University of
<> Reading

Community Intercomparison Suite (CIS)
v1.4.0: a tool for intercomparing models
and observations

Article
Published Version
Creative Commons: Attribution 3.0 (CC-BY)

Open access

Watson-Parris, D., Schutgens, N., Cook, N., Kipling, Z.,
Kershaw, P., Gryspeerdt, E., Lawrence, B. and Stier, P. (2016)
Community Intercomparison Suite (CIS) v1.4.0: a tool for
intercomparing models and observations. Geoscientific Model
Development, 9 (9). pp. 3093-3110. ISSN 1991-9603 doi:
https://doi.org/10.5194/gmd-9-3093-2016 Available at
http://centaur.reading.ac.uk/66679/

It is advisable to refer to the publisher’s version if you intend to cite from the

work.
Published version at: http://www.geosci-model-dev.net/9/3093/2016/

To link to this article DOI: http://dx.doi.org/10.5194/gmd-9-3093-2016

Publisher: European Geosciences Union

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/licence
http://www.reading.ac.uk/centaur

University of
<> Reading
CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

Geosci. Model Dev., 9, 3093-3110, 2016
www.geosci-model-dev.net/9/3093/2016/
doi:10.5194/gmd-9-3093-2016

© Author(s) 2016. CC Attribution 3.0 License.

Community Intercomparison Suite (CIS) v1.4.0: a tool for
intercomparing models and observations

Duncan Watson-Parris'2, Nick Schutgens?, Nicholas Cook!, Zak Kipling?, Philip Kershaw>*, Edward Gryspeerdt’,

Bryan Lawrence>®’, and Philip Stier?
ITessella Ltd, Abingdon, Oxford, UK

2 Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
3Centre for Environmental Data Analysis, STFC Rutherford Appleton Laboratory, Didcot, UK

4National Centre for Earth Observation, Leicester, UK

SInstitute for Meteorology, Universitit Leipzig, Leipzig, Germany
®Department of Meteorology, University of Reading, Reading, UK

TNational Centre for Atmospheric Science, Leeds, UK

Correspondence to: Duncan Watson-Parris (duncan.watson-parris @physics.ox.ac.uk)

Received: 4 February 2016 — Published in Geosci. Model Dev. Discuss.: 15 March 2016
Revised: 11 August 2016 — Accepted: 15 August 2016 — Published: 6 September 2016

Abstract. The Community Intercomparison Suite (CIS) is
an easy-to-use command-line tool which has been devel-
oped to allow the straightforward intercomparison of re-
mote sensing, in situ and model data. While there are a
number of tools available for working with climate model
data, the large diversity of sources (and formats) of remote
sensing and in situ measurements necessitated a novel soft-
ware solution. Developed by a professional software com-
pany, CIS supports a large number of gridded and ungrid-
ded data sources “out-of-the-box”, including climate model
output in NetCDF or the UK Met Office pp file format,
CloudSat, CALIOP (Cloud-Aerosol Lidar with Orthogonal
Polarization), MODIS (MODerate resolution Imaging Spec-
troradiometer), Cloud and Aerosol CCI (Climate Change Ini-
tiative) level 2 satellite data and a number of in situ air-
craft and ground station data sets. The open-source architec-
ture also supports user-defined plugins to allow many other
sources to be easily added. Many of the key operations re-
quired when comparing heterogenous data sets are provided
by CIS, including subsetting, aggregating, collocating and
plotting the data. Output data are written to CF-compliant
NetCDF files to ensure interoperability with other tools and
systems. The latest documentation, including a user manual
and installation instructions, can be found on our website
(http://cistools.net). Here, we describe the need which this
tool fulfils, followed by descriptions of its main functionality

(as at version 1.4.0) and plugin architecture which make it
unique in the field.

1 Introduction

Modern global climate models (GCMs) produce huge
amounts of prognostic and diagnostic data covering every
aspect of the system being modelled. The upcoming CMIP6
(Coupled Model Intercomparison Project Phase 6) is likely to
produce as much as 40 Pb of data alone (Eyring et al., 2016a).

Analysis of the data from these models forms the corner-
stone of the IPCC (Stocker et al., 2013) (Intergovernmental
Panel on Climate Change) and subsequent UNFCCC (United
Nations Framework Convention on Climate Change) reports
on anthropogenic climate change, but there exist large dif-
ferences across the models in a number of key climate vari-
ables (e.g. Boucher et al., 2013; Suzuki et al., 2011). In or-
der to understand these differences and improve the models,
the model data must be compared not only with each other
— which is relatively straightforward for large intercompari-
son projects, such as CMIP, which provide the model data in
a common data standard — but also with observational data,
which can be much harder.

Observational data can also be extremely voluminous. For
example, modern Earth Observation (EO) satellites can eas-

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://cistools.net

3094

ily produce petabytes of data over their lifetime. There are
dozens of EO satellites being operated by the National Aero-
nautics and Space Administration (NASA), the European
Space Agency (ESA) and other international space agencies.
While modern missions use common data standards, there
are many valuable data sets stored in unique formats and
structures which were designed when storage was at more of
a premium, and so are not particularly user-friendly. Ground-
based EO sites and in situ measurement of atmospheric prop-
erties are also areas where many different groups and organi-
zations produce data in a wide variety of formats.

The process of model evaluation typically involves a rel-
atively small set of common operations on the data: read-
ing, subsetting, aggregating, analysis and plotting. Many of
these operations are currently written as a bespoke analy-
sis for each type of data being compared. This is time con-
suming and error prone. While a number of tools currently
support the comparison and analysis of model data in stan-
dard formats, such as NetCDF Operators (NCO) (Zender,
2008), Climate Data Operators (CDO) (http://www.mpimet.
mpg.de/cdo), Iris (Met Office, 2016) and CF-Python (http:
/lcfpython.bitbucket.org) there are few, if any, which sup-
port raw observational data. A tool described by Langerock
et al. (2015) provides some of this functionality for a specific
set of observational data, ESMValTool provides a framework
for comparison against standardized observations (Eyring
et al., 2016b) and Program for Climate Model Diagnosis
and Intercomparison (PCMDI) Metrics Package (PMP) pro-
vides some comparisons with globally averaged observa-
tions (Gleckler et al., 2016). There are also some websites
which allow a pre-defined analysis of specific data sets (for
example, Giovani: http://giovanni.sci.gsfc.nasa.gov), but do
not give the flexibility of a tool which can be installed and run
locally. The Community Intercomparison Suite (CIS) seeks
to fill this gap: the primary goal of CIS is to provide a single,
flexible tool for the quantitative and qualitative intercompar-
ison of remote-sensing, in situ and model data.

Comparing global model data with observations that can
be considered point measurements may introduce substan-
tial errors in any analysis (Schutgens et al., 2016a). Aggre-
gation of observations may reduce these errors and facili-
tate intercomparisons of model data and (now gridded) ob-
servations (see Appendix A for a definition of “aggregated
data” and other terms). Aggregated observational data are
often available (e.g. from the Obs4MIPs project, Teixeira
et al., 2014). However, errors may be introduced through
sub-optimal aggregation procedures, when using sparse data
sets (Levy et al., 2009) or when aggregating over long time
periods (Schutgens et al., 2016b). A comparison of data that
are most similar in their spatio-temporal sampling can be
shown to provide improved confidence when constraining
aerosol processes in climate models (Kipling et al., 2013).
Thus, there is a need for a flexible aggregation and collo-
cation tool for both gridded and ungridded data that allows

Geosci. Model Dev., 9, 3093-3110, 2016

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

straightforward point-wise comparison between a variety of
data formats.

In this paper, we first describe the development of this new
tool (Sect. 2) and the architecture designed to allow maxi-
mum flexibility in the data types and functionality supported
(Sect. 3). Then, tables of the specific types of data CIS sup-
ports and detailed descriptions of the operations which can
be performed on them are provided (Sect. 4), followed by an
example of the scientific workflow which this tool enables
(Sect. 5). Information about downloading and installing CIS
or accessing the source code can be found in Sect. 7. A brief
description of the plugin architecture and the steps needed
for a user to create their own plugins are provided in Ap-
pendix B and a table of definitions in Appendix A. A refer-
ence card providing a one-page summary of the various CIS
commands is also available as a supplement to this paper.

