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ABSTRACT

In this paper, two new quasi-neutral density variables—generalized patched potential density (GPPD) and

thermodynamic neutral density gT—are introduced, which are showed to approximate Jackett and McDougall

empirical neutral density gn significantly better than the quasi-material rational polynomial approximation ga
previously introduced by McDougall and Jackett. In contrast to gn, gT is easily and efficiently computed for

arbitrary climatologies of temperature and salinity (both realistic and idealized), has a clear physical basis rooted

in the theory of available potential energy, and does not suffer from nonmaterial effects that make gn so difficult

to use in water masses analysis. In addition, gT is also significantly more neutral than all known quasi-material

density variables, such as s2, while remaining less neutral than gn. Because unlike gn, gT is mathematically

explicit, it can be used for theoretical as well as observational studies, as well as a generalized vertical coordinate

in isopycnal models of the ocean circulation. On the downside, gT exhibits inversions and degraded neutrality in

the polar regions, where theLorenz reference state is the furthest away from the actual state. Therefore, while gT

represents progress over previous approaches, further work is still needed to determine whether its polar de-

ficiencies can be corrected, an essential requirement for gT to be useful in Southern Ocean studies, for instance.

1. Introduction

The problem of how best to construct a quasi-neutral

density variable suitably corrected for pressure is a

longstanding fundamental issue in oceanography whose

answer is vital for many key applications ranging from

the study of mixing to ocean climate studies. These in-

clude but are not limited to the separation of mixing into

‘‘isopycnal’’ and ‘‘diapycnal’’ components necessary for

the construction of rotated diffusion tensors in numerical

oceanmodels (Redi 1982; Griffies 2004), the construction

of climatological datasets for temperature and salinity

devoid of spurious water masses (Lozier et al. 1994), the

construction of inverse models of the ocean circulation

(Wunsch 1996), the tracking and analysis of water masses

(Montgomery 1938; Walin 1982), the construction of

isopycnal models of the ocean based on generalized co-

ordinate systems (Griffies et al. 2000; de Szoeke 2000),

the study of the residual circulation (Wolfe 2014), and the

parameterization of mesoscale eddy-induced mass fluxes

(Gent et al. 1995).

Physically, it is generally agreed that a suitable density

variable g should possess the desirable dual thermody-

namic, and dynamical attributes of defining adiabatic

surfaces (the thermodynamic attribute) along which fluid

parcels experience no net buoyancy force (the dynamical

attribute; e.g., McDougall 1987; de Szoeke and Springer

2000; Huang 2014). The first attribute, which is equivalent

to material conservation (also often referred to as quasi-

material conservation, meaning here conserved whenever
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u and S are also conserved), poses no difficulty as it can

always be enforced by requiring g to be a function of

potential temperature u and salinity S only. The second

attribute—usually referred to as the neutral property—is

problematic, however, as it can only be satisfied in

special circumstances not usually encountered in the

ocean. To satisfy exact neutrality, =g would need to be

parallel at every point to the local neutral vector

d5 g(a=u2b=S)52(g/r)(=r2 c22
s =p), where a and

b are the thermal expansion and haline contraction

coefficients defined relative to u, S, and p; g is the ac-

celeration of gravity; c2s is the squared speed of sound;

r is in situ density; and p is pressure. To understand why

the latter property cannot be satisfied in general, it is

useful to decompose =g into components parallel and

orthogonal to d as follows:

=g5 b

�
=r2

1

c2s
=p

�
1R5 br(b=S2a=u)1R

52
rbd

g
1R , (1)

where b is an integrating factor, andR is a residual term

perpendicular to d. Taking the curl of (1) and multi-

plying the result by d gets rid of =g and yields an

equation for the residual R, namely,

2
rbH

g
1 d � (=3R)5 0, (2)

where the term H5 d � (=3 d) is the helicity of the

neutral vector d, which shows that exact neutrality can

only be achieved when H 5 0, a well-known result

(McDougall 1987; de Szoeke and Springer 2000; Huang

2014), with Eden andWillebrand (1999) discussing some

of the conditions necessary for the helicity to vanish. In

practice, achieving H 5 0 in the ocean would either re-

quire the ocean to be at rest—as r would then be a

function of pressure p alone—or in absence of density-

compensated temperature–salinity variations along

surfaces g5 constant, which is equivalent to say that the

ocean would then have a well-defined temperature–

salinity relationship of the form u 5 u(g) and S 5 S(g).

In the ocean, however, the existence of density-

compensated u/S anomalies conspire with thermobari-

city (the pressure dependence of the thermal expansion

coefficient) to make H nonzero and hence forbid

the construction of exactly neutral density variables.

McDougall and Jackett (1988) discuss the way the ocean

appears to conspire to keep values of helicity low.

If so, what then are the physical principles determining

the degree of nonneutrality that g should have? In partic-

ular, should material conservation be retained, or sacrificed

to improve neutrality? From a theoretical viewpoint, the

natural starting point for constructing a density variable are

the thermodynamic equations for salinity and potential

temperature (or Absolute Salinity and Conservative Tem-

perature) combined into the following equation for density:

