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Abstract 26 
 27 
The discovery of novel pathogenic mechanisms engaged during bacterial infections 28 

requires the evolution of advanced techniques. Here, we evaluate the dual polarity 29 

matrix norharmane (NRM) to improve detection of bacterial lipid A (endotoxin), from 30 

host and vector tissues infected with Francisella novicida (Fn). We evaluated NRM for 31 

improved detection and characterization of a wide range of lipids in both positive and 32 

negative polarities, including lipid A and phospholipids across a range of matrix assisted 33 

laser desorption-ionization (MALDI)-coupled applications. NRM matrix improved the 34 

limit of detection (LOD) for monophosphoryl lipid A (MPLA) down to picogram-level 35 

representing a ten-fold improvement of LOD versus 2,5-dihydroxybenzoic acid (DHB) 36 

and 100-fold improvement of LOD versus 9-aminoacridine (9-AA). Improved LOD for 37 

lipid A subsequently facilitated detection of the Fn lipid A major ion (m/z 1665) from 38 

extracts of infected mouse spleen and the temperature-modified Fn lipid A at m/z 1637 39 

from infected D. variabilis ticks. Finally, we simultaneously mapped bacterial 40 

phospholipid signatures within an Fn infected spleen along with exclusively host-derived 41 

inositol-based phospholipid (m/z 933) demonstrating co-profiling for the host-pathogen 42 

interaction. Expanded use of NRM matrix in other infection models and endotoxin-43 

targeting imaging experiments will improve our understanding of the lipid interactions at 44 

the host-pathogen interface. 45 

 46 
  47 
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Introduction 48 
 49 
   Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer 50 

membrane of most Gram-negative bacteria. The membrane anchor region, lipid A 51 

imparts endotoxin activity to LPS with specific lipid A structural configurations indicative 52 

of antimicrobial resistance (commonly terminal phosphate modifications) or local growth 53 

conditions (ex: acyl shortening observed in growth at low temperature).(Gunn 2001; Li 54 

et al. 2012; Needham and Trent 2013) Lipid A is substantially hydrophobic and is readily 55 

ionizable in the negative ion mode due to the terminal phosphate moieties. Matrix 56 

assisted laser desorption-ionization (MALDI) is commonly used for detection of diverse 57 

lipid A structures, but detection can be problematically matrix-dependent. In order to 58 

study low abundance and exotic lipid A structures, improved detection methods are 59 

necessary.(Heeren 2015) Due to the relationship between lipid A structure and 60 

virulence, in situ description of lipid A and its structure is crucial. (Gunn 2001; Hajjar et 61 

al. 2002; Pelletier et al. 2013; Hagar et al. 2013) Here we will describe an underutilized 62 

matrix for sensitive detection of lipid A including modified lipid A structures directly from 63 

infected vector and host extracts.  64 

   Norharmane (NRM; β-carboline, 9H-pyrido[3,4-b]indole]) is an indole alkaloid 65 

molecule commonly found in plants, including coffee and tobacco.(Schmeltz and 66 

Hoffmann 1977; Luxembourg et al. 2003; Wojtowicz et al. 2015) Norharmane was first 67 

reported as a matrix substance for MALDI in 1999 where it was used to facilitate 68 

ionization of sialyl oligosaccharides.(Yamagaki and Nakanishi 1999; Cerruti et al. 2012) 69 

Following this initial report, the use of NRM as a MALDI matrix for work in negative ion 70 

mode was systematically evaluated by Brown et al in 2001, alongside common matrices 71 
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such as 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-72 

hydroxycinnamic acid (HCCA), and 9-nitroanthracene (9-NA).(Folch, Lees and Sloane 73 

Stanley 1957; Bligh and Dyer 1959; Brown et al. 2001) This work identified NRM and a 74 

related molecule, harmane, as ideal matrices for analysis of hydrophobic molecules. 75 

The historical use of DHB, HCCA, and 9-AA for lipid A and phospholipid 76 

characterization has resulted in an absence of well defined uses for NRM, though a 77 

growing number of reports have appeared including the use of NRM as a matrix for 78 

laser-induced post-ionization, notated MALDI-2.(Soltwisch et al. 2015)  79 

   We have previously reported the use of NRM for mass spectrometry imaging (MSI) 80 

and one dimensional thin layer chromatography (TLC)-MALDI 81 

experiments.(Nchoutmboube et al. 2013; Shirey et al. 2013; Scott et al. 2014) MSI is a 82 

technique used to characterize the spatial relationship of molecular targets to 83 

histological features and MALDI is the most commonly used ionization method for MSI. 84 