2 Development

CIS has been developed by a professional software devel-
opment consultancy (Tessella Ltd.) working closely with the
Centre for Environmental Data Analysis (CEDA) and the De-
partment of Physics at the University of Oxford to ensure a
high quality tool which meets the need of a broad range of
users. The use of modern development practices such as test-
driven development (TDD) (Beck, 2003) and continuous in-
tegration (CI) (Beck, 2000) has ensured that each component
is automatically tested against hundreds of unit tests before
it is deployed. These test each individual function within the
code to ensure defects are kept to a minimum and particu-
larly reduce regressions (defects introduced into code which
was previously working).

The development was also carried out in an agile fashion,
specifically using Scrum (Schwaber and Beedle, 2001). In
this approach, regular working releases were made at the end
of 2-week implementation “sprints”, each delivering a priori-
tized set of fully functioning requirements adding immediate
value to the users (scientists). The developers were supported
by a subject matter expert (SME) who worked with the scien-
tists to define and prioritize each area of development (user
stories), a dedicated testing specialist who was responsible
for defining and performing independent testing and a project
manager (PM) who oversaw progress and managed the over-
all development process from the Tessella perspective.

CIS is completely written in Python, which provides a
good balance between speed, versatility and maintainabil-
ity, and allows easy installation across many platforms (see
Sect. 7 for more details). Python also has many open-source
libraries available to build on and, in particular, CIS makes
heavy use of the Iris (Met Office, 2016) library for its inter-
nal representation of gridded data types. Many of the more
numerically intensive operations within CIS are performed
by Python libraries with interfaces to C implementations to
keep the runtime as fast as possible.

www.geosci-model-dev.net/9/3093/2016/

http://www.mpimet.mpg.de/cdo
http://www.mpimet.mpg.de/cdo
http://cfpython.bitbucket.org
http://cfpython.bitbucket.org
http://giovanni.sci.gsfc.nasa.gov

D. Watson-Parris et al.: Community Intercomparison Suite (CIS) 3095

Much consideration was given to the need for paralleliza-
tion and optimization of the functions within CIS, particu-
larly around collocation where long runtimes for large data
sets can be expected. Significant development time was de-
voted to optimizations in these functions and many of the
runtimes now scale very well with size of the data. However,
we deemed it a lower priority to devote development time
to parallelizing these operations, as they are usually trivially
parallelized by the user by performing the operation on each
input file separately across the available compute nodes (us-
ing a batch script, for example, and subsetting the data first
as needed). Such a script is pre-installed alongside CIS on
the UK JASMIN big-data analysis cluster (Lawrence et al.,
2012) and could be easily ported to other clusters.

All of the source code for CIS is freely available under the
GNU Lesser General Public License v3, which is expected
to promote widespread uptake of the tool and also encourage
wider collaboration in its development.

3 Extensible architecture

One of the key features of CIS is the flexible and extensible
architecture. From the outset it was obvious that there was no
way for a single, unextendable, tool to provide compatibility
with the wide variety of data sources available and support all
of the various analyses which would be performed on them.
A modular design was therefore incorporated, which allowed
user-defined components to be swapped in as easily as pos-
sible.

At the heart of the design is the CommonData interface
layer which allows each of the analysis routines and com-
mands to work independently of the actual data being pro-
vided, as shown in Fig. 1. The top row of modules in this fig-
ure represents the low-level reading routines which are used
for actually reading and writing data to the different data for-
mats. The orange components are the data products which
interpret the data for CIS and can be swapped out by the user
(using plugins, as described in Sect. B1). The CommonData
block represents the internal CIS data structure which ab-
stracts the CIS functionality (shown in the bottom row) from
the different data formats above. Specifically, CommonData
is an abstract base class (a class defines an object in object
oriented programming) which defines a number of methods
which the analysis routines can assume will exist regardless
of the underlying data. The two main concrete types of Com-
monData are GriddedData and UngriddedData, which repre-
sent gridded and ungridded data, respectively.

There are an extensive number of data sources which are
supported by CIS, which can be broadly categorized as ei-
ther gridded or ungridded data. Gridded data are defined as
any regularly gridded data set for which points can be in-
dexed using (i, j, k,...) where i, j and k are integer indexes
on a set of orthogonal coordinates (see Fig. 2a). Here we
define the gridded data values as an n-dimensional matrix

www.geosci-model-dev.net/9/3093/2016/

Low-level o - o .
data reading

Interface Iayer{ OITMmorivdic
Analysis routines Subsetting Aggregation @ Collocation Statistics Plotting
and commands

Figure 1. An illustration of the architecture of CIS demonstrating
the different components in the modular design.

data

G and n coordinate vectors x, y,..., which we will use in
the algorithmic descriptions of the operations in Sect. 4. Un-
gridded data are anything which does not meet this criteria
and, in general, it is assumed each (x, y, z) point is indepen-
dent of every other point (Fig. 2b). Then, we can define a
data value u; and set of coordinates r; at each point j. Note
that although this independence may not strictly be true for
some of the data sources (for example, satellite mounted li-
dar instruments where many altitude points will be present
for each latitude/longitude point) this strict definition applies
within CIS. This allows significant optimizations to be made
for operations on gridded data and flexibility in dealing with
ungridded data, at the expense of performance for some op-
erations on those ungridded data sets which do have some
structure.

In CIS, the gridded data type is really just a thin wrapper
around the cube provided by the Iris (Met Office, 2016) li-
brary. All of the ungridded routines are however bespoke and
include a number of useful features (besides the main anal-
ysis routines) including multi-file and multi-variable opera-
tions, hierarchical NetCDF file reading and automatic recog-
nition of file types. The ungridded data are stored internally
as one NumPy (van der Walt et al., 2011) array of values
and a set of associated metadata. There is one such structure
for the data values themselves and each of the latitude, lon-
gitude, time and altitude coordinates (as needed). The data
array may take on any shape but all of the corresponding co-
ordinate arrays (lat, long, etc. as shown in Fig. 2b) must have
the same shape.

4 Core functionality

In this section, we describe the core functionality of CIS.
Each sub-section gives a brief description of an operation,
the command line syntax and expected output, a formal al-
gorithmic description of the operation (where appropriate)
and a short example.

In order to keep the formal algorithmic descriptions con-
cise without any loss of accuracy, we adopt a mixture of set
and vector notation and define that notation here. It is useful

Geosci. Model Dev., 9, 3093-3110, 2016

3096

(a) Data
Gijk

Longitude
i

Time
j

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

(b)

i

Data Time Latitude Longnude

Latitude
k

Figure 2. (a) An illustration of the design of the gridded data objects used internally by CIS — based heavily on the Iris cube. The n-
dimensional data array G is accompanied by n one-dimensional coordinate arrays. Note that hybrid height and pressure coordinates can also
be created and used as needed. (b) An illustration of the design of ungridded data objects used internally by CIS. All j points are assumed to
be independent of each other. The data and associated coordinates are represented as a series of one-dimensional arrays.

to define vector inequalities as
ifx<ythenx; <y;foralli =1,...,n, (1)

where < is the standard (single-value) inequality and we ap-
ply it here to all values in the vector; similar identities can
be defined for the other inequalities. We use & to denote an
empty set, ¥ should be read as “for all”, : as “such that” and v
as logical “and”. Some operations involve the use of a kernel
to reduce a set to a single value, we denote these as .

Although data reading is something a user is rarely aware
of when using CIS, the flexibility offered in this regard is
an important distinguishing feature. All of the functions de-
scribed in the following sections are possible with any of
the supported data sets and any data sets supported by user-
written plugins (as described in Sect. B1).

A list of the ungridded data sources supported by
CIS out-of-the-box is presented in Table 1 and grid-
ded data sources in Table 2. As CIS uses Iris for
gridded data support, any climate and forecast (CF)
compliant (http://cfconventions.org/Data/cf-conventions/
cf-conventions- 1.6/build/cf-conventions.pdf) NetCDF4 data
can be read in with CIS, as well as the other formats listed.

For all supported data sets any missing_value and
_FillvValue attributes (or the equivalent for that data
set) are automatically taken into account, as well as any
valid_min, valid_max and valid_range attributes
to mask out invalid data values. Scaling factors and offsets
are also applied as appropriate for each data set.

4.1 Subsetting

Subsetting allows the reduction of data by extracting vari-
ables and restricting them to user-specified ranges in one or
more coordinates. Both gridded and ungridded data sets can
be reduced in size by specifying the range over which the
output data should be included, and points outside that range
are removed.

Geosci. Model Dev., 9, 3093-3110, 2016

The basic structure of the subset command is

$ cis subset <datagroup> <limits>
[-o output_file]

where “subset” is the sub-command to invoke in “cis” and
the “output_file” is the (optional) filename to be used for out-
putting the result. If none is specified then a default is used.
The two main arguments “datagroup” and “limits” are more
complex and will be discussed below.

