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ABSTRACT

In climate simulations, the impacts of the subgrid scales on the resolved scales are conventionally

represented using deterministic closure schemes, which assume that the impacts are uniquely determined

by the resolved scales. Stochastic parameterization relaxes this assumption, by sampling the subgrid

variability in a computationally inexpensive manner. This study shows that the simulated climatological

state of the ocean is improved in many respects by implementing a simple stochastic parameterization of

ocean eddies into a coupled atmosphere–ocean general circulation model. Simulations from a high-

resolution, eddy-permitting ocean model are used to calculate the eddy statistics needed to inject realistic

stochastic noise into a low-resolution, non-eddy-permitting version of the same model. A suite of four

stochastic experiments is then run to test the sensitivity of the simulated climate to the noise definition by

varying the noise amplitude and decorrelation time within reasonable limits. The addition of zero-mean

noise to the ocean temperature tendency is found to have a nonzero effect on the mean climate. Spe-

cifically, in terms of the ocean temperature and salinity fields both at the surface and at depth, the noise

reduces many of the biases in the low-resolution model and causes it to more closely resemble the high-

resolution model. The variability of the strength of the global ocean thermohaline circulation is also

improved. It is concluded that stochastic ocean perturbations can yield reductions in climate model error

that are comparable to those obtained by refining the resolution, but without the increased computational

cost. Therefore, stochastic parameterizations of ocean eddies have the potential to significantly improve

climate simulations.

1. Introduction

Numerical models of the atmosphere, ocean, and

cryosphere represent physical processes in one of two

broadways. The first is through a complete representation,
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in which the relevant processes are explicitly handled

by solving fundamental physical equations that are well

known and essentially exact. The second is through

parameterization, which is an approximate closure

scheme that handles the gross features of the relevant

processes in a simplified manner with the help of con-

stant parameters, the values of which are usually de-

termined empirically.

Parameterization is implemented because amodel has

either insufficient complexity or insufficient grid reso-

lution to capture the relevant processes. In the case of

insufficient complexity, fundamental physical, chemical,

or biological processes are simply missing from the

model’s basic equations and would not be captured even

if the grid resolution were made infinitely fine. Atmo-

spheric radiative transfer is an example in this category.

In the case of insufficient grid resolution, the processes

are captured by the underlying continuous partial

differential equations, but the equations and boundary

conditions are solved on a numerical grid that is too

coarse (or with a time step that is too long) to explicitly

resolve them. Ocean eddies and internal waves are

examples in this category, because these small-scale

features are captured by the classical fluid dynam-

ics equations that are at the core of ocean general

circulation models.

Faster computers are constantly permitting the de-

velopment of climate models of greater complexity and

higher resolution. Therefore, it might be argued that the

need for parameterization is being gradually reduced

over time. However, it is difficult to envisage any model

ever being capable of explicitly simulating all of the

climatically important components on all of the relevant

time scales. Furthermore, it is known that the impact of

the subgrid processes cannot necessarily be made van-

ishingly small simply by increasing the grid resolution,

because information from arbitrarily small scales within

the inertial subrange (down to the viscous dissipation

scale) will always be able to contaminate the resolved

scales in finite time (Palmer 2001). This feature of the

subgrid dynamics perhaps explains why certain system-

atic errors are common to many different models

(D’Andrea et al. 1998) and why numerical simulations

are apparently not asymptoting as the resolution in-

creases (e.g.,Williamson 1999, 2008;Guemas andCodron

2011). Indeed, the Intergovernmental Panel on Climate

Change (IPCC) has noted that the ultimate source of

most large-scale errors is that ‘‘many important small-

scale processes cannot be represented explicitly in

models’’ (Randall et al. 2007, p. 601).

The major problem with conventional, deterministic

parameterization schemes is their assumption that the

impact of the subgrid scales on the resolved scales is

uniquely determined by the resolved scales. This as-

sumption can bemade to sound plausible by invoking an

analogy with the law of large numbers in statistical

mechanics. According to this analogy, the subgrid pro-

cesses are essentially random and of sufficiently large

number per grid box that their integrated effect on the

resolved scales is predictable (Williams 2005). In reality,

however, the assumption is violated because the most

energetic subgrid processes are only just below the grid

scale, placing them far from the limit in which the law of

large numbers applies. The implication is that the param-

eter values that would make deterministic parameteriza-

tion schemes exactly correct are not simply uncertain; they

are in fact indeterminate.

A possible solution would be to replace the tradi-

tional, deterministic parameterization schemes with

stochastic versions that sample the subgrid variability

in a computationally inexpensive manner. The sugges-

tion that the climate system may be modeled using sto-

chastic techniques was first made by Hasselmann (1976)

and has been the subject of several recent review articles

(Palmer 2001; Palmer and Williams 2008; Franzke et al.

2015; Berner et al. 2017). Stochastic parameterizations

have demonstrated considerable success in modeling

atmospheric convection (Lin and Neelin 2002), en-

hancing sea surface temperature predictability (Scott

2003), modeling El Niño–Southern Oscillation (Zavala-

Garay et al. 2003), capturing regime transitions in ro-

tating annulus laboratory experiments (Williams et al.

2003, 2004), improving the simulated atmospheric block-

ing frequency (Jung et al. 2005), and modeling sudden

stratospheric warmings (Birner and Williams 2008).

Stochastic techniques have been applied widely to

atmosphere models of the type used for short-term and

medium-term weather prediction. For example, sto-

chastic parameterization has been used operationally in

the Ensemble Prediction Scheme (EPS) of the Euro-

pean Centre for Medium-Range Weather Forecasts

(ECMWF) since 1998. It gives clear improvements in the

skill of probabilistic predictions of precipitation (Buizza

et al. 1999, 2005). Recently, there has been a growing

interest in applying stochastic techniques to ocean

models of the type used for longer-term seasonal fore-

casts and climate predictions (e.g., Sura and Penland

2002; Berloff 2005a; Berloff et al. 2007; Li and von

Storch 2013; Porta Mana and Zanna 2014; Jansen and

Held 2014; Kitsios et al. 2014; Andrejczuk et al. 2016).

