 15, 25, 331/3 & 50.  

Thermal storage response of a piled building foundation has been studied using a 2D plane strain 

idealization of the problem domain [79, 80]. Considering various heating scenarios [79] examined 

the development of the temperature field within and adjacent to the foundation system, over a 

period of 5 years, and confirmed thermal losses to the surrounding soil mass were similar to 

borehole systems examined in other studies. [79] and [80] both explore the evolution of temperature 

in the piles and show that with time and with uniform annual thermal demands, the temperature 

profiles in the piles tend to equilibrate.  

One-dimensional line elements are also now being adopted in PHE simulations [55, 81, 82, 83]. The 

authors showed that the approach compared favourably to the finite line-source approach and [82] 

also validated the approach against PHE field data. Both [82] and [83] then use the approach to 

investigate the influence of pile and pipe geometries on the pile thermal behaviour.  

2.5. Other energy geostructures 

2.5.1. Overview 

 The use of pile foundations for heat exchange remains the most common application however 

a number of other geostructures including retaining walls and tunnels have been used or are being 

investigated for use in providing the means for heat exchange with the ground.  

The walls of shallow, cut-and-cover tunnels and other underground structures are formed using 

concrete piled and diaphragm walls, and sheet-pile walls that along with other earth-contact 

elements such as base slabs can be thermally-activated. The first “Energy tunnel” was a section of 

cut-and-cover tunnel built in Vienna (Lainzer Tunnel), installed to test the concept and provide 

heating to a local school adjacent to the railway [6]. Other, full-scale applications have been 

constructed including Keble College, Oxford [84], four stations of the U2 metro extension in 

Vienna [85] and the Knightsbridge Palace Hotel, London [86]. In a further development, RWTH 

Aachen University has developed and is trialling, high density polyethylene (HDPE) protection 

panels with absorber pipes attached which can be used for the thermal activation of shallow 

basement walls that are in contact with groundwater [87].  
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Deep tunnels may be formed by mining or using tunnel boring machines (TBM). The first test 

application for a mined tunnel was again on the Lainzer Tunnel project where a section of tunnel 

was thermally-activated using an “energy geotextile” developed at the Vienna University of 

Technology [8]. Further test sections using a similar technique have been installed in Germany [88] 

and China [89], and an operational system was installed adjacent to one station of the U2 metro 

extension in Vienna [90]. For the thermal-activation of tunnels formed by TBM, the companies Ed. 

Züblin AG and Rehau AG+Co developed the “Energietübbing®” system [91]. In this system, the 

absorber pipes are attached to the reinforcement cage inside each precast tunnel lining segment and 

each segment is connected via a fusion joint located in a small recess in the front face of the 

segments. The first application of the Energietübbing® system is a trial section in Austria (Jenbach 

railway tunnel). 

2.5.2. Analytical solutions 

 As EGS other than piles remain rare there are few analytical solutions available for these 

cases. Those that do exist are often very much simplified. [6] highlights how solutions of the 

diffusion equations for the cases of a semi-infinite body, and infinite body with cylindrical gap and 

an infinite body with a spherical gap could be applied in the analysis of available energy and 

temperature change prediction around EGS. Such solutions could potentially be applied to the cases 

of slabs or retaining walls, piles or tunnels, and pile toes respectively. However, most real 

application scenarios are more complicated; for example, by the significance of heat flux boundary 

conditions within tunnels and underground structures, and therefore alternative approaches are 

usually adopted.  

A simple thermal resistance model was developed for an energy tunnel for determining the energy 

potential for the tunnel projects of “Stuttgart 21” [22]. In this model, heat transfer in the soil is 

based on conduction only, so no groundwater flow could be considered. [89] also developed a 

conduction only model for tunnel lining ground heat exchangers. The model was verified using the 

results of a thermal response test carried out in the Lichang tunnel, China and for times greater than 

10 hours of operation there was good agreement between the predicted and observed outlet 

temperature, Figure 6. The discrepancy seen prior to the 10 hour mark was attributed to the model 

not capturing all aspects of the lining construction. 