(Caprioli, Farmer and Gile 1997; Stoeckli et al. 2002; Cornett et al. 2007; Schwamborn 85 

and Caprioli 2010; Chaurand 2012; Heeren 2015) TLC-MALDI is a technique that 86 

couples traditional TLC separation with mass/charge identification by MALDI.(Gusev, 87 

Proctor and Rabinovich 1995; Nicola, Gusev and Hercules 1996; Fuchs et al. 2007) 88 

TLC-MALDI is another powerful tool for lipid profiling since it is rapid and offers 89 

improved lipid identification by virtue of the separation of lipid mixtures based on head 90 

group chemistry and it is especially useful for differential identification of isobaric 91 

species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE).(Fuchs et al. 92 

2009) Both techniques require a matrix capable of ionizing the molecular target(s) of 93 

interest; for example, lipids.(van Hove, Smith and Heeren 2010) Several matrices have 94 
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been reported for lipid-targeting MSI, including DHB, 1,5-diaminonapthalene (DAN), 95 

HCCA, and 9-aminoacridine (9-AA).(Fuchs, Süss and Schiller 2010; Zemiski Berry et al. 96 

2011; Cerruti et al. 2012) DHB is a widely used matrix for MALDI-MSI and applicable for 97 

lipid analysis in positive-ion mode, whereas 9-AA is used in negative-ion mode. 9-AA 98 

offers the advantage that the mass spectra consist largely of deprotonated or molecular 99 

ions, which simplifies lipid identification.(Cerruti et al. 2012) Neither 9-AA nor DHB can 100 

serve as universal matrices for bacterial lipid analysis due to the need for large amounts 101 

of sample to produce mass spectra; one nanogram and 100 picograms of lipid A are 102 

currently required, respectively. To highlight the relative lack of sensitivity, 103 

approximately 109 colony forming units of bacteria will yield one microgram of LPS, only 104 

a fraction of which can be efficiently hydrolyzed and detected as the membrane anchor 105 

lipid A. Identifying an improved matrix, with near universal compatibility for a broader 106 

range of lipids in both positive- and negative-ion modes, including lipid A, would greatly 107 

benefit bacterial lipid research.    108 

   The first report of the use of NRM for MALDI analysis of lipid A was made by 109 

d’Hauteville et al in 2002 to describe the activity of two lipid A biosynthesis genes 110 

(msbB1 and msbB2) active in Shigella flexneri.(d'Hauteville et al. 2002) Prior to this 111 

study lipid A was extracted from large-scale culture (>1 liter) and analyzed by MALDI 112 

using NRM matrix to assess in vitro-grown structures, but the sensitivity did not exist to 113 

analyze low input in vivo-grown structures.  To advance the study of lipid A structural 114 

modifications in primary clinical samples, improved detection limits are necessary for 115 

direct observation in tissue.(Li et al. 2012; O'Hara et al. 2013; Pelletier et al. 2013) This 116 

required the development of advanced extraction methodologies, as well as sensitive 117 
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lipid A detection techniques. In 2005, a method for lipid A microextraction was reported 118 

by the Caroff group in which the authors achieved lipid A extraction from ten milligrams 119 

of lyophilized bacteria followed by mass spectrometric analysis.(Hamidi et al. 2005) This 120 

report revolutionized the study of the lipid A structure-function relationship by making 121 

lipid A analysis from low-level bacterial cultures possible. Here we present work 122 

combining these two advances to analyze the in vivo lipid A structure in both a mouse 123 

(host) and tick (vector) model of Francisella novicida (Fn) by extracting lipid A directly 124 

from burdened tissue.  125 

   Lipid A structure is influenced by a variety of factors including osmolarity, nutrient 126 

availability, presence of host/vector factors, and growth temperature. The precise 127 

conformation of lipid A in any given condition is one of many components contributing to 128 

membrane integrity, permeability, topology, and content. Fn lipid A, although primarily 129 

found with 18-carbon acyl chains at 37°C, is modified by 16-carbon acyl chains when 130 

grown at lower temperatures (to resemble the ambient conditions of a tick or the 131 

environment).(Shaffer et al. 2007; Gunn and Ernst 2007; Li et al. 2012; Needham and 132 

Trent 2013) This shortening alters membrane permeability and resistance to 133 

antimicrobial agents and is likely a reflection of Fn lipid A structure in ticks.(Li et al. 134 

2012) To date, the detection levels necessary to evaluate lipid A shortening in vivo have 135 

not been identified. In this work, we present the findings of a lipid A extraction directly 136 

from whole hard-bodied D. variabilis (Dv) ticks infected with Fn confirming the 137 

predictions made from in vitro studies. Finally, by coupling the highly sensitive detection 138 

limit of NRM to MALDI-MSI, we can directly map phospholipids of bacterial origin 139 