Dr

Dt
2

1

c2s

Dp

Dt
5 r

u

Du

Dt
1 r

S

DS

Dt
5 q , (3)

where r(S, u, p) is viewed as a function of salinity, po-

tential temperature, and pressure; q represents changes

in density due to molecular diffusive effects of heat and

salt. The left-hand side of (3) defines the differential

form d-5 dr2 c22
s dp, which in general is not perfect

and hence not integrable because of the nonzero helicity

of the neutral vector; otherwise, it is well accepted that

- (possibly modified via the introduction of an appro-

priate integration factor) would define the most natural

choice of quasi-neutral, pressure-corrected density var-

iable. Mathematically, this is equivalent to state that the

total differential dg of any mathematically well-defined

quasi-neutral density variable g can at best be written in

the form

dg5b

�
dr2

1

c2s
dp

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

d-

1 dw52rb(adu2bdS)1dw (4)

and involves a nonvanishing, residual, imperfect differ-

ential form dw, with b as an integrating factor. Equation

(4) yields (1) upon making the following substitutions

dg/ =g, du/ =u, dS/ =S, and dw/R as well as by

interpreting S and u as their climatological values rather

than their instantaneous ones. The main advantage of

(1) is that it defines the problem in standard Euclidean

vector space, which makes it easy to define the ‘‘small-

ness’’ of the residual R or its orthogonality with the

neutral vector d. Working with (4) is harder mathe-

matically, as it is less easy to define a norm in the space of

differential forms that can be used to say whether dw is

small or large.

The aforementioned mathematical difficulty has so far

prevented the discovery of the ‘‘right’’ way of integrating

the density equation [(4)], with standard potential den-

sity, patched potential density (PPD), and orthobaric

density representing the most well-known attempts.

None of these density variables, however, is regarded as

fully satisfactory. In absence of any clear theoretical ar-

gument on how best to approach (4), McDougall’s (1987)

postulate that the best quasi-neutral density variable

should be one constrained to be as neutral as feasible,

which in practice can be constructed by means of the

Jackett and McDougall (1997, hereinafter JMD97)
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neutral density software, has been widely accepted as the

most appealing alternative.1

Nevertheless, gn has a number of shortcomings that

tend to restrict its use primarily to observational studies

of the present-day ocean outside such regions as the

Arctic Ocean orMediterranean Sea, where it is currently

not defined. Indeed, its relatively high computational cost

makes its use prohibitive in numerical ocean modeling

studies; its lack ofmathematically explicit form forbids its

use in theoretical studies of the ocean circulation, and its

nonmateriality makes its use in inverse studies of ocean

mixing or in the analysis of water masses using Walin’s

(1982) approach conceptually problematic, owing to the

difficulty of evaluating thermobaric dianeutral dispersion

rigorously. Moreover, the physical basis for gn remains

arguably quite unclear. Indeed, density variables—such

as potential density or orthobaric density, for instance—

tend to be defined as purely thermodynamic concepts

having (or not) desirable dynamical properties when used

for recasting the equations of motion in thermodynamic

coordinates, for example, de Szoeke (2000). Thus, de

Szoeke and Springer’s (2000) orthobaric density is de-

fined as purely thermodynamic variable function of in situ

density and pressure only, which dynamically defines an

exact geostrophic streamfunction. In contrast, JMD97’s

construction of gn tends to emphasize (approximate)

dynamics over thermodynamics by defining it primarily in

terms of the equation b52d � dx’ 0, where b is meant

to represent the buoyancy of a single parcel experiencing

adiabatic and isohaline lateral displacements dx. The

thermodynamic properties of gn remain unclear, how-

ever, and a controversial topic [e.g., McDougall and

Jackett (2005b) vs de Szoeke and Springer (2009)]. One

of several difficulties is that neutral trajectories obtained

as solutions of d � dx5 0 implicitly require nonmaterial

sources of heat and salt, thus violating the assumptions

underlying the definition of buoyancy b52d � dx, since,
as showed by McDougall (1987), they generally end up

at a different vertical position than they originate from if

integrated over a closed loop (around the main gyre of

the North Atlantic ocean for instance).

Although JMD97 chose not to enforce materiality as a

way to maximize the neutrality of their variable gn, both

McDougall and Jackett (2005b) and de Szoeke and

Springer (2009) seem to agree that nonmateriality is an

undesirable feature of a quasi-neutral density variable,

since it may confound the determination of diapycnal

mixing in inverse ocean modeling studies for instance. So

far, however, while it is generally agreed that a purely

material function of S and u can be constructed to be quite

neutral over a limited region of the ocean, as showed

by Eden and Willebrand (1999) for the North Atlantic

Ocean, McDougall and Jackett (2005b) have speculated

that this is fundamentally impossible to achieve for the

global ocean, after failing to construct a quasi-material

rational polynomial approximation ga of g
n, whose neu-

trality appeared to be no better than that ofs2, while being

neither a good approximation of gn, nor of its gradient.

The main novelty of the present paper is to show that

JMD97 empirical neutral density gn, despite being pri-

marily based on heuristic considerations, actually contains

useful information about how best to integrate (4). This is

shown here by showing that gn is very close to a physically

based quasi-neutral density variable that outperforms all

known density variables in terms of neutrality. This vari-

able is also materially conserved and naturally approxi-

mates gn significantly better than ga. Such a variable is

called thermodynamic neutral density and is a function

of the Lorenz neutral density that enters the theory of

available potential energy, whose construction for a re-

alistic ocean with a fully nonlinear equation of state was

recently discussed by Saenz et al. (2015). To that end, our

paper proceeds in two steps: The first step, detailed in

section 2, provides a new look at the concept of patched

potential density, which is the concept that historically

prompted the construction of neutral density and ortho-

baric density. This section argues that the classical ex-

pression for patched potential density is not a useful one

for lacking any information about the actual patching

process whereby density surfaces in different depth ranges

are joined up at discontinuity points. An improved PPD,

called generalized patched potential density (GPPD),

which is significantly less discontinuous than the original

PPD and which explicitly accounts for the patching pro-

cess, is constructed. The advantage of GPPD is to make

immediately clear what its continuous limit should be.