Dawson and Palmer (2015) have shown that it may not

be necessary to represent the small scales accurately, or

even explicitly, in order to improve the simulation of the

large-scale climate. The question of whether stochastic

closure schemes outperform their deterministic coun-

terparts was listed by Williams et al. (2013) as a key
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outstanding challenge in the field of mathematics ap-

plied to the climate system.

To examine the climatic impacts of stochastic per-

turbations in a coupled atmosphere–ocean general

circulation model, Williams (2012) stochastically

perturbed the air–sea buoyancy fluxes at the ocean

surface. The stochastic perturbations were implemented

to represent subgrid variability in the heat and fresh-

water fluxes associated with clouds, precipitation, and

turbulent surface wind stresses. Significant changes were

found in the century-mean ocean mixed layer depth,

sea surface temperature, atmospheric Hadley circula-

tion, and net upward water flux at the sea surface.

These findings suggest that unresolved stochastic

variability in air–sea fluxes may contribute to some

of the biases exhibited by contemporary coupled

climate models.

As much as 99% of the kinetic energy of the ocean is

contained in the eddies (OpenUniversity 2001), which

play a crucial role in transport and mixing (Treguier

et al. 2014). Eddies are represented in ocean models

using deterministic parameterizations such as the

widely used Gent and McWilliams (1990) scheme.

Ocean model resolutions are gradually increasing

over time, to the extent that some ocean simulations

are now described as eddy-permitting or eddy-

resolving. However, Hallberg (2013) has shown that

partially resolved eddies are not always superior to

parameterized ones. Furthermore, turbulent eddies

are energized from the mesoscale down to the

Kolmogorov scale, implying that some of the eddy

variability is missing even from simulations that are

described as eddy-resolving. It follows that climate

simulations may benefit from a stochastic represen-

tation of ocean eddies. Cooper and Zanna (2015) have

developed a promising stochastic eddy parameteriza-

tion for an idealized ocean model. However, sto-

chastic eddy parameterizations have not previously

been tested in long-term climate simulations using

ocean general circulation models.

The present paper aims to investigate whether climate

simulations can be improved by implementing a simple

stochastic parameterization of ocean eddies in a coupled

atmosphere–ocean general circulation model. The pa-

per therefore complements the work ofWilliams (2012),

by inserting noise throughout the three-dimensional

ocean volume rather than at the two-dimensional

ocean surface. The paper also complements the work

of Cooper and Zanna (2015), by using a general circu-

lation model rather than an idealized model. Our ap-

proach is to use simulations from a high-resolution,

eddy-permitting ocean model to calculate the eddy sta-

tistics that are needed to inject realistic stochastic noise

into a low-resolution, non-eddy-permitting version of

the same model.

The layout of the paper is as follows. Section 2

describes how suitable noise statistics have been de-

rived from a deterministic simulation using an eddy-

permitting model. Section 2 also describes the suite of

four stochastic experiments that have been run with

the non-eddy-permitting model to test the sensitivity

of the simulated climate to the noise definition by

varying the noise amplitude and decorrelation time

within reasonable limits. Section 3 presents the impacts

of the noise on the simulated climate, considering ocean

temperature and salinity both at the surface and at

depth, as well as the global thermohaline circulation.

The physical mechanisms that account for the results are

stated and discussed in section 4. The paper concludes

with a summary and discussion in section 5.

2. Methodology

a. Climate models

The two climate models that are used in this study,

FAMOUS and HiGEM, differ mainly in their grid

resolutions. The Fast Met Office/U.K. Universities

Simulator (FAMOUS) is a computationally cheap

ocean–atmosphere general circulation model that

was developed collaboratively by the Met Office Hadley

Centre and several U.K. universities (Smith et al. 2008).

It has been used widely for studies of past, present, and

future climate. Here we use version XFXWB (Smith

2012). FAMOUS is essentially a low-resolution version of

the HadCM3 climate model (Gordon et al. 2000) with

largely the same physics schemes, except for several

simplifications such as the use of spatially constant co-

efficients in the Gent andMcWilliams (1990) scheme and

the removal of Iceland. FAMOUS has been tuned to

reproduce the equilibrium climate and climate sensitivity

of HadCM3 (Jones et al. 2005). The ocean model has a

grid spacing of 2.58 in latitude and 3.758 in longitude, with
20 levels that increase in vertical resolution toward the

surface. The ocean time step is 12h.

The High-Resolution Global Environmental Model

(HiGEM) is also a coupled ocean–atmosphere general

circulation model from the Met Office Hadley Centre

and U.K. universities. Here we use version 1.2 (Shaffrey

et al. 2009). Compared to FAMOUS, the HiGEMocean

model has a finer grid spacing of 1/38 in latitude and

longitude, with 40 levels that increase in vertical reso-

lution toward the surface. The horizontal ocean resolu-

tion is therefore an order of magnitude finer than in

FAMOUS, allowing eddies to be permitted. Conse-

quently, the Gent andMcWilliams (1990) eddy-transport
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parameterization is switched off in HiGEM. The ocean

time step is 20min. The climatological errors relative to

observations are reduced in HiGEM because of the high

resolution (Shaffrey et al. 2009).

b. Stochastic noise

To design a stochastic parameterization of subgrid

ocean eddies for FAMOUS, suitable characteristics

must be chosen for the noise. First, we must choose

which variables will be directly modified by the noise in

the computer code. Then, we must choose the noise

amplitude and probability distribution. Finally, we must

choose whether to implement uncorrelated or auto-

correlated noise, and in the latter case we must choose

the decorrelation scales in time and space. Sura and

Penland (2002) have emphasized that the details of

stochastic perturbations introduced into numerical cli-

mate models must be physically justified to the fullest

extent possible. To this end, high-resolution models may

be regarded as truth and used to inform the choice of

noise characteristics (Shutts and Palmer 2007).

In the present study,we objectively derive suitable noise

statistics for FAMOUS, by regarding HiGEM as truth.

We analyze 10yr of the HiGEM control integration from

Kuhlbrodt et al. (2015). The initial conditions for this

control run were spun up for 110yr, suggesting that it is

reasonably well equilibrated. We use coarse graining to

translate the statistics from HiGEM to FAMOUS. We

coarse grain by spatially averaging from the HiGEM

ocean grid onto the FAMOUS ocean grid in all three di-

mensions, and also by temporally averaging from the

HiGEMocean time step to theFAMOUSocean time step.