A conductive heat transfer model for energy diaphragm walls has been developed [13]. The model 

was verified by comparison with numerical simulations and field data from the Shanghai Museum 

of Natural History. In terms of heat exchange rate, good agreement was found between the observed 

values and those predicted for running times beyond about 14 hours, Figure 7. However, the 

comparison in terms of predicted temperatures within the wall were not as consistent but were 
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considered adequate [13]. Again, the discrepancy in the solution during the early stages of the test is 

most likely due to the simplifications made in the calculation model. 

In both [89] and [13], it should be noted that the test data used is of very limited duration (2 days) 

and that the longer term suitability of the proposed models has yet to be fully verified. 

2.5.3. Numerical analysis 

 In most cases, EGS (other than piles) are modelled with numerical methods. Most of them are 

based on heat conduction. To reduce computational time, often the heat exchange system is not 

modelled in detail; a simple temperature or flux boundary condition is applied where the pipes are 

located, or at the edge of the geostructure. 

As part of the development of a thermally-activated segmental tunnel lining, finite-difference 

calculations were performed to estimate the energy potential of a tunnel and its associated 

temperature field [91, 92]. The one-dimensional model assumed, that the temperature field around 

the tunnel is axially symmetric . This model assumes the tunnel is sufficiently deep that the surface 

boundary does not play a significant role and there is no groundwater flow. For conditions with 

groundwater flow, finite element calculations were carried out with the absorber system simplified 

to a constant temperature boundary condition. In these models, heat transfer into the tunnel was 

neglected [92].  

[93, 94, 8] have modelled different EGS types. Their models again only considered heat conduction 

and depending on the size of the problem the heat exchange pipes were modelled using either a 

module that calculates heat and mass transfer or as a constant temperature boundary condition.  

[14] developed a model for thermally-activated HDPE protection panels, which has similarities with 

the duct storage model. The processes in the heat exchange system are described via thermal 

resistance with the relationship for the “structure resistance” based on a model for concrete core 

activation. Heat flow to both the ground and into the basement room is modelled. The model 

calculates the effect of both conduction and convection due to groundwater flow while also 

accounting for seasonal temperature fluctuations. The model has been verified using full numerical 

simulations and laboratory tests, Figure 8. 

[95, 96] present results from 2D plane strain FEA for a shallow, cut-and-cover type tunnel structure 

where the thermal and thermo-mechanical behaviour was examined, Figure 9. Heat flow to the 

tunnel dominated and was critically dependent on the assumption made regarding the boundary 

condition on the tunnel wall surface. Defining suitable thermal parameters for this interface is not 

straightforward and requires further consideration; otherwise, overly optimistic estimates for heat 

exchange may be calculated.  
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3. ANALYSIS OF THERMO-MECHANICAL SOIL-STRUCTURE INTERACTION 

3.1. Introduction 

The primary function of an EGS will always be to safely carry loads (e.g. building loads on 

piles and slabs, external and ground loads on retaining walls and tunnels) without unacceptable 

movement or damage to the structure itself or neighbouring structures. A concern that therefore 

arises from the use of engineering structures for heat exchange is what potential is there for the 

thermal loads to impact on the performance of the structure either in terms of serviceability or 

safety. Thus, there is a need for analysis to be undertaken to assess whether the proposed secondary 

use of the EGS as a heat exchanger will prove acceptable, or to confirm what changes are necessary 

within the structure to ensure that the EGS operation can be implemented safely. 

Broadly, the impact of an EGS operation requires the study of three major issues: 

(i) Deformation of the building supported by the EGS. 

(ii)  Stress variations in the EGS induced by constrained thermal expansion and contraction. 

(iii)  Possible changes in the available load resistance of the EGS. 

Few detailed thermo-mechanical numerical analyses examining the behaviour of energy 

geostructures have yet been published. This probably reflects the similar lack of case histories 

covering differing soil conditions and geostructures against which they could be verified. Also, in 

addition to the considerations outlined for thermal analysis in Section 2.4.2, a full thermo-hydro-

mechanical analysis needs to consider additional aspects such as the thermo-hydro-mechanical 

(THM) constitutive behaviour of constituent materials, initial geological stress conditions 

(including pore water pressures), mechanical boundary conditions, material parameters and 

construction sequence. Modern geotechnical analysis based on numerical methods, is of necessity, 

highly nonlinear and it is not unusual, especially in large complex projects, for models to extend to 

multi-millions of degrees-of-freedom and to take several days or even weeks to complete. 