Thermodynamic neutral density is one particular example

of continuously differentiable analog of GPPD, whose

construction, comparison with other density variables,

and neutral properties are discussed in section 3. Section 4

discusses the results and their implications.

2. A generalized patched potential density
explicitly accounting for the patching process

a. Statement of the problem

Let us assume, like JMD97, de Szoeke and Springer

(2000), and many others before, that the concept of

1One can distinguish between the NDFK, which is associated

with the reference dataset used by JMD97’s software, and NDSK,

which is obtained by constructing neutral paths to parcels already

labeled in the reference dataset. The distinction is not important

for the present purposes.
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patched potential density holds the key for un-

derstanding how best to construct a quasi-neutral den-

sity variable corrected for pressure. To that end, let us

first recall that the standard definition of PPD is po-

tential density referenced to a piecewise constant pres-

sure field, namely,

PPD
prior

5s[S, u,p
r
(z

i
)], z

i
# z# z

i11
, (5)

where i5 1, . . . ,N2 1, whereN is the number of discrete

depth levels entering the construction of PPD. To be

specific, let us assume z15 0 and zN is a depth typical of the

abyssal ocean. Here, we use the suffix prior to draw the

attention of the reader to the fact that such a definition of

PPD is merely a front window for what PPD is really

about, given that (5) does not actually tell us anything

about the patching process whereby density surfaces in

different depth ranges are joined up at points of disconti-

nuity. Although the patching process itself can be de-

scribed in mathematical terms, it would be complicated

and tedious to do so. For the present purposes, we adopt a

much simpler approach to the patching process, which we

believe captures its essence while being mathematically

clearer. Our approach stems from the realization that the

patching process is fundamentally about dealing with the

discontinuous character of PPDprior, in the sense that if

that PPDprior were continuous, one would just trace water

mass properties along surfaces of constant PPDprior. As

a result, we redefine the patching process as a process

fundamentally aimed at making PPDprior as continuous

as feasible through the successive removal of discontinu-

ities, ultimately leading to the following posterior form of

PPD:

gGPPD 5PPD
posterior

5s(S, u, p
ijk
)2s

ijk
, (6)

where pijk and sijk are possibly three-dimensional

piecewise constant fields. We call (6) GPPD and re-

gard it as the postpatching process (posterior) or true

form of PPD. As we show below, a careful choice of the

piecewise constant pijk and sijk can make GPPD signif-

icantly less discontinuous than PPDprior, thus enabling

GPPD to appear reasonably continuous when plotted

if enough discrete elements are chosen.

b. Description of the patching process as the
successive removal of discontinuities

Our approach to the patching process aims to make

PPDprior as continuous as feasible without altering sig-

nificantly=PPDprior, which is what makes PPDprior quasi

neutral. To that end, we initiate the patching process by

first subtracting a piecewise constant density offset in

each depth range as follows:

PPD(1) 5s[S, u,p
r
(z

k
)]2s

offset
[p

r
(z

k
)] , (7)

where pr(z) and soffset(p) are assumed to beC‘ functions

of depth and pressure, respectively. The jump in PPD(1)

across a discontinuity, denoted [PPD(1)(zk, zk11)],

becomes

[PPD(1)](z
k
, z

k11
)5s[S

b
, u

b
,p

r
(z

k
)]2s[S

b
, u

b
,p

r
(z

k11
)]2s

offset
[p

r
(z

k
)]1s

offset
[p

r
(z

k11
)]

’

"
1

c2s (Sb
, u

b
, p)

2
ds

offset

dp
(p)

#
[p

r
(z

k
)2 p

r
(z

k11
)]1O(dp2) , (8)

where Sb and ub are salinity and potential temperature

values along the surface of discontinuity. The natural

choice to reduce the discontinuity is to choose

ds
offset

dp
(p)5

1

c2s (Sb
, u

b
, p)

, (9)

but unless Sb and ub obey a well-defined u/S relation-

ship of the form Sb 5 Sb(p) and ub 5 ub(p), the ap-

proach will only succeed at removing the discontinuity

locally, not globally. To cure the problem, it is nec-

essary to make the density offset vary with horizontal

position as well, suggesting the following second

modification:

PPD(2) 5s[S, u, p
r
(z

k
)]2s

offset
[x

i
, y

j
, p

r
(z

k
)], (10)

with xi, i 5 1, . . . , Ni, yj, j 5 1, . . . , Nj, a series of

discrete points in the horizontal directions aimed at

capturing the spatial variations in the u/S relation-

ship. The problem, however, is that making soffset

vary with horizontal position must in turn introduce

horizontal discontinuities in PPD(2), which can only

be corrected by making pr vary with horizontal po-

sition as well, leading to the following (and last)

modification:

PPD(3) 5sfS, u,p
r
[x

i
, y

j
, p

r
(z

k
)]g

2s
offset

[x
i
, y

j
, p

r
(z

k
)], (11)

which is consistent with the form of generalized patched

potential density [(6)] given above. Obviously, this is as
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far as the patching process can go, as we have run out of

options for further curing discontinuities.

c. Validation

The above description of the patching process is ar-

guably only qualitative. In practice, a full implementa-

tion of the method would require writing down explicit

equations for the horizontal and vertical density jumps

as well as providing an explicit procedure for con-

straining the number of discrete elements and the values

of the piecewise constant pijk and sijk in (6). This is not

further pursued here, however, as our primary aim is to

use the concept of GPPD as a stepping stone for clari-

fying the continuous limit of PPD and introducing the

concept of thermodynamic neutral density discussed in

the next section. Before we do that, however, we first

seek to validate the concept of GPPD. Specifically, if our

hypothesis that (6) represents the true or revealed form

of PPD, it should be possible to construct the piecewise

constant fields pijk and sijk to obtain an accurate ap-

proximation of JMD97 empirical neutral density gn;

indeed, as shown by the latter authors, gn is known to

behave as PPD; if so, gn should also behave like GPPD.

