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Abstract
Brown seaweeds such as Ascophyllum nodosum are a rich source of phlorotannins (oligomers and polymers of phloroglucinol units), a class
of polyphenols that are unique to Phaeophyceae. At present, there is no information on the bioavailability of seaweed polyphenols and limited
evidence on their bioactivity in vivo. Consequently, we investigated the gastrointestinal modifications in vitro of seaweed phlorotannins from
A. nodosum and their bioavailability and effect on inflammatory markers in healthy participants. In vitro, some phlorotannin oligomers were
identified after digestion and colonic fermentation. In addition, seven metabolites corresponding to in vitro-absorbed metabolites were
identified. Urine and plasma samples contained a variety of metabolites attributed to both unconjugated and conjugated metabolites
(glucuronides and/or sulphates). In both urine and plasma, the majority of the metabolites were found in samples collected at late time points
(6–24 h), suggesting colonic metabolism of high-molecular-weight phlorotannins, with three phlorotannin oligomers (hydroxytrifuhalol A,
7-hydroxyeckol, C-O-C dimer of phloroglucinol) identified in urine samples. A significant increase of the cytokine IL-8 was also observed. Our
study shows for the first time that seaweed phlorotannins are metabolised and absorbed, predominantly in the large intestine, and there is a
large inter-individual variation in their metabolic profile. Three phlorotannin oligomers present in the capsule are excreted in urine. Our study
is the first investigation of the metabolism and bioavailability of seaweed phlorotannins and the role of colonic biotransformation. In addition,
IL-8 is a possible target for phlorotannin bioactivity.
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There has been increasing interest in the past few years on the
bioactive compounds present in seaweeds(1–3). Traditionally,
seaweeds are consumed as a food product in Asian countries
and are increasingly used worldwide as ingredients for indus-
trial applications. In Japan, over twenty species of red, green
and brown algae (seaweed) are included in meals(4), and daily
seaweed consumption per person has remained relatively
consistent over the past 40 years, in the range of 1·50–3·65 kg/
person per year, as reported by a range of studies(5–7).
Seaweeds are a rich source of polyphenolic compounds(8), and
polyphenols extracted from algae(9,10) show some similarities to
those found in land plants(9–11). Thus, the main polyphenols
found in brown seaweeds are phlorotannins(12–15), a type of
phenolic compound only found in brown seaweeds(16). Brown
seaweed phlorotannins are oligomers and polymers of phlor-
oglucinol units, and their oligomer and polymer molecular

weights can greatly vary, from 126Da to 650 kDa(3), comprising
up to 15% of the plant dried weight(11). It has been reported
that the consumption of brown algae is on average 1·342 kg/
person per year, containing 66·652 g of phlorotannins/person
per year and 183mg/person per d(4). Phlorotannins are classi-
fied according to the type of linkages between phloroglucinol
units into four main groups: eckols (with dibenzodioxin
linkages), fucols (with a phenyl linkage), fuhalols and phlor-
oethols (with ether linkages), and fucophloroethols (with ether
and phenyl linkages)(16). Phlorotannins are being increasingly
investigated for their vast array of bioactivities(10,17,18) such as
antioxidant(19–24), anti-inflammatory(20,25,26), antibacterial(27,28),
anticancer(29–33) and antidiabetic(29,34,35), showing promising
potential to further develop seaweed-derived products rich in
bioactive components with commercial potential for food and
pharma applications(36).

Abbreviations: DM, digestion metabolite; ESI, electrospray ionisation; GI, gastrointestinal; HMW, high-molecular-weight; LPS, lipopolysaccharide;
NP-HPLC, normal-phase HPLC; RP-HPLC, reverse-phase HPLC; SPE, seaweed polyphenol extract.
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Bioavailability is a critical factor influencing in vivo biological
activity of polyphenols and we have reasonable understanding
of the bioavailability of polyphenols from fruits and vegetables,
and some of the mechanisms by which they exert beneficial
effects in vivo have been determined(37). Their ability to act as
effective bioactive molecules in vivo is dependent on the extent
of their biotransformation(24) and conjugation during absorption
from the gastrointestinal (GI) tract, in the liver and finally in
cells(37). Consequently, consideration must be given to the way
polyphenols are absorbed and metabolised during GI digestion
and colonic fermentation, and how this may have an impact on
bioactivity(38). It is noteworthy that there is no information on
the bioavailability of seaweed phlorotannins, and this is a
limitation to understanding their bioactivity and mechanism of
action in vivo. In the absence of specific data regarding
phlorotannin absorption and bioavailability, it is useful to
consider the absorption and metabolism of other polyphenols
as a guide(37). In general, after ingestion of a polyphenol-rich
diet, their protective effects in vivo are determined by mea-
suring a range of suitable biomarkers, and they correlate with
the absorption of polyphenols from the gut and their
circulation/excretion(38). Polyphenols can be extensively con-
jugated to form glucuronide, sulphate and methyl group in the
gut mucosa and inner tissues(37,39), and absorption occurs in the
small intestine(37). Polyphenols unabsorbed in the upper GI
tract or re-excreted in the bile are extensively metabolised by
colonic microflora into a wide range of low-molecular-weight
phenolic acids(40). The aim of this study was to elucidate the GI
modifications of seaweed phlorotannins, and the effects on
their metabolism and bioavailability. A food-grade seaweed
polyphenol extract (SPE) rich in phlorotannins (from the brown
seaweed Ascophyllum nodosum) was subjected to in vitro GI
digestion and fermentation to examine the GI modifications
occurring in the upper and lower GI tract. Furthermore,
the absorption and metabolism of polyphenols in healthy sub-
jects was investigated, after oral ingestion of a SPE
capsule containing 101·89mg of polyphenols. This amount
represents an intake lower than the average daily intake of
seaweed polyphenols in the Asian diet, and it is not expected to
exert any cytotoxic effect(41). The impact of absorption and GI
modifications on phlorotannins anti-inflammatory potential is
explored.

