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ABSTRACT
We present 3D hydrodynamic simulations of the adiabatic interaction of a shock with a dense,
spherical cloud. We compare how the nature of the interaction changes with the Mach number
of the shock, M, and the density contrast of the cloud, χ . We examine the differences with 2D
axisymmetric calculations, perform detailed resolution tests, and compare ‘inviscid’ results
to those obtained with the inclusion of a k-ε subgrid turbulence model. Resolutions of 32–
64 cells per cloud radius are the minimum necessary to capture the dominant dynamical
processes in 3D simulations, while the 3D inviscid and k-ε simulations typically show very
good agreement. Clouds accelerate and mix up to five times faster when they are poorly
resolved. The interaction proceeds very similarly in 2D and 3D – although non-azimuthal
modes lead to different behaviour, there is very little effect on key global quantities such as the
lifetime of the cloud and its acceleration. In particular, we do not find significant differences
in the hollowing or ‘voiding’ of the cloud between 2D and 3D simulations with M = 10 and
χ = 10, which contradicts previous work in the literature.

Key words: hydrodynamics – shock waves – turbulence – ISM: clouds – ISM: kinematics and
dynamics – ISM: supernova remnants.

1 IN T RO D U C T I O N

The interaction of fast, rarefied gas with denser ‘clouds’ is a common
occurrence in astrophysics and much effort has been invested to
understand this process. Clouds struck by shocks or winds can be
destroyed, ‘mass-loading’ the flow and affecting its nature. Such
interactions have implications for our understanding of the nature
of the interstellar medium (ISM; see e.g. Elmegreen & Scalo 2004;
Scalo & Elmegreen 2004), for the evolution of diffuse sources such
as supernova remnants (SNRs; McKee & Ostriker 1977; Chièze
& Lazareff 1981; Cowie, McKee & Ostriker 1981; White & Long
1991; Arthur & Henney 1996; Dyson, Arthur & Hartquist 2002;
Pittard et al. 2003), and for galaxy formation and evolution (e.g.
Sales et al. 2010).

Shock–cloud interactions in SNRs are some of the best observed
and studied cases to date. Some SNRs display large-scale distortions
which are associated with their interaction with nearby molecular
clouds (see e.g. a recent review by Slane et al. 2015). Examples
include the Cygnus Loop (Graham et al. 1995; Levenson, Gra-
ham & Snowden 1999), Tycho (Katsuda et al. 2010; Williams
et al. 2013), and SN 1006 (Miceli et al. 2014; Winkler et al.
2014). SNR–cloud interactions are also revealed by the presence
of OH (1720 MHz) masers (e.g. Brogan et al. 2013), an enhanced
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12CO(J = 2 − 1)/12CO(J = 1 − 0) ratio in the line wings (Seta
et al. 1998), and temperature, absorption, and ionization variations
in X-ray emission (e.g. Chen & Slane 2001; Koo et al. 2005; Naka-
mura et al. 2014). SNR–cloud interactions are often radiative, and
produce optical, IR and sub-mm line emission (e.g. as seen in IC
433; Fesen & Kirshner 1980; Snell et al. 2005; Bykov et al. 2008;
Kokusho et al. 2013). γ -ray emission, which to date has been de-
tected from about 25 SNRs (Slane et al. 2015), may also arise when
SNRs interact with molecular clouds. In two cases, W44 and IC
433, this emission is established to be from energetic ions, and so
is unambiguously from the SNR shock (Abdo et al. 2010; Giuliani
et al. 2011; Ackermann et al. 2013). A list of galactic SNRs thought
to be interacting with surrounding clouds is given in the appendix
of Jiang et al. (2010).

In other SNRs much finer features indicate interaction with much
smaller clouds, either in the ISM or in the ejecta. Significant ob-
servational evidence now exists for clumpy ejecta, especially in
core-collapse SNe (e.g. Filippenko & Sargent 1989; Spyromilio
1991, 1994; Fassia et al. 1998; Matheson et al. 2000; Elmhamdi
et al. 2004). The best observed examples of ejecta clumps are those
seen in the Vela remnant (Aschenbach, Egger & Trumper 1995;
Strom et al. 1995; Tsunemi, Miyata & Aschenbach 1999; Katsuda
& Tsunemi 2006) and in Cassiopeia A (Cas A) (e.g. Kamper & van
den Bergh 1976; Chevalier & Kirshner 1979; Reed et al. 1995;
Fesen et al. 2001, 2011; Milisavljevic & Fesen 2013; Alarie,
Bilodeau & Drissen 2014; Patnaude & Fesen 2014). N132D (Lasker
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1978, 1980; Morse et al. 1996; Blair et al. 2000), Puppis A (Win-
kler & Kirshner 1985; Katsuda et al. 2008), SNR G292.0+1.8 (Park
et al. 2004; Ghavamian, Hughes & Williams 2005) and the SMC
SNR 1E 0102−7219 (Finkelstein et al. 2006) also display ejecta
bullets.

In Cas A ejecta knots are seen both ahead of the main forward
shock, where they interact with the circumstellar or ISM, and just
after their passage through the remnant’s reverse shock. Some of
the outer ejecta knots in Cas A show emission trails indicative of
mass ablation, which Fesen et al. (2011) argue form best if the cloud
density contrast χ = 103 (clouds with χ = 102 are destroyed too
rapidly, while too little material is ablated when χ = 104). Patnaude
& Fesen (2014) instead present evidence for mass-ablation from
the inner ejecta knots in Cas A. Enhanced X-ray emission which
extends 1–2 arcsec downstream of the shocked clumps is interpreted
as stripped material which is heated to X-ray emitting temperatures
in the tail. For knot sizes of a0 ∼ 1015–1016 cm, this equates to 5–
100 a0, and is compatible with the tail lengths found in Pittard et al.
(2010). A number of other studies have considered the ejecta clumps
in Vela, with the particular goal of reproducing the protrusions ahead
of the blast shock. Wang & Chevalier (2002) found that the survival
of the ejecta clumps through the reverse shock and out past the
forward shock required an initial χ ∼ 103. Miceli et al. (2013)
find that lower values of χ are acceptable if the effects of radiative
cooling and thermal conduction are included.

The middle-aged (∼3700 yr; Winkler et al. 1988) SNR Puppis
A is interacting with several interstellar clouds, of which the most
prominent is known as the bright eastern knot. Hwang, Flanagan
& Petre (2005) present a Chandra observation of this region, and
identify two main morphological components. The first is a bright
compact knot that lies directly behind an indentation in the main
shock front. The second component lies about 1 arcsec downstream
of the shock and consists of a curved vertical structure (the ‘bar’)
separated from a smaller bright cloud (the ‘cap’) by faint diffuse
emission. Based on hardness images and spectra, and comparing to
the ‘voided sphere’ structures seen by Klein et al. (2003), the bar
and cap structure is identified as a single shocked interstellar cloud.
The interaction is inferred to have χ = 10, and to be at a relatively
late stage of evolution (t ∼ 3 tcc, where tcc is the characteristic cloud
crushing time-scale – see Section 3). The compact knot directly
behind the shock front is identified as a more recent interaction
with another cloud.1 Another well-studied interaction between an
SNR and a small (<1 pc) interstellar cloud is FilD in the Vela SNR.
Miceli et al. (2006) estimate that a Mach 57 shock is in the early
stages of interacting with an ellipsoidal cloud with χ = 30.

Numerical studies of shock–cloud interactions have now been
performed for many decades. However, the motivation for the cur-
rent work comes from our realization that, barring the work in
the code development paper of Schneider & Robertson (2015), all
three-dimensional (3D) ‘pure-hydrodynamic’ shock–cloud calcu-
lations (i.e. those without additional physical processes such as
cooling, magnetic fields, thermal conduction and gravity) in the
astrophysics literature are for one set of parameters only: M = 10

1 In a more general study of the X-ray emission resulting from numerical
models of shock–cloud interactions, Orlando et al. (2006) determined that
the emission is brightest at t ∼ tcc, and is dominated by the cloud core where
the shocks transmitted into the cloud collide. They also find that the X-ray
morphology is strongly affected by the strength of thermal conduction and
evaporation. This work was extended by Orlando et al. (2010), where diag-
nostic tools for interpreting X-ray observations of shock–cloud interactions
were presented.

and χ = 10 (see Section 2.1 and Table 1). We therefore extend the
two-dimensional (2D) work in Pittard et al. (2009, 2010) to 3D. The
extension to 3D is necessary for two reasons: (i) non-axisymmetric
perturbations can only be obtained in 3D; (ii) the late-time flow in
shock–cloud interactions can acquire characteristics similar to tur-
bulence, which has a fundamentally different behaviour in 2D due
to the absence of vortex-stretching (in 2D, vortices are well defined
and long lasting).

We investigate 3D shock–cloud interactions for Mach numbers
M = 1.5, 3, and 10, and for density contrasts χ = 10, 102, and 103.
This extends the χ parameter space to 10× higher values than any
previously published 3D simulation that we are aware, and a factor
of 25 higher than any previously published 3D adiabatic simula-
tion. As in our previous 2D work, we present ‘inviscid’ simulations
and simulations with a k-ε subgrid turbulence model. In Section 2,
we review the numerical and experimental work which currently
exists. In Section 3, we describe the simulation setup and in Sec-
tion 4 we present our results. As well as describing the 3D nature
of the interaction, we compare our 3D results to those from 2D
simulations. In Section 5, we summarize our results and draw con-
clusions. A detailed resolution test is presented in an appendix. In
a follow-up paper (Pittard & Goldsmith 2016), an investigation of
a shock striking a filament (as opposed to a spherical cloud) will be
presented.

2 TH E I N T E R AC T I O N O F A SH O C K
W I T H A C L O U D

2.1 Numerical studies

The idealized problem of the hydrodynamical interaction of a pla-
nar adiabatic shock with a single isolated cloud was first studied
numerically in the 1970s. The evolution of the cloud can be de-
scribed in terms of a characteristic cloud-crushing time-scale, and
is scale-free for strong shocks. The cloud is first compressed, be-
comes overpressured, and then re-expands, and is subject to a va-
riety of dynamical instabilities, including Kelvin–Helmholtz (KH),
Rayleigh–Taylor (RT), and Richtmyer–Meshkov (RM). Strong vor-
ticity is deposited at the surface of the cloud and this vorticity aids
in the subsequent mixing of cloud and ambient material. Detailed
2D axisymmetric calculations by Klein, McKee & Colella (1994)
showed that a numerical resolution of about 120 cells per cloud ra-
dius (hereafter referred to as R120) was required in order to properly
capture the main features of the interaction. The effects of smooth
cloud boundaries, radiative cooling, thermal conduction, and mag-
netic fields have now been considered (see Pittard et al. 2010, for a
summary of work up until 2010). The interaction is milder at lower
shock Mach numbers (see e.g. Nakamura et al. 2006), and when the
post-shock gas is subsonic with respect to the cloud a bow-wave
instead of a bow-shock forms.