To choose which variables will be directly modified by

the noise in the FAMOUS model code, we use the ap-

proach of Brankart (2013) to investigate the relative im-

portance of subgrid temperature and salinity structures in

the FAMOUS ocean. Specifically, we analyze the impact

on density of averaging the fine HiGEM data onto the

coarse FAMOUS grid. The spatially averaged ocean

density may be calculated by taking the temperature T

and salinity S at each HiGEM grid point, first using them

to calculate the density r(T, S) at eachHiGEMgrid point,

and then averaging these densities within each FAMOUS

grid box to produce r(T, S). Alternatively, the average

density may be calculated by taking the temperature and

salinity at each HiGEM grid point, first averaging them

within each FAMOUS grid box, and then using the av-

erage temperature T and average salinity S to calculate

the average density r(T, S). These two calculations pro-

duce different average densities, because of non-

linearities in the equation of state of seawater related to

cabelling (e.g., Williams et al. 2010). The difference

r(T , S)2 r(T, S) between the two average densities,

which is always negative because of the sense of the

curvature of isopycnal contours in the (T, S) plane, may

be interpreted as a diagnostic of the eddy variability that

is resolved in HiGEM but unresolved in FAMOUS.

The results of the above calculations are shown in

Fig. 1. Figure 1a shows a global map of the density dif-

ference r(T , S)2 r(T, S) at a depth of 400m. The

density difference is greatest in the strongly eddying

regions of the ocean, and it resembles global maps of

observed eddy activity (Chelton et al. 2011). For ex-

ample, the magnitude of the density difference reaches

values of around 3 3 1022 kgm23 within the Gulf

Stream in the western Atlantic Ocean and Kuroshio in

the western Pacific Ocean. Figures 1b and 1c separate

out the contributions of salinity and temperature to this

density difference, by showing r(T , S)2 r(T, S) and

r(T, S)2r(T, S) at a depth of 400m. These panels in-

dicate that the contribution of salinity is at least

an order of magnitude smaller than the contribution

of temperature. For example, the root-mean-square

density difference is 43 1023 kgm23 in Fig. 1c, but only

2 3 1024 kgm23 in Fig. 1b. Furthermore, the vertical

profiles within the Gulf Stream shown in Fig. 1d in-

dicate that subgrid fluctuations in temperature cause

the majority of the density difference not only at 400m

but at all depths. Therefore, we consider it reasonable

at this stage to stochastically perturb the temperature

field only.

To explore whether the ocean temperature field

is undervariable in FAMOUS compared to HiGEM,

Fig. 2 shows global maps of the standard deviations of the

temperature tendencies calculated from control

integrations of the two models. We analyze the temper-

ature tendencies rather than the temperatures them-

selves, because the tendencies are a cleaner diagnostic for

isolating the effects of the eddies. To ensure a fair com-

parison, the temperature tendencies in HiGEM are first

averaged onto the FAMOUS grid before computing the

standard deviation. It is clear that FAMOUS generally

exhibits less temperature variability than HiGEM at all

depths and across the globe. For example, in the upper

100m, temperatures inHiGEMshow the largest variance

along the equator in the Atlantic and Pacific basins and

near the Gulf Stream and Kuroshio, but the corre-

sponding variability in FAMOUS is substantially weaker.

Similarly, at depths between 100 and 1000m, most of the

variability in HiGEM lies along the equator in the three

ocean basins and along the southern polar front, but the

corresponding variability in FAMOUS is again far

too weak.

Having chosen to stochastically perturb the ocean tem-

perature field in FAMOUS,wemust next choose the noise

amplitude and probability distribution. Figure 3 shows a
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scatterplot of the depth distribution of the temperature

tendencies at all grid points in the global ocean from the

control integration of HiGEM. Note that the temperature

tendencies will include a contribution from the seasonal

cycle, but this component is far smaller than the contri-

bution from unforced variability, which dominates Fig. 3.

The temperature variability is generally large in the upper

ocean but declines with depth. At each depth, the tem-

perature tendencies are found to be approximately nor-

mally distributed, which is consistent with the Gaussian

eddy variability that was identified in observations by Biri

et al. (2015). The mean, skewness, and kurtosis of the

temperature tendencies are all found to be close to zero,

but the standard deviation is nonzero and decreases with

depth. Apart from a few outliers, the tendencies lie mainly

within a logarithmic envelope function that has been fitted

to the data by trial and error and is also shown in Fig. 3.

Given these statistics from HiGEM, the noise that we

apply to the temperature tendency field in FAMOUS is

drawn from a Gaussian distribution with a mean value of

zero and a standard deviation that decreases logarithmi-

cally with depth according to the fitted envelope function.

At each depth, the applied noise amplitude is taken to be

the same at all latitudes and longitudes.

Finally, for both space and time, we must choose

whether to implement uncorrelated or autocorrelated

noise in FAMOUS. Typical eddy horizontal length

scales are much shorter than the horizontal grid spacing

of 2.58 3 3.758 in the ocean model, implying that eddy

correlations between horizontally neighboring grid

boxes will be negligible. In contrast, typical eddy life

times are much longer than the ocean time step of 12 h,

implying that eddy correlations between successive time

steps will be large. Diagnostics of temperature tenden-

cies from the control integration of HiGEM confirm

these hypotheses, giving horizontal correlations of

essentially zero on the scale of the FAMOUS grid, but

giving temporal correlations in the approximate range

5–30 days. In terms of vertical correlations, high-

resolution global ocean simulations suggest that many

eddies penetrate the full depth of the water column

(Petersen et al. 2013). Therefore, we choose to imple-

ment noise that is autocorrelated (red) in time, un-

correlated (white) in latitude and longitude, and fully

coherent in depth. The use of temporally correlated

noise is further justified because temporally white noise

has been found not to produce the same benefits as

temporally red noise (Christensen et al. 2015).

