
This is a repository copy of Specification, Testing and Verification of Unconventional
Computations using Generalised X-Machines.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/76025/

Version: Submitted Version

Article:

Stannett, M.P. orcid.org/0000-0002-2794-8614 (2014) Specification, Testing and
Verification of Unconventional Computations using Generalised X-Machines. International
Journal of General Systems, 43 (7). pp. 713-721. ISSN 0308-1079

https://doi.org/10.1080/03081079.2014.924203

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

July 15, 2013 International Journal of General Systems stannett-ijgs

To appear in the International Journal of General Systems
Vol. 00, No. 00, Month 201X, 1–10

Specification, Testing and Verification of Unconventional

Computations using Generalised X-Machines

Mike Stannett

Verification and Testing Research Group

University of Sheffield, Department of Computer Science,

Sheffield S1 4DP, United Kingdom

m.stannett@dcs.shef.ac.uk

(Received 00 Month 201X; final version received 00 Month 201X)

There are as yet no fully comprehensive techniques for specifying, verifying and test-
ing unconventional computations. In this paper we propose a generally applicable and
designer-friendly specification strategy based on a generalised variant of Eilenberg’s
X-machine model of computation. Our approach, which extends existing approaches
to SXM test-based verification, is arguably capable of modelling very general uncon-
ventional computations, and would allow implementations to be verified fully against
their specifications.

1. Introduction

Unconventional computation is a relatively new research area which covers an ex-
tremely wide range of implementation strategies, including everything from slime-
mould behaviours to the exploitation of cosmological singularities (Adamatzky,
2010; Stannett & Németi, 2012). Unsurprisingly, therefore, there are as yet no
general techniques for specifying, verifying and testing arbitrary unconventional
computers and their behaviours. This paper offers a way to address this problem,
by describing how a generalised variant of Eilenberg’s designer-friendly X-machine
model of computation (Eilenberg, 1974) can be equipped with a design-for-test

strategy, thereby allowing unconventional implementations to be verified against
their intended specifications using complete finite test sets. Our approach extends,
and is based upon, the well-established ‘stream X-machine’ testing methodology
described by Ipate and Holcombe (1997).

2. Describing behaviours using X-machines

Introduced by Eilenberg (1974) some forty years ago, the X-machine is a gen-
eral model of computation which allows behaviour to be specified using what are
essentially just finite-state automata; this ensures that they are easy for system
designers (and in particular, engineers) to understand and to use. Nonetheless, X-
machines are extremely powerful, and can be used to specify any computable (or
indeed, uncomputable) behaviour. Unfortunately, the original X-machine concept
is inherently limited to discrete-time behaviours in which instructions are executed
one after another, whereas unconventional computations often involve the evolu-

1

July 15, 2013 International Journal of General Systems stannett-ijgs

Figure 1. A single-state X-machine that recognises the non-regular language {anbn | n ∈ N}. In this
example, we take X = {A,B,Fail} × N. The encoder and decoder are defined by e(s) ≡ (A, 0) and
d(s, n) ≡ (s 6= Fail ∧ n = 0). The labelling is given by

aΛ(s, n) ≡

{

(A,n+ 1) if s = A

(Fail , 0) otherwise
; bΛ(s, n) ≡

{

(B,n− 1) if (s 6= Fail ∧ n > 0)

(Fail , 0) otherwise

tion of a system in continuous time, or even the combination of analog and discrete
components within a single hybrid system. We therefore begin this discussion by
explaining the basic X-machine model and its uses, and then go on to describe
our ‘general-timed’ variant of the model, which permits the use and combination
of components with extremely general timing structures (Stannett, 2001).

2.1 The X-machine model of computation

Given some set X (called the fundamental data type), an X-machine is essentially
a finite-state machine whose labels are relations on X – traversing an arrow in
the machine diagram corresponds to evaluating the associated relation. Formally,
each X-machine, M , is a pair M = (F,Λ) where F is a finite state machine over
some arbitrary alphabet A, and Λ: A → R(X) is a function (called the labelling)
where R(X) is the semigroup of relations on X (Stannett, 2006). Writing aΛ for
Λ(a) (where a ∈ A), we can extend Λ to A∗ by defining (a1 . . . an)

Λ to be the
composition (a1 . . . an)

Λ = aΛ1 ◦ · · · ◦ aΛn . Writing L for the language recognised by
F , this allows us to associate a path relation sΛ with each s ∈ L, and we define the
behaviour, |M |, of M to be the union of its path relations, viz.

|M | =
⋃

{sΛ | s ∈ L} .