The following aims to show that this is indeed the case

and that a good agreement can, in fact, be achieved

by choosing pijk and sijk to vary with latitude and

depth only.

To that end, using the gn field supplied as part of the

Gouretski and Koltermann (2004) WOCE dataset, we

computed the 2Dfields pijk and sijk, minimizing themisfit

between gn and gGPPD using all possible data points for

which gn is defined for an a priori–given partition Vjk.

Through trial and error, we settled on the particular two-

dimensional partition of the ocean volume depicted in the

top-left panel of Fig. 2 (shown below), with Dz 5 500m

and Dy ’ 208, using a least squares approach to find the

optimal values of pjk and sjk in each subdomain. The

main intent here is only to illustrate the feasibility of

GPPD, not to explore systematically the sensitivity of

the results to the different possible choices of volume

partition or constraints on pijk and sijk.

The results are illustrated in Fig. 2. Interestingly, the

top-left and bottom-left panels strongly suggest that sjk

is primarily controlled by pjk at leading order, which is

confirmed by the regression analysis depicted in the

bottom-right panel. Although it would be in principle

possible to modify our optimization procedure to con-

strain the piecewise pressure values pijk to be close to

actual pressures, this was not done here, in order to see

whether the procedure would do it on its own or not.

Rather, pijk was just imposed to lie within the range of

pressures encountered in the ocean. It is therefore in-

teresting to see that rather than choosing a piecewise

pressure field close to the reference pressure field pr(zk)

used in PPDprior and a density offset a function of both

horizontal position and pr, the optimization procedure

naturally chooses a pressure field that can depart occa-

sionally strongly from pr(zk), with a density offset

function that is simply a one-dimensional function of the

latter. The associated plot for gGPPD is given in the top-

left panel of Fig. 1 for the 308W latitude–depth section in

the Atlantic Ocean, which can be compared with the

corresponding section for gn in the top-right panel. The

strong similarity between the two figures is striking,

given that the ability of gGPPD to reproduce the main

features of gn is achieved with only 73 115 77 discrete

reference pressures pjk; the visual agreement is further

confirmed by the scatterplot of gn against gGPPD de-

picted in the bottom panel of Fig. 4 (see below), which

shows a near-perfect correlation between the two

quantities [the outliers seemingly originating from

somewhat strange values of WOCE gn in enclosed seas,

for which the use of JMD97 neutral density software is a

priori not valid].Ahistogramof thedifferencesgGPPD2 gn

(blue bars in top panel of Fig. 4) shows that gGPPD ap-

proximates gn to better than 0.01kgm23 in most of the

ocean, which is remarkable, as this is much better than

what is achieved by McDougall and Jackett’s (2005b)

variable ga (red bars in top panel), which was specifically

constructed to best approximate gn.

Intriguingly, the structure of the pjk’s is in fact much

more reminiscent of that of the reference pressures that

fluid parcels would have in their reference state of

minimum potential energy that have been recently de-

scribed in some recent advances in APE theory by

Tailleux (2013b) and Saenz et al. (2015). The possibility

to use APE theory to provide a physical basis for pr is

confirmed in the next section and suggests that part of

the structure of neutral density can be explained in

terms of Lorenz reference density.

3. Continuous limit of PPD and connection with
Lorenz theory of available potential energy

a. Implications for the continuous limit of PPD

A classical result of analysis is that all continuous

functions can be viewed as the limit of piecewise con-

stant functions. It follows that by making the number of

discrete elements forming the volume partition Vijk ar-

bitrarily large, the piecewise constant pressure and

density offsets can be assumed to converge toward

continuous fields pijk / pr(x) and sijk / sr(x), re-

spectively. This in turn implies

GPPD/GPPD
continuous

5s[S, u,p
r
(x)]2s

r
(x) , (12)
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which is hence also continuous. In the following, we

further constrain the form of the density offset by as-

suming it to be a function of pr alone, that is, sr(x) 5
sr1d[pr(x)], as in the previous section. Mathematically,

the continuous limit of =(GPPD) is not so well defined,

since in general all what can be ascertained for the limit

of a piecewise constant function is that it be continuous,

not continuously differentiable (differentiability is as-

sociated with piecewise linear functions, not just piece-

wise constant). In other words, it is usually not true that

=(GPPD) converges uniformly toward=(GPPDcontinuous),

where

=GPPD
continuous

5 r
S
=S1 r

u
=u

1

"
1

c2s (S, u, pr
)
2

ds
r1d

dp

#
=p

r
. (13)

As shown below, this mathematical difficulty is reflected

in the fact that the function gT introduced below does a

better job at approximating gn than its gradient.