FIG. 1. (a) Ocean density difference (kgm23) at a depth of 400m resulting fromwhether the spatial averaging from the fineHiGEMgrid

to the coarse FAMOUS grid is performed before or after calculating ocean density from temperature and salinity. (b) The contribution to

the density difference (kgm23) at a depth of 400m from averaging of salinity. (c) The contribution to the density difference (kgm23) at

a depth of 400m from averaging of temperature. (d)Depth profiles of the contributions to the density difference in the upper 1000m at the

point (438N, 508W) in theGulf Stream. The temperature and salinity are averaged over an arbitrarily chosen 5-day period from the control

integration of HiGEM.
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c. Suite of experiments

Wehave run four stochastic experiments with FAMOUS,

together with a deterministic control simulation for

comparison. The details of the experiments are listed in

Table 1. The experiments are designed to test the sen-

sitivity of the simulated climate to the noise definition,

by varying the noise amplitude and decorrelation time

within reasonable limits. In each case, the noise is drawn

from a Gaussian distribution with the depth profile de-

rived in section 2b, and it is applied additively to perturb

the ocean temperature tendency at each grid point and

time step. The control simulation and the stochastic

experiments are all initialized identically from the end

of a long control run of duration 5000 yr, to ensure that

the initial conditions are in equilibrium and lie on the

attractor of the control model. Each experiment is then

run for 50 yr.

The control simulation, hereafter referred to as

CONT, is a deterministic run of the standard FAMOUS

model. The first stochastic experiment, STOC_LOW_

UNCOR, uses temporally uncorrelated (white) noise

with a relatively low amplitude of half the value di-

agnosed from HiGEM. The next experiment, STOC_

HIGH_UNCOR, also uses white noise but with double

the previous amplitude, to match the value diagnosed

fromHiGEM. The third experiment, STOC_HIGH_5d,

uses the higher noise amplitude, but instead of white

noise uses temporally autocorrelated (red) noise with a

FIG. 3. Scatterplot of the depth dependence of the temperature

tendencies [8C (12 h)21] diagnosed from a control integration of

HiGEM (black dots). A logarithmic envelope function (blue

curves) has been fitted to the distribution in such a manner that it

contains the majority of the points in the scatterplot.

FIG. 2. Global maps of the standard deviation of the temperature tendency [8C (12 h)21], as calculated from the control runs of (top)

FAMOUS and (bottom)HiGEMwithin the following three depth intervals: (a),(d) from the surface to 100m (left color bar), (b),(e) from

100 to 1000m (middle color bar), and (c),(f) from 1000m to the bottom (right color bar).
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decorrelation time of 5 days. The final experiment,

STOC_HIGH_30d, is similar but uses a decorrelation

time of 30 days. To test the sensitivity of the simulated

climate to the noise realization (i.e., the particular se-

quence of random numbers that is generated from a

given initial seed), an ensemble of three members is run

for the STOC_HIGH_UNCOR experiment. The en-

semble members are identical except for the use of dif-

ferent seeds to initiate the random number generator.

The depth tapering of our generated noise makes it

unlikely that the deep ocean temperatures will fall be-

low the freezing point of21.88C. Nevertheless, there is a

temperature limiter in themodel, which takes corrective

action if the freezing point is crossed. After each update

to the ocean temperature field, any temperatures that

are below the freezing point are reset to freezing by the

temperature limiter. The pressure dependence of the

freezing point is neglected, so a freezing point of21.88C
is applied at all depths.

3. Results

This section analyzes the climatological impacts of

inserting the ocean eddy noise into FAMOUS. We ex-

amine the temperature and salinity fields averaged over

the final decade of the simulations, both at the ocean

surface and from a zonal-mean perspective. We then

examine the trends and variability, focusing on time

series and power spectra of the ocean heat content and

meridional overturning circulation over 50 yr. Finally,

we examine the approach to equilibrium. Where possi-

ble, we compare the impacts of the noise with the im-

pacts of refining the resolution, by using the HiGEM

control integration that was described in section 2b. We

recall that the initial conditions for the HiGEM control

integration were spun up for 110 yr, suggesting that it is

reasonably well equilibrated. In particular, any sub-

sequent adjustment toward equilibrium after 110 yr is

likely to be much smaller than the large differences

between HiGEM and FAMOUS.

a. Sea surface temperature and salinity

Global maps of the sea surface temperature averaged

over the final decade of the simulations are shown in

Fig. 4. The spatial structure in CONT (Fig. 4a) captures

the essential features seen in observations, including the

bulk temperature gradient from the cold polar regions at

less than 08C to the warm tropical regions at over 308C.
The remaining panels in Fig. 4 show anomalies with

respect to CONT. The anomaly pattern in STOCH_

LOW_UNCOR (Fig. 4b) shows that weak, uncorrelated

noise produces large-scale warming and cooling regions

in each of the ocean basins. The magnitudes are gener-

ally small, with the root-mean-square anomaly being

0.408C. The anomaly in STOCH_HIGH_UNCOR

(Fig. 4c) shows that the response to strong, uncorrelated

noise has roughly the same spatial pattern as the re-

sponse to weak, uncorrelated noise. The amplitude is

greater, however, with the root-mean-square anomaly

increasing to 0.618C. The introduction of temporal cor-

relations to the noise, both on short time scales in

STOCH_HIGH_5d (Fig. 4d) and on longer time scales

in STOCH_HIGH_30d (Fig. 4e), maintains a similar

response pattern but increases the amplitude further,

with the root-mean-square anomalies increasing to 0.908
and 1.668C, respectively. The root-mean-square sea

surface temperature difference between any two de-

cades of CONT is typically at least an order of magni-

tude smaller than the impacts of the noise in each of the

stochastic experiments, demonstrating that the changes

are robust.

For comparison, the sea surface temperature in the

control integration of HiGEM relative to the control

integration of FAMOUS is shown in Fig. 4f. The root-

mean-square temperature difference is 1.928C. There
is a striking agreement between the sea surface

TABLE 1. Details of the numerical simulations that are performed in this study using the FAMOUSmodel. Four stochastic experiments,

one of which has three ensemble members each with different noise realizations, are compared to a deterministic control run. In the

stochastic experiments, the noise amplitude is the standard deviation of the zero-mean Gaussian distribution that is used to perturb the

ocean temperature tendency at each grid point and time step. The noise amplitude listed here is the amplitude at a depth of 2.5m, which is

in the middle of the upper model layer. For reference, the amplitude of the envelope function in Fig. 3 at the same depth is 0.18C (12 h)21.