More generally, we can use an X-machine to compute relations of type Y → Z
(for sets Y and Z), by applying encoding and decoding relations e : Y → X,
d : X → Z and evaluating e ◦ |M | ◦ d. As these definitions suggest, X-machines are
closely related to finite state automata, and this relationship will be exploited in
what follows.
As with finite state automata, we can use X-machines to recognise and generate

formal languages, but we are not restricted to recognising only regular languages.
Figure 1, for example, shows an X-machine capable of recognising the non-regular
language {anbn | n ∈ N}. Indeed, X-machines are considerably more powerful than
finite state automata, since there is no a priori restriction on the machine’s labelling
– technically speaking, we can label a transition with any relation on X, even an
uncomputable one.
To simplify the following exposition, we will assume henceforth that all label-

relations are in fact (possibly partial) functions, so that aΛ ∈ X⊥
X , the set of

functions of type X → X⊥. Here, X⊥ is the set obtained by adjoining a new
element ⊥ to X, and we write aΛ(x) = ⊥ to mean that aΛ(x) is undefined.

2.2 The general-timed X-machine (TXM)

Despite the evident computational power of theX-machine model, it suffers various
limitations when considered as a vehicle for specifying and verifying unconventional

2

July 15, 2013 International Journal of General Systems stannett-ijgs

Figure 2. Implementing the function f(r) = (r + 1) on R via a continuous path α : [0, 1] → R⊥
R, viz.

α(z) = λr.(r + z). For technical reasons, we assume that the function space R⊥
R carries the pointwise

topology – this ensures that α is continuous, so that α(z)(r) converges to α(1)(r) ≡ f(r) as z → 1 for each
r ∈ R.

systems. Foremost among these is the nature of its underlying timing system. Since
the machine moves from state to state via discrete transitions, it is essentially
impossible to provide a natural model of any system that implements analog or
hybrid computation.
We can overcome this problem by using the Timed X-machine (TXM), a gen-

eralisation of Eilenberg’s original model introduced in (Stannett, 2001). The mo-
tivation for the TXM was our observation that an X-machine could be made to
model analog computations by a simple re-interpretation of the machine’s transi-
tions. When we picture X-machines, we typically draw a transition as an arrow
labelled by the appropriate symbol α. However, we can also think of the arrow
as indicating a continuous process by which inputs of type X are transformed.
For example, if traversing some arrow in an R-machine happens to implement the
function f(r) = r + 1, we can think of this indirectly as a continuous operation:
when we are a third of the way along the arrow we have computed r + 1/3; at the
half-way point we have computed r+ 1/2; and so on. That is, we interpret the label
α as the (higher-order) function α(z) = λr.(r + z), as shown in figure 2.
More generally, suppose T ≡ (T,≤) is any directed set – i.e., a partially ordered

set in which every pair of elements has a supremum – containing a least element 0
and greatest element 1. Given a function f : X → X, we define an X-process for f
over T (or “T -process for f”, if X is understood) to be any function F : T → X⊥

X

satisfying F (0) = idX , the identity function on X, and F (1) = f . Such spaces T ,
equipped with their natural order topology, are what we mean by timing structures.
To use a T -process as the label for an arrow, we first interpret the arrow-as-drawn

as a picture of T (with the source state corresponding to 0 and the target as 1),
and then say that traversing the arrow corresponds to a continuous transformation
from F (0)(x) = idX(x) = x to F (1)(x) = f(x). For this to be mathematically
meaningful, however, we first need to equip the function space X⊥

X with a topol-
ogy, and we do so step-by-step as follows. In general, the choices of X we deal with
(N, R, etc.) carry a natural topology which is both Hausdorff and locally compact,
and if X is a product set we can equip it with the corresponding product topol-
ogy. The main exception occurs where an unstructured set of values is introduced
for ‘book-keeping’ purposes (for example, the set {A,B,Fail} in Fig. 1), in which
case we assign it the discrete topology in which all subsets are open. With this
convention in place, we will always assume henceforward that the topology on X
is Hausdorff and locally compact (as is the case for all spaces discussed in this
paper).1

1The space Q is not locally compact. If we wish to include Q-based computations in the scheme proposed

3

July 15, 2013 International Journal of General Systems stannett-ijgs

• IfX is finite (and hence discrete, given that it is Hausdorff), we assignX⊥ the
discrete topology also. This ensures that X⊥ is a compact Hausdorff space.