The datagroup is a common concept across the various
CIS commands. It represents a collection of variables (from
a collection of files) sharing the same spatio-temporal coor-
dinates, which takes the form

variables:filenames|[:product=...]

Here, the “variables” element specifies the variables to be
operated on and can be a single variable, a comma-separated
list, a wildcarded variable name or any combination thereof.
The “filenames” element specifies the files to read the vari-
ables from and can be a single filename, a directory of files
to read, a comma-separated list of files or directories, wild-
carded filenames or any combination thereof. The optional
“product” element can be used to manually specify the par-
ticular product to use for reading this collection of data. See
Tables 1 and 2 for a full list of initially available product
names.

The “limits” are a comma-separated list of the upper
and lower bounds to be applied to specific dimensions of
the data. The dimensions may be identified using their
variable names (e.g. latitude) or by choosing a shorthand
from “x”, “y”, “z”, “p” or “t” which refer to longitude,
latitude, altitude, pressure and time, respectively. The
limits are then defined simply using square brackets, e.g.
x =[—10,10]. The use of square brackets is a useful
reminder that the intervals are inclusive, as discussed below.
A time dimension can be specified as an explicit window
as t=[2010-01-01T00,2010-12-31T23:59:59]

www.geosci-model-dev.net/9/3093/2016/

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.6/build/cf-conventions.pdf
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.6/build/cf-conventions.pdf

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

3097

Table 1. A list of the ungridded data sources supported by CIS 1.4.0. The file signature is used by CIS to automatically determine the correct
product to use for reading a particular set of data files, although this can easily be overridden by the user. (Internally these signatures are
represented as Python regular expressions; here, they are shown as standard wildcards for ease of reading.). The Global Aerosol Synthesis
and Science Project (GASSP) data sets are large collections of harmonized in situ aerosol observations from groups around the world

(http://gassp.org.uk).

Data set Product name Type File signature

MODIS L2 MODIS_L2 Satellite *MYDO06_L2*.hdf, *MODO06_L2%*.hdf, *MYDO04_L2*.hdf,
MODO04_L2.hdf, *MYDATML2.*.hdf, *“MODATML2*.hdf

Aerosol CCI Aerosol_CCI Satellite *ESACCI*AEROSOL*

Cloud CCI Cloud_CCI Satellite *ESACCI*CLOUD*

CALIOP L1 Caliop_L1 Satellite CAL_LID_L1-ValStagel-V3*.hdf

CALIOP L2 Caliop_L2 Satellite CAL_LID_L2_05kmAPro-Prov-V3*.hdf

CloudSat CloudSat Satellite *_CS_*GRANULE*.hdf

NCAR-RAF NCAR_NetCDF_RAF Aircraft *nc containing the attribute Conventions with the value NCAR-
RAF/nimbus

GASSP NCAR_NetCDF_RAF Aircraft *.nc containing the attribute GASSP_Version

GASSP NCAR_NetCDF_RAF Ship *.nc containing the attribute GASSP_Version, with no altitude

GASSP NCAR_NetCDF_RAF Ground station *nc containing the attribute GASSP_Version, with attributes Sta-
tion_Lat, Station_Lon and Station_Altitude

AERONET AERONET Ground stations *lev20

CSV data points ~ ASCII_Hyperpoints N/A * Xt

CIS ungridded cis CIS output *.nc containing a source attribute which starts with “CIS”

Table 2. A list of the gridded data sources supported by CIS 1.4.0. The file signature is used by CIS to automatically determine the correct
product to use for reading a particular set of data files. This can always be overridden by the user.

Data set Product name Type

File signature

Net_CDF Gridded Data NetCDF_Gridded

MODIS_L3
HadGEM_PP

MODIS L3 daily and 8 day Satellite

UK Met Office pp data

Any CF-NetCDF4-
compliant gridded data

Gridded model data

*.nc (this is the default for NetCDF Files that do not match
any other signature)
MYDO08_D3 hdf, *MODO08_D3*.hdf, *MODO08_E3* hdf

*.pp

or more simply as a single value: t=[2010]. In this case,
the value is interpreted as both the start and the end of the
window and all points which fall within 2010 would be
included. For all other dimensions, the values are compared
directly with those from the data file (although these can be
converted to standard units during reading if required).

The detailed algorithm used for subsetting ungridded data
is outlined in Algorithm 1 and for gridded data in Algo-
rithm 2. The algorithms use a mix of pseudo-code and mathe-
matical notation to try to present the operations in a clear but
accurate way. The operations themselves will involve other
checks and optimizations not shown in the algorithms, but
the code is available for those interested in its exact work-
ings. See Sect. 3 for definitions of the gridded and ungridded
entities.

For example, the following command would take the vari-
able “aod550” from the file “satellite_data.hdf”
and output the data contained in a lat/long region around
North America for the 4 February 2010 to a file called
“subset_of_satelite_data.nc™

www.geosci-model-dev.net/9/3093/2016/

$ cis subset aod550:satellite_data.hdf
x=[-170,-60],y=[30,85],t=[2010-02-04]
-0 subset_of_ satelite_data

The output file is stored as a CF-compliant NetCDF4 file.

4.2 Aggregation

CIS also has the ability to aggregate both gridded and ungrid-
ded data along one or more coordinates. For example, it can
aggregate a model data set over the longitude coordinate to
produce a zonal mean or aggregate satellite imager data onto
a 5° lat/long grid.

The aggregation command has the following syntax:

$ cis aggregate <datagroup>[:options]
<grid> [-o0 outputfile]

where aggregate is the sub-command; datagroup specifies the
variables and files to be aggregated (see Sect. 4.1 for more
details); the options define a number of choices available for
fine tuning the aggregation which are detailed below and grid
defines the grid which the data should be aggregated onto.

Geosci. Model Dev., 9, 3093-3110, 2016

http://gassp.org.uk

3098 D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

Algorithm 1 Subset an ungridded dataset given lower and
upper bounds (a and b respectively) and return the subset as
0.

INITIALIZE 0 =

for j=1,....J do
0j =u.,~ ifagrj gb
end for

The optional arguments should be given as
keyword=value pairs in a comma-separated list.
The only currently available option (other than the “product”
option described in the datagroup summary above) is the
“kernel” option. This allows the user to specify the exact
aggregation kernel to use. If not specified, the default is
“moments” which returns the number of points in each
grid cell, their mean value and the standard deviation in
that mean. Other options include “max” and “min” which
return the maximum and minimum value in each grid cell,
respectively.

The mandatory “grid” argument specifies the coordinates
to aggregate over. The detail of this argument and the inter-
nal algorithms applied in each case are quite different when
dealing with gridded and ungridded data so they will be de-
scribed separately below. This difference arises primarily be-
cause gridded data can be completely averaged over one or
more dimensions and also often require area weights to be
taken into account.

4.2.1 Ungridded aggregation

In the case of the aggregation of ungridded data, the manda-
tory “grid” argument specifies the structure of the binning
to be performed for each coordinate. The user can spec-
ify the start, end and step size of those bins in the form
coordinate=[start,end, step]. The step may be
missed, in which case the bin will span the whole range
given. Coordinates may be identified using their variable

[T LT BT LA TS]

names (e.g. “latitude”) or by choosing from “x”, “y”, “t”, “z”,
“p” which refer to longitude, latitude, time, altitude and pres-
sure, respectively. Multiple coordinates can be aggregated
over, in which case they should be separated by commas.
The output of an aggregation is always regularly gridded
data, so CIS does not currently support the aggregation over
only some coordinates. If a coordinate is not specified (or
is specified, but without a step size) then that coordinate is
completely collapsed. That is, we average over its whole
range, so that the data are no longer a function of that co-
ordinate. Specifically, one of the coordinates of the gridded
output would have a length of one, with bounds reflecting the
maximum and minimum values of the collapsed coordinate.
The algorithm used for the aggregation of ungridded data
is identical to ungridded to gridded collocation (as this is es-

Geosci. Model Deyv., 9, 3093-3110, 2016

Algorithm 2 Subsetting a gridded dataset G. Here we de-
fine the algorithm for a two-dimensional dataset, although it
can trivially be extended to higher dimensions. Given lower
and upper bounds, a and b respectively for each dimension,
return the subset as O.

if cells have upper and lower bounds x* and x' respectively then
0= (GjVi,j: (ax <x{'Vxl <bo)Vay <4Vl <by)
else
O ={G;;Vi,j:(ax <xj <bx)V(ay <y; <by)}
end if

sentially a collocation operation with the grid defined by the
user) described in Algorithm 4.

