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Abstract 

A new indium(III) antimony(V) sulfide, (H1.33tren)[In2.67Sb1.33S8]∙tren, has been 

prepared solvothermally at 433 K. The compound crystallises in the tetragonal space 

group I-42d (lattice parameters, a = 12.6248(5) and c = 19.4387(18) Å at 150 K) and 

contains adamantane-like T2 supertetrahedral units comprised of corner-sharing 

InS4
5- and SbS4

3- tetrahedra. The adamantane-like units are then linked through sulfur 

vertices to generate an open, 3-D framework structure containing large pores in which 

neutral, protonated tren (tris(2-aminoethylene)amine) molecules reside. The presence 

of the organic components was confirmed by solid-state 13C NMR (10 kHz), 

combustion and thermogravimetric analysis. The band gap, obtained from UV-vis 

diffuse reflectance measurements, is 2.7(2) eV. Stirring with either water or alkali-

metal salt solution leads to removal of the neutral tren molecules and an ~9 % 

reduction in unit-cell volume on formation of (H1.33tren)[In2.67Sb1.33S8]∙(H2O)4.  

 

Keywords: 

Solvothermal synthesis; Crystal structure; Band gap; Antimony Indium Sulfide; 

Mixed-metal T2 supertetrahedra 

 

1. Introduction 

Open-framework materials have a variety of technological applications in, for 

example, catalysis [1], nuclear reprocessing [2], optical and chemical sensing [3] and 

ion exchange [4]. Aluminosilicate zeolites, with their large surface areas and well-

defined pore sizes, have long been exploited, particularly in the fields of catalysis, 

molecular sieving and ion exchange. Open-framework chalcogenides offer advantages 
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over the electrically insulating zeolites for some applications, as they combine porosity 

with semiconducting behaviour. Recent research has sought to create semiconducting 

chalcogenide-based materials in which the band gap is tuned to enable them to be used 

as chemical sensors [5] and photocatalysts [6]. 

 The number of open-framework structures derived from the chalcogenides has 

increased steadily since the discovery of the group 15 sulfide, K2Sb4S7, by Shafer et 

al. [7]. Subsequently, Bedard and co-workers demonstrated that chalcogenides can be 

synthesised under solvothermal conditions, at moderate temperatures and pressures, in 

the presence of amines as structure directing agents [8]. This solvothermal approach 

[9], including hydrothermal and more recently ionothermal methods, has led to the 

synthesis of many chalcogenides with 3-D framework structures [10], [11] as well as 

lower dimensional structures containing layers [12, 13, 14]  or chains [15, 16]. 

 The products obtained from solvothermal reactions are influenced by a variety of 

reaction variables including temperature, pressure, time, heating/cooling rates and pH, 

as well as the nature of the metal and chalcogen sources and the structure-directing 

amine. Reaction reproducibility can be an issue, particularly given the metastable 

nature of many of the product phases. Whilst the detailed mechanism of solvothermal 

synthesis remains poorly understood, it has been recognized [15], [ 17 ] that the 

synthesis of open-framework main group chalcogenide structures proceeds via the 

formation of simple building units, including primary species such as MS4 tetrahedra 

and MS3 trigonal pyramids [18] and larger secondary units, such as semi cubes, 

Sb3S6
3- [19], and supertetrahedra [20]. Linkage of such units in the presence of an 

organic amine as structure-directing agent can lead to the formation of an extended 

framework, the negative charge of which is balanced by protonation of the amine. 

Additional structural variability, and tailoring of electronic properties, may be 
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achieved by the introduction of transition-metal cations in the reaction mixture [21]. 

Whilst transition metals frequently form cationic complexes with amines that can in 

turn serve to balance the negative charge of the chalcogenide framework [22], [23], 

they may also be incorporated directly into the framework, with or without 

coordinated amine, as observed in [Co(tren)InSbS4] [ 24 ], [Mn4(2,2'-

bipyridine)2Sb4S10] [25], [Mn2(phen)(Sb2S5)]  [26] and [Mn2(api)(Sb2S5)] (api = N-(3-

aminopropyl)-imidazole) [27]. Incorporation of transition-metal ions has also been 

seen in other framework chalcogenides, such as selenides [28] and tellurides [29]. 