In the deepermodel layers, the noise amplitude decreases with depth according to the logarithmic envelope function shown in Fig. 3. Each

experiment is run for 50 yr.

Experiment name Noise amplitude at 2.5m depth [8C (12 h)21] Decorrelation time (days)

Number of ensemble

members

CONT 0 — 1

STOC_LOW_UNCOR 0.05 0 1

STOC_HIGH_UNCOR 0.1 0 3

STOC_HIGH_5d 0.1 5 1

STOC_HIGH_30d 0.1 30 1
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temperature anomalies in STOCH_HIGH_30d and

HiGEM relative to CONT, especially considering that

these responses are emergent phenomena that were not

imposed a priori by the noise or the resolution increase.

Notice for example the warming of the Atlantic Ocean

north of 458N and the cooling south of this latitude; the

U-shaped warming of the northern, eastern, and south-

ern boundaries of the North Pacific Ocean with cooling

in the middle; the cooling of the Indian Ocean; and the

warming of the Southern Ocean between 408 and 608S at

most longitudes. To quantify the similarities and how

they improve as the noise definition varies, the pattern

correlation coefficients are 0.39 between Figs. 4b and 4f,

0.41 between Figs. 4c and 4f, 0.47 between Figs. 4d and

4f, and 0.55 between Figs. 4e and 4f. The pattern cor-

relation coefficient between Fig. 4f and the difference

between any two decades of CONT is typically at least

an order of magnitude smaller than these values, dem-

onstrating that the changes are robust.

Global maps of the sea surface salinity averaged over

the final decade of the simulations are shown in Fig. 5.

Again, the spatial structure in CONT (Fig. 5a) captures

the essential features seen in observations, including

high salinity in the subtropical gyres where evaporation

dominates over precipitation, low salinity in the sub-

polar gyres where precipitation dominates over evapo-

ration, and higher salinity in the Atlantic than the

Pacific. The remaining panels in Fig. 5 show anomalies

with respect to CONT. The anomaly pattern in

STOCH_LOW_UNCOR (Fig. 5b) shows that weak,

uncorrelated noise produces large-scale salinification

and freshening regions in each of the ocean basins. The

magnitudes are generally small, with the root-mean-

square anomaly being 0.28 psu. The anomaly in

STOCH_HIGH_UNCOR (Fig. 5c) shows that the re-

sponse to strong, uncorrelated noise has roughly the

same spatial pattern as the response to weak, un-

correlated noise. The amplitude is greater, however,

with the root-mean-square anomaly increasing to

0.48 psu. The introduction of temporal correlations to

the noise, both on short time scales in STOCH_HIGH_

5d (Fig. 5d) and longer time scales in STOCH_HIGH_

30d (Fig. 5e), maintains a similar response pattern but

increases the amplitude further, with the root-mean-

square anomalies increasing to 0.61 and 0.93 psu, re-

spectively. The root-mean-square sea surface salinity

difference between any two decades of CONT is typi-

cally at least an order of magnitude smaller than the

impacts of the noise in each of the stochastic

experiments.

For comparison, the sea surface salinity in the control

integration ofHiGEM relative to the control integration

of FAMOUS is shown in Fig. 5f. The root-mean-square

salinity difference is 2.82 psu. The agreement between

the sea surface salinity anomalies in STOCH_HIGH_

30d and HiGEM relative to CONT is generally poorer

than the agreement between the sea surface tem-

perature responses. Areas of agreement include the

FIG. 4. Global maps of sea surface temperature (SST) averaged over the final decade of the FAMOUS simulations. (a) SST (8C; left
color bar) in the control simulation of FAMOUS. (b)–(e) SST anomaly (8C; right color bar) in the four stochastic simulations of

FAMOUS, where the anomaly is calculated with respect to the control simulation of FAMOUS. (f) SST anomaly (8C; right color bar) in
the control simulation of HiGEM, where the anomaly is calculated with respect to the control simulation of FAMOUS.
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large-scale salinification east of Australia and east of

Argentina and the large-scale freshening of the Indian

Ocean and most of the North Pacific Ocean. However,

the Atlantic Ocean is generally saltier in STOCH_

HIGH_30d but fresher in HiGEM. To quantify the

similarities, the pattern correlation coefficients are 0.14

between Figs. 5b and 5f, 0.23 between Figs. 5c and 5f,

0.20 between Figs. 5d and 5f, and 0.25 between Figs. 5e

and 5f. The pattern correlation coefficient between

Fig. 5f and the difference between any two decades of

CONT is typically at least an order of magnitude smaller

than these values.

b. Zonal-mean temperature and salinity

Latitude–depth plots of the global zonal-mean tem-

perature averaged over the final decade of the simula-

tions are shown in Fig. 6. The spatial structure in CONT

(Fig. 6a) captures the essential features seen in obser-

vations, including the strong thermal stratification at low

latitudes and the weak thermal stratification at high

latitudes, withW-shaped isotherms caused by equatorial

upwelling. The remaining panels in Fig. 6 show anom-

alies with respect to CONT. The anomaly pattern in

STOCH_LOW_UNCOR (Fig. 6b) shows that weak,

uncorrelated noise produces a general warming in the

upper 2 km of the ocean and a cooling below. The

magnitudes are generally small, with the root-mean-

square anomaly being 0.288C. The anomaly in STOCH_

HIGH_UNCOR (Fig. 6c) shows that the response to

strong, uncorrelated noise has roughly the same spatial

pattern as the response to weak, uncorrelated noise. The

amplitude is greater, however, with the root-mean-square

anomaly increasing to 0.658C. The introduction of tem-

poral correlations to the noise, both on short time scales

in STOCH_HIGH_5d (Fig. 6d) and longer time scales in

STOCH_HIGH_30d (Fig. 6e), maintains a similar re-

sponse pattern but increases the amplitude further, with

the root-mean-square anomalies increasing to 1.008 and
2.108C, respectively. The root-mean-square zonal-mean

temperature difference between any two decades of

CONT is typically at least an order of magnitude smaller

than the impacts of the noise in each of the stochastic

experiments.

