
This is a repository copy of Automated Search for Good Coverage Criteria: Moving from
Code Coverage to Fault Coverage Through Search-Based Software Engineering.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/96270/

Version: Accepted Version

Proceedings Paper:
McMinn, P.S., Harman, M., Fraser, G. et al. (1 more author) (2016) Automated Search for
Good Coverage Criteria: Moving from Code Coverage to Fault Coverage Through
Search-Based Software Engineering. In: SBST '16 Proceedings of the 9th International
Workshop on Search-Based Software Testing. 9th International Workshop on
Search-Based Software Testing (SBST 2016), 16-17 May 2016, Austin, Texas (US).
Association for Computing Machinery , pp. 43-44.

https://doi.org/10.1145/2897010.2897013

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Automated Search for Good Coverage Criteria:
Moving from Code Coverage to Fault Coverage Through

Search-Based Software Engineering

Phil McMinn1 Mark Harman2 Gordon Fraser1 Gregory M. Kapfhammer3
1University of Sheffield, UK 2University College London, UK 3Allegheny College, USA

ABSTRACT

We propose to use Search-Based Software Engineering to automat-
ically evolve coverage criteria that are well correlated with fault
revelation, through the use of existing fault databases. We explain
how problems of bloat and overfitting can be ameliorated in our ap-
proach, and show how this new method will yield insight into faults
— as well as better guidance for Search-Based Software Testing.

1. INTRODUCTION
Since exhaustive testing is generally impossible, a variety of

coverage criteria have been defined in the software testing liter-
ature to provide a systematic basis with which to select test cases.
Typically, coverage criteria are defined in terms of a set of test re-
quirements that mandate specific software elements are somehow
“satisfied” or “covered” (i.e., executed) [1]. Among the most popu-
lar coverage criteria are code coverage criteria, which, for example,
mandate that aspects of the software’s code structure are executed
as part of each test requirement — for instance, each program state-
ment or branch. While these approaches might provide a method
of dividing up a software system into components that need to be
tested, evidence suggests that they are not as effective as they could
be at revealing faults in real-world systems [6, 7, 10, 18].

This position paper contends that it is time to shift focus from
searching for test cases that satisfy traditional coverage metrics
to searching for the coverage criteria themselves — in particular,
coverage criteria that are well-correlated with real fault revelation.
Software testing research is maturing to the point at which real
software fault repositories are becoming available (e.g., [3, 11]).
Search-Based Software Testing (SBST), and Search-Based Soft-
ware Engineering (SBSE) more generally, are therefore in an ideal
position to leverage this information. Based on knowledge of real
faults, existing SBSE approaches could be used to learn the essence
of criteria that are good at revealing faults; SBSE for SBST.

While overfitting to a particular fault database could be mitigated
by standard machine learning approaches, it may be an advantage
in this circumstance: the learned criteria might yield insight into the
types of faults prevalent in certain classes of software, or enlighten
teams or individual programmers to the types of faults that they are
prone to introducing when developing software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBST16, May 16-17, 2016, Austin, TX, USA

c© 2016 ACM. ISBN 978-1-4503-4166-0/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897010.2897013

2. TRADITIONAL COVERAGE CRITERIA

AND FAULT COVERAGE
There are many ways in which traditional software coverage cri-

teria fail to address the problem of real fault discovery. The types
of faults that are expected to be found are generally unknown when
applying a coverage criterion. Following their application, a tester
does not know what types of fault may remain in the software. Fi-
nally, although there are some exceptions (e.g., [16]), they are typ-
ically limited to revealing faults of commission only, ignoring the
whole class of defects resulting from faults of omission.

Conversely, electronic engineering has the explicit concept of
a “fault model” and fault coverage criteria, which are directed at
certain types of fault, such as “stuck-at” faults [14]. Stuck-at faults
are manufacturing defects where individual signals and pins on a
circuit board get “stuck” at a certain logical value that cannot be
altered. While there has been work in the software testing literature
on classifying faults and developing fault taxonomies (e.g., [4, 9,
12]), more generalized testing strategies are yet to emerge from
them. The question, therefore, is how we might develop something
like a “fault coverage” criterion for software testing?