Motivated by the results of the previous section

drawing a link between the structure of pijk and that of

the reference pressure entering Lorenz APE theory, we

introduce a new quasi-neutral density variable, called

thermodynamic neutral density gT, defined as

gT(S, u)5s[S, u,pLZ
r (S, u)]2s

r1d
[pLZ

r (S, u)], (14)

where pLZ
r (S, u) is the reference pressure that a parcel

would have if brought in a notional reference state of rest

obtained by means of an adiabatic and isohaline re-

arrangement of the actual state. As shown recently by

Tailleux (2013b) and Saenz et al. (2015), the reference

pressure pLZ
r that fluid parcels would have in the Lorenz

reference state ofminimumpotential energy rLZr (z) is the

solution of the level of neutral buoyancy (LNB) equation

r[S, u,pLZ
r (z

r
)]5 rLZr (z

r
) , (15)

where the possible time dependence of the reference

state, for example, Tailleux (2013a), is neglected for the

FIG. 1. (top left) GPPD based on the GPPD reference pressure and density offsets depicted in the top left and

bottom left of Fig. 2, respectively, at 308W in the Atlantic Ocean. (top right) Neutral density gn at the same

longitude. (bottom left) Thermodynamic neutral density based on the reference pressure depicted in the top-right

panel of Fig. 2. (bottom right) McDougall and Jackett (2005b) materially conserved approximation to gn.
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moment. Future work, however, should aim to establish

when and where the temporal variations of Lorenz ref-

erence state matter. For a time-independent reference

state, the LNB equation [(15)] implies that the reference

depth of fluid parcels zr 5 zr(S, u) is a materially con-

served quantity; solving (15) at all points in the ocean

provides the following explicit construction for the

continuous reference pressure field pr(x), namely,

p
r
(x)5 pLZ

r fz
r
[S(x), u(x)]g. (16)

The reference density profile rLZr (z) was estimated for

the WOCE dataset following the methodology detailed

in Saenz et al. (2015), with an example of the resulting

pr(x) field at 308W in the Atlantic Ocean being illus-

trated in the top-right panel of Fig. 2.

b. Comparison between gT and gn

To compare gT with gn, we calibrated the unknown

density offset functionsr1d(pr) tominimize the differences

between the two variables, in order tomake gT traceable

to gn as defined in Huber et al. (2015). Traceability is

important in order to interpret the remaining differ-

ences between the two variables as due to differences in

the physics rather than due to some of the arbitrary

choices that enter the construction of density variables.

This was done here by means of a joint pdf analysis of

the respective distributions of r(S, u, pLZ
r ) and gn, with

sr1d(pr) constructed so as tominimize themisfit between

gT and gn. At leading order, sr1d(pr) is found to behave

primarily as a linear function of zr by working in

the context of the Boussinesq approximation, using

pr 5 2r0gzr, with r0 5 1035.407 15 kgm23 and g 5
9.81m s22, the value of r0 being obtained by regressing

the pressure and depth fields provided as part of the

WOCE dataset. After some trial and error, we finally

settled on the following fit for sr1d(pr):

s
r1d

(p
r
)5 a1bz

r
2P

oly
(z

r
) , (17)

FIG. 2. (top left) The latitude–depth dependent reference pressure seen by GPPD depicted in the top panel of

Fig. 1. (top right) The reference pressure associated with Lorenz reference state underlying thermodynamic neutral

density depicted in the bottom left of Fig. 1. (bottom left) Density offsets entering the construction of GPPD.

(bottom right) Scatterplot of the GPPD reference pressure against GPPD density offset, showing the linear de-

pendence of one on the other.
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with a 5 20.023 364 812 862 605 and b 5
0.004 527 584 358 902, where the leading-order linear

behavior of sr1d(pr) was further corrected by the

piecewise polynomial function Poly depicted in Fig. 3.

This piecewise polynomial is made up of two distinct

polynomials, whose slopes at the intersection point

very discontinuously. Attempts at removing this dis-

continuity degraded the agreement between gn and gT

in the deep ocean, suggesting that gn might be func-

tionally different in the deep ocean relative to the rest

of the ocean, perhaps as the result of difficulties with

the method of characteristics underlying its construc-

tion in presence of bottom topographic features. The

distribution for gT obtained from such a procedure is

depicted in the bottom left of Fig. 1 for the same

Atlantic Ocean section at 308W previously used. An

atlas providing plots of gT every 108 of longitude, along
with the corresponding plots for gn andMcDougall and

Jackett (2005b) variable ga is also made available as

supplemental material. Clearly, gT does much better

than ga at capturing the main features and details of gn.

The main differences primarily occur in the upper re-

gion of the ACC where gT displays some inversions not

seen in gn. At the same time, it seems important to

point out that as explained in JMD97, the values of gn

in the Southern Ocean are not obtained from the actual

Levitus data but from modified ones, which are found

necessary for correctly labeling neutral densities of the

second kind in such a region and which may explain some

of differences between gT and gn seen there. Apart from

this issue, Fig. 4 (bottom panel) shows that gT and gn are

otherwise extremely well correlated. The upper panel

shows a histogram of the differences between the two

variables, which reveal that gT is, in general, better than

gGPPD at approximating gn, although it also reveals a few

instances of rather large differences between gT and gn

that do not exist for gGPPD.

Another way to compare gT and gn is directly in (u, S)

space. Although gn is not materially conserved, it is

nevertheless possible to write it as a sum of a materially

conserved part gn
material(S, u) plus some residual dg. For

the present purposes, we estimated gn
material(S, u) as the

bin average of gn in (u, S) space, using DS 5 0.1 psu and

Du5 0.18C for the binning,which is equivalent to defining

gn
material as the materially conserved function of u and S

that best approximates gn in a least squares sense.