Methods

Seaweed material

Fresh A. nodosum was supplied by The Hebridean Seaweed
Company, Isle of Lewis, Scotland in March 2011. The seaweed
biomass was harvested by hand, cleaned and then shipped
refrigerated to the processing facility in France where it was
immediately chopped and frozen.

Preparation of food-grade seaweed polyphenol extract and
capsule

A novel SPE from A. nodosum was produced by CEVA (France)
using a solvent-based extraction system that was specifically

developed for this study and for use with either fresh or frozen
A. nodosum. The solvent used was a 60:40 ethanol–water
mixture, which allowed for the water content of the seaweed
itself. The extraction was carried out over 5 h using
constant stirring and at all times protected from light. A solvent–
seaweed ratio of 3:1 was used. The mixture was filtered to
remove the supernatant, and subsequently the alcohol was
removed using a rotary evaporator. A hydrometer was used to
check that all of the alcohol had been removed. The final
extract was recovered by centrifugation and further filtration
before freeze-drying.

Approximately half of the produced extract (basic extract)
was then fractionated using tangential flow ultrafiltration to
produce further extracts of varying molecular-weight range and
with varying polyphenol content. A blended SPE was for-
mulated (Table 1) using 175mg of basic extract and 50mg of
high-molecular-weight (HMW) fraction (>10 kDa cut-off) for
use in the current study. Maltodextrin (175mg) was added to
the capsule formulation as an excipient. This was done in order
to maximise the polyphenol content (>100mg/d) but also to
minimise the level of I to within accepted regulatory guidelines
(<500 μg/d). Blending was carried out at the food-grade
CEVA facilities in France. Doses of 400mg of the SPE
Ascophyllum blend were packed into white, opaque, vegetarian
capsules by Irish Seaweeds, Belfast, UK and used for the clinical
study. The food-grade seaweed capsule was characterised by
normal-phase (NP)-HPLC (NP-HPLC) and liquid chromato-
graphy (LC)-MS analysis. Phlorotannins were quantified using
the Folin–Ciocalteu Method(42) using phloroglucinol as the
standard(8).

Simulated gastrointestinal digestion and fermentation

The GI digestion procedure was adapted from Mills et al.(43)

(2008) and McDougall et al.(44) (2005). This method consists of
two sequential stages: gastric digestion and small intestinal
digestion followed by dialysis. A measure of 10 g of SPE was

Table 1. Key components of polyphenol-rich basic extract, high-
molecular-weight (HMW) fraction and blend (capsule) showing crucial
concentrations of polyphenols and iodine

Extract components

Basic extract
(mg/175mg of

extract)

HMW fraction
(mg/50mg of

extract)

Blend
(capsule)

(mg/400mg
capsule)

Polyphenols 58·74 43·15 101·89
I 0·46 0·02 0·48
Maltodextrin* 175
Minerals 37·77 1·22 38·99
Fucoxanthin <0·001 0·004 0·004
Laminarin as glucose 10·24 1·64 11·88
Fucoidan as fucose <0·001 0·23 0·23
Mannitol 28·03 5·53 33·56
Inorganic arsenic <0·001 <0·001 <0·001
Cd (LD 0·15mg/kg) <LD <LD <LD
Hg (LD 0·016mg/kg) <LD <LD <LD
Pb (LD 1·1mg/kg) <LD <LD <LD
Sn (LD 1·7mg/kg) <LD <LD <LD