An example of the aggregation of some satellite data
which contain latitude, longitude and time coordinates is
shown below. In this case, we explicitly provide a 1° x 1°
latitude and longitude grid and implicitly average over all
time values.

$ cis aggregate AOT500:
satellite_data.nc: kernel=mean
x=[-180,180,1]1,y=[-90,90,1]

-0 agg-out.nc

4.2.2 Gridded aggregation

For gridded data, the binning described above is not currently
available; this is partly because there are cases where it is not
clear how to apply area weighting. (The user would receive
the following error message if they tried: “Aggregation using
partial collapse of coordinates is not supported for Gridded-
Data”.) The user is able to perform a complete collapse of
any coordinate however, simply by providing the name of
the coordinate(s) as a comma-separated list; e.g. “x,y” will
aggregate data completely over both latitude and longitude,
but not any other coordinates present in the file.

The algorithm used for this collapse of gridded di-
mensions is more straightforward than that of the ungrid-
ded case. First, the area weights for each cell are calcu-
lated and then the dimensions to be operated on are av-
eraged over simultaneously. That is, the different moments
of the data in all collapsed dimensions are calculated to-
gether, rather than independently (using the Iris routines
described here: http://scitools.org.uk/iris/docs/latest/iris/iris/
cube.html#iris.cube.Cube.collapsed), as values such as the
standard deviation are non-commuting.

A full example of gridded aggregation, taking the time and
zonal average of total precipitation from the HadGEM3 (He-
witt et al., 2011) GCM is shown below. A plot of the resulting
data is shown in Fig. 3.

$ cis aggregate rsutcs:model_data.nc:
kernel=mean t,x -o agg-out.nc

www.geosci-model-dev.net/9/3093/2016/

http://scitools.org.uk/iris/docs/latest/iris/iris/cube.html#iris.cube.Cube.collapsed
http://scitools.org.uk/iris/docs/latest/iris/iris/cube.html#iris.cube.Cube.collapsed

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

le—-4 Zonal mean of total precipitation rate

0.8}
"‘m
t 06}
g
[
S
g
s 041
S
[
a

0.2}

-90 -60 -30 0 30 60 90

Latitude (degrees)

Figure 3. A plot of the zonal average of global rainfall, demonstrat-
ing the simple aggregation of global model outputs using CIS. See
the text for the exact command used to produce this output.

4.3 Collocation

Point-wise quantitative inter-comparisons require the data to
be mapped onto a common set of coordinates before anal-
ysis, and CIS provides a number of straightforward ways
of doing this. One of the key features of CIS is the ability
to collocate one or more arbitrary data sets onto a common
set of coordinates, for example, collocating aircraft data onto
hybrid-sigma model levels or satellite data with ground sta-
tion data. The options available during collocation depend on
the types of data being analysed as demonstrated in Table 3.
The points which are being mapped on to are referred to as
sample points, and the points which are to be mapped are
referred to as data points.
The basic structure of the collocation command is

$ cis col <datagroup> <samplegroup>
[-0 outputfile]

where the datagroup specifies the data variables and files
to read as described above. The “samplegroup” is analogous
to a datagroup, except in this case the data being specified
are that of the sample data, that is, the points which the data
should be collocated onto.

The samplegroup has a slightly different format to the
datagroup, as the sample variable is optional, and all of the
collocation options are specified within this construct. It is of
the format filename:options. The “filename” is one or
more filenames containing the points to collocate onto. The
available options (which should be specified in a comma-
separated list) are listed below:

— variable is used to specify which variable’s coor-
dinates to use for collocation. This is useful if a file
contains multiple coordinate systems (common in some

www.geosci-model-dev.net/9/3093/2016/

3099

model output). Note, that if a variable is specified, miss-
ing variable values will not be used as sample points.

— collocator is an optional argument that spec-
ifies the collocation method. Parameters for the
collocator, if any, are placed in square brack-
ets after the collocator name, for example,
collocator=box[h_sep=1lkm, a_sep=10m].
Here “h_sep” and “a_sep” are parameters which define
the size of the collocation box and stand for horizontal
separation and altitude separation, respectively. Full
details of all of the available parameters can be found in
the documentation. If not specified, a default collocator
is identified for the data/sample combination. The
collocators available, and the one used by default for
each sampling combination of data structures, are laid
out in Table 3.

— kernel is used to specify the kernel to use for colloca-
tion methods that create an intermediate set of points for
further processing, that is “box” and “bin”. The default
kernel in both cases is “moments”. The built-in kernel
methods currently available are summarized in Table 4.

A full example would be:

$ cis col rain:mydata??.x
mysamplefile.nc:collocator=
box[h_sep=50km, t_sep=6000S],
kernel=nn_t -o my_col

There are also many other options and customizations
available. For example, by default all points in the sample
data set are used for the mapping. However, (as CIS provides
the option of selecting a particular variable as the sampling
set) the user is able to disregard all sample points whose val-
ues are masked (whose value is equal to the corresponding
fill_value). The many different options available for colloca-
tion, and each collocator can be found in the user manual (see
http://cis.readthedocs.org/en/stable/collocation.html).

In the following sections, we describe each mode of collo-
cation in more detail, including algorithmic representations
of the operations performed.

4.3.1 Gridded to gridded

For a set of gridded data points which are to be mapped on
to some other gridded sample the operation is essentially a
re-gridding and the user is able to use either linear inter-
polation (lin), where the data values at each sample point
are linearly interpolated across the cell where the sample
point falls; nearest neighbour, for which the data cell near-
est to the sample cell can be uniquely chosen in each dimen-
sion for every point; and box, for which an arbitrary search
area can be manually defined for the sampling using Algo-
rithm 3. The interpolations are carried out using the Iris in-
terpolation routines which are described in detail elsewhere

Geosci. Model Dev., 9, 3093-3110, 2016

http://cis.readthedocs.org/en/stable/collocation.html

3100

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

Table 3. An outline of the permutations of collocations types, as a function of the structure of the data and sampling inputs, the default
in each case is shown in bold. The available kernels are described in Table 4. Each collocation algorithm is described in more detail in

Sects. 4.3.1-4.3.4.

Sample Gridded Ungridded

data

Gridded linear interpolation (lin), linear interpolation (lin),
nearest neighbour (nn), box nearest neighbour (nn)

Ungridded bin, box box

Table 4. A list of the different kernels available. Note that not all of the kernels are compatible with all of the collocators.

Kernel Description Compatible collocators
mean The arithmetic mean of the sampled values: y = %Z;‘Zl Vi bin, box
stddev The corrected sample standard deviation of the mean: bin, box
oy =7 Zi i —
moments This kernel returns three variables: the number of points in each data bin, box
sampling, their mean value and the standard deviation in that mean
min The lowest of all of the sampled values bin, box
max The highest of all of the sampled values bin, box
nn_horizontal = The value of the data point with the smallest haversine distance from box
the sample point
nn_altitude The value of the data point with the smallest separation in altitude from box
the sample point
nn_pressure The value of the data point with the smallest (relative) separation in box
pressure from the sample point
nn_time The value of the data point with the smallest separation in time from the box

sample point

(see http://scitools.org.uk/iris/docs/latest/iris/iris/cube.html#
iris.cube.Cube.interpolate). Support for an area-conservative
regridding option is planned for a future release.

CIS can also collocate gridded data sets with differing di-
mensionality. Where the sample array has dimensions that
do not exist in the data, those dimensions are ignored for the
purposes of the collocation and will not be present in the out-
put. Where the data have dimensions that do not exist in the
sample array, those dimensions are ignored for the purposes
of the collocation and will be present in the output. There-
fore, the output dimensionality is always the same as that of
the input data, as shown in Fig. 4.

4.3.2 Ungridded to ungridded

CIS is also able to collocate ungridded data. For ungridded to
ungridded collocation the user is able to define a box to con-
strain the data points which should be included for each sam-
ple point. The schematic in Fig. 5 shows this box and its re-
lation to the sample and data points. This box can be defined
as a distance from the sample point in any of time, pressure,
altitude or horizontal (haversine or great-circle) distance. In
general, there may be many data points selected in this box.
The user also has control over the kernel to be applied to

Geosci. Model Dev., 9, 3093-3110, 2016

these data values. The default kernel, if none is specified, is
the “moments” kernel, which returns the number of points
selected, their mean value and the standard deviation on that
mean as separate NetCDF variables in the output. Otherwise,
the user can select only the mean or the nearest point in either
time, altitude, pressure or horizontal distance. In this way, the
user is able to find, for example, the nearest point in altitude
within a set horizontal separation cut-off.