For comparison, the global zonal-mean temperature in

the control integration of HiGEM relative to the control

integration of FAMOUS is shown in Fig. 6f. The root-

mean-square temperature difference is 1.258C. There is

again good agreement between the zonal-mean temper-

ature anomalies in STOCH_HIGH_30d and HiGEM

relative to CONT, except at the highest latitudes. To

quantify the similarities, the pattern correlation co-

efficients are 0.63 between Figs. 6b and 6f, 0.82 between

Figs. 6c and 6f, 0.89 between Figs. 6d and 6f, and 0.92

between Figs. 6e and 6f. The pattern correlation co-

efficient between Fig. 6f and the difference between any

two decades of CONT is typically at least an order of

magnitude smaller than these values.

The global zonal-mean temperature response is bro-

ken down into contributions from the Atlantic and Pa-

cific Oceans in Figs. 7 and 8 . In the Atlantic Ocean,

there is still a general cooling at depths below about

2 km in STOCH_HIGH_30d, but the warming above

FIG. 5. As in Fig. 4, but for sea surface salinity (psu).
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this level occurs only south of about 408N, with cooling

at higher latitudes. A similar pattern is seen in HiGEM,

except for a strong but latitudinally localized warming

that penetrates down to depths of about 4.5 km and is

not captured by STOCH_HIGH_30d. In the Pacific

Ocean, the temperature anomaly in HiGEM with re-

spect to CONT is captured reasonably well by STOCH_

HIGH_30d, except that the warming is perhaps too deep

and that a cooling of the upper ocean at the northern-

most latitudes is not captured.

Latitude–depth plots of the zonal-mean salinity in the

Pacific Ocean averaged over the final decade of the sim-

ulations are shown in Fig. 9. The anomaly pattern in

STOCH_LOW_UNCOR (Fig. 9b) shows that weak, un-

correlated noise produces a freshening everywhere except

below about 3–4km at all latitudes and above about 1km

at low latitudes, where there is a salinification. The mag-

nitudes are generally small, with the root-mean-square

anomaly being 0.06psu. The anomaly in STOCH_

HIGH_UNCOR (Fig. 9c) shows that the response to

strong, uncorrelated noise has roughly the same spatial

pattern as the response to weak, uncorrelated noise. The

amplitude is greater, however, with the root-mean-square

anomaly increasing to 0.15 psu. The introduction of

temporal correlations to the noise, both on short time

scales in STOCH_HIGH_5d (Fig. 9d) and longer time

scales in STOCH_HIGH_30d (Fig. 9e), maintains a sim-

ilar response pattern but increases the amplitude further,

with the root-mean-square anomalies increasing to 0.19

and 0.42psu, respectively. The root-mean-square zonal-

mean salinity difference between any two decades of

CONT is typically at least an order of magnitude smaller

than the impacts of the noise in each of the stochastic

experiments.

For comparison, the Pacific zonal-mean tempera-

ture in the control integration of HiGEM relative to

FIG. 6. Latitude–depth plots of the global zonal-mean temperature averaged over the final decade of the FAMOUS simulations.

(a) Temperature (8C; left color bar) in the control simulation of FAMOUS. (b)–(e) Temperature anomaly (8C; right color bar) in the four

stochastic simulations of FAMOUS, where the anomaly is calculatedwith respect to the control simulation of FAMOUS. (f) Temperature

anomaly (8C; right color bar) in the control simulation of HiGEM, where the anomaly is calculated with respect to the control simulation

of FAMOUS.
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the control integration of FAMOUS is shown in

Fig. 9f. The root-mean-square salinity difference is

0.98 psu. There is again excellent agreement between

the Pacific zonal-mean salinity anomalies in STOCH_

HIGH_30d and HiGEM relative to CONT, with sim-

ilar results in the Atlantic (not shown). To quantify the

similarities, the pattern correlation coefficients are

0.40 between Figs. 9b and 9f, 0.56 between Figs. 9c and

9f, 0.64 between Figs. 9d and 9f, and 0.69 between Figs.

9e and 9f. The pattern correlation coefficient between

Fig. 9f and the difference between any two decades of

CONT is typically at least an order of magnitude

smaller than these values.

c. Ocean heat content

A consequence of the warming of the top 1–2 km and

cooling of the bottom 3–4 km in each of the stochastic

experiments is that there is a net cooling of the global

ocean. To quantify this cooling, time series of the

global ocean heat content are shown in Fig. 10. The

heat content in CONT is stable and shows no significant

trend over the period of 50 yr. In contrast, the heat

contents in each of the stochastic experiments decrease

from their initial values, as expected. In STOCH_

LOW_UNCOR, the heat content appears to reach a

new equilibrium after around 15 yr at 13 3 1022 J less

than its initial value. In STOCH_HIGH_UNCOR, the

heat content appears not to stabilize, reaching about

45 3 1022 J less than its initial value after 50 yr. The

three ensemble members of STOC_HIGH_UNCOR

follow each other reasonably well. In particular, their

ensemble spread after 50 yr is much smaller than the

differences between the experiments, showing that the

long-term rate of change of ocean heat content is in-

sensitive to the noise realization. In STOCH_HIGH_5d

and STOCH_HIGH_30d, the loss of ocean heat

content after 50yr reaches 70 3 1022 and 140 3 1022 J,

respectively.

To illustrate the order of magnitude of these heat

losses, we note for comparison that the heat content

of the global ocean is observed to have increased by

around 203 1022 J between the mid-1950s andmid-1990s

FIG. 7. As in Fig. 6, but for zonal-mean temperature in the Atlantic Ocean. The zonal average is taken across the entire Atlantic basin.
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(Levitus et al. 2000). Therefore, the change in ocean heat

content caused by weak, uncorrelated eddy noise is the

same order of magnitude as the historic global warming

signal, and the change caused by strong, correlated eddy

noise is an order of magnitude greater than it. Figure 10

shows that eddy noise not only produces long-term trends

in ocean heat content, but also increases the variability on

interannual and decadal time scales. In particular, strong,

uncorrelated noise produces more variability than weak,

uncorrelated noise, and long temporal correlations pro-

duce more variability than short temporal correlations.