(expected to be in low overall abundance versus host phospholipids) within infected 140 
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host tissue, expanding the utility of lipid MSI studies to improve our understanding of 141 

bacterial pathogenic mechanisms. The results presented herein expand the fields of 142 

pathogenesis, general microbiology, and lipid profiling by offering a versatile alternative 143 

matrix for lipid analysis. 144 

 145 

 146 
  147 
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Materials and Methods 148 
 149 
Ethics Statement 150 

All experiments were performed in accordance with the University of Maryland, 151 

Baltimore Institutional Animal Care and Use Committee (IACUC) protocol approval  152 

#0814005 in adherence with the Guide for the Care and Use of Animals (NIH), the 153 

Animal Welfare Act, and applicable US Federal laws.  154 

 155 

Matrices and Solvents 156 

9-AA, DHB, and NRM were all purchased from Sigma-Aldrich (St. Louis, MO).  Solvent 157 

solutions were volumetric parts as follows: 1:1 E:W (ethanol:water); 1:2:0.8 C:M:W 158 

(chloroform:methanol:water); 1:1 C:M (chloroform:methanol); 2:1 C:M 159 

chloroform:methanol.  Ethanol, methanol, and chloroform were obtained from Sigma-160 

Aldrich (St. Louis, MO).  Phosphate buffered saline (PBS) and certified endotoxin-free 161 

water were sourced from Gibco (Grand Island, NY). Matrix application was technique-162 

specific, as given. 163 

 164 

Lipid A Limit of Detection  165 

A commercial preparation of monophosphoryl lipid A (MPLA) from Salmonella enterica 166 

serovar minnesota (R595) was purchased from Sigma-Aldrich (St. Louis, MO). For spot 167 

analysis, a concentrated stock solution of 1 mg mL-1 MPLA was made in 1:1 C:M. A 10-168 

fold dilution series (1 μg μL-1 through 10 ng μL-1) was made in the same solvent. One 169 

microliter of each dilution in the series was spotted onto a stainless steel MALDI target 170 

plate, air dried, and followed by 1 μL of matrix (NRM: 20 mg mL-1 in 2:1 C:M, 9-AA 20 171 

mg mL-1 in 2:1 C:M, DHB 40 mg mL-1 in 2:1 C:M, concentrations optimized for MPLA 172 
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detection). MPLA spotted for the limit of detection study was analyzed on a Bruker 173 

Daltonics (Billerica, MA) solariX XR (MALDI FT-ICR,12T) calibrated to 1 ppm using 174 

sodium trifluoroacetic acid in negative-ion mode. Limit of detection was defined as the 175 

quantity of MPLA spotted in the last detectable spot in the dilution series, minimum 176 

criterion for detection was defined as the presence of at least two isotopic peaks in 177 

addition to the corresponding, monoisotopic peak. LOD data were analyzed in 178 

DataAnalysis software (Bruker Daltonics, Billerica, MA) using the Sophisticated 179 

Numerical Annotation Procedure (SNAP).   180 

 181 

Bacterial Strains and Growth Conditions 182 

Francisella novicida (Fn) was grown in tryptic soy broth containing 0.1 g/L L-cysteine 183 

[TSBC] (Broth, Becton-Dickenson, Hunt Valley, MD; L-cysteine, Sigma-Aldrich, St. 184 

Louis, MO) in shaking liquid culture (225 RPM) to mid-log phase. Agar plates were the 185 

same broth formulation with the addition of 1.5% (w/v) agar (Becton-Dickenson, Hunt 186 

Valley, MD). For lipid A microextraction: one milliliter of liquid culture was harvested into 187 

a microfuge tube, pelleted (8000 x g, 5 minutes), and supernatant discarded.  The 188 

remaining pellet was processed by the microextraction method described below. For 189 

rodent infections: an overnight, shaking liquid culture (300 μL) was used to inoculate a 190 

large volume of fresh, warmed (37°C) TSBC (15 mL). These early-log phase 191 

subcultures (3 hour culture) were prepared as follows for injection.   192 

 193 

 194 

 195 
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Mice, Ticks, and Infection 196 

Uninfected and infected solid organs (kidney, spleen) were collected from female 197 

C57BL/6 mice (Jackson Laboratories, Bar Harbor, ME), 6-8 weeks of age. Briefly, mice 198 

were housed in biosafety level 2 (BSL2) microisolator cages and provided food and 199 

water ad libitum. Infectious doses of Fn were prepared as follows: one milliliter of 200 

the1:50 (v:v) large volume subculture was pelleted (3500 x g, 5 minutes) and 201 

resuspended in PBS. This solution was diluted further in PBS to contain approximately 202 