The specific process is outlined in Algorithm 3. For sim-
plicity, we have assumed the dimensionality of the data sets
is the same; in reality this need not be the case. CIS will
collocate two data sets as long as both have the coordinates
necessary to perform the constraint and kernel operations.
Note also that this algorithm only outlines the basic princi-
ples of the operations of the code; a number of optimizations
are used in the code itself.

One particular optimization involves the use of kd trees
(Bentley, 1975) for the efficient comparison of distances. Our
implementation is an extension of the SciPy algorithm (Jones
et al., 2001), which uses the sliding midpoint rule to ensure
a well-balanced tree (Maneewongvatana and Mount, 1999),
to enable comparison of haversine distances. This provides a
significant performance improvement on the naive point-by-

www.geosci-model-dev.net/9/3093/2016/

http://scitools.org.uk/iris/docs/latest/iris/iris/cube.html#iris.cube.Cube.interpolate
http://scitools.org.uk/iris/docs/latest/iris/iris/cube.html#iris.cube.Cube.interpolate

D. Watson-Parris et al.: Community Intercomparison Suite (CIS) 3101

Data Sample

Latitude Latitude

e

Longitude Longitude

Latitude r\ Latitude
/@ B

Longitude Longitude

Qutput

Latitude

Longitude

Latitude

Longitude

Figure 4. This schematic shows the collocation of gridded data onto a gridded sampling with differing dimensionality. The output dimen-

sionality is always the same as that of the input data.

Latitude
‘ l) © Source data
] 2 Sample data
) O —— User-defined bo:
Time
Longitude

Figure 5. This schematic shows the components involved in the col-
location of ungridded data onto an ungridded sampling. The user-
defined box around each sampling point provides a selection of data
points which are passed to the kernel. Note that the resampled data
points lie exactly on top of the sample points (which are not visible).

point comparison (which is shown in Algorithm 3, for sim-
plicity).

4.3.3 Ungridded to gridded

For ungridded data points which are mapped onto a gridded
sample, there are two options available. Either the ungridded
data points can be binned into the bounds defined by each
cell of the sample grid using the bin option, or the points
can be constrained to an arbitrary area centred on the grid-
ded sample point using the box option as described above.
Either way, the moments kernel is used by default to return
the number of points in each bin or box, the mean of their
values and the standard deviation in the mean.

www.geosci-model-dev.net/9/3093/2016/

Algorithm 3 The ‘box’ collocation of an ungridded dataset
onto a sampling set of coordinates s; of K points. By def-
inition the output o is defined on the same spatio-temporal
sampling as s. The distance metrics D are defined for each
coordinate and compared with the user defined maximum a
(the edge of the ‘box’).

INITIALIZE 0 =

for k=1,... K do
0 ={u;Vj:D(sg,rj) <a}
o =K(Q)

end for

Algorithm 4 describes this process in more detail. As with
Algorithm 3, we show here the operations performed, but not
the exact code-path. In reality, a number of optimizations are
made to ensure efficient calculations.

4.3.4 Gridded to ungridded

When mapping gridded data onto ungridded sample points,
the options available are for the nearest neighbour value or a
linearly interpolated value.

The methods used to perform the interpolation are pro-
vided by the SciPy library (Jones et al., 2001), although CIS
provides extended functionality by allowing users to interpo-
late over hybrid pressure or altitude coordinates as needed.
CIS first interpolates over all coordinates other than hybrid
altitude or pressure, then an interpolation in the hybrid coor-
dinate is performed (see Fig. 6). CIS also caches the inter-
polation weights and indices so that collocation over multi-

Geosci. Model Dev., 9, 3093-3110, 2016

3102

Altitude Altitude
N

»

O
1
1
1
1
¥

—

Latitude

Figure 6. This schematic shows the collocation of gridded data onto
an ungridded sampling where the altitude component of the data is
defined on a hybrid height grid. CIS will first collocate the data
in the coordinate dimensions (latitude, longitude, etc.) to extract a
single-altitude column and then perform a second interpolation on
the altitude coordinate.

Algorithm 4 The ‘bin’ collocation of an ungridded dataset
onto a gridded sample set of M multi-dimensional cells, as
defined by the input file. Upper and lower bounds for each of
the cells of the dataset (b and a respectively) are automati-
cally deduced if not present in the data.

INITIALIZE O = ¢

for m=1,...,.M do
Q={u;Vj:am <=r; <by }
Om =K(Q)

end for

ple variables with the same spatio-temporal coordinates only
takes roughly as long as one variable.

4.4 Plotting

CIS also includes a comprehensive set of plotting capabili-
ties, allowing the analysis and comparison of the whole vari-
ety of data which can be read. This includes plots of aircraft
flight tracks (see, e.g. Fig. 7) and satellite imagers (Fig. 8).
It also allows the plotting of heat maps for gridded data as
shown in the annual averages of aerosol optical thickness
(AOT) plotted in Fig. 10. It also allows more detailed analy-
sis of combined data sets, for example, by plotting collocated
variables against each other as a scatter plot, and even as a 2-
D histogram, for highlighting the distributions when there are
many thousands of points, such as in Fig. 9.

The plotting output is highly customizable, with more
than 35 different options available for specifying everything
from the axes labels, to the colour of the coastlines. The
user is also able to output the plots directly to screen for
interactive visualization, including zooming and panning,
or straight to image file (including .png, .jpg, .eps or .pdf)
for publication-ready plots. A full description of the plotting
syntax and available options is provided in the user man-
ual (http://cis.readthedocs.org/en/stable/plotting.html)

Geosci. Model Dev., 9, 3093-3110, 2016

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

Ambient temperature, reference

12000 |
10 000 | 1 [§20
10
0
< 8000 | N n ﬂ 1 110
kol I-\ I-\ -20 ¢
3 | B
£ 6000 13
< —40
-50
4000 4 1 -60
-70
2000 v U |
0 . L . _ . .

24 30 36 42 48 54 60
Latitude (degrees north)

Figure 7. An example scatter plot from a particular aircraft mea-
surement of ambient temperature as a function of latitude (x axis)
and altitude (y axis) produced directly by CIS. Note the representa-
tion of temperature as the colour of the scatter points.

along with an extended gallery of example plots
(http://cis.readthedocs.io/en/stable/gallery.html).

4.5 Analysis

In addition to standard analysis options as described above,
CIS allows general arithmetic operations to be performed be-
tween different variables using the “eval” command. The two
variables must be on the same spatio-temporal sampling, CIS
will check that the data have the same dimensions but not that
the points correspond to the same sampling. There are limit-
less possibilities, but it enables, for example, the calculation
of the difference between two collocated variables as demon-
strated in Fig. 10. It also allows users to easily create a mask
for a data set, for example, masking all of the mean output
values from a collocation for which fewer than five points
were used.
The basic structure of the eval command is as follows:

$ cis eval <datagroup>...
<units>

<expr>

where datagroup has already been described above (but
variables can optionally take an alias to simplify the expres-
sion), “expr” is the expression to evaluate and “units” is a
string describing the units which should be assigned to the
new variable (and must be CF compliant). Note that it is ac-
tually possible to evaluate any Python expression with this
command, including using the NumPy library, but that for
security (in case CIS is being run as a different user or with
elevated permissions for some reason) many built-in modules
are unavailable.

This flexibility allows for some quite complex analysis.
For example, consider the case of calculating the Angstrém

www.geosci-model-dev.net/9/3093/2016/

http://cis.readthedocs.org/en/stable/plotting.html
http://cis.readthedocs.io/en/stable/gallery.html

D. Watson-Parris et al.: Community Intercomparison Suite (CIS) 3103

Cloud liquid water path

18° N
le
12° N ;.2
2.8
2.4
o NP 20 _
E 16 €
i N
ool 1.2
0.8
0.4
6° S| 0.0
120 s 1 1 1 1 1 1
75°E 80°E 85°E 90°E 95°E 100° E 105° E 110° E

Longitude

Figure 8. An example plot showing the cloud liquid path over the
Indian Ocean just off Malaysia, retrieved by the ESA Cloud CCI
product MODIS Aqua (Hollmann et al., 2013).

exponent () for AOT (1)) as measured by AERONET
(AErosol RObotic NETwork) (http://aeronet.gsfc.nasa.gov/)
at 870 and 440 nm, where « is given by

T)‘l
IOg z

@

o=— .
log %
This can be straightforwardly calculated using the follow-

ing CIS command:

$ cis eval AOT_440,A0T_870:
agoufou.lev20

"(-1) x (numpy.log (AOT_870/A0T_440) /
numpy.log(870./440.))" 1 -o alpha

Note that we have used the NumPy library to calculate the
log of each of the variable arrays and have used the (AOT)
variable names in the file for 7. The resulting « is then out-
put to a CF-compliant NetCDF4 file for further analysis or
processing.