A dedicated study of how the adiabatic interaction of a shock
with a cloud depends on M, χ and the numerical resolution was
recently presented by Pittard et al. (2009, 2010). Using 2D ax-
isymmetric simulations, the results from ‘inviscid’ models with no
explicit artificial viscosity were compared against results when a
k-ε subgrid turbulence model is included. The 2D inviscid models
confirmed that a resolution of approximately R100 is necessary for
convergence in simple adiabatic simulations. However, this require-
ment was found to reduce to ∼R32 when a subgrid turbulence model
is included. The cloud lifetime, defined as the point when material
from the core of the cloud is well mixed with the ambient material,
is about tmix ∼ 6 tKHD, where tKHD is the growth-time-scale for the
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Table 1. A summary of previous 3D numerical investigations of shock–cloud interactions in the astrophysics literature. χ is
the density contrast of the cloud with respect to the ambient medium and M is the shock Mach number.

Authors Typical (max) χ M Cooling? Conduction? Magnetic
resolution fields?

SN92a 60 (60) 10 10
XS95b 25 (53) 10 10
K00/03c 90 10 10
O05d 132 (132) 10 30, 50

√ √
N06e 60 10 10
SSS08f 68 (68) 10 10

√
VL10g 120 45 2.5

√ √
JZ13h 100 100 30

√
anisotropic

√
V13i 225+ 17.8 1.5,2 isothermal

√
L13j 54 100 10

√ √
SR15k 54 10,20,40 50

Notes. The references are as follows: aStone & Norman (1992); bXu & Stone (1995); cKlein et al. (2000, 2003); dOrlando
et al. (2005); eNakamura et al. (2006); fShin et al. (2008); gVan Loo et al. (2010); hJohansson & Ziegler (2013); iVaidya
et al. (2013); jLi et al. (2013); kSchneider & Robertson (2015). Xu & Stone (1995) also consider prolate clouds. Nakamura
et al. (2006) present a wide range of 2D simulations but also one 3D simulation (see their Section 9.2.2). The simulations of
Vaidya et al. (2013) are quite different to the others: they include self-gravity, the cloud does not have a uniform density and
is not in equilibrium. Initially, χ = 17.8, but this increases as the cloud collapses (aspherically) to give a maximum density
contrast at the core of 37. The Alfvénic Mach number is reported in this case. Schneider & Robertson (2015) also consider
clouds with substructure.

most disruptive, long-wavelength, KH instabilities. Cloud density
contrasts χ � 103 are required for the cloud to form a long tail-like
feature.

The first 3D shock–cloud calculation was presented by Stone &
Norman (1992). The simulation was adiabatic, had M = 10 and χ =
10, and used a numerical resolution of R60. More rapid mixing was
observed since 3D hydrodynamical instabilities are able to frag-
ment the cloud in all directions, although this was not quantified.2

Subsequently, Klein et al. (2003) noted that 2D hydrodynamical
simulations did not compare well against experimental results ob-
tained with the Nova laser, which showed a ‘voiding’ of the shocked
cloud, and break up of the vortex ring by the azimuthal bending-
mode instability (Widnall, Bliss & Tsai 1974). Crucially, a 3D
simulation reproduced both of these features. Other 3D work in the
astrophysics literature (summarized in Table 1) has investigated the
effects of additional physics, including the cloud shape and edges,
radiative cooling, thermal conduction, and magnetic fields (Xu &
Stone 1995; Orlando et al. 2005; Nakamura et al. 2006; Shin, Stone
& Snyder 2008; Van Loo, Falle & Hartquist 2010; Johansson &
Ziegler 2013; Li, Frank & Blackman 2013; Vaidya, Hartquist &
Falle 2013; Schneider & Robertson 2015).

Additional 3D simulations have been used to study the behaviour
of clouds accelerated by winds (e.g. Gregori et al. 2000; Agertz
et al. 2007; Raga et al. 2007; Kwak, Henley & Shelton 2011; Mc-
Court et al. 2015; Scannapieco & Brüggen 2015), by finite-thickness
supernova blast waves (e.g. Leaõ et al. 2009; Obergaulinger et al.
2014), or by dense shells (Pittard 2011). The ram-pressure stripping
of the ISM from galaxies (e.g. Close et al. 2013; Shin & Ruszkowski
2013, 2014; Tonnesen & Stone 2014; Roediger et al. 2015a,b; Vi-
jayaraghavan & Ricker 2015) has also been considered. Though
each of these scenarios are similar in some ways to a shock–cloud

2 In contrast, Nakamura et al. (2006) claim that global quantities from 2D
and 3D simulations are within 10 per cent for t < 10 tcc when the cloud has
a smooth boundary (their n = 8).

interaction, the details differ in each case, and therefore we do not
discuss these works further.

Outside of the astrophysics literature, the shock–cloud interaction
is commonly referred to as a shock–bubble interaction (the bubble
can be lighter or denser than the surrounding medium). Simulations
carried out by the fluid dynamics community have focused on a
similar region of parameter space as their experiments, which for
practical reasons tend to have lower χ and M than the work noted in
Table 1. In the most comprehensive 3D study to date (performed at a
resolution of R128), Niederhaus et al. (2008) examined shock Mach
numbers up to 5, and cloud density contrasts up to 4.2. They also
considered different (fixed) values of the ratio of specific heats, γ ,
for the ambient and cloud gas. The work by Niederhaus et al. (2008)
is also notable for its detailed study into the development and be-
haviour of vorticity. In a 2D axisymmetric simulation, the vorticity
can only have a θ -component, and the late-time flow is dominated
by large and distinct vortex rings. However, in 3D simulations, this
restriction no-longer applies, and the vorticity develops components
in the axial and radial directions. Niederhaus et al. (2008) find that
when χ � 1.5, the axial and radial components of the vorticity
grow to a similar magnitude as the azimuthal component – it is this
growth which accounts for the differences in the late-time flow field
in 2D and 3D simulations. Niederhaus et al. (2008) also find that
the degree of mixing of cloud and ambient material increases as χ

increases, due to the greatly increased complexity and intensity of
scattered shocks and rarefaction waves, which ultimately cause the
formation of the turbulent wake.

Finally, we note that Ranjan et al. (2008) present 3D hydrody-
namical simulations of a Mach 5 interaction of an R12 bubble in
air (χ = 4.17) with a resolution of R134. They find that the vorticity
field becomes so complex that the primary vortex core becomes
almost indistinguishable.

2.2 Shock–cloud laboratory experiments

There are two broad types of laboratory experiments: those which
use a conventional shock-tube, and those which are laser driven. The
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literature has recently been reviewed by Ranjan, Oakley & Bonazza
(2011). Of most relevance to this work are the shock–bubble
experiments of Layes, Jourdan & Houas (2009), who reported shock
waves (M = 1.05, 1.16, 1.4, and 1.61) through air striking a krypton
gas bubble (χ = 2.93), the experimental results of Ranjan et al.
(2008) for M = 2.05 and 3.38 shocks striking an argon bubble
in nitrogen (χ = 1.43), an M = 2.03 shock striking a bubble of
R22 refrigerant gas (χ = 3.13), and M = 2.07 and 3.0 shocks
striking a sulphur-hexafluoride bubble (χ = 5.27), and the experi-
ments of Zhai et al. (2011) of a sulphur-hexafluoride bubble in air,
with M = 1.23 and χ = 5.04. Also notable are the experiments by
Ranjan et al. (2005) of an argon bubble in nitrogen struck by an M =
2.88 shock, which provided the first detection of distinct secondary
vortex rings.

Laser-driven experiments of strong shocks (M ≈ 10) interacting
with a copper, aluminium or sapphire sphere embedded in a low-
density plastic or foam (χ ≈ 8–10) have been reported by Robey
et al. (2002), Hansen et al. (2007), and Rosen et al. (2009) for the
Omega laser at the Laboratory of Laser Energetics, and by Klein
et al. (2000, 2003) for the Nova laser at the Lawrence Livermore
National Laboratory. In particular, Klein et al. (2000) found the first
evidence of 3D bending mode instabilities in high Mach number
shock–cloud interactions. The experimental results also indicate
much faster destruction and mixing of the cloud at late times than
occurs in 2D simulations (see figs 12 and 13 in Klein et al. 2003).
Robey et al. (2002) detect a double vortex ring structure with a
dominant azimuthal mode number of ≈5 for the inner ring, and
≈15 for the outer ring. 3D numerical simulations are found to be
in very good agreement. Hansen et al. (2007) are able to estimate
the mass of the cloud as a function of time. They find that a laminar
model overestimates the stripping time by an order of magnitude,
and conclude that the mass-stripping must be turbulent in nature.
Rosen et al. (2009) find that their 3D simulations broadly agree
with the gross features in their experimental data, but differ in the
finer-scale structure.

3 T H E N U M E R I C A L S E T U P

Our calculations were performed on a 3D XYZ Cartesian grid us-
ing the MG adaptive mesh refinement (AMR) hydrodynamic code.
MG uses piece-wise linear cell interpolation to solve the Eulerian
equations of hydrodynamics. The Riemann problem is solved at
cell interfaces to obtain the conserved fluxes for the time update. A
linear Riemann solver is used for most cases, with the code switch-
ing to an exact solver when there is a large difference between the
two states (Falle 1991). Refinement is performed on a cell-by-cell
basis and is controlled by the difference in the solutions on the
coarser grids. The flux update occurs for all directions simultane-
ously. The time integration proceeds first with a half time-step to
obtain fluxes at this point. The conserved variables are then up-
dated over the full time-step. The code is second-order accurate in
space and time. The full set of equations solved (including when
the subgrid turbulence model is employed) is given in Pittard et al.
(2009). We limit ourselves to a purely hydrodynamic study in this
work, and ignore the effects of magnetic fields, thermal conduc-
tion, cooling, and self-gravity. All calculations were performed for
an ideal gas with γ = 5/3 and are adiabatic. Our calculations are
thus scale-free and can be easily converted to any desired physical
scales.

The cloud is initially in pressure equilibrium with its surroundings
and is assumed to have soft edges (typically over about 10 per cent
of its radius). The equation for the cloud profile is noted in Pittard

Table 2. The grid extent for the 3D simulations, which depends on
the shock Mach number, M, and the cloud density contrast, χ . The
unit of length is the cloud radius, rc.

M χ X Y, Z

10 10 −5 < X < 65 −10 < Y, Z < 10
102 −5 < X < 95 −16 < Y, Z < 16
103 −5 < X < 475 −24 < Y, Z < 24

3 10 −6 < X < 154 −16 < Y, Z < 16
102 −6 < X < 474 −16 < Y, Z < 16
103 −6 < X < 474 −16 < Y, Z < 16

1.5 10 −150 < X < 300 −20 < Y, Z < 20
102 −200 < X < 600 −20 < Y, Z < 20
103 −290 < X < 910 −20 < Y, Z < 20

Table 3. The maximum resolution N (defined as
the number of cells per could radius) used as a
function of M and χ .