Obviously, such analysis is only justifiable in research and for big budget, complex construction 

projects, and therefore the development of simpler methods that can be used on smaller projects is 

desirable. 

A great deal of care is also required in the implementation of these types of analysis because all 

aspects of the modelling process from choice of constitutive models to the numerical solution 

procedures used will affect the outcome. A number of benchmarking exercises for isothermal 

geotechnical problems have been undertaken to understand these effects and it has been found that 

even when the problem has been tightly defined and even though the analyses were largely 
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undertaken using the same software (if by differing organisations), the final results showed 

significant variation [97, 98].  

In the following sections, THM analysis of pile foundations will first be discussed, as this is where 

the greatest level of effort has been expended to-date and simplified analytical methods have been 

developed (Section 3.2.1), and then THM analysis of other EGS will be examined.  

3.2. Pile Foundations 

3.2.1. Load Transfer Method 

Load transfer methods are widely used in geotechnical engineering practice to estimate the 

axial response of isolated piles. This method is based on a one-dimensional finite element 

representation of the pile with the interaction between the pile and soil being represented by discrete 

load-transfer (t-z) functions along the shaft and at the base of the pile. In this type of model, the 

inclusion of thermal effects is achieved by adding a thermo-elastic term to the deformation response 

of the pile such that the total deformation i consists of an elastic part ie and a thermal part ith, 

Equation [3]. 

 =e +th [3] 

where the thermal part ith is introduced assuming that any change of temperature, 〉T is 

homogeneous throughout the pile and thus, 

th = T.T
 

[4] 

where T is the linear coefficient of thermal expansion (CTE) of the pile. 

Two important assumptions are implicit in the definition of the thermal deformation, ith in this 

model: 

1) The ground is assumed to be thermally inert. This is unlikely to be the case except in rather 

particular situations and thus may not be valid generally. 

2) Thermal effects on the mechanical properties of the soils can be neglected. In granular and 

very stiff, moderately to highly over-consolidated clayey soils this may be a reasonable 

approximation but in normally to lightly over-consolidated clayey materials this may not be 

true because heating may induce thermal consolidation of the soil. 

A spring can be introduced at the pile head to mimic the restraining effect of an overlying structure, 

and a full range of restraint from zero to fully fixed can be imposed; however, the determination of 

an appropriate stiffness to utilise in such a calculation is not a simple exercise. To model groups of 
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piles, the model is not directly applicable however other assumptions can be introduced to 

approximate the effect of mechanical and thermal interaction with adjacent piles. 

A number of groups have developed methodologies for applying the load transfer method to the 

analysis of thermally-activated piles. A calculation method based on the load transfer approach was 

presented by [99], validated using two field tests [100, 101], and applied to some generic scenarios 

to illustrate how heating & cooling might affect different pile types.  

A load transfer solution that incorporates hyperbolic functions as the “t-z” curves was proposed by 

[102] and used to fit the results of thermally-activated pile tests undertaken in a centrifuge. [103] 

have adapted an elastic foundation analysis method that uses the load transfer approach to model 

pile-soil interaction to incorporate thermal loading in the pile response. This method also uses 

hyperbolic “t-z” curve functions but recognises that thermal loads are cyclic and introduces a 

modification that stiffens the initial “t-z” response when the load reverses. To reproduce the 

thermally induced changes in pile behaviour seen in a field test [101], it was necessary to change 

the soil stiffness associated with the interface response from that required to reproduce the response 

under iso-thermal mechanical loading. [104] have developed a load transfer approach to the analysis 

of thermally-activated piles that utilise “t-z” curves broadly similar to those used by [99], and [105] 

adapted this model to include a function that permits cyclic degradation at the pile-soil interface, so 

that the potential impact of such loss of resistance on the performance of thermally-activated piles 

may be explored. 

Broadly, the load transfer method appears to be able to capture the changes in behaviour that have 

been observed in tests of thermally-activated structures and may find use in day-to-day design 

applications, so long as its underlying assumptions and therefore basic limitations are well 

understood. Further evaluation of the method is necessary to demonstrate its general applicability 

and to provide guidance regarding the specification of load-transfer curves and their parameters. 