 An alternative strategy for the creation of novel phases is to exploit the 

complementary coordination preferences of different main-group elements. In this 

work, we focus on mixed indium-antimony sulfides. Indium(III) chalcogenides are 

constructed from tetrahedral InS4 building blocks which can link together to form 

discrete supertetrahedra Tn (n = 2 [25, 30] 3 [31], 4 [32], 5 [32]), existing either as 

anions, e.g. in the case of the T2 units as [In4S10]
8- ions [25], or terminated by S-H 

groups, as in  [C6H16N][In4S6(SH)4] [30]. The larger indium-sulfide based T4 and T5 

supertetrahedra are usually stabilised on incorporation of a divalent metal cation, as is 

found in [Cd4In16S31]
6- and [Cd13In22S52]

12- [32].  As well as existing as discrete units, 

the supertetrahedra can be connected via corner sharing to generate frameworks, as 

found in KInS2 [33], which contains T2 units linked to form a layered structure and 

[In10S18]
6- [34] and [M4In16S33]

10- (M = Mn, Co, Zn, Cd) [35],  which consist of 3-D 

frameworks constructed from T3 and T4 supertetrahedra, respectively. Alternatively, 

indium-sulfide supertetrahedra may be joined through a variety of inorganic linkers, 

such as InS4
5- tetrahedra, as in T3 containing (DEA-H)7In11S21H2 (DEA = 

diethylammonium) [ 36 ] or SbS3
3- trigonal pyramids, as in T2 containing 

[NH3CH3]4[In4SbS9(SH)] [4]. 
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 By contrast, antimony shows greater geometrical variety of primary building units 

[37]. In the Sb(III) oxidation state, SbS3 trigonal-pyramidal geometry is favoured, 

although an SbS4 see-saw geometry is also known, whilst Sb(V) adopts a tetrahedral 

SbS4 arrangement. Only a few mixed Sb(III)-In(III) sulfides have been reported to 

date [37], including [Co(dien)2]2In2Sb4S11 (dien = diethylenetriamine) [38], which 

consists of chains constructed from InS4 tetrahedra, SbS3 trigonal pyramids and SbS4 

see-saw units, [(CH3CH2CH2)2NH2]5In5Sb6S19∙1.45H2O and [(CH3)2NH2]2In2Sb2S7, 

both of which have 2-D structures [ 39 ] and [Co(dap)3]InSb3S7] (dap = 1,2-

diaminopropane) [40], a 3-D framework containing large channels constructed from 

InS4 and SbS3 units. In an additional compound, [NH3CH3]4[In4SbS9(SH)], indium-

containing In4S10
 T2 adamantane units are linked through their terminal sulfur atoms 

by SbS3
 trigonal pyramids to create a 3-D framework [4]. 

 To the best of our knowledge, there are no examples of frameworks containing 

mixed Sb-In T2 supertetrahedra. Here, we describe the synthesis and characterisation 

of the first mixed-metal indium(III)-antimony(V) sulfide, 

(H1.33tren)[In2.67Sb1.33S8]∙tren. This contains a three-dimensional framework 

constructed entirely from vertex-linked T2 supertetrahedra, in which Sb(V) and In(III) 

are disordered over the tetrahedral sites. We demonstrate, using a range of techniques, 

that the pore space contains both neutral and protonated amines. On stirring the 

compound in either water or an alkali-metal halide solution, the neutral tren molecules 

can be removed from the pores and replaced by water molecules with retention of the 

indium-antimony sulfide framework and charge balancing protonated amine. 
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2. Experimental 

2.1. Synthesis  

 The title compound, (H1.33tren)[In2.67Sb1.33S8]∙tren, was synthesised from a mixture 

of Sb2S3 (67 mg 0.20 mmol), InCl3 (160 mg, 0.72 mmol), CoS (34 mg, 0.37 mmol), S 

(42 mg, 1.31 mmol) and tris(2-aminoethyl)amine (tren) (3.2 ml, 21 mmol). The 

reagent mixture, initially of pH ~ 7, was stirred for 10 minutes in a 23 ml Teflon-lined 

stainless-steel autoclave before being heated at 160 °C for 5 days at a heating rate of 1 