LD, limit of detection.
* Maltodextrin was added to the capsule formulation as an excipient.
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dissolved in 30ml of acidified water (pH=2), and pepsin
(320U/ml) was added. Samples were incubated at 37°C for 2h on
a shaker covered with foil to protect them from light. Aliquots of
5ml (G) were removed. The pH was adjusted to 7·5 by adding a
few drops of 6M-NaOH, and pancreatin (4mg/ml) and bile
extracts (25mg/ml) were added. The samples were incubated at
37°C for 2 h on a shaker. Aliquots of 5ml (SI) were removed.
Samples were transferred into the dialysis tubing (100–500Da, cut-
off, 1·8ml/cm, Spectra/Por; Biotech) and dialysed overnight at 4°C
against water (4 litres) to remove low-molecular-weight digests.
Aliquots of 5ml of dialysis solution (D1) were removed. The
dialysis fluid was changed and dialysis was continued for an
additional 2 h. Aliquots of 5ml of second dialysis solution (D2)
were removed. Samples (SI +D) were freeze-dried and subjected
to colonic fermentation (batch culture): the method was adapted
from Tzounis et al.(45) Batch-culture fermentation vessels
(300ml; one vessel per treatment) were autoclaved and filled
with 135ml of sterilised basal medium. Medium was stirred and
gassed overnight with O2-free N2. Before the addition of SI +
D-digested extracts equivalent to 1·5 g of undigested extracts, the
temperature inside the vessels was set to 37°C by a circulating
water bath, and the pH was controlled at 6·8 by an Electrolab pH
controller (Electrolab UK), in order to mimic conditions in the
distal region of the human large intestine (anaerobic; 37°C;
pH 6·8). Vessels were inoculated with 15ml of faecal slurry
(1:10, w/v), and batch cultures were run for 24h. Samples mea-
suring 7ml were collected at five time points (0, 2, 4, 8 and 24h),
centrifuged at 13000 rpm at 4°C for 10min and the supernatants
were kept. All the samples collected during the digestion and fer-
mentation procedures were stored at −80°C until LC-MS analysis.

Study design

This study was conducted according to the guidelines laid
down in the Declaration of Helsinki, and all procedures
involving human subjects/patients were approved by the
University of Reading Ethics Committee before initiation of the
study. Written informed consent was obtained from all partici-
pants. Exclusion criteria for subjects were as follows: smokers,
BMI< 18 or >30 kg/m2, abnormal liver function and haema-
tology, alcohol intake of >21U/week, GI disease or chronic GI
disorders, consumption of antibiotics in previous 3 months
before study and women who were pregnant or intending to
become pregnant. Potentially suitable participants underwent a
screening process, and individuals with blood pressure
>150/90mmHg; Hb> 125 g/l for men and >110 g/l for women,
γ-glutamyl transferase >1·3mkat/l or cholesterol> 6·5mmol/l
were excluded from the study. In total, twenty-four volunteers
were recruited: twelve female volunteers (six aged 18–30 years
and six aged 30–65 years) and twelve male volunteers (six aged
18–30 years and six aged 30–65 years). Participants were asked
to follow a low phenolic diet for 1 d before the study day
(devoid of tea, coffee, fruit, vegetables, alcoholic beverages,
cocoa, whole-grain and seaweed-containing products). On the
day of the study, the subjects were cannulated and a baseline
blood sample was taken. Participants were asked to consume
one SPE capsule (400mg) containing 101·89mg of polyphenols.
Blood samples were collected at 0, 1, 2, 3, 4, 6, 8 and 24 h after

ingestion of the SPE capsule, and urine samples were collected
at baseline, 0–8 and 8–24 h after the ingestion. During the day,
participants were provided with a lunch and dinner of low
phenolic content. The study is registered at clinicaltrials.gov
(study ID: NCT02496806).

Sample collection and storage

One aliquot of blood was collected in heparin tubes and cul-
tured immediately (whole blood culture for cytokine analysis).
One aliquot of blood was collected in EDTA tubes and cen-
trifuged at 3000 rpm for 15min at 4°C. The plasma was sepa-
rated and 1mg/ml ascorbic acid was added as preservative.
Aliquots were stored at −80°C until analysis. Total volume of
collected urine was recorded, and aliquots were stored at −80°C
until analysis.

Plasma sample processing for metabolite analysis

Plasma samples were prepared by following a procedure
similar to the one described by Ottaviani et al.(46). A volume of
10 µl of internal standard solution (resorcinol 200 µg/ml) was
added to 450 µl of plasma, and then 50 µl of 1·2 M-acetic acid
was added and samples were mixed. Samples were analysed
with and without enzymatic treatment (37°C, 40min) in the
presence of 1500 IU of β-glucuronidase and 50 IU of sulfatases
from Helix pomatia (type H-1). A volume of 1ml of 100%
methanol acidified with 0·5% acetic acid was added, and
samples were centrifuged for 15min at 16 100 g at 4°C and
supernatants were collected. This step was repeated three times
(last time with 50% methanol acidified with 0·5% acetic acid),
and the supernatants were dried using a SpeedVac. The pellets
were dissolved with 125 µl of mobile phase and transferred to
vials for reverse-phase (RP)-HPLC (RP-HPLC) analysis.

Urine sample processing for metabolite analysis

Urine samples were prepared according to a procedure similar
to the one described by Ottaviani et al.(46). Briefly, 10 µl of
internal standard solution (resorcinol 200 µg/ml) was added to
250 µl of urine. Samples were analysed with and without
enzymatic treatment (37°C, 40min), in the presence of 1500 IU
of β-glucuronidase and 50 IU of sulfatases from H. pomatia
(type H-1). A volume of 1ml of 100% methanol acidified with
0·5% acetic acid was added, samples were mixed and cen-
trifuged for 15min at 16 100 g at 4°C, and supernatants were
transferred to a new tube and dried on a SpeedVac. Dried
samples were re-suspended on 125 µl of mobile phase,
completely dissolved, centrifuged and transferred to vials for
RP-HPLC analysis and LC-MS analysis.