Figure 5, top-left, top-right, and bottom-left panels show

gn
material, g

T, and their residual, respectively. For compar-

ison, the residual between gn
material and ga is also provided

on the bottom-right panel, which shows significantly

higher values. Remarkably, gT and gn
material appear to

exhibit the same functional dependence on S and u for

most of the ocean water masses, suggesting that the

nonmateriality of gnmight be the primary cause for the

observed differences between gT and gn, even though

the residual gT 2 gn appears to have a rather complex

structure. Since the estimation of the nonmateriality

of gn has proven so far technically complex and con-

troversial [see de Szoeke and Springer (2009) vs

McDougall and Jackett (2005b)], the present results

are interesting as they might point to a potentially

much simpler way to quantify the nonmateriality of gn,

which we plan on investigating in future studies.

FIG. 3. The piecewise polynomial function of zR entering the

construction of sr1d(zr) (see text for details; thin solid line). Lo-

cation of themaximumof the joint pdf between gn2 s[S, u, pr(zr)]1
ajzrj 1 b and jzRj (blue and orange dots).

FIG. 4. (top) Histogram of the decimal logarithm of the absolute

value of the differences between gn and gGPPD (blue), between gn

and gT (green), and between gn and ga (brown). (bottom) Scat-

terplots of gGPPD, gT, and ga againstWOCE gn. The straight line is

the 1:1 line of equation gn5 gproxy, where the latter is either one of

gT, gGPPD or ga.
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To conclude this section, it is important to point out

that the structure of the differences between gT and gn is

somewhat sensitive to the way—by no means unique—

that the function sr1d(pr) is constructed and hence that

these differences should only be regarded as indicative

rather than definitive. Indeed, it is important to note that

the WOCE gn is a neutral density of the second kind

(NDSK) rather than of the first kind and not necessarily

as neutral as could be. Moreover, there might be alter-

native ways to construct sr1d(pr) that would result in an

even better agreement between gn and gT. On the other

hand, it is also important to recognize that rather than

constructing sr1d(pr) to minimize the differences be-

tween gT and gn, one might prefer to define it based on

physical arguments. The most natural approach would

be in terms of a globally defined u/S relationship pa-

rameterized in terms of pr, that is, of the form Sr(pr) and

ur(pr), which would yield

ds
r1d

dp
( p

r
)5

1

c2s [Sr
( p

r
), u

r
( p

r
), p

r
]
. (18)

This approach, however, is beyond the scope of the

present paper and will be discussed in a subsequent

study, along with the importance of retaining or not the

temporal variations of Lorenz reference state. Note that

an approach such as (18) becomes necessary when

constructing thermodynamic neutral density for water

mass distributions differing from present-day ones, since

calibrating sr1d(pr) to mimic gn works only when gn is

available (recall that the neutral density software is only

valid for present-day climatologies).

c. How neutral is gT relative to other density
variables?

Since JMD97’s construction of neutral density focuses

on =gn and its closeness to neutrality rather than on gn

itself, it is of interest to examine to what extent the good

agreement between the values of gT and gn demon-

strated in the previous section also extends to the gra-

dients. That this should be so is not mathematically

guaranteed because it is easy to find counterexamples of

two continuously differentiable functions, f(x) and g(x)

FIG. 5. (top left) Materially conserved part of gn obtained by bin-averaging gn in (u, S) space. (top right) The

quasi-material Lorenz neutral density bin averaged in the same way as gn. (bottom left) Difference between (top

left) and (top right). (bottom right) As in bottom left, but for ga.
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being approximately equal to each other without this

being true of their derivatives.2 Moreover, as mentioned

before, the process of defining the continuous limit of

=(GPPD) is not as well defined as it is for GPPD itself.

As a result, scatterplots of jj=gTjj versus jj=gnjj or of

angle(=gT, d) versus angle(=gn, d) are expected to ex-

hibit significantly more scatter than plots of gT versus gn,

which was indeed verified. These are not shown as they

are deemed to not be very informative, even though they

tend to suggest that gT performs better than ga at

approximating =gn.

Amore telling diagnostic is illustrated in Fig. 6, whose

aim is to illustrate the relative degree of neutrality of gT

relative to that of s0, s2, ga, and gn, which is based on

computing the data-based frequency distribution of the

sine of the angle made between the gradient of a given

density variable and the neutral vector:

jsin(=g,d)j5 k=g3 dk
k=gkkdk . (19)

As expected (from Fig. 6d), the WOCE gn is the more

neutral of all density variables, but the main new finding

here is that gT is a surprisingly close second, clearly

outperforming s0, s2, and ga, while achieving a degree

of neutrality comparable in many ways to that of gn.

Importantly, gT thus appears as the first globally de-

fined materially conserved density variable to pass

McDougall and Jackett’s (2005b) ‘‘kiss of death’’ s2

neutrality test, which they used to fail the de Szoeke and

Springer (2000) orthobaric density. Perhaps more as-

tonishing, however, is that gT naturally outperforms

ga, a materially conserved density variable that was

specifically constructed by McDougall and Jackett

(2005b) to best approximate gn and its gradient. The

result is important because it demonstrates that

McDougall and Jackett (2005a,b) significantly under-

estimated the ability of a materially conserved variable

to approximate neutral density. The question that the

present findings raises, and which future studies should

aim to clarify, is whether gT is the optimal way to

FIG. 6. Probability distribution functions for the sine of the angle between =gT and the neutral vector compared

with that of various other density variables: (a) s0, (b) s2, (c) ga, and (d) gn.

2 For instance, the L2 norm of the difference between f(x) 5 1

and g(x) 5 1 1 « sin(x/«) is bounded by the arbitrarily small pa-

rameter «, whereas theL2 norm of f 0(x)2 g0(x)52cos(x/«) is only

bounded at best by 1 regardless of «.