χ /M 1.5 3 10

10 64 64 128
102 32 64 128
103 32 64 64

et al. (2009) – in keeping with the results from this earlier work
we again adopt p1 = 10 (i.e. a reasonably hard-edged cloud).3 An
advected scalar is used to distinguish between cloud and ambient
material, and can be used to track the ablation and mixing of the
cloud, and the cloud’s acceleration by the passage of the shock and
subsequent exposure to the post-shock flow.

The cloud is initially centred at the grid origin (x, y, z) =
(0, 0, 0). The grid has zero gradient conditions on each bound-
ary and is set large enough so that the cloud is well dispersed and
mixed into the post-shock flow before the shock reaches the down-
stream boundary. The grid extent is dependent on χ (clouds with
larger density contrasts take longer to be destroyed) and is noted in
Table 2. Our grid extent is often significantly greater than previously
adopted in the literature. Note that we also do not impose any sym-
metry constraints on the interaction (unlike some of the 3D work
in the literature, e.g. Stone & Norman 1992; Xu & Stone 1995; Or-
lando et al. 2005; Niederhaus et al. 2008), and thus all quadrants are
calculated. The simulations are generally evolved until t ∼ 20 tcc,
though at lower Mach numbers they are run to t ∼ 80 tcc. In Table 3
we note the maximum grid resolution used in our calculations.

We also perform new 2D axisymmetric calculations at R128 reso-
lution and with a similar grid extent. To compare our 3D simulations
against these, we define motion in the direction of shock propaga-
tion as ‘axial’ (the shock propagates along the X-axis), and refer to
it with a subscript ‘z’, while we collapse the Y and Z directions to
obtain a ‘radial’, or ‘r’ coordinate.

Various integrated quantities are monitored to study the evolution
of the interaction (see Klein et al. 1994; Nakamura et al. 2006;
Pittard et al. 2009). Averaged quantities 〈f〉, are constructed by

〈f 〉 = 1

mβ

∫
κ≥β

κρf dV , (1)

3 A purely numerical reason for adopting a smooth-edge to the cloud is that
it minimizes the effects of ill-posed phenomena (e.g. Samtaney & Pullin
1996; Niederhaus et al. 2008). Of course, actual astrophysical clouds are
unlikely to have hard edges.
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where the mass identified as being part of the cloud is

mβ =
∫

κ≥β

κρ dV . (2)

κ is an advected scalar, which has an initial value of ρ/(χρamb) for
cells within a distance of 2 rc from the centre of the cloud, and a
value of zero at greater distances. Hence, κ = 1 in the centre of the
cloud, and declines outwards. The above integrations are performed
only over cells in which κ is at least as great as the threshold value,
β. Setting β = 0.5 probes only the densest parts of the cloud and its
fragments (identified with the subscript ‘core’), while setting β =
2/χ probes the whole cloud including its low-density envelope, and
regions where only a small percentage of cloud material is mixed
into the ambient medium (identified with the subscript ‘cloud’).

The integrated quantities which are monitored in the calculations
include the effective radii of the cloud in the radial (a) and axial (c)
directions.4 These are defined as

a =
(

5

2
〈r2〉

)1/2

, c = [
5

(〈z2〉 − 〈z〉2
)]1/2

, (3)

where we convert our 3D XYZ coordinate system into a 2D rz
coordinate system through r = √

(Y 2 + Z2) and z = X.
We also monitor the velocity dispersions in the radial and axial

directions, defined, respectively, as

δvr = 〈
v2

r

〉1/2
, δvz = (〈

v2
z

〉 − 〈vz〉2
)1/2

, (4)

the cloud mass (m), and its mean velocity in the axial direction
(〈vz〉, measured in the frame of the unshocked cloud). The whole
of the cloud and the densest part of its core are distinguished by the
value of the scalar variable κ associated with the cloud (see Pittard
et al. 2009). In this way, each global statistic can be computed for
the region associated only with the core (e.g. acore) or with the entire
cloud (e.g. acloud).

The characteristic time for the cloud to be crushed by the shocks
driven into it is the ‘cloud crushing’ time, tcc = χ1/2rc/vb, where
vb is the velocity of the shock in the intercloud (ambient) medium
(Klein et al. 1994). Several other time-scales are obtained from the
simulations. The time for the average velocity of the cloud relative
to that of the post-shock ambient flow to decrease by a factor of
1/e is defined as the ‘drag time’, tdrag.5 The ‘mixing time’, tmix, is
defined as the time when the mass of the core of the cloud, mcore,
reaches half of its initial value. The ‘lifetime’, tlife, is defined as
the time when mcore = 0. The zero-point of all time measurements
occurs when the intercloud shock is level with the centre of the
cloud.

An effective or grid-scale Reynolds number can be derived for
our inviscid simulations. The largest eddies have a length scale, l,
which is comparable to the size of the cloud (l ∼ 2 rc), while the
minimum eddy size, η ≈ 2�x, where �x is the cell size. Since
the Reynolds number, Re = (l/η)4/3, we find that Re ∼ 650 in our
R128 3D simulations. The effective Reynolds number is likely to be

4 Note that Shin et al. (2008) instead adopt a as the axial direction, with b and
c transverse to this. Thus their ratio b/a plotted in their fig. 1 is equivalent
to the inverse of the ratio c/a plotted in other works and in Fig. 21 in this
work.
5 This is obtained when 〈vz〉cloud = vps/e, where vps is the postshock speed
in the frame of the unshocked cloud. Note that this definition differs from
that in Klein (1994), where tdrag corresponds to 〈vz〉cloud = (1 − 1/e)vps.
We refer to this latter definition as tdrag,KMC, and quote values for both
definitions in Table 4.

�103 in the tail region of some simulations, where the tail is several
times broader than the original cloud.

4 R ESULTS

We begin by examining the level of convergence in our simulations:
i.e. that the calculations are performed at spatial resolutions that are
high enough to resolve the key features of the interaction. Increasing
the resolution in inviscid calculations leads to smaller scales of
instabilities. Quantities which are sensitive to these small scales
(such as the mixing rate between cloud and ambient gas) may not
be converged, while quantities which are insensitive to gas motions
at small scales (e.g. the shape of the cloud) are more likely to show
convergence. Previous 2D studies (e.g. Klein et al. 1994; Nakamura
et al. 2006) have indicated that about 100 cells per cloud radius
are needed for convergence of the simulations. Pittard et al. (2009)
demonstrated that k-ε simulations converged at lower resolution.

In Appendix A, we carry out a similar study for 3D calcula-
tions with and without the use of a subgrid turbulence model.
Appendix A1 shows that resolutions of at least R64 are necessary
to properly capture the nature of the interaction in terms of the ap-
pearance and morphology of the cloud. However, Appendices A2
and A3 show that the broad evolution of the cloud can often be
adequately captured at lower resolution, for instance at R32. This is
helpful considering the much greater computational demands of 3D
simulations. Another key finding is that 3D inviscid and k-ε models
are often in very good agreement. Comparing the morphology, we
typically find that the core structure is almost identical (being dom-
inated by shocks and rarefaction waves) until later times. Instead,
the k-ε model tends to reveal its presence in the cloud tail and wake,
where it tends to smooth out the flow (this region is dominated by
eddies and vortices). This is a surprising result given that 2D cal-
culations can show significant differences (see Pittard et al. 2009,
2010), but must be related to the different way that vortices behave
and evolve in 2D and 3D flows. Since we find no compelling benefit
from using the k-ε model in 3D calculations, in the rest of this work
our focus will therefore be on the inviscid simulations.

4.1 Cloud morphology

4.1.1 The interaction of an M = 10 shock with a χ = 10 cloud

We begin by examining the time evolution of the cloud material in
the 3D M = 10, χ = 10 simulation (Fig. 1). The bow shock and other
features in the ambient medium are not visible in this plot due to this
focus. The blue ‘block’ of material advected rapidly downstream
represents some ‘trace’ material which highlights roughly where
the main shock is. It is added only for visualization purposes to
Figs 1, 10, and A2.

In the initial stages of the interaction, the transmitted shock front
becomes strongly concave and undergoes shock focusing, with the
cloud acting like a strongly convergent lens, refracting the transmit-
ted shock towards the axis (see also Fig. 2). Meanwhile the external
shock diffracts around the cloud, remaining nearly normal to the
cloud surface as it sweeps from the equator to the downstream pole.
A dramatic pressure jump occurs as it is focused on to the axis, and
secondary shocks are driven into the back of the cloud. Shortly after,
the transmitted shock moving through the cloud reaches the back
of the cloud. It then accelerates downstream into the lower density
ambient gas, and a rarefaction wave is formed which moves back
towards the front of the cloud. The secondary shocks deposit fur-
ther baroclinic vorticity as they pass through the cloud, and together
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3D adiabatic shock–cloud simulations 4475

Figure 1. A 3D volumetric rendering of the time evolution of the M = 10, χ = 10 simulation. From left to right and top to bottom, the times are t = 0.65,
1.08, 1.94, and 4.09 tcc (t = 0 is defined as the time when the intercloud shock is level with the centre of the cloud). The colour indicates the density of the
cloud material, normalized by the ambient density (i.e. the initial cloud density is 10). Since the ambient material is not shown the bow-shock upstream of the
cloud is not visible. The actual grid extends much further than the bounding box shown.

Figure 2. 2D versus 3D comparison of the time evolution of the M = 10, χ = 10 simulation. In each frame, 2D axisymmetric results are shown on the left,
and part of the +Y, Z = 0 plane from the 3D simulation is shown on the right. The grey-scale shows the logarithm of the mass density, from ρamb (white) to
5ρc (black). Each frame is labelled with the time, and extends 3 rc off-axis. The first four frames show the same region (−2 < X < 4, in units of rc) so that the
motion of the cloud is clear. The displayed region is shifted in the other frames in order to show the cloud. The frames at t = 3.66 and 4.52 tcc show 2 < X <

8, while the remaining frames show 5 < X < 11, 6 < X < 12, 8 < X < 14 and 9.5 < X < 15.5 at t = 5.37, 6.23, 7.09, and 7.95 tcc, respectively. Note that in
this and similar figures the X-axis is plotted vertically, with positive down.

with the reflected rarefaction waves cause the cloud to reverberate.
Shocks leaving the cloud introduce reflected rarefaction waves into
the cloud, while diffraction and focusing processes introduce ad-
ditional shocks into the cloud. Rarefaction waves within the cloud
which reach the cloud boundary introduce a transmitted rarefaction
wave into the external medium and a reflected shock which moves
back into the cloud.

At this point, the centre of the cloud becomes hollow for a moment
(see the panel at t = 1.94 tcc in Fig. 2), before the upstream and
downstream surfaces collide together and the cloud attains an ‘arc-
like’ morphology (see the panel at t = 2.80 tcc in Fig. 2). Some
lateral expansion of the cloud has occurred as a result of the lower
pressure which exists at the sides of the cloud. The strong shear
across the surface of the arc-like cloud also causes instabilities to
grow and results in material being stripped off. The cloud then

deforms, resulting in a ring of material being ripped off the rest of
the cloud. The final panel in Fig. 1 shows this occurring.