°C min-1. The products were then cooled overnight at 1 °C min-1 before being filtered 

and washed successively with ethanol, water and acetone. Single crystals in the form 

of yellow blocks were handpicked and corresponded to a yield of ca. 20 % by weight 

of solid product. Combustion analysis gave values of C: 13.98 %, H: 3.98 %, N: 10.37 

%, respectively. These are in good agreement with the values calculated for the 

formula, (H1.33tren)[In2.67Sb1.33S8]∙tren, (C: 14.14 %, H: 3.69 %, N: 10.99 %) 

established from a combination of  EDX, single-crystal X-ray diffraction, TGA and 

solid-state 13C NMR results (vide infra). Powder X-ray diffraction data for the as-

synthesized product demonstrated that in addition to the title compound, Sb and InSb 

were present as minor impurity phases, together with an as yet unidentified phase. 

Although cobalt ions were included in the reaction mixture, no cobalt was detected in 

the title compound. Repeating the synthesis in the absence of cobalt led to a 

considerably lower yield of the title compound (~ 3%) suggesting that the transition-

metal ion aids crystallisation of the new indium-antimony sulfide. Such use of 

transition metals as mineralisers has previously been reported in the solvothermal 

synthesis of antimony sulfides [41]. 

 

 



7 
 

 

2.2 Characterisation 

 The In:Sb ratio in the inorganic framework was determined from energy dispersive 

X-ray (EDX) data collected using a Cambridge 360 Stereoscan electron microscope 

fitted with an Oxford Instruments INCA EDX analysis system, and operating at 20 kV 

and 200 pA. Single crystals of the title compound were dusted onto an adhesive 

carbon stub for analysis (See ESI, Table S1).  

 Powder X-ray diffraction patterns of the as-synthesised material and handpicked 

crystals were collected at room temperature over the range (5 < 2θ /° < 50) using a 

Bruker D8 Discover diffractometer (Cu Kα radiation (λ = 1.5418 Å)).

 Thermogravimetric analysis was carried out using a TA instruments Q50 

Thermogravimetric Analyser. Approximately 10 mg of handpicked ground crystals 

were heated from room temperature to 400 °C at a rate of 5 °C min-1 under a flow of 

nitrogen. 

 IR spectra were collected over the range 550 to 4000 cm-1 using a Perkin Elmer 

Spectrum 100 FT-IR Spectrometer. A solid-state 13C NMR spectrum was measured at 

296 K using 100 mg of finely ground hand-picked crystals on a Bruker Advance III 

500 MHz, running ICON NMR 4.2 under TOPSPIN 2.4 using a 4 mm MAS 15N/3 

probe. Diffuse reflectance data were collected over the range 9090-50,000 cm-1 using a 

Perkin Elmer UV-vis Spectrometer Lambda 35 spectrometer. BaSO4 was used as a 

reference for 100 % reflectance. Measurements were made on ~10 mg of ground hand-

picked crystals. The Kubelka-Munk function was applied to the data to obtain the band 

gap [42]. 
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2.3. Crystal-structure determination  

 Single-crystal X-ray diffraction data were collected at 150 K using graphite-

monochromated MoKα radiation (λ = 0.71073 Å) on an Oxford Diffraction Gemini S 

Ultra X-ray diffractometer fitted with an Oxford Cryosystems Cryostream cooling 

device. Crystallographic details are summarized in Table 1 and in the ESI (Table S2).  

 The structure was solved using the program SIR92 [43] and the model refined using 

the CRYSTALS suite of programs [44]. From the structure solution, the inorganic 

framework had a In:Sb:S ratio of (4-x): x: 8. The In and Sb occupancies, which could 

not be refined, were subsequently fixed in accordance with the EDX results (vide 

infra) to give the composition [In2.67Sb1.33S8]
1.33-. The organic counterions are highly 

disordered and could not be located in difference Fourier maps. Therefore, the metal 

and sulfur framework atoms were refined anisotropically and Platon SQUEEZE [45] 

applied to model the electron density within the pores. 