300 colony forming units (CFU) in 50 μL (injection volume). Doses were administered 203 

subcutaneously, control groups received sterile PBS injections. Colony forming units in 204 

duplicate 50 μL doses were assessed on TSBC-agar plates (above). Mice were 205 

euthanized by carbon dioxide narcosis prior to tissue collection, followed by secondary 206 

thoracotomy. Spleens were collected for lipid A extraction forty-eight hours post 207 

infection along with uninfected, matching control tissue. Tissues were excised then snap 208 

frozen by floating on foil in a pool of liquid nitrogen and stored at -80°C for sectioning or 209 

lipid A extraction. D. variabilis (Dv) ticks were kindly provided by Daniel Sonenshine 210 

(Department of Biological Sciences, Old Dominion University). Fn U112 (10,000-30,000 211 

CFU) and PBS were injected into the emargination cavity of unfed male and females 212 

using pulled glass capillaries attached to a Nanoject II pump (Drummond Scientific, 213 

Broomall, PA). Ticks were incubated overnight at 23°C with 95% humidity then were 214 

washed with 3% hydrogen peroxide, sterile water, and 70% ethanol in succession, 215 

dried, and placed in a sterile 5 ml conical for processing (counting or microextraction) 216 

 217 

 218 
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 219 

Lipid A Microextraction 220 

Microextraction of lipid A from 1 mL of turbid shaking culture (in vitro), ticks (in vivo) 221 

mouse spleen (in vivo) was performed as previously described with the following 222 

deviations: ticks or mouse spleens were extracted in a double volume of the initial 223 

extraction solution (800 μL total) starting with a tissue shredding step consisting of 224 

three, 10-15 second full speed pulses of the spleen in the extraction solution (Tissue 225 

Tearor Homogenizer, Cole Parmer, Vernon Hills, IL).(Hamidi et al. 2005) Briefly, 1 mL of 226 

mid-log phase Fn grown in TSBC was pelleted and supernatant discarded.  The pellet 227 

was extracted in 400 μL of a solution containing 5 parts isobutyric acid : 3 parts 1M 228 

ammonium hydroxide and heated at 100°C for one hour followed by a fifteen minute 229 

incubation on ice and centrifugation at 2000 x g for fifteen minutes. Supernatant was 230 

collected and mixed in equal parts with water then frozen and lyophilized. Contaminants 231 

were washed from the dried material by two rounds of methanol washes: 1 mL of 232 

methanol, vortexing, and pelleting at 10,000 x g for five minutes. The final product was 233 

reconstituted in 2:1 C:M (100 μL) along with 4-8 grains of Dowex ion exchange resin 234 

(Fisher Scientific, Pittsburgh, PA), incubated with vortexing for at least five minutes. One 235 

milliliter of the extraction was spotted with 1 μL of NRM as above for MALDI analysis on 236 

a Bruker AutoFlex Speed in negative-ion mode calibrated with Agilent Tuning Mix 237 

(Santa Clara, CA) and data was processed in flexAnalysis (Bruker Daltonics, Billerica, 238 

MA). All microextraction chemicals were obtained from Sigma-Aldrich (St. Louis, MO) 239 

unless otherwise noted.  240 

 241 
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Total Lipid Extraction 242 

Total lipids were extracted from Fn (10 mL mid-log shaking culture at 37°C, pelleted) as 243 

previously described.(Bligh and Dyer 1959) Briefly, pellets were extracted on ice in 11.4 244 

mL of the single phase extraction solution - 1:2:0.8 C:M:W - for thirty minutes with 245 

vigorous agitation (stirbar). Insoluble product was pelleted at 1000 x g for 10 minutes at 246 

4°C. The supernatant was converted into two phases by adding 3 mL of water and 3 mL 247 

chloroform, shaken vigorously until the solution turned cloudy (~30 second to 1 minute) 248 

and allowed to separate for five minutes at room temperature followed by a fifteen 249 

minute separation at 1500 x g at room temperature. The organic phase was collected 250 

and dried under a stream of nitrogen.  Aqueous phases were washed with 3 mL 251 

chloroform and separated as above to recover remaining lipids, processed as above, 252 

and pooled with the first organic phase collection. Total lipids were reconstituted in 100 253 