The misalignment of the local pressure and density gradients
results in the generation of vorticity in the flow field. The maximum
misalignment occurs at the sides of the cloud, and this is where the
maximum vorticity is deposited. The vortex sheet deposited on the
surface of the cloud rolls up into a torus to form a vortex ring. This
torus later disintegrates into many vortex filaments under the action
of hydrodynamic instabilities.

The features seen in Fig. 1 bear some resemblance to those in
fig. 1 of Stone & Norman (1992) and in fig. 2 of Xu & Stone (1995),
but it is clear that there are some differences. In both works the initial
shock position is at x = −1.2 (this is true in Xu & Stone’s work
for their high resolution simulation), so the elapsed time before the
shock is level with the centre of the cloud is ≈0.09 tcc. To compare
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4476 J. M. Pittard and E. R. Parkin

with our results, we deduct this interval from the times noted in
their works. The middle panel of fig. 1 of Stone & Norman (1992)
is hence at t = 1.91 tcc, while fig. 2b of Xu & Stone (1995) is at
t = 1.81 tcc. Both are close enough in time to be compared to the
third panel in our Figs 1 and 2 at t = 1.94 tcc. We can also compare
against fig. 19 of Klein et al. (2003), which shows that by t ∼ 3 tcc,
strong instabilities are shaping the vortex ring into a ‘multimode
fluted structure’.

In comparison to these works, we find that our results do not
show such rapid development of KH instabilities, and of non-
axisymmetric filaments/fluting in the vortex ring. We attribute these
differences to the softer edge of our cloud, which delays the onset of
KH instabilities. Nakamura et al. (2006) note that the development
of KH instabilities on the surface of the cloud takes longer than t
∼ 2 tcc when the cloud has a smooth envelope, which is confirmed
in our 3D simulations also. Stone & Norman (1992) also see RM
fingers on the upstream surface of the cloud in the right-hand panel
of their fig. 1 (at t = 4.41 tcc in our time frame). Xu & Stone (1995)
do not mention such features and they are not visible in their fig. 2.
In comparison, we see a (small) central RM finger by t = 3.66 tcc.
We conclude, therefore, that a soft edge to the cloud does more to
hinder KH instabilities than the growth of RT and RM instabilities.

Fig. 2 compares cross-sections through the 2D and 3D simula-
tions. We are interested in such a comparison given that Klein et al.
(2003) claim that their 2D results do not show ‘voiding’ (i.e. separa-
tion between the front part and the back part of the shocked cloud).
The voiding is believed to arise in their 3D experimental results due
to the breaking up of the vortex ring by azimuthal bending mode
instabilities, and is visible by t = 3.35 tcc (see the panel at 49.2 ns
in their fig. 15). However, Fig. 2 reveals very good agreement be-
tween our 2D and 3D simulation results. The large-scale structure
of the cloud is very similar (on fine-scales there are some differ-
ences, though these are barely perceptible until t > 3.6 tcc, and at late
times there is more vigorous mixing in the 3D simulation). We also
see that the cloud is indeed ‘void’ or ‘hollow’, though there appears
to be less separation between the front and back of the cloud than
the 3D simulation of Klein et al. (2003) at comparable times.

That we do not see the large differences between 2D and 3D
simulations that Klein et al. (2003) note is extremely interesting.
Clearly, the smoother edge of the cloud delays the onset of instabil-
ities in our simulations, but it is not clear whether this also causes
the 2D and 3D simulations to evolve more closely. Therefore we
have also performed 2D and 3D simulations of an M = 10, χ = 10
interaction where the cloud has hard edges. Fig. 3 shows 3D vol-
umetric renderings of the cloud material from an interaction with
a hard-edged cloud. Fig. 4 also compares cross-sections through
the 2D and 3D hard-edged simulations. We see that the 2D and 3D
simulation results are still in good agreement with each other, with
almost identical behaviour up to t = 2.8 tcc and very little difference
at t = 3.66 tcc. At later times the level of agreement decreases as
non-azimuthal instabilities grow in the 3D simulations.

In Fig. 5, the results of the 3D soft-edged and hard-edged simula-
tions are directly compared. This figure, and Figs 1–4, indicate the
dramatic differences which can occur in the evolution of soft-edged
and hard-edged clouds. As noted by Nakamura et al. (2006), we
see that the interaction can be significantly milder for soft-edged
clouds. The most dramatic difference in the hard-edge case is the
stronger and more rapid development of the vortex ring, which pulls
material off the sides of the cloud more quickly (compare the mor-
phology at t = 1.94 tcc). This leads to greater separation between
the head of the cloud and the vortex ring at later times. Differences
can, however, be seen as early as t = 0.66 tcc. In the hard-edged
case, the external shock has already converged behind the cloud at
this time, whereas in the soft-edged case it has yet to do so. A key
factor behind the different evolution of the hard- and soft-edged
clouds is the stronger focusing of the transmitted shock through
the hard-edged cloud. This causes doubly shocked material, formed
behind the focused shock moving in from the side of the cloud as it
overruns material behind the roughly planar transmitted shock, to
occur at a greater off-axis distance. This high-density region kinks
and becomes separated from the main cloud, particularly as the
shock transmitted into the back of the cloud, which becomes very
curved, first encounters the upstream surface of the cloud when on-
axis. At t = 1.94 tcc Fig. 4 clearly shows two shocks in the ambient

Figure 3. A 3D volumetric rendering of the time evolution of the M = 10, χ = 10 hard-edged-cloud simulation. Left: t = 1.94 tcc. Right: t = 4.09 tcc. Other
details are as in Fig. 1.

Figure 4. 2D versus 3D comparison of the time evolution of the M = 10, χ = 10, hard-edged-cloud simulation. All details are as Fig. 2.
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3D adiabatic shock–cloud simulations 4477

Figure 5. Comparison of the time evolution of the M = 10, χ = 10, 3D simulations for hard-edged clouds (left ‘HE’ plot in each panel) and soft-edged clouds
(right ‘SE’ plot in each panel). All other details are as in Fig. 2.

Figure 6. As Fig. 1 but for M = 10 and χ = 102. The panels are at t = 0.48, 1.16, 1.84, and 3.87tcc. The initial cloud density is 100.

upstream environment. The inner shock (created from the shock
transmitted into the back of the cloud) is not seen in the soft-edged
case.

We conclude that 2D axisymmetric and fully 3D simula-
tions of shock–cloud interactions are in good agreement until
non-axisymmetric instabilities become important. We note that
there are a number of differences in the 2D and 3D simulations
performed by Klein et al. (2003): (i) the 2D calculations were com-
puted with CALE, an arbitrary Lagrangian–Eulerian code with in-
terface tracking, which was used in pure-Eulerian mode, while the
3D calculations were computed with a patch-based AMR code;6

(ii) the 2D simulations were run at a lower resolution (R50, versus
R90 for the 3D simulations); (iii) the 2D simulations were for χ =
8 (versus χ = 10 for the 3D simulation). We emphasize that we
do not see substantial differences between 2D and 3D simulations

6 In other work, Kane et al. (2000) note that ‘fine structure [is] somewhat
suppressed by the interface tracking in CALE’ (relative to that produced by
the PROMETHEUS code which uses the piecewise-parabolic-method – see
also Kane et al. 1997).

(until non-axisymmetric instabilities develop) when the same code
and initial conditions are used.

4.1.2 χ dependence when M = 10

The nature of the interaction changes with χ (see e.g. section 4.1.2
of Pittard et al. 2010). Fig. 6 shows the time evolution of the M
= 10, χ = 102 simulation. The higher density contrast reduces the
speed of the transmitted shock, such that it does not pass the centre
of the cloud before the diffracted external shock converges on the
axis behind the cloud. The cloud is therefore compressed from all
sides for a significant period of time before the transmitted shock
reaches the back of the cloud, and launches a reflected rarefaction
wave back towards the front of the cloud. At this point further
shocks are driven into the back of the cloud, causing the cloud to
have a distinctly hollow centre. The front surface of the cloud kinks
due to the RT instability as the cloud is accelerated downstream
and the resulting collapse of the cloud as its front and back regions
pancake together cause a large ring of material to break off and
accelerate downstream. This ring is readily apparent in the last
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4478 J. M. Pittard and E. R. Parkin

Figure 7. As Fig. 2 but for M = 10 and χ = 102. Each frame extends 4 rc off-axis. The first three frames show the same region (−2 < X < 6, in units of rc)
so that the motion of the cloud is clear. The final frame shows 4 < X < 12.

Figure 8. As Fig. 1 but for M = 10 and χ = 103. The panels are at t = 0.58, 0.80, 1.65, and 3.80 tcc. The initial cloud density is 103.

panel of Fig. 6. It is significantly larger by this time as its vorticity
drives it away from the axis.

The behaviour of the 3D simulation is again similar to a 2D
axisymmetric simulation. Fig. 7 shows that the large-scale mor-
phology of the cloud is similar at the selected time frames, but that
the interior of the cloud has undergone substantially more mixing
by t = 2.51 tcc in the 3D simulation, as witnessed by the ‘blurring’
of structure within the centre of the tail. In fact, the tail in the 3D
simulations bears characteristics of ‘turbulence’, as is apparent also
from the third panel in Fig. 6. By t = 3.87 tcc, mixing is more ad-
vanced throughout the whole cloud structure in the 3D simulation,
and particularly in the vortex ring (note the ‘blurring’ of structure
in the downstream off-axis part of the cloud in the 3D panel com-
pared to the 2D panel). We attribute this speed-up to the azimuthal
instabilities which develop in the 3D simulation. This faster mixing
is visible as a slightly earlier decline in mcore in the 3D simulations
compared to the 2D simulations (see Fig. 14).

Fig. 8 shows the time evolution of the M = 10, χ = 103 simulation,
in which the cloud is even more resistant to the flow. Parts of the tail
show characteristics of turbulence (i.e. rapid spatial and temporal
variation in the fluid properties) by t = 0.8 tcc, though the main part
of the cloud only becomes ‘turbulent’ between t ∼ 1.65 and 3.8 tcc.
It is again interesting to see the dramatic lateral broadening of the
cloud between t = 0.8, 1.65, and 3.8 tcc.

A comparison between 2D and 3D simulations reveals somewhat
greater differences this time, especially at the later stages of the
interaction (see Fig. 9, and also fig. 4 in Pittard et al. 2009). For
instance, the part of the tail nearest to the cloud core is narrower in
the 2D simulation at t = 0.80 tcc, while it is wider at t = 1.65 tcc. A
KH instability is visible on the front surface of the cloud in the 2D
simulation at t = 1.65 tcc, which is not seen in the 3D simulation. The
shape of the back of the cloud is also clearly different. However,
these differences may be due to the difference in resolution this
time, rather than changes due to the dimensionality. At t = 3.80 tcc,
the 3D simulation shows a greater initial flaring of the tail and the
more rapid mixing of material within it. In the 2D simulation the
tail is noticeably longer, and stays narrower as it leaves the cloud,
before rapidly growing in width in its bottom half.