 

3. Results and Discussion 

 Analytical electron microscopy EDX measurements (Table S1) confirmed the 

presence of sulfur, indium and antimony in crystals of the title compound. The 

measured sulfur content was however lower than that expected for the 

crystallographically-determined framework composition, [M4S8] (M = (In + Sb)). EDX 

measurements on a ground Sb2S3 reference sample also gave a low sulfur content 

suggesting that sulfur volatilization had occurred under the high vacuum conditions of 

the electron microscope, as has previously been observed [46]. Therefore only the 

In:Sb ratio could be determined reliably giving a ratio of In:Sb:S of 2.67(5): 1.33(5) : 

8 in the inorganic framework. 
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Table 1: Crystallographic data for (H1.33tren)[In2.67Sb1.33S8]∙tren 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The crystal structure contains only one metal site (16(e) site), hereafter denoted M, 

which was assigned the occupancy (0.67 In + 0.33 Sb), in accordance with the EDX 

results. In the structure, the M atom is coordinated by 4 sulfur atoms and has a slightly 

distorted tetrahedral geometry with bond lengths of 2.382(3) (M–S2), 2.412(4), and 

2.451(4) (M–S1) and 2.427(2) Å (M–S3) with S–M–S bond angles in the range 

Formula weight 1018.81 

Crystal Habit Yellow block 

Crystal system  Tetragonal 

Space group I -4 2 d 

Temp /K 150 

a /Å 12.6248(5) 

c /Å 19.4387(18) 

V /Å³ 3098.2(3) 

Z 4 

Wavelength /Å 0.71073 

μ (mm-1) 3.645 

Total reflections (I >3σ(I))  1044 

R(F) factor 0.0519 

wR(F) factor 0.0542 
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99.22(11) – 117.03(4) °.  The location of antimony in a tetrahedral environment 

provides compelling evidence for it being present as Sb(V).  The M–S bond lengths 

are comparable with Sb(V)–S distances of 2.399(7) – 2.435(6) Å found in discrete 

SbS4
3- tetrahedra [47] and In(III)–S  distances reported previously for an In4S10

8- T2 

supertetrahedron [4] which lie in the range 2.444(2) – 2.476(4) Å. The presence of 

Sb(V) and In(III) gives rise to a negatively charged framework with composition 

[In2.67Sb1.33S8]
1.33-. 

 The MS4 tetrahedra are linked through shared vertices to form adamantane-like T2 

supertetrahedral clusters (Figure 1). The supertetrahedra are linked through terminal 

(S3) atoms, reminiscent of the linkage of ZnS4 tetrahedra in zinc blende, to form a 3-D 

metal-sulfur framework in which there are pores and channels (Figure 2).  When van 

der Waals’ radii are taken into consideration (Figure S1), the pore dimensions are ca. 5 

× 4 Å2 parallel to [100] (Figure 2(b)) and ca. 6 × 6 Å2 parallel to [111] (Figure 2(c)).   

The powder X-ray diffraction data for handpicked crystals show good agreement with 

the pattern calculated on the basis of the single-crystal diffraction study (Figures 3 and 

S2).  

Although the tren molecules could not be located in the single-crystal X-ray study, 

evidence for their presence in the title compound is found in the infrared spectrum 

(Figure 4). Peaks at 3109 and 3182 cm-1 can be assigned to (N-H) vibrations, whilst 

an H-N-H bending vibration is observed at 1580 cm-1 and aliphatic amine (C-N) 

vibration at 1078 cm-1.  Further evidence for the presence of tren in the title compound 

is provided by the 13C solid-state NMR spectrum (Figure 5). This reveals two peaks at 

38.75 and 55.01 ppm of relative intensity 1:1, consistent with equal numbers of carbon 

atoms in two different environments, as is found in the tren molecule. The difference 
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in the width of the two peaks may be associated with the greater degree of freedom of 

the outer carbon atoms, leading to broadening of the peak at 55.01 ppm.   

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Figure 1: Linking of tetrahedral MS4 primary building units to form M4S10 

adamantane-like T2 clusters (M = (0.67 In + 0.33 Sb)) in 

(H1.33tren)[In2.67Sb1.33S8]∙tren. Key: Purple spheres: M, yellow spheres: S.   
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Figure 2: Views of the [In2.67Sb1.33S8]
1.33- framework in the title compound showing (a) 

the linking of T2 units to form zigzag chains directed along [010]; (b) the pores along 

the [100] direction and (c) the pores parallel to the [111] direction. Key: Purple 

spheres: M atoms, yellow spheres: S atoms.  