Normal-phase HPLC analysis

The phlorotannins in the food-grade SPE used to produce the
capsule were analysed by NP-HPLC analysis(8) using an HPLC
1100 series equipped with LiChrospher Si60-5 column
(250mm× 4·0mm ID, 5μm particle size from Hichrom (LISP60-
5-250AF)), fitted with a guard column LiChrospher Si60-5 from
HICHROM (LISP60-5-10C5). The mobile phase contained A: 82%
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dichloromethane+ 2% methanol + 2% acetic acid in water and
B: 96% methanol + 2% acetic acid in water, and it was pumped
through the column at a rate of 1ml/min. A volume of 10 µl of
samples was injected and analysed by the gradient programme,
which was (min/%B) as follows: 0/0, 30/17·6, 45/30·7, 50/87·8,
60/87·8, 80/0, 105/0 for detection of all compounds. The
compounds were detected at a wavelength of 268nm. All data
were analysed by the ChemStation software. The phloroglucinol
standard was injected at 0·1–100 µg/ml, and phlorotannins in the
capsules were analysed as phloroglucinol equivalents.

Reverse-phase HPLC analysis

The analysis of plasma and urine samples was carried out with a
Hewlett-Packard 1100 series liquid chromatograph (Hewlett-
Packard), as previously described(47). Samples were analysed
by RP-HPLC using a Nova-Pak C18 column (4·6× 250mm) with
4 µm particle size. The temperature of the column was
maintained at 30°C. The mobile phases consisted of a mixture
of 5% aqueous methanol in 0·1% hydrochloric acid 5 M (A) and
a mixture of aqueous acetonitrile 50 in 0·1% hydrochloric acid
5 M (B), and they were pumped through the column at a rate of
0·7ml/min. The following gradient system was used (min/%B):
0/5, 5/5, 40/50, 55/100, 59·9/100, 60/5, with 10min post-run for
both compound and metabolite detections. The eluent was
monitored by photodiode array detection at 280 nm and spectra
of products obtained over the 200–600 nm range. Peaks were
characterised by their retention time and spectra characteristics.
A calibration curve of phloroglucinol was constructed using
authentic standards (0·1–100 µg/ml), and in each case they were
found to be linear with correlation coefficients of 0·995.
Metabolites were quantified as phloroglucinol equivalents.

Liquid chromatography-MS analysis

LC-MS analysis was conducted to analyse the food-grade
seaweed capsule, the urine samples and the digested materials,
and it was carried out in the negative ion mode using
LC-MS/MS utilising electrospray ionisation (ESI), as previously
described(48). Characterisation was achieved using LC-MS/MS
utilising ESI. This consisted of an Agilent 1200 HPLC system
equipped with a binary pump, degasser, auto-sampler, thermo-
stat, column heater, photodiode array detector and an Agilent
1100 series LC/MSD Mass Trap Spectrometer (Agilent Technolo-
gies UK). Separation of samples was achieved using a Zorbax SB
C18 column (2·1× 100mm; 1·8µm) (Agilent), and HPLC condi-
tions were as follows: injection volume, 1 µl; column temperature,
25°C; binary mobile system, (A) 0·1% aqueous formic acid and
(B) 0·1% of formic acid in acetonitrile; and flow rate, 0·2ml/min.
A series of linear gradients were used for separation (min/%B):
0/10, 3/10, 15/40, 40/70, 50/70, 65/10. MS was performed in
the negative ion mode (scan range, m/z 100–1000Da; source
temperature, 350°C). All solvents used were of LC-MS grade.

Cytokine production

Blood samples collected during the clinical intervention
(baseline, 1, 2, 4, 6 and 8 h) into heparin tubes were immedi-
ately cultured as follows: 500-μl blood aliquots were mixed with

500 μl of Roswell Park Memorial Institute (RPMI) medium con-
taining antibiotics on a twenty-four-well plate, and lipopoly-
saccharide (LPS) (1 μg/ml) or vehicle (control group) was
added before incubation at 37°C for 24 h. At the end of the
culture period, samples were centrifuged at 2000 g for 5min,
and the supernatants were collected and kept at −20°C until
analysis for inflammatory cytokine levels. The supernatants
were collected and stored at −20°C. Cytokines (IL-1β, IL-6, IL-8,
IL-10 and TNF-α) in the supernatants were measured with
Luminex xMAP Technology using commercially available
Fluorokine MAP kits (R&D systems), and data were analysed on
the xPONENT software. Final data are presented as the differ-
ence between LPS-treated and unstimulated control.

Statistical analysis

The statistical evaluation of the results was performed by one-
way ANOVA, followed by a Bonferroni post hoc t test using
GraphPad InStat version 5 (GraphPad Software). Significant
changes are indicated as P< 0·05.