4.6 Statistics

Users are also able to perform a basic statistical analysis on
two variables using the stats command. This command has a
very basic structure:

$ cis stats <datagroup>...

More than one datagroup may be specified, but the total
number of variables declared in all the datagroups must be
two (otherwise CIS will return an error message: “Stats com-
mand requires exactly two variables (n were given)”). Again,
they must both be on the same spatio-temporal sampling
(otherwise CIS will return an error message that “operands
could not be broadcast together”).

www.geosci-model-dev.net/9/3093/2016/

For example, the user might wish to examine the correla-
tion between a model data variable and actual measurements
or (as in the Angstr‘dm exponent example above) the corre-
lation between a calculated and measured variable. The stats
command will calculate the following:

1. the number of data points used in the analysis,

2. the mean and standard deviation of each data set (sepa-
rately),

3. the mean and standard deviation of the absolute differ-
ence (vy — V1),

4. the mean and standard deviation of the relative differ-
ence ((v2 —v1)/v1),

5. the linear Pearson correlation coefficient,
6. the Spearman rank correlation coefficient and

7. the coefficients of linear regression (i.e. v = avy +b),
r value and standard error of the estimate.

Many of these values are calculated using the SciPy li-
brary (Jones et al., 2001). The values are displayed on screen
and can optionally be saved to a NetCDF4 file.

4.7 CIS as a Python library

CIS was primarily designed as a command line tool, however
it is also straightforward to use some of the power of CIS in
other Python modules or scripts. In particular, CIS provides
an interface for reading any of the data sets which CIS sup-
ports (either built-in or through user-supplied plugins). The
data are returned in a well-documented data structure which
provides straightforward access to the raw data, the coordi-
nates and all associated metadata.

Further, because the data structure returned by these rou-
tines are built on NumPy arrays, it is trivial to build these
into existing Python-based data analysis routines. There is
also an option to return the data as a Pandas (http://pandas.
pydata.org) data frame. Pandas is an open-source data anal-
ysis package providing, amongst other things, in-depth and
easy-to-use time series analysis.

Version 2.0 of CIS is planned to include full support for
all of the main CIS commands through the Python interface.
For an outline of our future plans for CIS, please see www.
cistools.net/roadmap.

5 Example scientific workflow

Consider the comparison of a set of AERONET data from
the Agoufou station with model AOT data over a given time
period, for example, in order to help inform and constrain
the approximations and assumptions used in the model. For

Geosci. Model Dev., 9, 3093-3110, 2016

http://aeronet.gsfc.nasa.gov/
http://pandas.pydata.org
http://pandas.pydata.org
www.cistools.net/roadmap
www.cistools.net/roadmap

3104

2.0}

AOT at 440 nm
\

08} . .-

0.4}

0.0 0.2 04 0.6 0.8 1.0 1.2 1.4
440-870 nm Angstrom exponent

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

(b)

—
1]

AOT at 440 nm

o
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
440-870 nm Angstrom exponent

Figure 9. An example of plotting two collocated variables against one another as a scatter plot and also as a 2-D histogram. This can be

useful for inspecting dense scatter plots.

the sake of this example, we use ECHAM6-HAM?2 (first de-
scribed by Stier et al., 2005), but as no scientific interpreta-
tion of the comparison will be sought or offered, the details
of the setup are not important.

As a first step it is often useful to inspect the contents of
a data file to determine which variables it contains. This is
straightforward using the “info”” command:

$ cis info 920801_091128_Agoufou.lev20

This will return a list of the variables in the file, exactly as
they should be passed to other commands. Variables can also
be specified in the usual way to get more detailed information
about any specific variables. Next, we might plot each of the
data sets in order to examine their spatio-temporal extents
and get a feel for the magnitudes of the AOT. We can plot the
AERONET data with the following command:

$ cis plot AOT_675:
920801_091128_Agoufou.lev20

An example output plot is shown in Fig. 11. Note that the
model data can not yet be plotted using CIS, as it is extended
in latitude, longitude and time (if we tried, CIS would return
an error message telling us “Data is not 1D or 2D — can’t plot
it on a map.”). It could however be subsetted or aggregated
to reduce the dimensionality before plotting.

Next, we might decide to subset the AERONET data to
cover the same temporal range as the model data (which is
for 2007):

$ cis subset AOT_675:
920801_091128_Agoufou.lev20
-t=[2007]

In order to quantitatively compare the values, we need to
bring the model data onto the AERONET spatio-temporal
sampling; this is straightforward using the collocation com-
mand:

Geosci. Model Dev., 9, 3093-3110, 2016

$ cis col TAU_2D_670nm:
ECHAMHAM_AQOT550_670.nc
920801_091128_Agoufou.lev20
-0 echam_on_agoufou.nc

Note that this will linearly interpolate model data values in
both space and time by default, though we could have chosen
to use a nearest neighbour algorithm instead. Once we have
two collocated data sets, we can calculate the point-wise dif-
ference between the observations and the collocated model
data using

$ cis eval TAU_2D_670nm:
echam_on_agoufou.nc AOT_675:
920801_091128_Agoufou.lev20
"TAU_2D_670nm - AOT_675"

-0 echam_aeronet_agoufou_diff.nc

We can also use the built-in analysis routines to give us an
overview of the correlations between the two data sets using
the stats command:

S cis stats TAU_2D_670nm:
echam_on_agoufou.nc AOT_675:
920801_091128_Agoufou.lev20

This will print out to screen the mean and standard devia-
tion in each data set, the absolute and relative differences be-
tween them and the linear Pearson and Spearman rank corre-
lation coefficients, as described in Sect. 4.6. Finally, in order
to ensure a robust statistical comparison, we can then aggre-
gate the collocated data in time to provide a yearly average:

$ cis aggregate TAU_2D_670nm:
echam_aeronet_agoufou_diff.nc t
-0 echam_on_agoufou_diff_2007.nc

This provides the average difference of the collocated data
values. Furthermore, because CIS commands can take multi-
ple filenames as input, we can easily extend this process for

www.geosci-model-dev.net/9/3093/2016/

D. Watson-Parris et al.: Community Intercomparison Suite (CIS) 3105

ECHAM AOTS550

° S
180° 120° W 60° W 0® 60°E 120°E 180°
Longitude

000 005 010 015 020 025 030 035 040 045 050

1)

Latitude
=

ECHAM-HadGEM difference AOT550

(b)

HadGEM AOT550

900N
600 N =2,

30°N

Latitude

90° S
180° 1200 W 60°W '
Longitude

0.00 0.05 010 015 020 025 030 035 040 045 050
1)

0°
Longitude

180°

-0.25 -0.20 -0.15 -0.10 =-0.05 0.00 0.05 010 015 020

(1)

Figure 10. A comparison of annual average AOT at 550 nm between ECHAM and HadGEM3 across the globe.

multiple AERONET stations to produce a plot of the annual
difference across the globe. Assuming we have performed
the collocation and differencing over all of the stations, the
aggregation step above is only slightly changed:

$ cis aggregate TAU_2D_670nm:
echam_all_aeronet_diff.nc
t,x=[-180,180,0.5]1,y=[-90,90,0.5]
-0 echam_on_aeronet_diff 2007.nc

We have had to define a sufficiently fine spatial grid to
maintain the spatial component of the difference. It is antic-
ipated that future versions of CIS will support aggregation
of ungridded data sets over only time, to support exactly this
kind of workflow without the need to define an arbitrary grid
(see http://cistools.net/roadmap for more details). Neverthe-
less we can now plot this difference using a scatter plot as
shown in Fig. 12 using the following command:

$ cis plot TAU_2D_670nm:
echam_on_aeronet_diff 2007.nc
—-—type scatter —-—nasabluemarble
——cmap "RdBu_r"

Note that all of the cells in the aggregation with no points

(where there are no AERONET stations) are masked in the
output and thus not shown in the scatter plot.

www.geosci-model-dev.net/9/3093/2016/

AOT 675

Figure 11. CIS plot with default options for AOT observed from a
single AERONET station.