• IfX is infinite, we define the open neighbourhoods of ⊥ inX⊥ to be sets of the
formX⊥\K, whereK is a compact subset ofX. This makesX⊥ homeomorhic
to the Alexandroff one-point compactification αX of X, whence X⊥ is again
a compact Hausdorff space.

• Next, we assign X⊥
X the standard product topology, in which convergence

satisfies: 〈fµ〉 → f if and only if 〈fµ(x)〉 → f(x) for all x ∈ X.
• Finally, we note that X⊥

X is itself compact Hausdorff by Tychonov’s Theo-
rem.

Technically, these definitions ensure that the T -process F is a convergent net
in X⊥

X with unique limit f , whence it is meaningful to think of traversing an
F -labelled arrow as implementing the T -continuous transformation x f(x).

2.2.1 Example: Discrete and analog computations

Every transition function f in a (standard, i.e. discrete) X-machine can be mod-
elled as a 2-process, where we equip 2 ≡ {0, 1} with the obvious ordering and
define the associated 2-process by F (0) = idX , F (1) = f . Since 2 is discrete in the
order topology, F is indeed a continuous mapping of 2 into X⊥

X . Similarly, every
transition function in an analog X-machine can be modelled as a [0, 1]-process.

2.2.2 Example: Stream processing

The stream X-machine (SXM) – an input/ouput variant of Eilenberg’s origi-
nal concept – was first described by Laycock (1993), and has diverse applications
ranging from cellular processing (Bell & Holcombe, 1996) and swarm satellite sys-
tems (Hinchey, Rouff, Rash, & Truszkowski, 2005) to web service testing (Ma,
Wu, Zhang, & Hu, 2010); as we shall see below, its properties will be key to our
ability to test and verify complex unconventional behaviours. In the model, the
fundamental data type X is assumed to be of the form In∗ ×Mem ×Out∗, where

• In is a finite non-empty input alphabet ;
• Out is a finite non-empty output alphabet ;
• Mem is an arbitrary non-empty set, called the memory. As always, we will

assume that Mem is equipped with a locally compact Hausdorff topology.

Label relations in an SXM are typically abbreviated as functions of type In ×
Mem → Mem ×Out , where we take (in,mem) 7→ (mem′, out) to be shorthand for
the behaviour

(in : s, mem, t) 7→ (s, mem′, t : out)

which strips the head in from the input stream (s is its tail), performs a memory
update mem 7→ mem′, and then appends out to the output stream t.
This concept extends immediately to generalised X-machines, although care

must be taken when considering the input-output relation in isolation. The ar-
rows in the generalised version of an SXM are labelled with functions of the form

α : T → (In ×Mem ×Out)⊥
(In×Mem×Out)

here, we first re-interpret each function in Q⊥
Q as a partial function in R⊥

R. Since R is locally compact,
the current analysis can then be applied.

4

July 15, 2013 International Journal of General Systems stannett-ijgs

so that when we are at position t ∈ T along the arrow, it has computed the value

α(t)(inStream, mem, outStream)

where inStream and outStream describe the input and output streams when the

arrow traversal began. So when modelling continuous stream processing, for exam-
ple, the model does not capture directly how α(t) converts the ‘input at time t’
into its corresponding output. This must be described using auxiliary functions,
keeping track of how much of inStream has been processed by time t, and how this
has affected outStream and mem.

2.2.3 Example: Cosmological hypercomputation

Cosmological hypercomputation concerns the use of cosmological singularities to
circumvent Turing-computability limits. In certain, arguably reasonable, cosmo-
logical settings it is possible to find an observation point e which lies entirely to
the future of some infinite worldline w, and this can be exploited to solve for-
mally undecidable questions like the Halting Problem (Etesi & Németi, 2002;
Stannett, 2013a, 2013b). As we now show, we can use our modelling scheme
to represent the execution of a cosmological hypercomputer as the traversal of a
suitably-parametrised transition arrow.
For our purposes, the key components of the system are a computer which ‘runs

forever’ (i.e. while traversing w), together with the observation event e which lies
to the future of every execution step. Since the computer’s timing structure is mod-
elled as a discrete sequence of instruction executions, its entire computation can
be modelled as a function on the first infinite ordinal ω, so adding the subsequent
observation event means we need to take T to be the transfinite ordinal ω + 1,
where the ‘1’ (maximum element) in this case is the ordinal ω.
Formally, suppose h : N → N is the halting function

h(n) =











1 if ∃a, b ∈ N such that n = 2a3b and Pa(b) eventually halts

0 if ∃a, b ∈ N such that n = 2a3b and Pa(b) never halts

⊥ if n 6= 2a3b for any a, b ∈ N

where Pa is the ath program in some computable enumeration of deterministic one-
input programs, and b is the input to be supplied. The corresponding (ω+1)-process
H on N is then given by H(0) = idN, H(ω) = h and, for 1 ≤ ι < ω,