 

 

  

(c) 
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Figure 3: Powder X-ray diffraction patterns of the bulk as-synthesised product (blue), 

handpicked crystals (green) and the simulated pattern calculated from single-crystal 

diffraction data (red). Additional peaks in the as-synthesised product pattern 

correspond to Sb, InSb and an as-yet unidentified phase (see ESI, Figure S2). 

 

 

  

 

 

 

 

 

 

 

Figure 4: IR spectrum of (H1.33tren)[In2.67Sb1.33S8]∙tren 
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Figure 5: Solid-state 13C NMR (10 kHz) of (H1.33tren)[In2.67Sb1.33S8]∙tren under N2. 

Key: Blue(**) inner carbon, red (*) outer carbon. 

 

 

Thermogravimetric analysis of the title compound (Figure 6) reveals a total weight 

loss of 28.92 % on heating the sample to 400 °C. This is in good agreement with a 

value of 28.88 % calculated for the loss of two tren molecules per formula unit, 

consistent with the formulation (H1.33tren)[In2.67Sb1.33S8]∙tren, when the degree of 

protonation necessary to balance the framework charge is taken into account. The 

weight loss occurs in two stages of 9.62 and 19.28 % at onset temperatures of 220 and 

270 °C, respectively (with corresponding maxima in the DTG curve at 252 and 274 

°C). The first weight loss corresponds to the loss of an ethylenediamine molecule that 

would arise on cyclisation of tren to piperazine. Thermal degradation of larger amines 

to generate ethylenediamine [ 48 ] and the rearrangement of polyamines under 

solvothermal conditions [49] have been reported previously. Combustion analysis of 

the product obtained on stopping the thermal analysis after the first weight loss gave: 
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C: 12.26 %, H: 2.82 % and N: 7.76 %, corresponding to C10N5.4H28, which, within 

experimental error, is consistent with the presence of piperazine and tren in the pores. 

The second weight loss in the TGA further supports the loss of piperazine and tren on 

further heating to 260 °C. The powder X-ray diffraction pattern of the final solid 

product from thermogravimetric analysis was poorly crystalline and could not be 

indexed (Figure S3). 

 

 

 

Figure 6: Thermogravimetric analysis curve of (H1.33tren)[In2.67Sb1.33S8]∙tren heated under N2 

(black) and the corresponding derivative (DTG) curve (red). 

 

  The diffuse reflectance spectrum (Figure 7) shows an optical band gap of 2.7(2) 

eV. When compared to the optical band gap versus metal centre density plot of Powell 
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et al. formulated for thioantimonates [50] and bimetallic thiometallates [51], this 

compound falls on the trendline. 

 

Figure 7: Diffuse reflectance spectrum of (H1.33tren)[In2.67Sb1.33S8]∙tren 

 

3.1 Soaking (H1.33tren)[In2.67Sb1.33S8]∙tren in water and metal-halide solutions 

In order to assess the potential ion-exchange capability of 

(H1.33tren)[In2.67Sb1.33S8]∙tren, crystals were immersed in aqueous solutions of 

potassium and lithium chloride (0.1 M, 2 M and 3 M) with pH  6. After heating the 

solutions at 343 K, over periods ranging from 3h to 5 d. Crystals were also immersed 

in deionised water for 3 h at 343 K and room temperature for comparison. All crystal 

samples were then washed with ethanol, water and acetone. In each case, the soaking 

treatment resulted in a change in the colour of the crystals from yellow to orange. The 

TGA (Figure S4) and combustion analysis data for the solid products after immersion 

in water and alkali-metal chloride solutions (summarised in Table S3) are broadly 

similar.  

  On immersion in both water and the aqueous alkali-metal chloride solutions, there 

is a significant reduction in the organic content of the crystals (up to 50 %), suggesting 

the partial removal of tren molecules from the pore space. This loss of organic 

component is accompanied by an uptake of water into the crystals. Evidence for water 

incorporation is provided both by the weight losses observed in the TGA curves at low 
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temperature (~ 100 ºC) (Figure S4) and by the infrared data (Figure S5), where, in 

each case, there is an increase in the intensities of the (O-H) and δ(H-O-H) bands at 