3. EVOLVING COVERAGE CRITERIA TO

TARGET REAL FAULTS
Our position is to use Search-Based Software Engineering to

“learn” (i.e., search for) coverage criteria from databases of soft-
ware faults, such that the learned coverage criteria are closely corre-
lated with fault revelation. We now discuss the components of such
an approach and the ways in which such a vision may be achieved.

Fault Database. The first issue is the need for a fault database that
catalogs real faults. Potential candidates include Defects4J [11]
and CoREBench [3]. Defects4J is a collection of over 350 faults
for five open source Java programs, and archives not only defective
program versions, but also their fixes and test suites; CoREBench
logs 70 regression errors for four open source C++ programs.

Fitness Function. The search algorithm would learn “good” crite-
ria where “goodness” (i.e., fitness) is defined as the correlation be-
tween greater achievement of coverage and greater fault revelation.
Since we can measure statistical correlation in a number of ways,
this immediately suggests candidate fitness functions for coverage
criteria evolution. At the core of the fitness function, however, is
a need to measure the fault-finding capability of a criterion from a
collection of sample test suites. Since these test suites will not exist
in advance, they must be automatically generated.

Generation of Sample Test Suites. To evaluate a candidate crite-
rion the proposed process could generate test suites that fulfill the
criteria to varying degrees, with which we can measure and cor-
relate fault-finding capability. This is already achievable with ex-
isting SBST techniques, that seek to measure the “distance” to the
coverage of code-related test requirements [15], and for measuring
non-functional properties such as timing behavior.

This mechanism could prove to be an expensive process, how-
ever, requiring the generation of a set of test suites just to eval-
uate a single candidate criterion. Instead, the problem could be
tackled from the opposite direction: the up-front generation of a
suitable “universe” of test suites with varying levels of fault expo-
sure. These test suites could then be used to evaluate all candidate
criteria, but this time measuring and correlating with the coverage
of each individual criterion. We would then instead require dis-
tance metrics for explicitly executing and propagating faults in the
database, in the vein of those proposed by Shamshiri et al. [17].

Representation of Criteria. Resolving how to represent cover-
age criteria is key to the success of the entire approach presented
in this paper: if the “language” of coverage criteria underpinning
the representation is not expressive enough, the technique will fail
in its goal to learn good fault-finding criteria. A flexible structure
for the representation would be the tree structures used in Genetic
Programming (GP), which requires the definition of the terminal
nodes that feature in the tree. We propose a scheme of “directives”
and “operators”: directives require certain activities, for instance
the use of certain inputs, the observation of certain outputs, forms
of non-functional behavior to be observed, or program structures
that are to be executed by the test requirements of the adequacy cri-
terion. Operators define the extent or degree to which directives are
to be achieved, for example a certain percentage or diversity of pro-
gram paths executed, extremes of program path (i.e., the shortest or
longest); and ways in which those directives will be combined, for
instance through the AND and OR logical operations.

An initial set of directives and operators could be devised solely
from existing coverage criteria. Initial experiments could then seek
to discover what combinations and factors of existing coverage
criteria are well suited to revealing faults in the database. We
would then seek to diversify this set to include new types of prop-
erties such as those mentioned previously (i.e., outputs and non-
functional behavior relating to, for instance, program performance).

Handling Bloat. The generated coverage criteria may not be suc-
cinct, due to GP-bloat [2]. This could be ameliorated by using the
delta-debugging algorithm [19] to simplify the generated criteria.
Also, given that we would have a language for test requirement
specification, we could define meaning-preserving transformation
rules on it. Such rules could then be used to simplify the final
product of the GP process to remove any unwanted bloat. Indeed,
search-based transformation could be used to remove redundancy,
as with previous work for programming languages [5].

Overfitting. Evolving coverage criteria from a set of given faults
naturally raises the issue of overfitting; perhaps the evolved cov-
erage criteria would be well correlated with faults in the given
database, but not more generalizable. To address this we could
use standard machine learning techniques, such as sampling, that
have been found to avoid overfitting in other SBSE paradigms such
as genetic improvement [13]. This also tends to reduce the com-
putation cost of fitness evaluation, which may otherwise prove pro-
hibitive. However, even when overfitting does occur, the evolved
coverage criteria may be valuable to the software tester, as they may
reveal insights about the nature of faults in the class of software
systems to which the criteria are fitted; SBSE is not merely about
finding solutions, but also about discovering and using insight [8].