3.2.2. Full numerical analysis of single piles and pile groups 

The finite element and finite difference methods of analysis have been applied to the analysis 

of PHE either to back-analyse field & laboratory tests [100, 106, 107] or to evaluate the behaviour 

of particular aspects, i.e. cyclic loading [108], soil thermal response [109, 110, 111], or the 

behaviour of groups of piles [79, 80, 112, 113].  

In trying to reproduce the observed response of field tests, both [100] and [101] report good 

agreement in terms of the observed and calculated pile head movement throughout the modelled 

sequence, Figures 10 and 11. However, both cases, comparisons in terms of other parameters such 

as internal axial stress and strain were less convincing. The analysis by [100] under-predicted the 
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axial stress/strain response in the upper part of the pile, and the maximum response is slightly 

underestimated in relation to that inferred from the field observations, Figure 10. And, in the 

analysis by [106], large changes in the axial strain at the pile head were predicted suggesting some 

additional restraint has been included in the model that was not present in the field test, Figure 11. 

Clearly, there were some details within the models that are not particularly representative of the 

actual conditions however in qualitative terms the analyses appear to have captured the thermo-

mechanical response of the pile. 

An interface element which allows for cyclic load degradation of the pile-soil interface shearing 

resistance was introduced by [108] into a thermally-activated pile model they had described 

previously, [109]. The results show how cyclic degradation effects could be considered in the 

design of pile EGS and more work is needed to define if and when it should be considered. 

Axisymmetric FEA was used by [110, 111] to examine the response of an isolated pile of varying 

length subjected to thermal loading. The soil CTE was varied on the basis that in heavily over-

consolidated clays the CTE could be several times larger than that for concrete. The results 

highlight that the temperature field around the pile, in combination with the thermal characteristics 

of the pile and soil play a major part in determining the final pile-soil interaction response, Figure 

12. The simplified nature of the analyses notwithstanding, this result has important implications for 

the use of e.g. the load transfer method which implicitly assumes the soil to be thermally inert, and 

in the interpretation of field tests where the surface temperature boundary differs from the 

operational situation under a building.  

Considering normally consolidated clay, [80] showed that under uniform cyclic thermal loading, 

settlement of a pile group increased gradually but eventually stabilized, Figure 13(a). Thermal 

consolidation of the soil in response to the changes in thermal loading also led to a gradual increase 

in pile axial load, Figure 13(b) which is equivalent to downdrag which is often seen in piles 

installed through soft clays that subsequently undergo consolidation [114]. This is a quasi-

permanent loading effect that like the settlements stabilises after a period of time and around which 

the stresses in the pile would likely oscillate during heating and cooling. 

For the case of a thermally-elastic stiff over-consolidated clay, [79] illustrated that stronger heating, 

when all piles in a group are thermally loaded, leads to larger pile axial stress changes, Figure 14(a) 

and when only one pile was heated, the other piles restrained the thermal expansion of the pile and 

the change of axial stress was several times larger than when all the piles were heated, Figure 14(a). 

The authors also examined the changes in stress state within the soil mass (mid-way between piles) 

for differing values of hydraulic conductivity, Figure 14(b). Pore water pressures, vertical and 
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horizontal effectives stresses all cycled, with the predicted response being highly dependent upon 

the value of the hydraulic conductivity. Horizontal effective stress changes, Figure 14(b), of about 

4 kPa (medium to high perm.) and 11 kPa (low perm.) were predicted. These values lie between 

about 10% and 20% of the initial stress, and may be important in terms of the resistance that is 

available at the pile-soil interface, and for low permeability soils, the effect may be significant. 

3.3. Other Energy Geostructures 

While a number of thermal studies relating to energy walls and tunnels have been published 

(see Section 2.5), reporting of the analysis of the THM response of such structures is largely absent 

from the literature – again, this may also be due in part to the absence of case history data. 

[115] present the results of 3D FEA for a thermally-activated deep circular tunnel lining. No 

substantive details of the modelling are presented except that it is said that a THM coupled soil 

model was used in the analysis. Rather small changes in hoop (circumferential) stresses of less than 

10% are reported.  