Finally, it should be noted that in the limit of short de-

correlation time scales, the effect of increasing the de-

correlation time scale by a factor of 6 (from 5 to 30 days)

is expected from basic theory and dimensional analysis to

be similar to the effect of increasing the amplitude of the

forcing by a factor of O6 ’ 2.4, which is roughly in

agreement with the results in Fig. 10.

d. Atlantic meridional overturning circulation

The Atlantic meridional overturning circulation in

the FAMOUS simulations is shown in Fig. 11. The

latitude–depth structure in CONT averaged over the

final decade (Fig. 11a) captures the essential features

seen in observations. These features include northward

volume transport in approximately the upper 1.5 km of

the Atlantic Ocean, which reaches a maximum value of

about 18 Sv (1 Sv [ 106m3 s21) at 268N. This northward

transport lies above the southward return transport of

North Atlantic DeepWater (NADW), which in turn lies

above a weak countercirculating cell of Antarctic Bot-

tom Water (AABW).

The remaining panels in Fig. 11 show latitude–time

Hovmöller (1949) plots of the annual-mean Atlantic

meridional overturning circulation at a depth of 1000m

in the control simulation and four stochastic experi-

ments. The relatively low interannual variability in

CONT (Fig. 11b) is strengthened by the introduction of

weak, uncorrelated eddy noise in STOCH_LOW_

UNCOR (Fig. 11c) and more so by the strong, uncorre-

lated noise in STOCH_HIGH_UNCOR (Fig. 11d). The

variability is enhanced even further by the introduction

of temporally correlated noise in STOCH_HIGH_5d

(Fig. 11e) and STOCH_HIGH_30d (Fig. 11f). The

FIG. 8. As in Fig. 6, but for zonal-mean temperature in the Pacific Ocean. The zonal average is taken across the entire Pacific basin.
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time-averaged overturning circulation is also increased

by the noise. Averaged over 50 yr at 268N and at a depth

of 1000m, the strength of the circulation increases from

18.0 Sv in CONT to 19.1 Sv in STOCH_LOW_UNCOR,

STOCH_HIGH_UNCOR, and STOCH_HIGH_5d and

to 19.8 Sv in STOCH_HIGH_30d.

To examine the noise-driven variability increase in

more detail, power spectra of the maximum Atlantic

meridional overturning circulation at 268N are shown in

Fig. 12. Power spectra from the HiGEM control simu-

lation and the RAPID observations (Srokosz and

Bryden 2015) are included for comparison. All the

power spectra display a prominent annual cycle, but the

variabilities on time scales of 1–5 yr differ markedly. On

these interannual time scales, CONT displays the least

variability. The variability is increased by the addition of

weak and strong uncorrelated noise in STOCH_LOW_

UNCOR and STOCH_HIGH_UNCOR, and is increased

further by the inclusion of fast and slow autocorrela-

tions in STOCH_HIGH_5d and STOCH_HIGH_30d.

HiGEM and RAPID are in close agreement with each

other on these interannual time scales, demonstrating

the benefit of higher resolution. Three of the stochastic

FAMOUS simulations are also in reasonable agreement

with HiGEM and RAPID. The exceptions are CONT,

in which the interannual variability is too weak, and

STOCH_HIGH_30d, in which it is too strong. Note that

on subannual time scales, HiGEM displays too much

variability compared to RAPID, to the extent that

FAMOUS (even without noise) is a closer match to the

observations.

e. Approach to equilibrium

To check the equilibration of the stochastic in-

tegrations, we have continued the STOCH_HIGH_30d

simulation for a further 250 yr, taking the total dura-

tion to 300 yr. According to the time evolution of the

global horizontally averaged temperature, the upper

2 km of the ocean equilibrates within the first 50 yr,

whereas the deep ocean takes around 100 yr. At

equilibrium, the deep ocean temperatures are

around 21.48C, but they remain above both the

freezing point (21.88C) and the coldest surface tem-

peratures (also21.88C). After reaching equilibrium, the

FIG. 9. As in Fig. 6, but for zonal-mean salinity in the Pacific Ocean (psu). The zonal average is taken across the entire Pacific basin.
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simulation continues to run stably (without becoming

unphysical) for at least a further 200 yr.

4. Physical interpretation

The changes to the mean climatological state that

were identified in section 3 are a manifestation of what,

in the field of stochastic dynamical systems, is called

noise-induced drift or noise-induced rectification. This

effect arises from interactions between the noise and

nonlinearities in the model equations. It permits zero-

mean noise to have non-zero-mean effects, as seen in

our stochastic simulations. The noise-enhanced vari-

ability that was identified in section 3 has been docu-

mented previously when noise is added to coupled

general circulation models used for climate simulation

(Williams 2012).

There are two possible physical mechanisms that could

account for the net upward heat transport and generation

of stratification that occur in the ocean of our stochastic

simulations. In the first mechanism, the temperature and

density perturbations that are created by the stochastic

noise trigger convective instabilities in the deep ocean.

These instabilities are then removed by the convective

adjustment scheme in FAMOUS (Smith et al. 2008),

which mixes water columns vertically in such a manner

that convective stability is reestablished. The net effect is

an upward heat transport. In the second mechanism, the

perturbations that are created by the stochastic noise

generate horizontal variations in temperature and den-

sity, which are removed by the Gent and McWilliams

(1990) parameterization. Again, the net effect is an up-

ward heat transport, because the parameterization acts

via an adiabatic rearrangement.

To investigate the physical mechanisms further, the

depth profile of the contribution to the temperature

tendency from the Gent and McWilliams (1990) param-

eterization in STOCH_HIGH_UNCOR relative to

CONT is shown in Fig. 13. This temperature tendency

anomaly has the correct shape to account for the tem-

perature changes in Fig. 6c, indicating relative warming in

the upper 1500m of the ocean and cooling below. Fur-

thermore, the magnitude of the warming reaches 0.13 3
1029 8Cs21 at a depth of around 1000m, which equates

to a temperature increase of 0.28C in 50yr and is also

consistent with Fig. 6c. Therefore, we conclude that the

second of the two possiblemechanisms discussed above is

sufficient to account for the net upward heat transport

that occurs in the ocean of our stochastic simulations. The

same mechanism is presumed to operate in HiGEM,

except that it occurs via the explicitly simulated eddies

rather than the Gent and McWilliams (1990) parame-

terization. We speculate that if our stochastic perturba-

tions were vertically uncorrelated, then the first physical

mechanism would increase in importance. However, our

use of vertically coherent noise inhibits the mechanism in

the present simulations.