6 Conclusions and summary

The intercomparison of observational and model data is a
crucial aspect of modern climate science. There exist a few
tools to work with gridded NetCDF data sets, but very few
in support of process studies using assorted data sources, and
none which allow generic intercomparison of multiple un-

Geosci. Model Dev., 9, 3093-3110, 2016

http://cistools.net/roadmap

3106

ECHAM-HAM - AERONET difference AOT 675nm (2007) 20,20

Latitude

_9—0180" -120° -60° [0 60° 120° 180° = -0.20
Longitude

Figure 12. The difference between the annual average AOT mea-
sured at AERONET stations around the world and ECHAMG6-
HAM2 modelled values. This plot only demonstrates a type of anal-
ysis which is easy to perform with CIS; no scientific critique of
these differences is offered.

gridded data sets, multiple gridded data sets or any combina-
tion thereof.

Here, we have demonstrated the power and use of CIS — a
new universal tool for the inter-comparison of model, remote
sensing and in situ climate data. The open and extensible na-
ture of the tool allows for the easy and reproducible colloca-
tion, aggregation, subsetting and analysis of a huge variety of
data sources on everything from laptops to large processing
clusters. Further, the ability to extend the data sources com-
patible with CIS through user-developed plugins provides the
opportunity for a shared tool to serve a diverse community.

Further development of CIS is ongoing and we hope to
include a number of new features in the future, such as an
extended Python interface, hybrid gridded/ungridded data

Geosci. Model Dev., 9, 3093-3110, 2016

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

structures and improved time series analysis, as outlined
in our roadmap (www.cistools.net/roadmap). However,the
growth of a user community (centred around our website)
will help decide on the priority and best implementation of
such features through user feedback and users actively en-
gaging in development. All descriptions of functionality are
correct as of version 1.4.0 (Watson-Parris et al., 2016), fu-
ture releases and announcements can be found on the CIS
website: http://cistools.net.

7 Code availability

The CIS source code is available on GitHub at https://github.
com/cedadev/cis, and the binary is available for easy instal-
lation on Windows, OS X and Linux through conda using
the “conda-forge” or “cistools” channel (see http://cistools.
net/get-started#installation for more details). CIS is also pre-
installed on the UK JASMIN analysis platform (JASMIN
runs a number of Red Hat Enterprise Linux 6 scientific com-
puting virtual machines for which CIS is pre-installed. See
http://www.jasmin.ac.uk for more details). Getting started
documentation and the community plugin library is available
at http://www.cistools.net. Detailed documentation and help
pages can be found at http://cis.readthedocs.org.

CIS is a tool for working with a wide variety of data; how-
ever, none of the data sets used or described within this pa-
per are supplied with the tool and should be obtained directly
through their respective providers.

www.geosci-model-dev.net/9/3093/2016/

www.cistools.net/roadmap
http://cistools.net
https://github.com/cedadev/cis
https://github.com/cedadev/cis
http://cistools.net/get-started#installation
http://cistools.net/get-started#installation
http://www.jasmin.ac.uk
http://www.cistools.net
http://cis.readthedocs.org

D. Watson-Parris et al.: Community Intercomparison Suite (CIS) 3107

Appendix A: Table of definitions

Table Al. A table of terms in this paper.

Term Definition

Aggregate the process of taking ungridded data and performing averaging over time and/or space
to produce a gridded output

Collocate the process of bringing two data sets on to the same spatial and temporal coordinates

Point-wise operation an operation carried out on each data point individually, usually on ungridded data

Gridded any regularly gridded data set for which points can be indexed using (i, j, k, ...) where
i, j and k are integers

Ungridded any data which are not regularly gridded, in general it is assumed each (x, y, z) point is

independent of every other point

www.geosci-model-dev.net/9/3093/2016/ Geosci. Model Dev., 9, 3093-3110, 2016

3108

Appendix B: Plugin development

In this section, we describe two specific ways that users are
able to easily extend the functionality provided by CIS. The
plugins are short pieces of Python code that users can write
themselves and which CIS will then automatically incorpo-
rate. Our website offers functionality for users to upload new
plugins to be shared with the wider CIS community. Sub-
mitted plugins will not be automatically included in the base
CIS install, but can easily be downloaded and included by
other users. If certain plugins prove popular then they will be
tested, documented and included in the base install.

A detailed description of the development of CIS plug-
ins and a number of increasingly in-depth tutorials can be
found in the CIS documentation (http://cis.readthedocs.org/
en/stable/plugin_development.html); here, we provide only
an overview of the basic plugin structures.

B1 Data plugins

CIS uses the notion of a “data product” to encapsulate the in-
formation about different types of data. Users can write their
own products for reading in different types of data, referred
to as plugins. These products (or plugins, if provided by the
user) are concerned with interpreting the raw data and their
coordinates and producing a single self-describing data ob-
ject conforming to the CommonData interface (see Fig. 1).
They follow a defined structure so that they can be automati-
cally included and used by the tool. We briefly describe that
structure here.

All plugins must subclass the AProduct abstract class
(this class defines the structure described here and indicates
to CIS the type of plugin the user has supplied), and are there-
fore forced to provide an implementation for the following
methods:

— get_file_signature (self) returns a list of
regular expressions to match the product’s file-naming
convention. CIS will use this to decide which data prod-
uct to use for a given file. The first product with a sig-
nature that matches the filename will be used.

— create_coords (self, filenames) is used to
return the coordinates from one or more files. Note
that this method may have to make certain assumptions
about the file in order to return a single coordinate set.

Geosci. Model Dev., 9, 3093-3110, 2016

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

— create_data_object (self, filenames,
variable) creates and returns a CommonData object
for a given variable from a list of filenames.

The underlying I/O layers are also available for the plugins
to use (such as NetCDF reading) which ensures the writing
of plugins is as straightforward as possible.

B2 Collocation

Users can also write their own plugins for performing the col-
location of two data sets. There are three main objects used
in the collocation which the user is free to override: the col-
locator, the constraint and the kernel. The basic design is that
the collocator loops over each of the sample points, calls the
relevant constraint to reduce the number of data points and
then calls the kernel which returns a single value for the col-
locator to store.

The main plugin which is available is the collocation
method itself. A new one can be created by subclassing
Collocator and providing an implementation for the
main “collocate” method. This method takes a number of
points and applies the given constraint and kernel methods
on the data for each of those points. It is responsible for re-
turning the new data object to be written to the output file.

The constraint object limits the data points for a given
sample point in some way. The user can also add a new con-
straint method by subclassing Constraint and providing
an implementation for the method constrain_points.
The final plugin type is the Kernel which is used to con-
vert the constrained points into values in the output, many
examples of which are listed in Table 4.

Although we provide an outline here, please see the tech-
nical documentation for more details (http://cis.readthedocs.
org/en/stable/analysis_plugin_development.html).

www.geosci-model-dev.net/9/3093/2016/

http://cis.readthedocs.org/en/stable/plugin_development.html
http://cis.readthedocs.org/en/stable/plugin_development.html
http://cis.readthedocs.org/en/stable/analysis_plugin_development.html
http://cis.readthedocs.org/en/stable/analysis_plugin_development.html

D. Watson-Parris et al.: Community Intercomparison Suite (CIS) 3109

The Supplement related to this article is available online
at doi:10.5194/gmd-9-3093-2016-supplement.

Acknowledgements. We would like to acknowledge the guidance
and support of Stephen Pascoe through his role in CEDA during the
first phases of development, and Caroline Poulsen (Remote Sensing
Group, EOAS Division, RAL Space) who provided invaluable
user feedback. The first phase of development was supported
by e-infrastructure capital grants for JASMIN from the Science
and Technology Facilities Council (ST/K000594/1). Subsequent
development was supported by Natural Environment Research
Council capital funding for JASMIN. Scientific support has been
provided by the Global Aerosol Synthesis and Science Project
(GASSP), Natural Environment Research Council (NE/J022624/1).
The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013)/ERC grant agreement
no. FP7-280025. We thank the AERONET principal investigators
(PIs) and their staff for establishing and maintaining the AERONET
sites used in the examples here. We are also grateful to the ESA
Cloud CCI project and to NASA for the underlying MODIS data
sets which went into one of the examples used.

Edited by: F. O’Connor
Reviewed by: two anonymous referees

References

Beck, K.: Extreme Programming Explained: Embrace Change,
An Alan R. Apt Book Series, Addison-Wesley, Boston, Mas-
sachusetts, 2000.