[95, 96] present results from 2D plane strain FEA for a shallow, cut-and-cover type tunnel structure 

where the thermal and thermo-mechanical behaviour was examined. The authors based their tunnel 

loosely on that used in the Lainzer tunnel, Austria, as described by [6] and [93] in order to be able 

to compare the numerical results with observations, and test the structure under stronger thermal 

loads than those reported in [6]. In spite of larger temperature changes being applied to the wall, the 

numerical results broadly confirm the observations; the changes in wall response are dominated by 

climatic temperature changes while any changes due to heat exchange are negligible. 

4. DESIGN OF ENERGY GEO-STRUCTURES 

4.1. Existing design codes and guidance 

In the absence of official Standards, a number of professional and industry organisations 

across Europe have produced guidance documents that establish procedures for planning, design 

and installation of ground energy systems that utilise foundation elements, principally piles: 

 German Guideline VDI 4640 Part 2 [116] provides no detailed information for the design of 

EGS. It is only said, that an energy pile can be treated as borehole heat exchanger; referring back 

to Section 2.2.1, this statement is questionable and is being reconsidered for the next version of 

the guideline. For other EGS a case-by-case analysis is required. 

 Swiss Guideline SIA D0190 [117] gives more information for the design of EGS, especially for 

thermally-activated piles. There is guidance regarding construction details (e.g. pipe 

arrangement, materials, etc.) and design considerations such as accounting for any additional 
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load and the effect of differential movement when not all piles are used for heat exchange. The 

guideline refers to the use of the program PILESIM for the calculation of the thermal 

performance of an energy pile installation (see Section 2.2.1). Detailed information for other 

EGS are not provided. 

 In the United Kingdom, the Ground Source Heat Pump Association has published “best practice” 

guidance [118] covering design, installation and materials standards for projects incorporating 

thermally-activated piles. In terms of design, the guidance discusses the roles and responsibilities 

of the various parties involved in the project, and key aspects of both the thermal and 

geotechnical analysis of the thermally-activated pile foundation system. 

 In France, a design process and tools that take into account the mechanical impact of the thermal 

variations in the design of geothermal piles is in development; a process that will be certified by 

the Centre for Building Science & Technology (CSTB). In this process, the geothermal designer 

takes responsibility for assessing the all thermal effects in the piles (energy supply and pile-soil 

interaction effects) and the piling contractor dimensions the piles appropriately based on the 

effects defined by the geothermal designer [119]. 

For the design of other energy geostructures, some numerical studies based on particular projects 

have been published [88, 94, 115, 120, 121] which although they cannot be generalized completely, 

provide some guidance on the aspects that need to be considered. 

4.2. Considerations 

In any design, two main issues – behaviour when in service and the possibility of failure need 

to be considered. Serviceability covers aspects associated with the operational performance of a 

system, e.g. movement of a structure, delivery of design thermal requirements. Failure involves the 

complete loss of function/collapse of a system be it the structure or the energy system. In the 

following, the key considerations relating to the design of EGS both thermally and mechanically are 

discussed. 

4.2.1. Thermal serviceability and failure 

None of the standards listed above offer any indication on how the performance of an 

operation system should be measured and what failure criteria may be appropriate. However, there 

are potentially a number of ways in which performance can be considered and these are outlined in 

Table 1. 
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4.2.2. Geotechnical serviceability and failure 

Temperature variations in EGS lead to complementary responses that need to be considered in 

design – the structure’s response to changes in temperature will take the form of both alterations in 

dimension (expansion/contraction) and internal forces (compression/tension). Where the former is 

restricted, the latter will increase and vice versa. There are however limits to this behaviour that can 

be defined on the basis of the element being either completely unrestrained (maximum movement) 

or perfectly restrained (maximum internal load change) with respect to any imposed thermal 

loading (Table 2).  

4.3. From analysis to design 

Temperature variations cannot be directly interpreted as force variations and they cannot be 

considered as a “real” variable action such as wind or snow. They induce contractive or expansive 

strains which require designers to consider the interaction between the structure and the soils (see 

Section 3). 