3580 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 46



construct a materially conserved approximation of gn or

whether an even better way exists?

d. A posteriori rationalization of the relevance
of Lorenz reference state to the theory of
quasi-neutral density variables

The strong agreement found between gn and gT con-

firms our hypothesis that the empirical neutral density

procedure designed by McDougall (1987) contains im-

portant information about the physics of quasi-neutral

density variables, which the present results suggest point

to Lorenz APE theory. Can this be rationalized a pos-

teriori? To see this, let us imagine that we have been

able to find a solution g(S, u) to the neutral density

equation constrained to be materially conserved, and let

us show that it must necessarily be a function of Lorenz

reference density. To that end, let us consider the set of

all possible surfaces g(S, u) 5 constant; each of these

surfaces can be plotted individually as depicted in the

left panel of Fig. 7 and will in general have a complicated

shape in the actual state of the ocean. Because all the

surfaces g(S, u) 5 constant are materially conserved,

each of the parcels making up such surfaces will remain

on such surfaces in any adiabatic and isohaline re-

arrangements of the actual state, including the notional

state of rest entering the Lorenz theory of available

potential energy. We know, however, that in a state of

rest, the isosurfaces of any solution to the neutral density

equation must coincide with constant geopotential sur-

faces, as otherwise they would not be neutral. This im-

plies therefore that g(S, u) must be a function of Lorenz

reference density and hence that Lorenz APE theory is

the natural way to think about quasi-neutral density

variables if constrained to be materially conserved, thus

confirming that the differences between in gn and gT

must represent a measure of the nonmaterial conser-

vation of gn.

An important caveat, however, is that the above proof

is probably only valid as far as the natural vertical or-

dering of fluid parcels remains the same in the Lorenz

reference state and the actual state. Because of ther-

mobaricity, this vertical ordering of fluid parcels may

occasionally undergo significant modifications in regions

where the actual state becomes too far away fromLorenz

reference state, causing gT to develop inversions, as is the

case in the polar regions. Our hypothesized link between

gn and gT, therefore, is likely to exist only in those regions

of the ocean where the vertical gradients of the two

quantities have both the same sign and both correctly

predict ocean stability as measured by N2.

4. Discussion

In this paper, we have reexamined several issues

pertaining to the construction of quasi-neutral density

variables, starting with a fresh look at how best to define

the continuous limit of patched potential density, a point

of contention between JMD97 and de Szoeke and

Springer (2000). To that end, it was found essential to

redefine patched potential density because even though

the latter is commonly defined as potential density ref-

erenced to a piecewise constant reference pressure field

s[S, u, pr(zi)], zi # z # zi11, this formula obscures the

whole machinery of the actual patching process whereby

different potential density surfaces are joined up at

points of discontinuity. As a result, we introduced the

concept of generalized patched potential density

(GPPD)

gGPPD 5s(S, u,p
ijk
)2s

ijk
(20)

as the true or posterior form of PPD by reinterpreting

the patching process as being primarily about the suc-

cessive removal of the discontinuities of the prior form

of PPD. Mathematically, GPPD relies on a three-

dimensional discrete partition of the total ocean vol-

ume and the specification of the three-dimensional

piecewise constant pressure fields pijk and sijk. GPPD

is significantly less discontinuous than PPD, so that it

will look reasonably continuous when plotted. As a re-

sult, one may in principle trace water mass properties

simply along surfaces of constant gGPPD, as one would

naturally do with any standard continuous density var-

iables such as s2. While practitioners of PPDmay have a

hard time reconciling their approach to the patching

process with ours, or to accept that gGPPD really rep-

resents the true form of PPD, our approach is vindi-

cated by showing that it is possible to construct gGPPD

so that it approximates the WOCE gn dataset to better

than 1022 kgm23 over most of the ocean, which is sig-

nificantly better thanwhat can be achieved byMcDougall

and Jackett’s (2005b) quasi-material rational polynomial

approximation ga. If gn behaves both like PPD and

FIG. 7. Schematics of the argument establishing that neutral

density needs to be a function of Lorenz reference density when

constrained to be materially conserved.
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GPPD, GPPD must represent a valid alternative way to

look at PPD.

If one accepts our proposal to regard GPPD as the

true form of PPD, then the problem of how best to de-

fine the continuous limit of PPD becomes trivial, the

latter being then necessarily given by gGPPD
continuous 5 s[S, u,

pr(x)]2 soffset(x) or g
GPPD
continuous 5 s[S, u,pr(x)]2 soffset[x, y,

pr(x)]. Again, this conclusion is vindicated by the possi-

bility of constructing a very good (continuously differ-

entiable) approximation of the WOCE gn dataset by

using as pr the reference position of a fluid parcel in

Lorenz reference state, thus motivating the introduction

of a new materially conserved quasi-neutral density var-

iable, called thermodynamic neutral density, defined as

gT(S, u)5s[S, u, pLZ
r (S, u)]2s

r1d
[pLZ

r (S, u)], (21)

where the function sr1d(pr) was defined as a piecewise

polynomial function of pr calibrated to minimize the

differences withWOCE gn. Themain finding here is that

gT approximates gn and its gradient considerably better

than ga(S, u), which was specifically designed to best

approximate gn. But the ability of gT to mimic gn does

not stop there. In addition to approximating gn very

well, gT possesses shares additional features that until

now were thought to be the sole prerogative of gn,

namely, as follows:

d The variable gT is the first physically based globally

defined density variable that significantly outperforms

all other density variables, apart from gn, in terms of

neutrality; in particular, it passes the McDougall and

Jackett (2005b) s2 neutrality kiss of death test.
d The ACC region poses similar problems to both gT