3400 and 1640 cm-1, respectively. The uptake of alkali-metal ions on soaking in salt 

solutions, determined from atomic absorption spectroscopy (Table S6), is extremely 

low (< 2.4 wt. % for K+, for example). This is much lower than would be expected on 

charge-balancing grounds were the alkali-metal ions to replace protonated amine. This 

suggests that the alkali-metal ions are merely absorbed on the crystal surface and that 

immersion of the title compound in alkali-metal solutions does not result in ion-

exchange. We suggest therefore that immersion in both water and alkali-metal chloride 

solutions leads to the removal of only the non-protonated amine from the pores and the 

product can be formulated as  (H1.33tren)[In2.67Sb1.33S8]∙(tren)1-y(H2O)x. There is some 

variation in the x and y values for samples produced on stirring in alkali-metal chloride 

solutions (Table S3), with x in the range 2.5 – 4.7 and y in the range 0.7 to 1.0, with 

the general trend that removal of neutral tren increases with increase in concentration 

of the alkali-metal salt solution. On stirring in 2M KCl for 3 h, the limiting value of 

50% reduction in organic component is achieved, and the product has the composition 

(H1.33tren)[In2.67Sb1.33S8]∙(H2O)4.  For the samples immersed in water for 3 h at 343 K 

and room temperature, the TGA results show that in both cases, removal of all the 

neutral tren is not achieved. Tren removal is however greater at 343 K than at room 

temperature (y = 0.67 and x = 3.96 and y = 0.22 and x = 2.34, respectively). 

 The soaked samples exhibit a decrease in crystallinity compared to the pristine 

samples as the concentration of alkali-metal chloride solution and soaking time 

increases, as evidenced by peak broadening in the powder X-ray diffraction patterns 

(Figure S6). However, unit-cell parameters could be measured for crystals soaked for 

3 h in water, 0.1 M KCl, NaCl and LiCl and 2M KCl (Tables 4 and S4). Single-crystal 
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X-ray data were indexed using the same tetragonal unit cell and space group as for the 

pristine material, and a maximum reduction of ~9 % in the unit-cell volume was 

observed in the case of (H1.33tren)[In2.67Sb1.33S8]∙(H2O)4, obtained after immersion of 

the title compound in 2 M KCl. A medium-resolution structure solution for a crystal 

soaked in 0.1 M KCl solution (Table S5) confirmed that the In-Sb-S framework 

structure has been retained. 

  

Table 4: Lattice parameters determined at 150 K for single crystals produced  

following immersion for 3 hours in water§ and 2 M KCl solution‡. 

  

a /Å c /Å Cell Volume /Å³ 

(H1.33tren)[In2.67Sb1.33S8]∙tren 

 

12.6248 (5) 19.4387 (18) 3098.2 (3) 

(H1.33tren)[In2.67Sb1.33S8]∙(tren)0.33 ∙(H2O)4
§  12.4275 (13) 18.572 (3) 2868.3 (8) 

(H1.33tren)[In2.67Sb1.33S8]∙(H2O)4
‡  12.348 (3) 18.574 (8) 2832.2 (15) 

 

 

 Diffuse reflectance data for products obtained after soaking in 0.1 M solutions for 3 

h, show that the band gap is unaffected on replacing neutral tren molecules by water 

within the structure (Figure S7). 

4. Conclusions 

 A novel indium-antimony sulfide, (H1.33tren)[In2.67Sb1.33S8]∙tren,  has been 

synthesised and structurally characterised. It contains adamantane-like 

[In2.67Sb1.33S8]
1.33- T2 supertetrahedral clusters, constructed from Sb(V)S4 and In(III)S4 

tetrahedra, which are linked through their terminal sulfur atoms into a three-

dimensional open-framework structure. Although it was not possible to locate the 
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organic component, tren, directly using single-crystal X-ray diffraction data, its 

presence has been confirmed through 13C solid-state NMR, infrared spectroscopy, 

combustion analysis and thermogravimetry. These data, together with the two-step 

weight loss observed in TGA, suggest that only one of the tren molecules is protonated 

in order to provide the required charge balancing for the anionic inorganic framework. 

Immersion of the material in either water or alkali-metal halide solutions leads, at the 

limit, to removal of approximately half of the organic component, consistent with 

removal of the non-protonated tren and inclusion of water to form 

(H1.33tren)[In2.67Sb1.33S8]∙(H2O)4. This exchange reaction is accompanied by a 

reduction of ca. 9 % in unit-cell volume. 
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