4.1.3 M and χ dependence

Fig. 10 shows the Mach number dependence of the interaction of
a shock with a cloud of χ = 10. The interaction is clearly much
milder when M = 1.5, with the cloud being accelerated more slowly
and instabilities taking longer to develop. The flow past the cloud
appears to be reasonably laminar at the times shown since there is
a lack of obvious instabilities in the cloud material, except perhaps
when M = 10. While the M = 3 and 10 simulations evolve in a near
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3D adiabatic shock–cloud simulations 4479

Figure 9. As Fig. 2 but for M = 10 and χ = 103. The first three frames show the same region (−2 < X < 6, 0 < Y < 4 in units of rc) so that the motion of
the cloud is clear. The final frame shows 2 < X < 20, 0 < Y < 9. Note that the 2D simulation has a resolution of R128, while the 3D simulation is at the lower
resolution of R64.

Figure 10. 3D volumetric rendering of χ = 10 simulations. Top: M = 1.5
(t = 3.87 tcc). Middle: M = 3 (t = 3.87 tcc). Bottom: M = 10 (t = 4.09 tcc).
The initial cloud density is 10.

identical fashion, the M = 1.5 simulation is markedly different. First,
an axial jet forms behind the cloud in the downstream direction.
Such jets are often seen in shock–cloud interactions (e.g. Niederhaus
et al. 2008 note that a particularly strong downstream jet forms in
the air-R12 M = 1.14 case). Secondly, there are fewer and weaker
shocks and rarefaction waves in the cloud and its environment. The
rarefaction wave reflected into the cloud when the transmitted shock
reaches its back is quickly followed by a shock so the cloud does
not become as hollow, or for as long, as in the higher M cases.
Finally, the reduced compression that the cloud experiences means
that it does not collapse into such a thin pancake, and it is instead
more readily shaped by the primary vortex which pulls material off
the sides of the cloud (see also Fig. 13). This stream of gas is then
subject to KH instabilities, and is mixed into ambient material in
the cloud wake.

Figure 11. 3D volumetric rendering of χ = 102 simulations at t = 3.87 tcc.
Top: M = 1.5. Middle: M = 3. Bottom: M = 10. The initial cloud density is
102.
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Figure 12. 3D volumetric rendering of χ = 103 simulations at t = 3.80 tcc.
Top: M = 1.5. Middle: M = 3. Bottom: M = 10. The initial cloud density is
103.

The Mach number dependence for density contrasts of χ = 102

is shown in Fig. 11. The increase in χ means that the cloud better
resists the shock and immersion in the post-shock flow. This in-
creases the velocity shear over the surface of the cloud relative to
the χ = 10 case, which in turn increases the growth rate of KH
instabilities. The result is that the interaction becomes more tur-
bulent. In the M = 1.5 simulation, the transmitted shock into the
cloud moves slowly compared to the external shock, with the result
that the cloud is compressed from all sides. The shocks driven into
the cloud converge just downstream of its centre. Secondary shocks

which pass through the cloud and encounter its upstream surface
cause the development of RM instabilities on the leading edge of
the cloud, which are just visible in the top panel of Fig. 11, and can
also be seen in the middle panel of Fig. 13. The cloud pancakes and
material is pulled off it by vortical motions and KH instabilities.

The M = 3, χ = 102 interaction is more violent. The rarefaction
waves which pass through the cloud in the early stages of the inter-
action cause the cloud to hollow out, just as in the M = 10 case. The
cloud subsequently pancakes, and plumes of material soar off the
upstream surface, which in turn rapidly kink and fragment under
the action of KH and RT instabilities and the surrounding flow field.
A large number of smaller vortices form in the downstream wake.
Some non-axisymmetric structure can be seen in all of the panels
in Fig. 11.

Fig. 12 shows the Mach number dependence for cloud density
contrasts of χ = 103. These clouds are very resistant to the shock.
In the M = 1.5 case, the transmitted shock initially converges just
downstream of the cloud centre. When the shock driven from the
back of the cloud reaches the upstream surface a prominent RM
finger forms off of which secondary vortices occur. RM fingers also
grow off the back of the cloud and are ablated by the swirling gas in
the cloud wake (see the right-hand panel of Fig. 13). In the M = 3
case, examination of a movie of the interaction reveals that the initial
transmitted shock moving down through the cloud pushes out the
back, creating a plume of material. Shortly afterwards, a secondary
vortex ring grows on the front surface of the cloud (visible also in a
plot of the magnitude of the vorticity) as the cloud starts to pancake.
The growth of this secondary vortex ring stretches and shreds the
outer part of the cloud, causing it to detach from the main part
of the cloud, whereupon it is rapidly accelerated and mixed into
the downstream turbulent wake. It acquires considerable transverse
velocity as it does so, such that the wake extends significantly further
off-axis. A large number of secondary shocks and waves fills the
wake, and the head of the cloud suffers significant ablation via KH
instabilities.

Fig. 13 compares 2D and 3D simulations at M = 1.5 for χ = 10,
102, and 103. Note that the 3D simulations are at lower resolution.
Despite this, they clearly capture the main features of the interaction,
and again display faster mixing of stripped material which clearly
benefits from the development of non-axisymmetric modes.

We conclude with two general observations. First, the M = 3
simulation tends to behave more closely to the M = 10 simulation
than to the M = 1.5 simulation. This is due to the fact that the
post-shock flow for M = 1.5 is subsonic with respect to the cloud,

Figure 13. Comparison of 2D and 3D simulations for M = 1.5. Left: χ = 10; Middle: χ = 102; Right: χ = 103. Each frame shows the region −2 < X < 10, 0
< Y < 6. Note that each 2D simulation is at resolution R128, while the 3D simulations are at the lower resolutions of R64 (χ = 10) and R32 (χ = 102 and 103).
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3D adiabatic shock–cloud simulations 4481

Figure 14. Comparison of the time evolution of the normalized core mass, mcore/mcore, 0, for 2D (red and yellow) and 3D (blue and green) simulations with
M = 1.5, 3, and 10 (top, middle, and bottom panels, respectively), and χ = 10, 102, and 103 (left-hand, centre, and right-hand panels, respectively). Results
from inviscid and k-ε simulations are shown. Note the difference in the time-scale for the top panels (tick marks are at intervals of 5 tcc). The resolution of each
of the 3D calculations is noted in Table 3. All the 2D calculations were performed at resolution R128.

Figure 15. As Fig. 14 but showing the time evolution of the mean cloud velocity, 〈vz,cloud〉.

whereas for M = 3 and 10 it is supersonic. We also find broad
agreement between our 3D results and previously published 3D
simulations, and between 3D and 2D calculations. However, it is
clear that the 3D simulations better capture the true nature of the
interaction, which involves non-axisymmetric instabilities.

4.2 Statistics

Fig. 14 shows the evolution of mcore as a function of M and χ for 2D
and 3D simulations, with and without the subgrid turbulence model.

This figure reveals that the 2D and 3D calculations are generally in
very good agreement with each other. The most obvious differences
occur between the M = 1.5, χ = 10 simulations. The M = 3,
χ = 103, 2D k-ε simulation shown in panel (f) is also surprisingly
different from the others. Examination of this simulation shows
that it proceeds similarly to the others, but that at later times the
cloud and its core remains more compact than in the 2D inviscid
or the 3D calculations. This ultimately leads to slower ablation and
acceleration. It is not obvious why the cloud behaves so differently
in this case, but we note similar behaviour in a 3D simulation at
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Figure 16. As Fig. 14 but showing the time evolution of the effective transverse radius of the cloud, acloud.

Figure 17. As Fig. 14 but showing the time evolution of the cloud velocity dispersion in the radial direction, δvr, cloud.

resolution R32, which is examined in more detail in the appendix.
The four models are most closely aligned when χ = 102 (for all M),
and agreement is also good for the M = 10, χ = 10 simulations. It
is also interesting that the core is destroyed noticeably quicker in
3D simulations when M = 3 and χ = 103.

Previously, Nakamura et al. (2006) reported that global quantities
from a single 3D simulation of a shock striking a relatively hard-
edged cloud (n = 8) with M = 10, χ = 10, at resolution R60, are
within 10 per cent of an equivalent 2D calculation for t < 10 tcc (see
their section 9.2.2). In Figs 14–18, we compare our 2D and 3D

results against each other. Examination of panel (g) in Figs 14–18
reveals that our 2D and 3D simulations are comparably similar for
such parameters.

Fig. 15 shows the acceleration of the cloud. Good agreement
between the simulations is again seen, with the 2D M = 3,
χ = 103 k-ε simulation again significantly discrepant. Clouds
appear to generally be accelerated marginally faster in 3D cal-
culations compared to 2D calculations when χ is high. This is
caused by a faster and/or greater increase in the transverse ra-
dius of the cloud in 3D simulations (see Fig. 16). In contrast, the
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Figure 18. As Fig. 14 but showing the time evolution of the cloud velocity dispersion in the axial direction, δvz, cloud.

Figure 19. The time evolution of the normalized core mass, cloud mean velocity, and cloud transverse radius as a function of Mach number and cloud density
contrast, for 3D inviscid simulations.

acceleration of clouds in the 3D simulations appears to be slightly
slower when χ is low (particularly for M = 3). Again, this ap-
pears to be related to differences in the transverse radius of the
cloud. Xu & Stone (1995) note that their average cloud velocity
reaches 0.85 of the post-shock velocity (so 0.64vb) by t ≈ 4 tcc

for M = 10, χ = 10, so our results are in good agreement with
theirs.

Fig. 17 shows the evolution of the transverse cloud velocity dis-
persion, δvr, cloud. Of note is that δvr, cloud is almost always greater in

the inviscid simulations than in simulations that use the subgrid tur-
bulence model. This is irrespective of the dimensionality, and likely
indicates the damping of velocity motions by the turbulent viscosity
in the subgrid model. Again the M = 3, χ = 103 k-ε simulation is
noticeably discrepant.

The longitudinal velocity dispersion of the cloud is shown in
Fig. 18. The simulation results are broadly comparable, but for low
to moderate M and moderate to high χ , δvz, cloud appears to peak
higher and decay more slowly in the 2D simulations. This behaviour
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Figure 20. As Fig. 19, but plotting on the dimensionless time-scale tvps/rc. vz, cloud is also scaled to the post-shock velocity, vps.

Figure 21. The time evolution of the cloud axial radius and shape as a function of Mach number and cloud density contrast, for 3D inviscid simulations.

may be related to the lower resolution used in the 3D simulations
in this region of parameter space.

Fig. 19 summarizes the Mach and density contrast dependence of
the 3D inviscid results. These results can be compared against the
2D k-ε results in figs 5, 8, and 9 in Pittard et al. (2010). The same
behaviour is seen but there are some qualitative differences. Com-
pared to the 2D results, the 3D behaviour of acloud at χ = 103 shows
much more variation with M. The major difference concerning the
behaviour of mcore is the much less rapid ablation of the cloud when
M = 1.5 and χ = 10 in the 3D simulation compared to that in the
2D simulation.