While the methods described in Section 3 are well established calculation tools for isothermal 

mechanical analyses and thermal only analyses, their application to the thermo-mechanical analysis 

of EGS specifically is a relatively recent development. A limited number of studies applying these 

methods to the analysis of EGS have been reported and a number of interesting results have come 

from these that will inform future work. However, the reliability of these methods has not been fully 

explored with regards to this application and there is a lack of robust case study data that can be 

used to undertake such validation. As a consequence, there remains a lack of guidance regarding 

how such analysis should be implemented and the results integrated in design. 

Any design also needs to consider the interactions between the geotechnical and the thermal 

analysis as shown in Figure 16. In the simplest case, temperature limits are applied to both the 

geotechnical and thermal design streams. However, these limits must first be agreed upon and may 

also require refinement during the design process.  

4.4. Integration with design codes 

Temperature variations in EGS are not currently taken into account by any design codes. The 

primary issue is the integration of these temperature induced load variations in load combinations 

appropriate for the verification of serviceability limit states (SLS) and ultimate limit states (ULS). 

There is also the question of which limit states that this effect is relevant for; SLS certainly however 

in terms of ULS while the changes in internal forces may lead to there being insufficient margin 

with respect to the structural resistance of the element, it is not necessarily the case that a 
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geotechnical limit state can occur. In relation to pile foundations, [128] conclude that as a result of 

the mode of deformation of the pile as it expands or contracts about a neutral point (i.e. there is 

always a point on the pile where deformation relative to the surrounding ground is zero) then failure 

in terms of plunging of the pile cannot occur.  

To combine the effect of temperature variations with other permanent and transient action effects, 

values for accompanying variable action factors ねi have to be determined according to the 

principles of [129]. This means that a combination value ね0Qk needs to be defined for the ULS, and 

a frequent value ね1Qk and a quasi-permanent value ね2Qk need to be defined for the SLS (ねi have 

values less than or equal to 1 and Qk is the action effect associated with a characteristic temperature 

variation, Tk.  

Based on the temperatures monitored in operational thermally-activated piles, [104] suggest that the 

following factors could be proposed: ね0 = 0.6, ね1 = 0.5 and ね2 = 0.2. These values are broadly 

consistent with those used elsewhere in the Eurocode system where for thermal loading of 

buildings, [130] specifies values of 0.6, 0.5 and 0.0 for ね0, ね1 and ね2 respectively, and for bridge 

thermal loading 0.6 for ね0 and ね1, and 0.5 for ね2.  

5. SUMMARY & FINAL REMARKS 

There is an increasing interest across the World in the potential for using civil engineering 

structures constructed in contact with the ground as a means for allowing heat exchange with the 

ground within shallow geothermal systems. Doing so opens up congested urban sites for such 

systems and presents potential savings in the initial capital costs because costly deep boreholes can 

be either eliminated, or reduced in number. There is however an ongoing need to demonstrate the 

efficacy of these types of system with respect to both the potential for heat exchange and also the 

impact of heat exchange operations on the structure itself. 

In terms of heat exchange, there is a substantive existing base of experience with respect to the use 

of conventional borehole heat exchange systems that can be applied to EGS. There are a number of 

particular characteristics of EGS which also limit this potential knowledge transfer however – in the 

case of piles, the short lengths and greater thermal mass compared to boreholes, and in other 

structures, the lack of geometrical symmetry allowing simplified solutions to be readily applied. 

There is an ongoing research effort to fully understand and to provide suitable interfaces with 

existing design tools that can account for these differences. 

Thermal analysis of EGS is an area of current active research and collaboration. Because potential 

EGS vary widely in terms of layout, dimension generally and possible distribution of heat 

exchanger pipes, the development of universal analytical tools will likely prove problematic. 
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Consequently, at least for the time being, analytical techniques are only likely to be applied to pile 

EGS. Here it is recommended that analysis proceeds using either the validated adaption of the DST 

[43, 77] or one of the methods which fully captures the thermal capacity of the pile concrete, e.g. 

[71, 73, 74, 75].  

For the majority of other EGS, through necessity, the use of full 3D numerical analysis will be more 

commonplace than is the situation with BHE where robust analytical models have been established. 