H(ι)(n) =











1 if n = 2a3b and Pa(b) has halted in fewer than ι steps

0 if n = 2a3b and Pa(b) is still running at step ι

⊥ if n 6= 2a3b for any a, b ∈ N

where a ‘step’ refers to the execution of a single program instruction.

• Suppose h(n) = 1. Then n = 2a3b for some (unique) a, b ∈ N, and Pa(b)
eventually halts (at step j, say). So H(ι)(n) = 1 whenever j < ι < ω.

• Suppose h(n) = 0. Then n = 2a3b for some (unique) a, b ∈ N, and Pa(b)
never halts. So H(ι)(n) = 0 whenever 0 < ι < ω.

• Suppose h(n) = ⊥. Then n 6= 2a3b for any a, b ∈ N, whence H(ι)(n) = ⊥
whenever 0 < ι < ω.

In all three cases, we have H(ι)(n) → H(ω)(n) for arbitrary n, whence H(ι) →
H(ω) in the product topology and H is indeed an (ω+1)-process for h, as required.

5

July 15, 2013 International Journal of General Systems stannett-ijgs

2.2.4 Example: Multiply-accelerated membrane systems

Multiply-accelerated membrane systems form a hierarchy of biologically inspired
hypercomputational models {Pα}, where α ranges over ordinals, extending the ac-
celerating P system model of Calude and Pǎun (2004). The extended model allows
computation of problems at all levels of the Arithmetic Hierarachy (Ash & Knight,
2000) — P2n-systems solve problems in Π0

2n, P2n+1-systems solve those in Σ0
2n+1,

and there exist hyperarithmetic problems which can be solved using a Pω-system
(Gheorghe & Stannett, 2012, Theorems 3 & 5). As with cosmological hypercom-
putation, the additional power comes from the underlying timing structure of the
computation: each Pα-system is, in essence, an (ωα+1)-process (Gheorghe & Stan-
nett, 2012, Theorem 4).

2.3 Hybrid systems

Suppose we want to specify a system whose various components are based on rad-
ically different technologies. Such a specification isn’t intrinsically different to that
of a conventional system – we simply allow each arrow in the specification machine
to be implemented using a different technology. As with standard X-machines,
therefore, we can easily model such a system using a finite state machine diagram,
but whereas all arrows in a standard X-machine are 2-processes, here we allow
each arrow to be parameterised by a different timing structure, thereby reflecting
the underlying timing structure of the intended unconventional component.
Formally, we can define a generalised X-machine to be a tuple

M = (F,A, {Ta | a ∈ A}, {αa | a ∈ A})

where F is a finite state machine over alphabet A, and each label a ∈ A is inter-
preted as a Ta-process αa on X, for some suitable timing structure Ta. Writing 1a
for the maximum element in Ta, and recalling that the traversal of any individual
arrow →a corresponds to a continuous Ta-computation of αa(1a) ∈ X⊥

X , we define
the X-machine associated with M to be the X-machine

M = (F,A, {a 7→ αa(1a)})

We take the behaviour of M to be identical to that of M . This reflects the intuition
that what makes different components equivalent from a functional viewpoint is
what they compute. Their internal structure is immaterial.

3. Test-based verification of unconventional systems

Chow (1978) considered the complete testability of systems whose specification and
implementation could both be expressed as finite state automata. Provided we have
some upper bound on how many extra states are present in the implementation
(the specification machine can be assumed minimal, without loss of generality),
it is possible to identify a complete finite test set {τ1, . . . , τn} ⊂ A∗ — if the
two machines behave identically on each of the test inputs τi, they are certain
to behave identically on every input. In other words, it is possible to verify the
implementation’s correctness via testing.
While this is an important result, it relies on the limited computational power of

finite state automata. In contrast, it is well known that no algorithm exists which

6

July 15, 2013 International Journal of General Systems stannett-ijgs

can determine whether two arbitrary computable functions are equal. Nonetheless,
Ipate and Holcombe (1997) showed that Chow’s results could be extended to SXM
behaviours (sect. 2.2.2) by applying design-for-test (DFT) criteria. These place re-
strictions on the specifications that are considered acceptable, thereby overcoming
the undecidablity problem.