Results

Seaweed polyphenol extract characterisation

The chromatogram (Fig. 1) illustrates the trace obtained by
NP-HPLC with diode array detection after injecting a water
solution of the SPE. The chromatogram shows a number of peaks
(20–70min) representing different HMW phlorotannins, the
characteristic phenolics in brown seaweeds. Longer phlorotannin
polymers, which consisted of more hydroxy groups, resulted in
tighter attachment to the column material. Consequently, shorter
compounds were released earlier than longer compounds. Owing
to a lack of phlorotannin standards and the complexity of the
oligomeric and polymeric forms, the calibration curve of phlor-
oglucinol was used to quantify all the phlorotannins contained in
the SPE as phloroglucinol equivalents. The SPE comprised a wide
range of molecular weights of phloroglucinol derivatives with a
total phlorotannin concentration of 312 µg/mg quantified as
phloroglucinol equivalents. Further characterisation of the SPE
was achieved with LC-MS/MS (Fig. 2) using ESI. The data were
collected in a non-targeted manner, by acquiring full spectrum
data in negative ion mode from m/z 100 to 1000. The data were
then analysed by searching for the theoretical mono-isotopic
masses corresponding to possible phlorotannin oligomers and the
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Fig. 1. Chromatographic separation of phlorotannins contained in the seaweed
extract by normal-phase HPLC with diode array detection (268 nm).
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presence of ions (1–6), which could correspond to phlorotannins
(Fig. 2). The ion 1 with [M-H]- at m/z 405 corresponded to the
trimer hydroxytrifuhalol A, whereas the MS2 fragment −387
corresponded to the loss of one molecule of water (−18), a
characteristic pattern of phlorotannin fragmentation. Compound 2
([M-H]- atm/z 497) was considered to be a phlorotannin tetramer
composed of 4 phloroglucinol units, such as tetrafucol or fuco-
diphlorethol, and also in this case the fragment −479 corresponds
to the loss of a molecule of water (−18), whereas the fragment
−353 corresponds to the loss of water (−18) and a phloroglucinol
unit (−126), in accordance with analytical profiles recently
described in positive ion mode by Wang et al.(49) and by Ferreres
et al.(50). The ion 3 has a [M-H]- at m/z 247 corresponding to a
C-O-C dimer of phloroglucinol, as previously indicated by Nwosu
et al.(29). The ion 4 (387) corresponds to the trimer 7-hydro-
xyeckol, and we observe the presence of a fragment at −369
deriving from the loss of one molecule of water. Isomers 5 and 6
with [M-H]- atm/z 249 were also observed, which can correspond
to the dimers diphlorethol and difucol.

In vitro digestion and characterisation

Because of the lack of commercially available standards for
phlorotannins and the complexity of the oligomers and poly-
mers in the extract, the analysis of phlorotannins and their
metabolites is challenging and requires a combination of
approaches. Similarly to other polyphenol classes, phlor-
otannins may undergo extensive modification by phase I and

phase II enzymes and the colonic microbiota during their transit
through the GI tract(37), and the implication of such metabolic
modifications on the bioactivity of phlorotannins has not been
investigated yet. Consequently, we subjected the SPE to in vitro
digestive and fermentative processes. An in vitro gastric and
ileal digestion and colon microbial fermentation of the SPE was
initially conducted, followed by dialysis to simulate absorption
into the circulation. The MS spectra and fragmentations of
the compounds detected in the samples were studied (Fig. 3).
After in vitro digestion and fermentation procedures, the
samples were analysed by LC-MS/MS using ESI in negative
ion mode, as previously described, searching for the theoretical
mono-isotopic masses corresponding to the low-
molecular-weight phlorotannins previously identified in the
capsule (Fig. 2). We were able to identify molecular ions
and fragments corresponding to hydroxytrifuhalol A (405), the
C-O-C dimer of phloroglucinol (247), the dimer diphlorethol/
difucol (249) and 7-hydroxyeckol (387), also found after
colonic fermentation. In addition, in digested and fermented
samples subjected to dialysis to mimic absorption into the
circulation, we reported the presence of seven compounds
(digestion metabolite (DM)1–DM7) corresponding to
in vitro-absorbed metabolites.