and gn. Thus, the ACC region is associated with the

possibility of multiple neutral paths for gn (JMD97),

whereas it is associated with multiple levels of neutral

buoyancy for gT (Saenz et al. 2015). Moreover, it is

where gT displays inversions not seen in gn, whereas it

is where the Levitus dataset used by JMD97 needs to

be modified in order for their neutral density software

to function correctly.
d Like gn, gT possesses interhemispheric differences in

water mass properties, so that it is not affected by what

McDougall and Jackett (2005a) consider to be a

challenge for quasi-neutral density variables.
d Like gn, gT is affected by both cabbeling and thermo-

baricity, in contrast to standard potential density, as

discussed in Iudicone et al. (2008).
d As is well known, gn is a function of thermodynamic

variables u, S, and p as well as horizontal position,

whereas if the time dependence of Lorenz reference

state is retained, gT(S, u, t) is also dependent on

time, although not on space. Moreover, because of

thermobaricity and the existence of multiple levels of

neutral buoyancy in some parts of u/S space, it is in

principle possible for the Lorenz reference state to

change with time purely as the result of adiabatic

changes, which could potentially cause adiabatic ver-

tical dispersion with no signature in microstructure

measurements, as is believed to be the case for gn (but

for physically quite different reasons).

The fact that the physically based gT is naturally ca-

pable of approximating gn significantly more accurately

than McDougall and Jackett’s (2005b) rational poly-

nomial approximation ga, while also sharing most of gn’s

key attributes, strongly suggests that Lorenz reference

state should play a more important role in the theory of

neutral density than previously realized, at least in those

regions of the ocean where the vertical gradients of the

two quantities both have the same sign and both cor-

rectly predict ocean stability. This view appears to be

supported, at least partly, by the fact that whereas

neutral density has so far represented the main basis for

thinking about how to define isopycnal and diapycnal

directions in the ocean, it is the theory of available po-

tential energy that has formed the main basis for the

rigorous study of diapycnal mixing in the stratified

turbulent mixing community, following the pioneering

work of Winters et al. (1995). Moreover, while meso-

scale eddy parameterizations generally rely on isopycnal

directions based on the local neutral tangent plane,Gent

et al.’s (1995) view that mesoscale eddies should act as a

sink of APE suggests that such parameterizations might

be more naturally formulated based on gT. On the other

hand, it is important to point out that Winters et al.’s

(1995) APE framework has been so far validated only

for a linear equation of state, for which the concept of

density is unambiguously and uniquely defined; in con-

trast, the number of quasi-neutral pressure-corrected

material density variables of the form g(S, u) in a ther-

mobaric ocean in the presence of density-compensated

u/S anomalies is potentially infinite. Moreover, it can

also be argued that it is the probability density function

(PDF) attribute of the Lorenz reference state that is

really the property that matters for diagnosing mixing

rigorously rather than its connection to available po-

tential energy. Thus, one could argue in the oceanic case

that diagnosing mixing rigorously could equally well be

achieved by analyzing the temporal behavior of the PDF

of s0, s2, or s4 [although how to relate the effective

diffusivity in PDF space, e.g., Winters et al. (1995), to

observed values of diapycnal mixing in physical space

is a priori not straightforward]. Moreover, while the

vertical gradient of Lorenz reference density is in
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general an exact predictor of the stability of a stratified

fluid (as measured by the sign of N2) both for a linear

equation of state and nonlinear equations of state

function of temperature and pressure alone, this is not

the case in the ocean, as evidenced by the presence of

inversions exhibited by gT in the ACC region. On this

basis, it would appear that even though gT appears to

represent an important development in the theory of

neutral density, it is unlikely to be the last word on the

matter. Tailleux (2016) recently developed a new ther-

modynamic approach to quasi-neutral density variables

and conjectured that a purely quasi-neutral density

variable potentially significantly more neutral than gT

might exist. Future work should therefore be aimed at

testing Tailleux’s (2016) conjecture, which, if valid,

would have important implications for the whole field.

From a practical viewpoint, gT has the advantage over

gn of being significantly easier to compute, following

recent progress in our understanding of how to construct

the Lorenz reference state in a cheap and computa-

tionally efficient way as discussed by Saenz et al. (2015),

which physically amounts to mapping water masses’

volume in thermohaline (u/S) space onto physical

space, a much simpler and cleaner approach than that

based on sorting fluid parcels previously proposed by

Huang (2005). Importantly, the construction of the

Lorenz reference state does not rely on any integration

along characteristics that still form the basis for con-

structing quasi-neutral surfaces, for example, Klocker

et al. (2009), which is arguably not very well suited to

the construction of a density variable owing to the

complicated geometry of the ocean. In contrast, the

computation of neutral density still relies on using

the pre–International Thermodynamic Equation Of

Seawater—2010 (TEOS-10) JMD97 gn software, which

is only capable of computing neutral density of the

second kind for present-day climatologies, whereas the

holy grail for gn softwarewould be being able to compute

neutral density of the first kind (NDFK) for arbitrary

climatologies of temperature and salinity by adhering to

the most recent TEOS-10 standards. We conjecture that

the present results should be useful to devise new ways to

make progress toward that holy grail.

The present results suggest that it would be advan-

tageous to use gT for the kind of isentropic analyses

pioneered by Montgomery (1938) or for water mass

analyses following Walin (1982), as recently extended

by Iudicone et al. (2008), as well as the natural vertical

density coordinate for use in Young’s (2012) thickness-

weighted average formalism or for studying the At-

lantic meridional overturning circulation in density

coordinates, which we hope to demonstrate in future

studies.
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