3.1 Design-for-test conditions

Let us write Spec for the underlying SXM specification. We regard an arrow in
Spec as being enabled by a given memory/input combination if that combination
is in the domain of the associated label relation – this means that traversing the
arrow will yield an observable output, which we can use for testing purposes. We
require Spec to satisfy four basic conditions.

• Minimal Specification

As indicated above, the underlying automaton of Spec should be minimal –
it should contain as few states as possible. This condition is easily satisfied,
since there exist well-known algorithms for minimising finite state automata.

• Deterministic Specification

Whatever state the machine is in, and no matter what the current memory
and input, there should be at most one enabled arrow, i.e. it should be clear
which arrow (if any) should be traversed next.

• Test Completeness

Given any arrow in Spec, it should be possible to traverse that arrow regard-
less of the current memory state (i.e. there is at least one choice of input for
which traversal of the arrow is enabled). If necessary, we can augment the
machine with special test inputs.

• Output Distinguishability

The only information visible to us during testing is the output stream, and
it is possible in general that two different arrows, located at the same source
state, might generate the same output when presented with the same mem-
ory/input combination. For testing purposes we need to know which arrow
was traversed, so we require that this situation never arises. It should always
be possible to distinguish, using just the output information, which label re-
lation was involved, for all memory-input pairs. If necessary, we can augment
the machine with special test outputs.

3.2 Generalised DFT conditions

Given that these DFT conditions are satisfied, Ipate and Holcombe (1997) show
that Chow’s result extends to behaviours whose specification and implementations
are described as stream X-machines, and since the behaviour of any generalised
SXM is identical to that of the associated (standard) SXM, the same will be true
of generalised SXMs also – provided we can identify the appropriate generalisation

of the underlying DFT conditions. If we can do so, the verifiability of systems
specified using appropriate generalised X-machines – including systems comprising
interconnected unconventional computational components – will be assured, since
the formal correctness of such systems can then be determined simply by carrying
out a finite collection of clearly identifiable tests.
Our work in this area is still continuing, but some indications can already be

provided.

7

July 15, 2013 International Journal of General Systems stannett-ijgs

3.2.1 Minimal Specification

This condition is again easily satisfied, since it only concerns the underlying
automaton rather than the detailed machine construction.

3.2.2 Deterministic Specification and Test Completeness

These conditions say what should be true at states within Spec; in other words,
they tell us what should be true concerning the specific unconventional compo-
nents before they begin execution. For standard SXM testing, we can, if we wish,
augment Spec by adding specific test inputs, but there is no guarantee that this
concept will be meaningful when we move to the specific repertoires of unconven-
tional components. For example, suppose we decide to implement an arrow using
a comprehensive range of behaviours available to some Physarum-based system –
in what way can we ‘add’ an extra test input to the system? We cannot necessarily
force biological species to reliably respond in ways that are alien to their innate be-
haviours. This suggests that, under our proposed scheme, unconventional systems
will need to have built-in inefficiencies. We need to ensure that enough distinguish-
able behaviours are left unexploited to enable the identification of additional test
inputs and outputs as and when needed.

3.2.3 Output Distinguishability

When we refer to the ‘output’ in this DFT condition, we mean the output gen-
erated once an arrow traversal has been completed – but it is entirely possible
for T -processes to generate continuous output streams. If we insist on using on-
completion values to identify which arrow has been traversed, it will be necessary
to recognise when traversal of an arrow has run to completion, and there is no
obvious general mechanism by which this can be ensured.
This needs considerable further investigation, since there is clearly a danger of

re-introducing undecidability limitations to the methodology.

3.2.4 Translation Correctness

This is a new DFT condition not required in the standard SXM testing methodol-
ogy. One of the defining properties of a computational output is that it can be used
as an input by some subsequent computation. Traditional computational schemes
involving standardised sets of components cope with this requirement automati-
cally, but if we are using a heterogeneous collection of unconventional components
based on widely differing technologies, we obvious need to ensure that outputs can
be ‘translated’ into inputs of the correct form wherever arrows meet.
Unfortunately, this auxiliary processing is entirely hidden within the proposed

model, since behaviours occurring at the the junctions in question (the machine’s
states) are not addressed by the SXM testing methodology. Once again, further
investigation is required here, since the correctness of an implementation obviously
relies crucially upon the correctness of the embedded translation mechanisms.