Fig. 20 takes the results in Fig. 19 and plots them on a dimension-
less time-scale based on the post-shock velocity. Since the mixing
and acceleration of the cloud is driven by the velocity gradients in
the post-shock flow, we see that the data collapses to a tighter trend.

This extends the behaviour previously noted by Niederhaus et al.
(2008) to higher χ and M.

Fig. 21 also shows the variation of ccloud and ccloud/acloud for
the 3D inviscid calculations. As previously noted by Pittard et al.
(2010), a long ‘tail-like’ feature is formed only when χ � 103.
Comparison of acloud, ccloud and ccloud/acloud with fig. 4 in Xu &
Stone (1995) reveals good agreement for M = 10 and χ = 10.

4.3 Time-scales

Values of tdrag, tmix, and tlife are noted in Table 4. In all cases tdrag <

tmix < tlife (though sometimes tdrag,KMC > tmix). Fig. 22 shows the
values of tdrag, tmix, and tlife as a function of M and χ for the 3D
inviscid simulations. Also shown are the corresponding values from
the 2D k-ε simulations in Pittard et al. (2010) and the fits made to
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Table 4. Various time-scales (in units of tcc)
calculated from the 3D inviscid simulations.

χ M tdrag tdrag,KMC tmix tlife

10 1.5 3.14 8.65 16.4 >30
3 1.36 3.86 8.42 16.6
10 0.98 2.69 6.89 15.4

102 1.5 6.85 13.3 9.97 26.1
3 3.65 5.38 6.00 12.8
10 3.06 4.03 4.95 9.50

103 1.5 9.79 14.8 12.8 28.4
3 5.13 6.57 6.31 10.7
10 4.55 6.18 6.10 10.4

this latter data. There is more scatter in tdrag and tmix when χ = 103

due to spontaneous and random fragmentation.
Excellent agreement is found between the 2D and 3D results

for tdrag when χ = 10 and 100, but clouds with χ = 103 accelerate
more rapidly in the 3D calculations when M � 3. Since in the strong
shock limit tdrag/tcc ∝χ1/2 (see equation 9 in Pittard et al. 2010),
one wonders whether the lower than expected drag time for the M =
10, χ = 103 3D simulation is a result of the lower resolution used.
Alternatively, this may instead just be a result of the larger scatter
when χ = 103 and the small number of simulations performed in
3D.

Xu & Stone (1995) postulated that clouds may be mixed more
rapidly in 3D simulations due to the non-axisymmetric instabilities
which develop, but this has not been tested prior to this work. We
have already shown generally good agreement between our 2D and
3D calculations, both in terms of the morphology, and in terms of
various global quantities. Fig. 14 shows that this is the case for
mcore, and Fig. 22 now lends further support by revealing that the
2D and 3D results have similar values of tmix for χ = 102 and 103.
However, there is one set of simulations which stand out: for M =
1.5 and χ = 10 it seems that the cloud takes longer to mix in the 3D
simulations. Similar behaviour is found for tlife. Fig. 14 shows that
mcore declines increasingly slowly at late times in the 3D inviscid
simulation, whereas in the 2D k-ε simulation mcore declines much
more rapidly, reaching zero by t ≈ 20 tcc. Although not quite as
rapid, the 2D inviscid simulation also has mcore declining faster than
the 3D simulations.

Fig. 23 examines the 2D and 3D inviscid simulations side by
side. It is clear that secondary vortices form earlier and are more
prevalent in the higher resolution 2D simulation, and this may be the
cause of the faster decline in mcore. We also raise the possibility that
the subgrid turbulence model is perhaps overly efficient at mixing
the core material into low Mach number flows, given that the 2D
inviscid simulation shows a slightly less rapid decline in mcore (see
Fig. 14).

5 C O N C L U S I O N S

This is the third of a series of papers investigating the turbulent
destruction of clouds. Our first paper (Pittard et al. 2009) noted
the benefits of using a subgrid turbulence model in simulations of
shock–cloud interactions and found that clouds could be destroyed
more rapidly when overrun by a highly turbulent flow. The invis-
cid and k-ε simulations were found to be in good agreement when
the cloud density contrast χ � 100, but they became increasingly
divergent as χ increased. The k-ε simulations also displayed signif-
icantly better convergence properties, such that ∼30 grid cells per

Figure 22. Top: tdrag (for the cloud); middle: tmix; and bottom: tlife, as
functions of the Mach number M and cloud density contrast χ . The 2D
results are plotted using the open symbols, and fits to the 2D data are also
shown (cf. Pittard et al. 2010).

cloud radius is needed for reasonable convergence (compared to the
∼120 needed in inviscid simulations).

Our second paper (Pittard et al. 2010) investigated how the nature
of the interaction changed with the Mach number M and density
contrast χ . For M � 7, the lifetime of the cloud, tlife, showed little
variation with M or χ and we found that tlife ∼ 10 tcc. Due to the
gentler nature of the interaction, tlife increases significantly at lower
Mach numbers. A popular analytical formula for the mass-loss rate
due to hydrodynamic ablation (Hartquist et al. 1986) was shown to

MNRAS 457, 4470–4498 (2016)

 at U
niversity of L

eeds on A
ugust 19, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


4486 J. M. Pittard and E. R. Parkin

Figure 23. As Fig. 2 but for the M = 1.5, χ = 10 simulations. The first two frames show the same region (−2 < X < 6, 0 < Y < 4 in units of rc) so that the
motion of the cloud is clear. The other frames shift the X-axis to show 2 < X < 10, 4 < X < 12, and 9 < X < 17 at t = 8.38, 12.2, and 18.7 tcc, respectively.
Note that the 2D simulation has a resolution of R128, while the 3D simulation is at the lower resolution of R64.

predict cloud lifetimes which were inconsistent with Mach scaling
and which had a χ dependence which was not supported by the
simulation results.

In this third paper, we have examined whether the conclusions in
Pittard et al. (2010) remain valid for three dimensional simulations,
and whether the nature of the interaction is different in 2D axisym-
metric and fully 3D simulations. This was motivated by previous
reports that clouds are destroyed more rapidly in 3D due to the addi-
tional development of non-axisymmetric instabilities. However, our
detailed investigation, covering Mach numbers from 1.5 to 10 and
cloud density contrasts from 10 to 103, has instead revealed that the
interaction proceeds very similarly in 2D and 3D. Although non-
azimuthal modes lead to different behaviour in the later stages of
the interaction, they have very little effect on key global quantities
such as the lifetime of the cloud and its acceleration.

In particular, we are not able to confirm differences in the hollow-
ing or ‘voiding’ of the cloud between 2D and 3D simulations with
M = 10 and χ = 10. This contrasts with the findings in Klein et al.
(2003), where 3D experimental data and 3D simulations display
such voiding but synthetic shadowgrams based on 2D simulations
do not. We note that the 2D and 3D simulations in Klein et al.
(2003) are computed with different numerical codes and different
initial conditions. Our work shows that when the same code and ini-
tial conditions are used the interaction evolves almost identically.

The biggest differences between our 2D and 3D simulations occur
for M = 1.5 and χ = 10 – the destruction is noticeably slower in 3D.
It is not clear why this is so, though secondary vortices form earlier
and are more prevalent in the higher resolution 2D simulations.
Having said this, our resolution tests indicate that increasing the
resolution of the 3D simulation is likely to slow the destruction of
the cloud yet further (see Fig. A8). Additional 3D simulations at
higher resolution are necessary to resolve this issue.

We have also shown how the cloud acceleration (through tdrag)
and mixing (through tmix) are affected by low resolution. We find
that these time-scales are up to 5× shorter for clouds at resolution
R1 (i.e. very poorly resolved clouds). This is relevant to simulations
of the mixing and entrainment of cold clouds in multiphase-flows:
simulations which do not adequately resolve the cold clouds in the
flow will underestimate tdrag and tmix, often to a significant degree.

Our work has also highlighted that 3D inviscid and k-ε simula-
tions give typically very similar results. This is somewhat surpris-
ing given that 2D calculations can show significant differences (see
Pittard et al. 2009, 2010), but must be related to the different way
that vortices behave and evolve in 2D and 3D flows. Unlike in
2D, we find no evidence for convergence at lower resolution when
employing the k-ε model. Hence, there seems to be no compelling
reason to use the k-ε model in 3D calculations, but clearly it remains
very useful in 2D calculations.

In future work, we will examine the dependence of the interac-
tion on the shape and orientation of the cloud, and in particular
whether the nature of the interaction changes when the cloud is
elongated/filamentary. By examining the destruction of spherical
clouds in 3D, this work has laid the necessary groundwork for this
forthcoming study.
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APPENDIX A : R ESOLUTION TEST

In an actual shock–cloud interaction, the smallest instabilities have
a length scale, η, which is set by the damping of hydromagnetic
waves. This is typically through particle collisions, but can also
be through wave–particle interactions (see section 2.2 of Pittard
et al. 2009), and is dependent on the nature of the problem. For
instance, in astrophysical problems it depends on whether the cloud
is ionized, neutral or molecular, and the strength of the magnetic
field and thermal conductivity. The Reynolds number of a flow past
a cloud is Re = urc/ν, where u is the average flow speed past the
cloud, rc is the radius of the cloud, and ν is the kinematic viscosity.
For astrophysical scenarios, Re can easily exceed a value of 105–6

(Pittard et al. 2009). The size of the smallest eddies, η ∼ Re−3/4l,
where the largest eddies have a length scale, l, comparable in size to
the cloud. Resolving the smallest eddies in a numerical simulation
can thus be very challenging. Alternatively, a k-ε model can be used
to explicitly model the effects of subgrid-scale turbulent viscosity

through the addition of turbulence-specific viscosity and diffusion
terms to the Euler equations (Pittard et al. 2009, 2010).

Without any prescription for the small-scale dissipative physics,
new unstable scales will be added as the resolution of the simu-
lation is increased. This is the case for simulations which simply
solve the Euler equations for inviscid fluid flow. For instance, sim-
ulations of a shock striking a cloud will produce features which
depend on the resolution adopted.7 Higher resolution simulations
allow the development of smaller instabilities, and surfaces and
interfaces become sharper. These differences can affect the rate
at which material is stripped from the cloud and mixed into the
surrounding flow, and the acceleration that the cloud experiences.
Increasing the resolution simply creates finer and finer structure as
Re increases. In the shock–cloud scenario, the different instabilities
present at different resolution will break up the cloud differently,
thus eventually affecting the convergence of integral quantities.
Thus, formal convergence may be impossible in ‘inviscid’ simu-
lations. Samtaney & Pullin (1996) have shown that initial value
problems for the Euler equations involving shock–contact interac-
tions exhibit features indicating that such problems are ill-posed,
including non-convergence of the solution at a given time.