The development and validation of 1D elements similar to those used to represent BHE, to model 

heat exchangers embedded within EGS will however reduce the computational resources required 

for such analysis and is recommended as a practical approach in these cases.  

It is apparent that the correct definition of thermal boundary conditions in these types of problem is 

crucial if realistic and conservative predictions of heat exchange potential are to be made. 

Consequently, for less common EGS, such as tunnels and basements, there is a need for more 

information regarding the internal environmental conditions that would dictate the heat flow 

potential. 

One barrier to the development and implementation of further analytical and numerical methods is 

the scarcity of datasets for validation of analysis methods. Partnerships between industry and 

academia to develop such datasets on operational schemes will be key to future developments and 

hopefully encourage uptake on EGS systems in the future. A number of short term thermal response 

test type datasets are becoming available and longer term datasets are starting to be captured [71]. 

However, much remains to be done to move to fully validated analysis tools. 

In addition, it is essential that tools developed in research, are made available in a practice ready 

format. This will involve the development of modules for existing building simulation software so 

that EGS can be integrated into the building energy design process, or it may involve development 

of further stand-alone software packages. 

The thermal actions associated with heat exchange will impose deformation and/or additional 

internal forces on the geostructure. There is very little existing experience of the observation of 

these effects in either experimental or operational energy geostructures to provide insight into the 

mechanisms and likely magnitude of these effects. Again, this is a field of active and rapidly 

developing research and a number of studies currently in progress will expand this knowledge base 

in the near-future. 

As is the case with solely thermal analysis of EGS, the development of techniques and 

methodologies for the thermo-mechanical analysis of EGS is an area of active research and 
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collaboration. Likewise, the efficiency of such analyses will benefit from e.g. the implementation of 

1D elements to represent the heat exchange pipes and its development is hindered by the lack of 

robust data sets against which the calculations can be validated. 

The few articles that have been published where these types of structure have been modelled 

numerically have highlighted a number of issues that will require clarification in the future, e.g. the 

role of the temperature field, whether the soil thermally consolidates or is thermally expansive, the 

potential effect of cyclic loading and changes in effective stresses. 

Currently, there are no clear design guides that provide a methodology for establishing thermal 

actions or how they should be dealt with in terms of safety and serviceability of the energy 

geostructure. A number of studies utilising numerical analysis have been undertaken and these have 

highlighted a number of aspects of the behaviour of these systems that should be attended to by 

both designers and researchers planning and undertaking field studies.  
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Table 1. Thermal performance criteria 

1.  Energy delivered An EGS scheme will be designed to deliver a certain proportion of 
the overlying buildings heating and cooling requirements and if this 
is not achieved then it may be considered to have failed. The 
consequences of failure will be greatest when no backup system is 
available. A suggested recommended approach would be to 
consider a 10% margin between required and expected energy 
supply as a starting value and then to revise it on a project-by-
project basis depending on the specific conditions that occur [119]. 

2.  Efficiency of system The seasonal performance factor (SPF) gives the measured 
efficiency of an installed heat pump system. It is the ratio of the 
heat delivered for space heating and hot water and the electricity 
used to run the system. Under EU Renewable Energy Sources 
Directive [124], heat pumps are considered renewable if their SPF 
is greater than 2.5. This could also be a convenient measure of 
acceptable serviceability performance of EGS. 

3.  System temperatures More work is required to establish guidance on operational 
temperature limits for EGS. Current practice tends to recommend 
that the lower limit on the heat transfer fluid temperature in BHE & 
EGS should be kept above freezing with a 2°C margin of error 
[125, 117, 118]. This is to ensure the ground does not freeze. It has 
been shown both theoretically and in practice, that for large 
diameter piles, temperatures lower than 0°C can be sustained 
within the heat transfer fluid for short periods and have no 
detrimental effects on the ground [126, 71]. Similar conclusions 
were reached by [6] but do not seem to have been acted upon in 
general practice. Due to the impact of high temperatures on pump 
efficiency and thus SPF, the circulating fluid is usually kept below 
40oC, although values as high as 60°C are used [117].  