4. Summary

In this paper we have described a generalised version of Eilenberg’s X-machine
model of computation, and shown how it can be used to model a range of un-
conventional and hypercomputational behaviours exhibiting very different timing
structures. The model allows for hybrid specifications, in which different machine
transitions are implemented using components based on different timing structures;

8

July 15, 2013 International Journal of General Systems stannett-ijgs

this means that each transition can be implemented using whichever unconven-
tional (or conventional) technology we consider most suited to the task at hand
– as long as components produce the same on-completion behaviour, they can be
used interchangeably.
We then considered SXM-based systems, in which we augment processes with

specific input/output mechanisms. This is a promising technology, because – pro-
vided certain design-for-test conditions are satisfied – it is possible to determine
the formal correctness of an implementation vis-à-vis its specification simply by ex-
amining the two systems’ behaviours over a finite set of test cases. If they behave
identically for these finitely many cases, they are guaranteed to behave correctly
in all cases.
The case is not yet proven, however, since it is clear that the standard SXM

design-for-test conditions need careful revision before we can be certain that these
complete-testability results extend to include generalised unconventional compu-
tations. In particular, the model does not fully model the procedures involved in
translating the outputs of one unconventional process into a form that can be pro-
cessed by a second, radically different, such process. While we could simply impose
correct-translation as an additional DFT condition, it would clearly be preferable
to incorporate the translation processes within the model, so as to ensure that they,
also, can be fully verified.

Acknowledgments

Our research is partially supported under the Royal Society International Ex-
changes Scheme (ref. IE110369).

References

Adamatzky, A. (2010). Physarum machines: Computers from slime mould. Singa-
pore: World Scientific.

Ash, C. J., & Knight, J. F. (2000). Computable structures and the hyperarithmetical

hierarchy. Elsevier.
Bell, A., & Holcombe, M. (1996). Computational models of cellular processing. In

M. Holcombe, R. Paton, & R. Cuthbertson (Eds.), Computation in cellular

and molecular biological systems. Singapore: World Scientific Press.
Calude, C., & Pǎun, G. (2004). Bio-steps beyond Turing. BioSystems, 77 , 175–

194.
Chow, T. (1978). Testing software design modelled by finite state machines. IEEE

Transactions on Software Engineering , 4 (3), 178–187.
Eilenberg, S. (1974). Automata, languages and machines, vol. a. London: Academic

Press.
Etesi, G., & Németi, I. (2002). Non-Turing Computations via Malament-Hogarth

space-times. International Journal of Theoretical Physics , 41 , 341–70.
Gheorghe, M., & Stannett, M. (2012). Membrane system models for super-Turing

paradigms. Natural Computing , 11 , 253–259.
Hinchey, M. G., Rouff, C. A., Rash, J. L., & Truszkowski, W. F. (2005). Require-

ments of an Integrated Formal Method for Intelligent Swarms. In Proceedings

of fmics’05, september 56, 2005, lisbon, portugal (pp. 125–133). Association
for Computing Machinery.

9

July 15, 2013 International Journal of General Systems stannett-ijgs

Ipate, F., & Holcombe, W. (1997). An integration testing method that is proved
to find all faults. Int. J. Computer Mathematics, 63 , 159–178.

Laycock, G. (1993). The Theory and Practice of Specification Based Software

Testing. Unpublished doctoral dissertation, Department of Computer Sci-
ence, University of Sheffield, UK.

Ma, C., Wu, J., Zhang, T., & Hu, F. (2010). Web services testing based on stream
x-machine. In J. Wang, W. K. Chan, & F.-C. Kuo (Eds.), Qsic (pp. 232–239).
IEEE Computer Society.

Stannett, M. (2001). Computation over arbitrary models of time (Tech. Rep. No.
CS-01-08). Sheffield, UK: Dept of Computer Science, University of Sheffield.

Stannett, M. (2006). The Theory of X-Machines – Part 1 (Tech. Rep. No. CS-05-
09). Sheffield, UK: Dept of Computer Science, University of Sheffield.

Stannett, M. (2013a). Computation and Spacetime Structure. International Jour-
nal of Unconventional Computing , 9 (1–2), 173–184.

Stannett, M. (2013b). Membrane systems and hypercomputation. In E. Csuhaj-
Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, & G. Vaszil (Eds.), Mem-

brane computing (Vol. 7762, pp. 78–87). Berlin Heidelberg: Springer.
Stannett, M., & Németi, I. (2012). Using Isabelle to verify special relativity, with

application to hypercomputation theory. Online: arXiv:1211.6468.

10