Simulations of problems for which there is no analytical solu-
tion typically rely on a demonstration of self-convergence. Lower
resolution simulations are compared against the highest resolution
simulation performed, and a resolution is chosen which balances ac-
curacy against computational cost. Klein et al. (1994) suggested that
∼100 cells per cloud radius was required to adequately model the
adiabatic interaction of a Mach 10 shock with a χ = 10 cloud. Most
simulations in the astrophysics literature since then have adopted
resolutions matching or exceeding this requirement, though some
3D studies have been performed at lower resolution. More recently,
Niederhaus (2007) examined the issue of convergence for 2D calcu-
lations of the purely adiabatic interaction of a shock with a spherical
cloud. They find that although the solution is locally and pointwise
non-convergent, some aspects of the computed flow fields, particu-
larly certain integrated and mean quantities, do reach a converged
grid-independent state. For instance, they show that the maximum
density in the flow field continues to vary with the spatial resolution
(even for resolutions up to R1024), while the mean cloud density
converges to a nearly grid-independent value for resolutions >R500.

At very low resolution, important features of the flow may not
be present, and ultimately the simulated interaction will compare
poorly to reality. Thus, rather than attempting to obtain a converged
solution, some previous work has instead focused on resolving key
features of the flow. In purely hydrodynamic shock–cloud simu-
lations this includes the stand-off distance of the bow shock (e.g.
Farris & Russell 1994) and the thickness of the turbulent boundary
layer on the cloud surface (see Pittard et al. 2009, and references
therein); in radiative shock–cloud simulations it is the cooling layer
behind shocks (Yirak, Frank & Cunningham 2010), while in the
MHD simulations of Dursi & Pfrommer (2008) it is the magnetic
draping layer on the upstream surface of the cloud.

To understand how the grid resolution affects our results, we have
run a variety of simulations at different resolutions, with and without
inclusion of a k-ε subgrid model. In the following subsections we
examine the resolution dependence of the cloud morphology, study
some statistics of the interaction, determine how certain integral

7 This is also true of simulations which specify small-scale dissipative
physics but which do not have the resolution to resolve the smallest physical
scales present.
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quantities vary with resolution, and finally study the impact of
resolution on the cloud acceleration and mixing time-scales, tdrag,
and tmix.

A1 Cloud morphology

We first study the resolution dependence of the cloud morphology
for ‘inviscid’ simulations with M = 10 and χ = 10, which are the
most popular parameter choices in the astrophysical literature to
date (see Table 1). We expect the bow shock to have a stand-off
distance of ≈0.28 rc (Farris & Russell 1994). Hence the bow shock
will be resolved at resolutions � R16, while resolving the turbulent
boundary layer requires resolutions ∼R100.

Fig. A1 shows volumetric plots of the density of cloud material
at t = 4.09 tcc (this focus means that features in the ambient medium
– e.g. the bow shock – are not visible). As the resolution increases
we see that the shape of the cloud changes, from rounded and rela-
tively featureless at lower resolutions, to displaying a torus of high
vorticity at the highest resolutions. The cloud and the vortex ring
at the rear of the cloud are merged together in the R8 simulation,
but become increasingly separate and distinct as the resolution in-
creases. At R64 numerous density structures occur within the cloud
interior (these are not readily visible in Fig. A1, but are clearly iden-
tifiable when this figure is rotated on the computer screen), which
break up into smaller structures in the R128 simulation (these are
clearly visible in the 2D slices shown in Fig. 2). At R64, the vortex
ring shows azimuthal variations for the first time. In addition, the
thickness of the slip surface decreases and the maximum density of
cloud material increases as the resolution increases.

Fig. A2 shows the resolution-dependent behaviour of simulations
with M = 10, χ = 102. It is interesting to see how the dominant
scale of the instabilities changes with resolution. For R8, R16 and R32,
the cloud has four dominant fingers. At R64 and R128 smaller scale
structures develop which change these fingers into a single ring-like
feature. The main effect of the resolution in ‘inviscid’ simulations
is to set the size of the instabilities which develop: at low resolution
only longer wavelength instabilities can develop. The tail appears
to display some characteristics of turbulence at R64 and above.

Fig. A3 shows volumetric plots of the cloud density at t = 0.79 tcc

for the M = 10, χ = 103 simulations as a function of the resolution.
As the resolution increases, we again see that the thickness of the slip
surface decreases and the maximum density of the shocked cloud
increases. The tail of ablated material also becomes more hollow,
and its shape changes. At the highest resolution studied the tail is
disrupted by instabilities after about 3 cloud radii, and becomes
‘turbulent’. At this time very little material has been stripped from
the cloud but there are already important qualitative and quantitative
differences in the flow.

Fig. A4 shows the resolution-dependent morphology at a later
time (t = 3.80 tcc). Despite the dramatic changes to the shape of the
cloud, the core has yet to suffer significant mass-loss. As expected,
the differences with resolution are much more pronounced than in
Fig. A3. At R8, the cloud has four dominant fingers while at R16

a central finger is also seen. At R32 and R64, we instead find that
the bulk of the cloud material forms a coherent structure located on
the original cloud axis. At these later times we see similar changes
with resolution as for the M = 10, χ = 102 simulations discussed
previously.

Fig. A5 examines how the resolution affects simulations with
χ = 102 when the Mach number of the shock is lowered to
M = 1.5. At R8, the cloud is reasonably featureless. At R16 a small
‘bump’ is visible on the leading surface, and the cloud becomes both

Figure A1. Comparison with resolution of the ‘inviscid’ M = 10, χ = 10
simulation at t = 4.09 tcc. From top to bottom the resolutions are R8, R16,
R32, R64, and R128.

somewhat hollow and also less extended in the axial direction. In
the R32 simulation the leading ‘bump’ is more extended, and in the
R64 simulation it splits into four parts. We identify these features as
RM instabilities (cf. fig. 1 in Stone & Norman 1992). The remainder
of the cloud has an appearance which resembles a ‘jelly-fish’ at the
highest resolution examined.

In terms of the morphology, the general impression that one gets
from Figs A1–A5 is that R64 is the minimum resolution needed
to capture the morphology accurately in a qualitative sense. Our
investigation is therefore consistent with the statement in Xu &
Stone (1995) that R60 ‘has captured the dominant dynamical effects
present in the evolution’.
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Figure A2. Comparison with resolution of the M = 10, χ = 102 simulation at t = 3.87 tcc. From left to right and top to bottom, the resolutions are R8, R16,
R32, R64, and R128.

Figure A3. Comparison with resolution of the M = 10, χ = 103 simulation at t = 0.79 tcc. From left to right and top to bottom, the resolutions are R8, R16,
R32, and R64. The initial cloud density is 1000.

A2 Time evolution

Figs A6–A8 show the time evolution of the core mass, mcore, for
3D simulations with χ = 10, 102, and 103 and M = 1.5, 3, and
10. In each figure, the left-hand panels (a, d, and g) show results
at different resolutions from the ‘inviscid’ calculations, while the
centre panels (b, e, and h) show corresponding results from the k-ε
calculations. The right-hand panels (c, f, and i) compare the high-
est resolution simulations from each of these models. In a similar
fashion, Figs A9–A11 show the time evolution of the mean cloud
velocity, 〈vz, cloud〉, for the same runs. Since the displayed profiles
are generally less disparate and show a tighter correlation for the
cloud velocity than for the core mass we will concentrate on the
latter in the following discussion.

Consider first the M = 10 results (see Fig. A8). For χ = 10
and 103, it is clear that there are very large differences in the time-
dependent behaviour of mcore between simulations at resolutions
below R32. However, for both values of χ , the R32 and R64 simula-
tions are reasonably matched. This is true for both the ‘inviscid’ and
k-ε cases. Surprisingly, the simulations for χ = 102 are much less
dependent on resolution. In all cases, the clouds in simulations with
higher resolutions lose core mass initially more slowly, but then
show more rapid core mass-loss at later times (this is particularly
true for the χ = 10 simulations). The former is due to the higher nu-
merical viscosity and thickness of the shear layer, while the latter is
caused by the larger dynamic range of instabilities which eventually
develop. The important point is that simulations with a resolution
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Figure A4. As Fig. A3 but at t = 3.80 tcc.

Figure A5. Comparison with resolution of the M = 1.5, χ = 102 simulation at t = 3.87 tcc. From left to right and top to bottom, the resolutions are R8, R16,
R32, and R64.

of R32 appear to show that the time evolution of mcore and 〈vz, cloud〉
are reasonably converged.

In contrast, 2D axisymmetric simulations of an adiabatic shock
striking a spherical cloud have mcore and 〈vz, cloud〉 profiles which
do not converge until ∼R128 for ‘inviscid’ calculations (see e.g.
fig. 2 in Pittard et al. 2009). That the resolution requirement for
3D calculations is lower than for 2D calculations is likely due

to the fundamentally different behaviour of 2D versus 3D turbu-
lence [e.g. the absence of vortex stretching in 2D, and the trans-
port of kinetic energy from large to small scales in 3D (and vice
versa in 2D)]. This behaviour indicates that fully 3D simulations
better represent the actual flow, and can ‘outperform’ 2D simula-
tions of higher resolution (at least for the behaviour of mcore and
〈vz, cloud〉 – further work is necessary to see if this is true for other
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Figure A6. Time evolution of the core mass, mcore, for simulations with M = 1.5. The top row has χ = 10, the middle row has χ = 102, and the bottom
row has χ = 103. The calculations are made at various resolutions for inviscid (left-hand column) and k-ε (middle column) simulations. A comparison at the
indicated resolution is made between the inviscid and k-ε results in the right-hand column.

Figure A7. As Fig. A6 but for M = 3.

integrated quantities and for the flow field in general). On the other
hand, it remains the case that higher resolution simulations will
develop smaller scale instabilities, and that one can expect that
resolutions in excess of R32 will be needed for the convergence
of other properties, such as minimum and maximum quantities
(cf. Niederhaus 2007).

Another surprise is that we see little difference between the in-
viscid and k-ε 3D simulations.8 In particular, there is no indication

8 The inviscid and k-ε simulations are identical at low resolution, and
only begin to differ at higher resolution (see e.g. the M = 1.5, 3, and 10
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Figure A8. As Fig. A6 but for M = 10.

Figure A9. Time evolution of the cloud velocity, 〈vz, cloud〉, for simulations with M = 1.5. The top row has χ = 10, the middle row has χ = 102, and the
bottom row has χ = 103. The calculations are made at various resolutions for inviscid (left-hand column) and k-ε (middle column) simulations. A comparison
at the indicated resolution is made between the inviscid and k-ε results in the right-hand column.

that the k-ε simulations converge at a lower resolution than their
inviscid counterparts (see Fig. A8). This is in contrast to the 2D

results for χ = 10). Hence the right-hand columns of Figs A6–A11 indicate
the maximum differences found between the inviscid and k-ε runs. Where
there is a difference, the clouds in the k-ε simulations appear to lose mass
slightly faster when χ = 10. However, this is not generally true for χ = 102

and 103.

simulation results presented in Pittard et al. (2009), where a major
finding was that the k-ε simulations converged at significantly lower
resolutions (roughly R32) than their inviscid counterparts (roughly
R128). It seems that the ability of instabilities to grow in any di-
rection means that 3D calculations more accurately capture the real
behaviour of such systems whether or not a k-ε model is used. Thus,
there seems to be little benefit in employing the k-ε model in 3D
shock–cloud simulations (though its lower resolution requirements
for convergence mean that it remains useful for 2D simulations).
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Figure A10. As Fig. A9 but for M = 3.