Clustering. Not all faults and software systems are the same.
There is a complex interplay between the systems and their charac-
teristics, the faults they may contain, the failures they cause, and the
test cases that act as witnesses. Hitherto, this complexity has sim-
ply been seen as a barrier to be overcome in automating test data

generation. However, we believe that our approach may be used to
shed light on this interplay, as distance measurement can be used
for both test cases and coverage criteria. Clustering systems and
faults according to these two distance measures may reveal insights
into the relationship between systems, faults, tests and the criteria
that seek to capture their relationships. Furthermore, by identifying
the building blocks (or genetic components) that are common to all
such clusters, we may approach the fundamental question of iden-
tifying the building blocks of what constitutes good test adequacy
(at least for certain well-defined classes of systems and faults).

Relation to Mutation Testing. While killing all of the mutants of
a mutation testing strategy is also a form of fault coverage, mutation
analysis generally results in a lot of mutants. Coverage criteria
are generally cheaper to apply. Furthermore, our evolved coverage
criteria may also take account of further aspects of software than
are currently covered by mutants designed to mimic real developer
faults, for example non-functional properties like memory usage.

4. CONCLUSION
We propose to search for coverage criteria for SBST, using GP to

evolve test requirements that are well correlated with fault revela-
tion. Our coverage criteria will not only take into account program
code, and its functional behavior, but also non-functional properties
such as execution time. A key enabler for this work is the presence
of a fault database that the GP process can use to learn about faults
and formulate generalized criteria. Since fault databases are now
starting to appear for open source programs in different languages,
the time is nigh for the ideas we propose here to be undertaken.

5. REFERENCES
[1] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge

University Press, 2008.

[2] L. Attenberg. Emergent phenomena in genetic programming. In Proc. of

Evolutionary Programming, 1994.

[3] M. Böhme and A. Roychoudhury. CoREBench: Studying complexity of
regression errors. In Proc. of ISSTA, 2014.

[4] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K.
Ray, and M. Y. Wong. Orthogonal defect classification — a concept for
in-process measurements. IEEE TSE, 18(11), 1992.

[5] D. Fatiregun, M. Harman, and R. Hierons. Search-based amorphous slicing. In
Proc. of WCRE, 2005.

[6] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg. Does automated
unit test generation really help software testers? In Proc. of ISSTA, 2013.

[7] G. Gay, M. Staats, M. Whalen, and M. Heimdahl. The risks of
coverage-directed test case generation. IEEE TSE, 2015.

[8] M. Harman. The current state and future of search based software engineering.
In Proc. of FOSE, 2007.

[9] J. H. Hayes. Building a requirement fault taxonomy: Experiences from a NASA
verification and validation research project. In Proc. of ISSRE, 2003.

[10] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with test
suite effectiveness. In Proc. of ICSE, 2014.

[11] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A database of existing faults to
enable controlled testing studies for Java programs. In Proc. of ISSTA, 2014.

[12] D. R. Kuhn. Fault classes and error detection capability of specification-based
testing. ACM TOSEM, 8(4), 1999.

[13] W. B. Langdon and M. Harman. Optimising existing software with genetic
programming. IEEE TEC, 19(1), 2015.

[14] L. Lavagno, G. Martin, and L. Scheffer. Electronic Design Automation For

Integrated Circuits Handbook. CRC Press.

[15] P. McMinn. Search-based software test data generation: A survey. STVR, 14(2),
2004.

[16] P. McMinn, C. J. Wright, and G. M. Kapfhammer. The effectiveness of test
coverage criteria for relational database schema integrity constraints. ACM

TOSEM, 25(1), 2015.

[17] S. Shamshiri, G. Fraser, P. McMinn, and A. Orso. Search-based propagation of
regression faults in automated regression testing. In Proc. of Regression Testing

Workshop, 2013.

[18] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri. Do
automatically generated unit tests find real faults? An empirical study of
effectiveness and challenges. In Proc. of ASE, 2015.

[19] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-inducing input.
IEEE TSE, 28(2), 2002.