4.  Environmental The development of SGE and EGS systems in the future will 
increasingly need to consider interactions with adjacent systems 
and/or the potential for heat to propagate outside site boundaries 
and thus, compromise future developments. Currently, there is no 
guidance or regulation relating to this issue. 
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Table 2. Mechanical performance criteria 

1.  Deformations Field observation of pile thermal expansion and contraction gave 
measured pile head movement in the range of 40% to 60% of the 
theoretical maximum values, i.e. that of a free-standing column 
[101]. As a serviceability issue, this is only likely to require 
specific consideration if either very long piles are to be used, and/or 
large temperature changes are likely to be imposed. Limiting 
criteria for assessing the acceptability of such movements would 
have to be defined on a case-by-case basis, as is generally the case 
for structural movement limits currently. 

2.  Overstress Field observations of the internal stress changes in PHE suggest 
values between 50% and 100% of the theoretical value for a 
perfectly restrained column may occur [127]. Such stress changes 
could lead to the compressive stress in a pile exceeding the 
maximum value allowed in some design codes. Tensile forces have 
also been observed during cooling [101]; in many design codes, the 
tensile strength of concrete is often ignored and thus, tensile 
reinforcement would be required. In addition, stress variations in 
reinforced concrete geostructures can induce cracking phenomena 
that may reduce concrete durability and this effect is often 
countered by the addition of extra reinforcing steel. While failure is 
unlikely consideration is required to ensure an adequate margin is 
maintained between the expected stresses in the EGS and the 
ultimate resistance of the constituent material. 

 

3.  Resistance Strength and volume change characteristics of the ground may be 
altered due to temperature change, and cyclic expansion and 
contraction may lead to further alterations in the available 
resistance and stiffness. In some soil conditions, it will be 
necessary to verify, by means of specific tests, how the mechanical 
properties of the ground may vary with temperature change.  

Experience from offshore pile installations suggests that when 
initial static loading represents a large proportion of the available 
pile resistance, cyclic loading effects can have an important 
influence on stability. Until application specific guidance is 
developed for PHE, this experience can be used as an indicator of 
the need for consideration of cyclic thermal loading effects. This 
issue requires further investigation to provide complete 
understanding of the actual risk and how this should be 
accommodated in design. 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

43 

 

FIGURES 

Figure 1. Examples of heat exchange systems utilizing geo-structures – pile foundations, retaining 
wall and tunnels. 

Figure 2. Common Types of PHE: a) small diameter driven piles; b) precast hollow concrete piles; 
c) rotary bored piles; d) contiguous flight auger piles. 

Figure 3. Eskilson’s [31] g-functions for various borehole configurations 

Figure 4. Comparison of SBM based design tool to AHSRAE Handbook Method based on data 
from four monitored buildings (data from [60]) 

Figure 5. Derived pile g-functions for a single 30 m long pile heat exchanger assuming  = 1x10-6 
m2/s: a) 1 m diameter pile; b) 300 mm diameter pile 

Figure 6. Outlet temperature observed during thermal tunnel trial, [92] 

Figure 7. Heat exchange rate observed during thermal tunnel trial, [13] 

Figure 8. Inlet (Tin) and outlet (Tout) fluid temperatures versus time (hours) from model wall tests 
and from the thermal-resistance model, [90] 

Figure 9. Heat flow from thermally-activated wall panel to tunnel void and across the wall-soil 
interface, [98] 

Figure 10. Comparison of FEA model and observed thermally-activated pile response, [102] 

Figure 11. Predicted and observed a) pile head displacement and b) pile axial strain during thermal 
pile test, [108] 

Figure 12. Effect of temperature field and soil CTE on pile axial stress response during heating and 
cooling for a) adiabatic ground surface and b) constant temperature ground surface, [112] 

Figure 13. Effect of cyclic thermal loading on a) settlement and b) pile internal stress response for 
pile foundation in normally consolidated clay, [83] 

Figure 14. Effect of thermal loading on a) pile axial stress for two heating modes and two pile head 
restraint conditions and b) horizontal effective stress changes for pile foundation in thermo-elastic 
soil, [82] 

Figure 15. Alteration of wall mechanical response due to changes in thermal boundary conditions 
and heating of wall panels, [98] 

Figure 16.The interactions between the geotechnical and thermal design processes 
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