Plasma and urine analysis

The food-grade SPE was given to healthy subjects (Fig. 4) in the
form of a capsule (400mg) containing 101·89mg of
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LC-MS analysis in negative ion mode of the seaweed extract phlorotannins
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Fig. 2. Characterisation of phlorotannins in the seaweed extract. (a) Structures of phlorotannins identified in the seaweed extract. (b) Phlorotannins in the seaweed
extracts identified by liquid chromatography (LC)-MS analysis in negative ion mode.
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LC-MS analysis in negative ion mode of the in vitro digested seaweed extracts
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Fig. 3. Liquid chromatography (LC)-MS analysis in negative ion mode of the seaweed extract subjected to in vitro gastrointestinal digestion, colonic fermentation and
dialysis to mimic absorption. (a) LC-MS spectra and fragmentation of in vitro-digested materials. (b) Summary of LC-MS analysis of the in vitro-digested materials.
DM, digestion metabolite. SIM, small intestinal metabolite; FM, fermentation metabolite.
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polyphenols, and blood and urine samples were analysed for
phlorotannin metabolites. HPLC-diode array detector (DAD)
analysis of the plasma (Fig. 5) and urine (Fig. 6) samples with
and without glucuronidase/sulfatase treatment showed the
presence of a variety of metabolites absent in the baselines
(before the seaweed capsule ingestion) in samples from fifteen
volunteers out of twenty-four. In plasma, the total level of
phlorotannins and their metabolites ranges from 0·011 to
7·757 µg/ml, and in urine 0·15 to 33·52 µg/ml are excreted.
Some metabolite peaks were present in samples with and
without enzymatic treatment, and therefore could be assigned
to unconjugated metabolites. Some other metabolite peaks
were present only in samples without enzymatic treatment or
were only appearing in samples enzymatically treated, and
were attributed to conjugated forms (glucuronides and/or sul-
phates) and their enzymatically released unconjugated forms. In
urine, some metabolites were found in samples collected at 0–
8 h after capsule ingestion, but the majority of the metabolites
were found in samples collected at 8–24 h. Some metabolites,
such as urine metabolite (UM)6 and UM7, show similar UV
spectra characteristics and might therefore be structurally rela-
ted (Fig. 6). In plasma (Fig. 5), some metabolites were found in
samples collected at 2, 3 and 4 h after capsule ingestion, but the
majority of the metabolites were found in samples collected at
later time points (6–24 h). This could be the result of poor
absorption of the HMW phlorotannins in the upper GI tract,
resulting in them reaching the colon and undergoing fermentation
to lower-molecular-weight derivatives by the colonic microbiota.
In addition, urine samples were subjected to LC-MS/MS (Fig. 7)
using ESI, as previously described, searching for the theoretical
mono-isotopic masses corresponding to the low-molecular-weight
phlorotannins previously identified in the capsule (Fig. 2). We
were able to identify molecular ions and fragments corresponding
to hydroxytrifuhalol A, 7-hydroxyeckol and the C-O-C dimer of
phloroglucinol, which corresponded to the HPLC metabolite UM3.
In addition, we reported the presence of two ions (289 and 377)
corresponding to metabolites that we characterised in samples
from SPE subjected to in vitro GI digestion and fermentation
(DM4 and DM7, Fig. 3), as previously detailed.

Ex vivo cytokine production

The ex vivo production of cytokines (IL-1β, IL-6, IL-8, IL-10 and
TNF-α) relative to baseline levels in cultured blood collected a
various time points (0, 1, 2, 3, 4, 6 and 8 h) during the

intervention study (LPS treated – unstimulated controls) is
reported in Fig 8. The amounts of TNF-α and IL-10 remained
quite stable over time, as well as the amount of all cytokines at
1 and 2 h. IL-6 levels were observed to decrease at later time
points (4–8 h) without reaching statistical significance
(P> 0·05). The levels of both IL-1β and IL-8 were observed to
increase from 3 to 8 h after the intervention; however, the sta-
tistical analysis revealed that the only significant change from
baseline levels was the increase of IL-8 at 8 h.

Discussion

Polyphenols are ubiquitously found in plants and comprise a
major part of a daily human diet. Over the past 20 years, sig-
nificant data have emerged with regard to the potential beneficial
effects of several classes of phenolic compounds against a
number of chronic diseases. In addition, a reasonable under-
standing has been gained of the bioavailability of many poly-
phenol classes, and this will be important for understanding the
mechanisms by which they exert such benefits in vivo. The
interest in marine sources of phenolic compounds is recent, and
knowledge on phlorotannin bioavailability is still lacking. The
analysis of phlorotannins is challenging because of the high range
of molecular weight present, and their characterisation is com-
plicated further by the lack of commercially available standards.

Chromatography techniques coupled to diode array and MS
detection have been applied to the analysis of phlorotannins,
and the advantages/disadvantages of their use are described by
Steevensz et al.(34). RP-HPLC is a separation mode that is
commonly used for polyphenol separation; however, the very
high polarity of phlorotannins would cause them to elute with
little or no retention because of the lack of interaction with the
nonpolar stationary phase(34,48). NP-HPLC is more advanta-
geous for retaining compounds with very high polarity, and the
NP-HPLC methodology developed by Koivikko was more sui-
table than RP-HPLC for the separation of phlorotannins from the
brown algae Fucus vesiculosus(34,48). Thus, we initially analysed
the phlorotannins in our SPE by NP-HPLC using a method
adapted from Koivikko et al.(8). As expected, the SPE comprised
a wide range of molecular weights (20–70min), with abun-
dance of very HMW phlorotannins eluting at later retention time
(50–70min) in our normal-phase method. MS detection can
provide higher sensitivity and be advantageous to identify
specific phlorotannins in the extract without commercially
available standards; however, NP-HPLC solvents such as

0 1 2 3 4 6 8

SPE capsule, 400 mg
(100 mg polyphenols)

Time (h)

24

24Urine8Urine0

Blood /plasma

24 h
Low

polyphenol
diet

Cytokine production

Fig. 4. Schematic illustration of the clinical intervention setup. SPE, seaweed polyphenol extract.
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dichloromethane are not suitable for MS analysis(52), because
they would result in poor ionisation and therefore significantly
reduce sensitivity(51,53).
Nwosu et al.(29) characterised a phlorotannin extract from