5. Summary and discussion

This study has found that the simulated climatological

state of the ocean is improved in many respects by

implementing a simple stochastic parameterization of

ocean eddies into a coupled atmosphere–ocean general

circulation model. Simulations from a high-resolution,

eddy-permittingmodel (HiGEM)were used to calculate

the eddy statistics needed to inject realistic stochastic

noise into a low-resolution, non-eddy-permitting ver-

sion of the same model (FAMOUS). A suite of four

stochastic experiments was then run to test the sensi-

tivity of the simulated climate to the noise definition, by

varying the noise amplitude and decorrelation time

within reasonable limits.

The addition of zero-mean noise to the ocean tem-

perature tendency was found to have a nonzero effect

on the mean climate. In terms of the ocean tempera-

ture and salinity fields both at the surface and at depth,

the noise reduces many of the biases in the low-

resolution model and causes it to more closely re-

semble the high-resolution model, as summarized in

Table 2. The change in global ocean heat content

caused by the noise is at least as large as the anthro-

pogenic global warming signal. The variability of the

strength of the global ocean thermohaline circulation

is also improved. We conclude that stochastic ocean

perturbations can yield reductions in climate model

error that are comparable to those obtained by

FIG. 10. Time series of the annual-mean global ocean heat con-

tent anomaly (with respect to its starting value) in each of the

FAMOUS experiments.
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refining the resolution, but without the increased

computational cost.

In this latter respect, our findings are consistent with

those of Berner et al. (2012), who studied the model

error in an atmospheric general circulation model. They

reported that, although the impact of adding stochastic

noise is not universally beneficial in terms of model bias

reduction, it is nevertheless beneficial across a range of

variables and diagnostics. They also reported that, in

terms of improving the magnitudes and spatial patterns

of model biases, the impact of adding stochastic noise

can be similar to the impact of increasing the resolution.

Our results are consistent with these findings. We con-

clude that oceanic stochastic parameterizations join at-

mospheric stochastic parameterizations in having the

potential to significantly improve climate simulations.

It is possible that some of the improvements to the

time-averaged climate in FAMOUS that have been

documented in this study could alternatively be

obtained by tuning the deterministic parameterizations.

For example, the North Atlantic deep water formation

rate affects the climatological temperature and salinity

patterns and is known to be a function of the vertical

diffusivity in ocean models (Schmittner and Weaver

2001). However, even if such improvements to the time-

averaged climate were possible by this approach, it

would be unlikely to improve the temporal variability. It

would also be unlikely to capture any change in the

probabilities of transitions between different metastable

ocean circulation regimes, which are known to be ex-

hibited by FAMOUS (Hawkins et al. 2011) and to be

sensitive to noise (Monahan 2002).

Our resultsmay have implications for centennial-scale

climate and Earth system modeling. While many state-

of-the-art models planned for phase 6 of the Coupled

Model Intercomparison Project (CMIP6) will possess

the resolution necessary to permit the largest ocean

eddies, if not to fully resolve them, such resolution is

FIG. 11. Atlantic meridional overturning circulation in the FAMOUS experiments. (a) Latitude–depth plot of the streamfunction for

the zonally integrated flow (Sv, where 1 Sv 5 106m3 s21; left color bar) in the control simulation averaged over the final decade.

(b)–(f) Latitude–time plots of the annual-mean streamfunction for the zonally integrated flow (Sv; right color bar) at a depth of 1000m in

the control simulation and four stochastic experiments. When calculating the streamfunctions, the zonal integration is performed across

the entire Atlantic basin.

15 DECEMBER 2016 W I LL IAMS ET AL . 8777



still impractical for some key uses. Implementation of a

stochastic parameterization could be of benefit to

paleoclimate modeling studies, in which general cir-

culation models must be integrated for centuries or

even millennia in order to spin up components such as

the deep ocean and coupled ice sheets. Stochastic pa-

rameterization could also be of benefit to Earth system

models in which biogeochemical complexity necessi-

tates many more tracers and prognostic variables

than a standard ocean circulation model, making the

model far more computationally demanding. A sto-

chastic parameterization of ocean eddies may enable

such models to approach the circulatory behavior of

eddy-permitting ocean models without the extra

computational cost.

Our results suggest several possible avenues for fu-

ture work. First, models with ocean components that

are structurally different from FAMOUS, such as

those in which the vertical discretization is based on

isopycnal coordinates rather than depth, might re-

spond differently to our stochastic parameterization.

Second, the implementation of our parameterization

into Earth system models, such as FAMOUS-C, might

improve their behavior and provide an opportunity for

more evaluation of processes such as nutrient trans-

port. Finally, our stochastic parameterization could be

improved in several respects. For example, we have

taken the noise amplitude to decrease with depth, but

we have neglected its variations with latitude and

longitude. We have taken the eddy decorrelation time

scale to be a constant in each stochastic experiment,

but this time scale is known to display geographic

variations (e.g., Chelton et al. 2011). We have ne-

glected horizontal correlations between neighboring

grid boxes, but it is possible that there will be some

geographic locations and depths at which the hori-

zontal eddy correlations are longer than the horizontal

grid spacing. We have used vertically coherent noise,

but not all eddies are perfectly correlated in depth

(Petersen et al. 2013). We have extracted fluctuations

from the eddy-permitting ocean model in a purely

statistical way, but there are alternative dynamical

approaches that can automatically extract fluctuations

and project them onto the coarse grid (e.g., Berloff

2005b). Future work should explore refinements to our

stochastic parameterization to address all of these

limitations.

FIG. 12. Power spectra of the maximum value of the volume transport in the Atlantic me-

ridional overturning circulation at 268N in the FAMOUS simulations. The spectra from the

three STOCH_HIGH_UNCOR ensemble members agree well with each other, but to avoid

cluttering the figure, only one ensemble member is shown. Power spectra from the HiGEM

control simulation and the RAPID observations are included for comparison.

FIG. 13. Depth profile of the anomalous temperature tendency

associated with the Gent and McWilliams (1990) scheme in

STOCH_HIGH_UNCOR. The anomaly is relative to CONT and

is averaged over the global ocean and final decade.
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