Figure A11. As Fig. A9 but for M = 10.

For completeness, we consider the resolution-dependent be-
haviour of 3D simulations with a shock Mach number M = 3
(Figs A7 and A10) and M = 1.5 (Figs A6 and A9). The same
general behaviour is seen in the M = 3 simulations as in the M =
10 simulations, and thus the same broad conclusions can be drawn
(e.g. R32 is roughly the minimum needed for mcore and 〈vz, cloud〉 to
be reasonably converged).

The only significant discrepancy between the inviscid and k-
ε simulations occurs when M = 3 and χ = 103 – the R32 k-ε

simulation appears at odds with the others. Fig. A12 compares the
morphology of the inviscid and k-ε as a function of resolution at a
number of different times. Panels (a) and (b) show that the nature of
the interaction and the way the cloud is destroyed depends strongly
on the resolution. However, apart from a ‘smoother’ wake in the
k-ε models, the cloud morphology is otherwise almost identical
between panels (a) and (b). The major difference is that the cloud
has a much more compact cross-section in the R32 calculations
at t = 5.73 tcc. It is not obvious from the preceding panels why
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Figure A12. Comparison of the 3D M = 3, χ = 103 simulations with time and resolution in the Z = 0 plane. A grey-scale of the logarithmic density is
shown between ρamb (white) and 4 × ρc (black). (a) Inviscid models. (b) k-ε models. In both (a) and (b), results at resolutions R16 (top), R32 (middle), and R64

(bottom) are shown. (c) At later times, the R32 inviscid (top) and k-ε (bottom) simulations are compared. The frames show the region (0 < X < 12, −3 < Y <

3) at t = 2.51 and 3.15 tcc, (0 < X < 20, −5 < Y < 5) at t = 3.80 tcc, (0 < X < 26, −6.5 < Y < 6.5) at t = 5.73 tcc, and (0 < X < 50, −7 < Y < 7) at t = 7.67
and 11.5 tcc (all in units of rc). Note that in this figure the X-axis is plotted horizontally.

this occurs. It is at about this time that the core mass and mean
cloud velocity in the R32 k-ε simulation start to diverge from the
other models (see Figs A7 and A10). In the inviscid simulation,
the cloud is already showing some asymmetry at t = 5.73 tcc. This
becomes more pronounced at later times, as shown in Fig. A12c),
and the cloud develops significant transverse motions which speeds
up its mixing and acceleration. In contrast, in the k-ε simulation
the cloud remains compact and symmetrical to very late times. As
such, its core mass drops more slowly as it suffers less ablation,

and its acceleration is much slower. This behaviour accounts for
the differences seen in Figs A7 and A10. It highlights the fact that
instabilities develop differently at different resolutions, and supports
our earlier statement that this can eventually influence the global
mixing and acceleration of cloud material.

High resolutions, particularly at high cloud density contrasts,
are very computationally demanding when M = 1.5 because of
the gentler nature of the interaction and the longer run times which
ensue. For this reason, we were unable to perform calculations above
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Figure A13. Integral quantities from the M = 10, χ = 10, simulations at t = 3.14 tcc, plotted as a function of the grid resolution.

R64 for χ = 102, and above R32 for χ = 103. We note that mcore

and 〈vz, cloud〉 appear reasonably converged for R32 and R64 when M
= 1.5 and χ = 10. However, further work is needed to determine
whether R32 is an adequate resolution for mcore and 〈vz, cloud〉 M =
1.5 when χ � 100.

The only published resolution test for 3D hydrodynamic simu-
lations that we are aware of in the astrophysics literature is shown
in fig. 5 of Xu & Stone (1995). They plot the time evolution of a
number of cloud properties, including mcore and 〈vz, cloud〉, for sim-
ulations with M = 10 and χ = 10, with 11, 25, and 53 cells per
cloud radius. They find smaller differences between the R25 and R53

simulations, than between the R11 and R25 simulations, and thus
claim that their highest resolution simulation captures the dominant
dynamical effects. Our work is consistent with these claims.

A3 Convergence tests

To gain further insight into the effect of the grid resolution on our
simulations, we examine the variation of some integral quantities
computed from the data sets. One method for examining the degree
of convergence between simulations at different resolution is to
study the relative error, which is defined as the fractional difference
between the value measured at resolution N and the value at the
finest resolution, f:

�QN = |QN − Qf |
|Qf | . (A1)

If �QN shows a monotonic decrease with increasing resolution,
and is small, then self-convergence is occurring (e.g. Yirak et al.
2010). This behaviour translates into an asymptotic levelling off
with increasing resolution of a particular quantity.

However, there is also the danger of ‘false convergence’, whereby
further increases in resolution show that the models actually have
not converged (see e.g. fig. 10a in Niederhaus 2007). This can hap-
pen when an important flow feature is resolved for the first time
(e.g. the standoff of the bow shock, or the cooling zone of radiative
shocks). Furthermore, simulations which demonstrate convergence
at a particular simulation time may well not be converged at a
later time. This is expected for simulations of the ‘inviscid’ Euler
equations, where RT and KH instabilities in simulations at different
resolution will break up the cloud differently, thus eventually affect-
ing the convergence of integral quantities. Therefore, any statement
that such simulations are ‘converged’ must be qualified by a time,

and by the caveat that this does not imply that convergence exists
at later times.

The variation in acloud, ccloud, 〈vz, cloud〉, acore, ccore, and mcore with
the spatial resolution for the M = 10, χ = 10 3D inviscid and k-ε
simulations is shown in Fig. A13. We again notice the very good
agreement between the inviscid and k-ε simulations. We also see that
some quantities appear to be converged (ccore), some appear to show
signs of convergence (acloud, acore, and mcore), while some are clearly
not converged (ccloud and 〈vz, cloud〉). Therefore, our simulations are
not formally converged at this time. However, they are at sufficient
resolution that some global quantities are. Clearly, it would be useful
to extend this convergence study to still higher resolutions.

We are also interested in the variation of these integral quantities
with resolution from simulations with a higher density contrast.
Fig. A14 shows this behaviour for models with M = 10 and χ = 103.
We see that there is clear asymptotic levelling off of ccloud, 〈vz, cloud〉,
and ccore (k-ε only), indicating that the solutions are converging
for these quantities. However, there is no levelling off for acore and
acloud, indicating clear non-convergence. mcore may be showing signs
of convergence, but more data are needed. We conclude that our
simulations are again not formally converged, but it appears that the
highest resolution simulations have sufficient resolution that some
of the integral quantities are showing signs of convergence at this
time.

Moving to later times (t = 6 tcc), Fig. A15 shows that none
of the quantities (except perhaps acore) display any signs of con-
vergence. This demonstrates that as the simulations advance in
time they move from showing some convergence to showing non-
convergence. Thus, we can be totally clear that still higher resolution
is necessary in order to obtain formal convergence (at t ≈ 3 tcc, let
alone at later times), if indeed this is even possible given the nature
of the inviscid Euler equations.

A4 Time-scales

Figs A16 and A17 examine the resolution dependence of tdrag and
tmix. In general, tdrag increases with resolution. However, there are
few signs of convergence towards an asymptote, so further resolu-
tion tests are needed to determine tdrag accurately. Since, tmix > tdrag

in all cases, it is not surprising that we do not see formal convergence
for tmix either.

While formal convergence is not seen, in many cases tdrag and
tmix level-off at higher resolutions, indicating that their values may
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Figure A14. Integral quantities from the M = 10, χ = 103, simulations at t = 2.9 tcc, plotted as a function of the grid resolution.

Figure A15. Integral quantities from the M = 10, χ = 103, simulations at t = 6.0 tcc, plotted as a function of the grid resolution.

Figure A16. Resolution dependence of tdrag (for the cloud) as functions of the Mach number M and cloud density contrast χ .
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Figure A17. Resolution dependence of tmix as functions of the Mach number M and cloud density contrast χ .

be reasonably close to the ‘true’ value. It is also of interest to note
by how much tdrag and tmix are underestimated in lower resolution
calculations. By averaging the values in Fig. A16, we find that
tdrag is only 40 per cent of its maximum resolution value at R1,
climbing to 83 per cent at R8 and 93 per cent at R16, and is on average
within 1 per cent of its maximum resolution value for R32 and higher
resolutions.

There is significantly more scatter in the resolution dependence
of tmix, as shown in the bottom panel of Fig. A17. However, like tdrag,
there is a clear trend that tmix is underestimated in lower resolution
calculations. At R1, tmix is on average 56 per cent of its value from
our highest resolution simulations, and is on average 10 per cent
lower at R8. In some simulations it can be only 20 per cent of its true
value, while in others it can be nearly 30 per cent longer. Note that
there is a tight correlation in the trend of tmix when χ = 10, for the
3 Mach numbers investigated: at R1 and R8, tmix is 26 per cent and
64 per cent of the true value, respectively.

Figs A16 and A17 indicate that clouds will be accelerated and
destroyed more rapidly than they should be when they are poorly
resolved in numerical simulations. This has implications for simula-
tions of a wide range of multiphase flows, including the collision of
stellar winds (Stevens, Blondin & Pollock 1992; Walder & Folini
2002; Pittard 2007a; Pittard et al. 2009; Parkin et al. 2011), the

interaction of stellar winds, jets, and SNe with their local envi-
ronment (e.g. Jun, Jones & Norman 1996; Steffen & López 2004;
Tenorio-Tagle et al. 2006; Yirak et al. 2008; Rogers & Pittard 2013;
Dale et al. 2014), the SN-regulated ISM (e.g. de Avillez & Bre-
itschwerdt 2005; Joung & Mac Low 2006; Joung, Mac Low &
Bryan 2009; Hill et al. 2012; Creasey, Theuns & Bower 2013; Kim,
Ostriker & Kim 2013; Hennebelle & Iffrig 2014; Girichidis et al.
2016; Walch et al. 2015), galactic outflows and superwinds (e.g.
Strickland & Stevens 2000; Cooper et al. 2008; Dubois & Teyssier
2008; Ceverino & Klypin 2009; Fujita et al. 2009; Hopkins, Quataert
& Murray 2012; Marinacci, Pakmor & Springel 2014; Kimm et al.
2015; Schaye et al. 2015; Vorobyov, Recchi & Hensler 2015), ram-
pressure stripping of the ISM from galaxies (e.g. Tonnesen & Bryan
2009; Roediger et al. 2014; Vijayaraghavan & Ricker 2015), and
AGN feedback (e.g. Sutherland & Bicknell 2007; Wagner, Bicknell
& Umemura 2012). It also affects studies of the interaction of a
shock with multiple clouds (e.g. Poludnenko, Frank & Blackman
2002; Melioli, de Gouveia Dal Pino & Raga 2005; Alūzas et al.
2012), and mass-loaded flows in general (see the review by Pittard
2007b).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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