A. nodosum by RP-HPLC using a C18 column: the bound
sample eluted in a unresolved set of peaks, and with MS
detection in negative ion mode they were able to assign the
detected m/z spectra to a series of phlorotannin structures(29).
Ferreres et al.(50) identified twenty-two different phlorotannins

belonging to the eckol and fucophloroethol groups in four
seaweed species belonging to the order Fucales (genus
Cystoseira and Fucus), with RP-HPLC separation combined with
DAD-ESI-multiple-stage MS detection(50). By using an equiva-
lent RP-HPLC separation method coupled to ESI-MS analysis in
negative ion mode, we were able to identify some phlorotannin
oligomers such as hydroxytrifuhalol A, tetrafucol, fucodiphlor-
ethol, C-O-C dimmer of phloroglucinol, 7-hydroxyeckol, diph-
loretol and difucol. The fragmentation patterns of the oligomers
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Fig. 5. HPLC analysis of plasma samples for seaweed metabolites. (a) HPLC chromatograms (268 nm) and UV spectra showing examples of metabolites in plasma.
(b) Summary of seaweed metabolites present in plasma samples. PM, plasma metabolite; RP-HPLC, reverse-phase HPLC.
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that we identified are in agreement with some recently pub-
lished data in the field(49,50). Recently, Steevensz et al.(34)

characterised the phlorotannins of five brown algae species by

ultrahigh-pressure liquid chromatography operating in ‘mixed-
mode’ (hydrophilic interaction liquid chromatography mode)
combined with high-resolution MS. The methodology proposed

RP-HPLC analysis of seaweed metabolites in urine samples
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Fig. 6. HPLC analysis of urine samples for seaweed metabolites. (a) HPLC chromatograms (268 nm) and UV spectra showing examples of metabolites in urine.
(b) Summary of seaweed metabolites present in urine samples. UM, urine metabolite; RP-HPLC, reverse-phase HPLC.
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by this research group proved to be accurate for profiling
phlorotannins based on their degree of polymerisation, and it
was demonstrated to be an effective separation mode for low-
molecular-weight phlorotannins, up to 6 kDa(34).

Phlorotannin characterisation is a challenging and complex
task, which is complicated by the lack of commercially available
standard compounds; thus, chromatography separation cou-
pled to MS detection can help to elucidate phlorotannin

LC-MS analysis in negative ion mode of the urine samples
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Fig. 7. Liquid chromatography (LC)-MS analysis in negative ion mode of urine samples. (a) LC-MS spectra and fragmentation of phlorotannins found in urine samples.
(b) Summary of LC-MS analysis of the urine samples. DM, digestion metabolite.
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complexity, and its application to the analysis of clinical
samples from feeding trials, as well as the use of simplified
in vitro digestion systems, can help elucidate their beneficial
health properties and the bioactive circulating forms. The SPE
was subjected to in vitro–simulated GI digestion and fermen-
tation, followed by dialysis to simulate as close as possible their
absorption and biotransformation. The obtained materials were
analysed by LC-MS for a comparative characterisation of the
phlorotannin metabolites. LC-MA analysis of the digested and
fermented SPE has indicated the presence of some oligomeric
phlorotannins that are also present in the undigested SPE
(hydroxytrifuhalol A, diphloretol/difucol, 7-hydroxyeckol,
C-O-C dimer of phloroglucinol), in addition to a range of newly
formed metabolites (DM1 to DM7). In vitro conditions are
indeed a great tool, allowing a simpler and more convenient
analysis, and our in vitro system predicted the formation of
metabolites subsequently identified in urine.
Intervention studies have investigated the fate of polyphenols

from land plants in the human body by measuring plasma con-
centrations and/or urinary excretion following intake from a food
source. Many studies performed to investigate polyphenol bioa-
vailability are based on the measurement of their excretion in
urine and plasma by extraction, concentration and chromato-
graphic separation/analysis, and focused on the detection of
polyphenols and their metabolites in samples subjected or not to
enzymatic treatment to release conjugate moieties such as
glucuronic acid and sulphate groups(46,54). For example, after
ingestion of a polyphenol-rich meal, levels of phenolic com-
pounds and conjugated metabolites can increase rapidly,
achieving a peak concentration at approximately 1–2h in plasma
and urine, indicating small intestinal absorption, or peak at later
time points (4–8h in plasma, 8–24h in urine), indicating large
intestinal metabolism and subsequent absorption(55). In our study,
the majority of phlorotannin metabolites were found in samples
collected at late time points (6–24h), indicating limited small
intestinal absorption followed by gut microbial metabolism of the
HMW phlorotannins in the large intestine.
In the upper GI tract, dietary polyphenols act as substrates for

a number of enzymes, and they are subjected to extensive

metabolism by glucosidase enzymes, phase I enzymes
(hydrolysing and oxidising), such as cytochrome P450, and
phase II enzymes (conjugating and detoxifying) found both in
the small intestine and the liver(56). In particular, there is strong
evidence for the extensive phase II metabolism (by UDP-
glucuronosyltransferases, sulphotransferases) to yield glucur-
onides and sulphate derivatives. Indeed, there is evidence of
efficient glucuronidation and sulphation of all classes of
polyphenols to differing extents(56). Indeed, our results indicate
that phlorotannin intake results in the formation of phase II
conjugate metabolites (glucuronides, sulphates).