Beck, K.: Test-Driven Development by Example, Addison-Wesley,
Boston, Massachusetts, 2003.

Bentley, J. L.: Multidimensional Binary Search Trees Used for As-
sociative Searching, Commun. ACM, 18, 509-517, 1975.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G.,
Forster, P., Kerminen, V. M., Kondo, Y., Liao, H., Lohmann, U.,
Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang,
X. Y.: Clouds and Aerosols, in: Climate Change 2013: The Phys-
ical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tig-
nor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
and Midgley, P. M., pp. 571-658, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2013.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937-1958,
doi:10.5194/gmd-9-1937-2016, 2016a.

Eyring, V., Righi, M., Lauer, A., Evaldsson, M., Wenzel, S., Jones,
C., Anav, A., Andrews, O., Cionni, I., Davin, E. L., Deser, C.,
Ehbrecht, C., Friedlingstein, P., Gleckler, P., Gottschaldt, K.-D.,
Hagemann, S., Juckes, M., Kindermann, S., Krasting, J., Kunert,
D., Levine, R., Loew, A., Mikeld, J., Martin, G., Mason, E.,

www.geosci-model-dev.net/9/3093/2016/

Phillips, A. S., Read, S., Rio, C., Roehrig, R., Senftleben, D.,
Sterl, A., van Ulft, L. H., Walton, J., Wang, S., and Williams,
K. D.: ESMValTool (v1.0) — a community diagnostic and perfor-
mance metrics tool for routine evaluation of Earth system models
in CMIP, Geosci. Model Dev., 9, 1747-1802, doi:10.5194/gmd-
9-1747-2016, 2016b.

Gleckler, P., Doutriaux, C., Durack, P., Taylor, K., Zhang, Y.,
Williams, D., Mason, E., and Servonnat, J.: A More Pow-
erful Reality Test for Climate Models — Eos, Eos, 97,
doi:10.1029/2016E0051663, 2016.

Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R.
S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C.: Design
and implementation of the infrastructure of HadGEM3: the next-
generation Met Office climate modelling system, Geosci. Model
Dev., 4, 223-253, doi:10.5194/gmd-4-223-2011, 2011.

Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buch-
witz, M., Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw,
G., Forsberg, R., Holzer-Popp, T., Paul, F.,, Sandven, S., Sathyen-
dranath, S., van Roozendael, M., and Wagner, W.: The ESA Cli-
mate Change Initiative: Satellite Data Records for Essential Cli-
mate Variables, B. Am. Meteorol. Soc., 94, 1541-1552, 2013.

Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source sci-
entific tools for Python, available at: http://www.scipy.org/ (last
access: 1 August 2016), 2001.

Kipling, Z., Stier, P.,, Schwarz, J. P., Perring, A. E., Spackman, J.
R., Mann, G. W., Johnson, C. E., and Telford, P. J.: Constraints
on aerosol processes in climate models from vertically-resolved
aircraft observations of black carbon, Atmos. Chem. Phys., 13,
5969-5986, doi:10.5194/acp-13-5969-2013, 2013.

Langerock, B., De Maziere, M., Hendrick, F., Vigouroux, C.,
Desmet, F., Dils, B., and Niemeijer, S.: Description of algo-
rithms for co-locating and comparing gridded model data with
remote-sensing observations, Geosci. Model Dev., 8, 911-921,
doi:10.5194/gmd-8-911-2015, 2015.

Lawrence, B. N., Bennett, V. L., Churchill, J., Juckes, M., Ker-
shaw, P., Oliver, P., Pritchard, M., and Stephens, A.: The JASMIN
super-data-cluster, arXiv:1204.3553 [cs.DC], 2012.

Levy, R. C., Leptoukh, G. G., Kahn, R., Zubko, V., Gopalan, A., and
Remer, L. A.: A Critical Look at Deriving Monthly Aerosol Op-
tical Depth From Satellite Data, IEEE T. Geosci. Remote Sens.,
47, 2942-2956, 2009.

Maneewongvatana, S. and Mount, D. M.: It’s Okay to Be Skinny, If
Your Friends Are Fat, in: Center for Geometric Computing 4th
Annual Workshop on Computational Geometry, 1999.

Met Office: Iris: A Python library for analysing and vi-
sualising meteorological and oceanographic data sets,
doi:10.5281/zenodo.51860, 2016.

Schutgens, N. A. J., Gryspeerdt, E., Weigum, N., Tsyro, S., Goto,
D., Schulz, M., and Stier, P.: Will a perfect model agree with per-
fect observations? The impact of spatial sampling, Atmos. Chem.
Phys., 16, 6335-6353, doi:10.5194/acp-16-6335-2016, 2016a.

Schutgens, N. A. J., Partridge, D. G., and Stier, P.: The impor-
tance of temporal collocation for the evaluation of aerosol mod-
els with observations, Atmos. Chem. Phys., 16, 1065-1079,
doi:10.5194/acp-16-1065-2016, 2016b.

Schwaber, K. and Beedle, M.: Agile Software Development with
Scrum, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
Edn., 2001.

Geosci. Model Dev., 9, 3093-3110, 2016

http://dx.doi.org/10.5194/gmd-9-3093-2016-supplement
http://dx.doi.org/10.5194/gmd-9-1937-2016
http://dx.doi.org/10.5194/gmd-9-1747-2016
http://dx.doi.org/10.5194/gmd-9-1747-2016
http://dx.doi.org/10.1029/2016EO051663
http://dx.doi.org/10.5194/gmd-4-223-2011
http://www.scipy.org/
http://dx.doi.org/10.5194/acp-13-5969-2013
http://dx.doi.org/10.5194/gmd-8-911-2015
http://dx.doi.org/10.5281/zenodo.51860
http://dx.doi.org/10.5194/acp-16-6335-2016
http://dx.doi.org/10.5194/acp-16-1065-2016

3110

Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J.,
Ganzeveld, L., Tegen, 1., Werner, M., Balkanski, Y., Schulz, M.,
Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate
model ECHAMS-HAM, Atmos. Chem. Phys., 5, 1125-1156,
doi:10.5194/acp-5-1125-2005, 2005.

Stocker, T. F.,, Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.
(Eds.): Climate Change 2013: The Physical Science Basis. Con-
tribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, United Kingdom and New York,
NY, USA, 2013.

Suzuki, K., Stephens, G. L., van den Heever, S. C., and Nakajima,
T. Y.: Diagnosis of the Warm Rain Process in Cloud-Resolving
Models Using Joint CloudSat and MODIS Observations, J. At-
mos. Sci., 68, 2655-2670, 2011.

Geosci. Model Dev., 9, 3093-3110, 2016

D. Watson-Parris et al.: Community Intercomparison Suite (CIS)

Teixeira, J., Waliser, D., Ferraro, R., Gleckler, P., Lee, T.,
and Potter, G.: Satellite Observations for CMIP5: The Gen-
esis of ObsdMIPs, B. Am. Meteorol. Soc., 95, 1329-1334,
doi:10.1175/BAMS-D-12-00204.1, 2014.

van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Ar-
ray: A Structure for Efficient Numerical Computation, Comput.
Sci. Eng., 13, 22-30, 2011.

Watson-Parris, D., Schutgens, N. A. J., Cook, N., Kipling, Z., Ker-
shaw, P., Gryspeerdt, E., Stier, P., and Lawrence, B.: CIS: v1.4.0,
doi:10.5281/zenod0.59939, 2016.

Zender, C. S.: Analysis of self-describing gridded geoscience data
with netCDF Operators (NCO), Environ. Model. Softw., 23,
1338-1342, 2008.

www.geosci-model-dev.net/9/3093/2016/

http://dx.doi.org/10.5194/acp-5-1125-2005
http://dx.doi.org/10.1175/BAMS-D-12-00204.1
http://dx.doi.org/10.5281/zenodo.59939

	Abstract
	Introduction
	Development
	Extensible architecture
	Core functionality
	Subsetting
	Aggregation
	Ungridded aggregation
	Gridded aggregation

	Collocation
	Gridded to gridded
	Ungridded to ungridded
	Ungridded to gridded
	Gridded to ungridded

	Plotting
	Analysis
	Statistics
	CIS as a Python library

	Example scientific workflow
	Conclusions and summary
	Code availability
	Appendix A: Table of definitions
	Appendix B: Plugin development
	Appendix B1: Data plugins
	Appendix B2: Collocation

	Acknowledgements
	References