Further transformations can occur in the colon, in which the
enzymes of the gut microbiota act to breakdown complex
polyphenolic structures to smaller units, which may also be
absorbed and further metabolised in the liver. Bacterial
enzymes may catalyse many reactions including hydrolysis,
dehydroxylation, demethylation, ring cleavage and decarbox-
ylation, as well as rapid deconjugation(57).

As predicted by the HMW range of phlorotannins in our SPE,
high colonic metabolism seems to have occurred, following
fermentation of HMW phlorotannins in the large intestine. By
LC-MS analysis, we were able, for the first time, to confirm the
presence of some phlorotannin oligomers in urine, more
specifically hydroxytrifuhalol A, 7-hydroxyeckol and the C-O-C
dimer of phloroglucinol. Interestingly, two of the urine
metabolites (m/z 289 and 377) were present in the in vitro-
digested samples (DM4 and DM7).

There were substantial differences between volunteers in the
pattern of phlorotannin metabolites. Such inter-individual
differences have been observed for other polyphenols and
have been attributed to differences in gut microbiota compo-
sition and the expression of metabolising enzymes(3,55).

A secondary aim of our work has been to determine whether
the SPE could modulate inflammatory events in the blood,
following the absorption of phlorotannin metabolites and
because of their presence in the circulation.

Polyphenols can exert numerous antioxidant and non-
antioxidant functions of relevance in chronic disease develop-
ment, and many of them have an important inflammatory
component(53). In the present study, we observed an altered
ex vivo production of IL-8, a low-molecular-weight cytokine
produced by mononuclear phagocytes and other cell types,
with significant increased levels of the cytokine after 8 h
compared with baseline.

IL-8 is an important inflammatory factor of the cysteine-
intervening amino acid-cysteine (CXC) chemokine family,
involved in the amplification of inflammatory signals(59). IL-8
secretion is induced by TNF-α through a transcriptional
mechanism primarily regulated by NF-κB)(60). Redox signalling
mechanisms are known to play a role in the regulation of such
events, with reactive oxygen species being able to promote IL-8
production and secretion(18,23), whereas oxygen radical
scavengers are proven to inhibit IL-8 production in LPS-
stimulated human whole blood(22). Dietary polyphenols such
as catechins(33) and curcumin(28) have also been shown to
specifically interfere with IL-8 gene expression through inhibi-
tion of NF-κB activation(61). In consequence, we would have
expected circulating seaweed polyphenol metabolites to
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Fig. 8. Cytokine production by whole blood cultures in cultured blood collected
at various time points (0, 1, 2, 3, 4, 6 and 8 h) during the intervention study
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potentially be able to inhibit IL-8 secretion. Our results have
given a preliminary indication that the cytokine IL-8 is a pos-
sible target for phlorotannin metabolites. However, a significant
increase in IL-8 levels at 8 h after the intervention was observed,
in parallel with the presence of phlorotannin metabolites in
plasma and urine samples. A recent study from our group
investigated the influence of a polyphenol-rich intervention on
inflammation as primary outcome. A randomised, double-blind,
placebo-controlled, cross-over acute intervention was con-
ducted, and cytokine levels (IL-8) were measured with the same
ex vivo experimental protocol. The results showed a time-
dependent increase in IL-8 release compared with baseline, in
accordance with our findings. Thus, the postprandial ex vivo
IL-8 production was significantly attenuated by the intervention
compared with the control, with a parallel appearance in the
circulation of polyphenol metabolites. Our trial was a single-
group interventional study primarily designed to investigate the
bioavailability of seaweed phlorotannins: however, on the basis
of this preliminary indication on their anti-inflammatory
potential, not sufficient to draw any conclusion, a chronic
placebo-controlled intervention has been conducted to inves-
tigate the anti-inflammatory effect in deeper detail.
The main limitations of this study arise from the phlorotannin

complexity and lack of commercially available analytical stan-
dards, potentially leading to possible quantification inaccuracy as
phloroglucinol equivalents. The lack of analytical standards also
implies a limited capability for method development, especially
for the analysis of plasma, urine and digested materials. In future,
the availability of standards could allow a higher degree of
method optimisation and the development of specific solid-
phase ion procedures for sample clean-up and concentration.
The development of more recently explored analytical appli-

cations to phlorotannins, such as hydrophilic interaction liquid
chromatography(32) and NMR(35), could facilitate the develop-
ment of more suitable protocols that could lead to full identifi-
cation of metabolites and improvements in phlorotannin
metabolite quantification. In addition, the bioacessibility of
polyphenols in the form of a capsule/extract might differ greatly
from the bioacessibility of the same compounds in a food
matrix(62). Future work will be needed to determine the potential
effects on bioavailability of different food matrices and also any
effects of cooking and/or processing.
Nevertheless, the present work has for the first time started to

shed light on the role of colonic biotransformation on phlor-
otannin bioavailability, and its implication for their health
benefits in vivo. Our results provide a basis for further investi-
gating the seaweed-derived bioactive components in the body
after ingestion; this information is necessary to understand their
mechanism of action in vivo.
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