μL of 2:1 C:M solution. 12 μL of total lipid extract was spotted for two-dimensional thin 254 

layer chromatography (2D-TLC), below.  255 

 256 

Two-Dimensional TLC-MALDI  257 

2D-TLC-MALDI was performed on Fn lipid extracts grown at 37°C in TSBC as 258 

described above. Lipid extracts were spotted onto aluminum-backed TLC silica gel 60 259 

F254 plates (20cm x 20cm, EMD Chemicals Inc., Germany) that were pre-run (wash) in 260 

an equilibrated chamber of 1:1 C:M in the direction of the first dimension and dried. 261 

Loaded TLC plates were run in an equilibrated chamber of 65:25:3.6:0.4 (v:v:v:v) 262 

chloroform:methanol:water:ammonium hydroxide, air dried, turned 90° and separated in 263 

the second dimension for acyl complexity in an equilibrated chamber of 60:60:10 (v:v:v) 264 
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toluene, pyridine, water. Solvent fronts were marked and lipid migration spots were 265 

determined using water exclusion (dried plates were sprayed with water to define lipid 266 

spot pattern). For MALDI analysis, the appropriate region of the TLC plate was excised 267 

(approximately 5 cm x 7.5 cm), spray coated with matrix (NRM matrix solution, 12 mg 268 

mL-1 in 2:1 C:M applied with a TLC sprayer) and scanned in negative ion mode at 500 269 

μm spatial resolution on a Bruker AutoFlex Speed, data was processed in flexImaging 270 

(Bruker Daltonics, Billerica, MA). Unless otherwise noted, all reagents were sourced 271 

from Sigma-Aldrich (St. Louis, MO).    272 

 273 

Tissue Preparation and Imaging 274 

Tissue profiling experiments were performed on uninfected, unfixed, frozen mouse 275 

kidney and spleen. Twelve micron sections were cut using a ThermoFisher cryostat 276 

(Waltham, MA), mounted onto a cold glass slide and incubated at 37°C until visibly dry.  277 

For spot profiling and MSI matrices were applied with a Bruker ImagePrep (Billerica, 278 

MA) device except where noted.  Matrix crystal characterization was performed on 12 279 

μm sections of mouse brain tissue, applied with a Suncollect automated pneumatic 280 

sprayer device (Sunchrom GmbH, Friedrichsdorf, Germany) as follows: DHB – 18 281 

layers (6 mg mL-1), 9-AA – 13 layers (6 mg mL-1), and NRM – 13 layers (6 mg mL-1).  All 282 

matrices were solvated in 1:2:0.8 C:M:W for crystal sizing and description, matrices 283 

were applied to a level of comparably similar coverage. For the lipid-depleting 284 

experiment, methanol washing steps were performed as follows: one minute wash in 285 

70% methanol followed by a one minute wash in 100% methanol, after which the 286 

sections were allowed to dry under ambient conditions and then prepared for imaging 287 
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using the ImagePrep as above. Tissue spot profiling and washing MSI data were 288 

collected on a Synapt G1 from Waters (Milford, MA) using MassLynx Software (Waters, 289 

Milford, MA), calibrated with a polyethylene glycol (PEG) mixture.  Spectra were 290 

processed for image construction in BioMap 3.7.5.5 software (Novartis, Basel, 291 

Switzerland, www.maldi-msi.org). Simultaneous mapping tissue mapping experiments 292 

were prepared as described, with matrix deposition on the Sunchrom device and 293 

analysis on a Bruker solariX 12T MALDI-FTICR calibrated to 1ppm in negative ion 294 

mode using infused sodium trifluoroacetate clusters. Root-mean-square normalization 295 

was performed in flexImaging version 4.0 and ion identities were predicted in the Lipid 296 

Maps database (Lipid Maps Consortium, www.lipidmaps.org) along with the support of 297 

previously published lipid identities.  298 

  299 
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Results and Discussion 300 
 301 

Physiological Range Detection of Lipid A Made Possible Using NRM 302 

We first sought to establish the detection limits for common MALDI matrices used for 303 

lipid A, making future analysis of primary samples possible. First, we evaluated the 304 

dynamic range and limit of detection (LOD) of lipid A using NRM as a matrix. For this 305 

analysis, we used synthetically derived monophosphoryl lipid A (MPLA), a 306 

representative lipid A molecule derived from the lipopolysaccharide (LPS) of Salmonella 307 

enterica serovar Minnesota (Se). MPLA was 10-fold serially diluted from 1 μg μL-1 (1 μg 308 

spotted) through 10 pg μL-1 (10 pg spotted) followed by addition of 1 μL of DHB, 9-AA, 309 

or NRM (concentrations given in Methods). This analysis showed a two-log 310 

improvement of the LOD of MPLA with NRM compared to 9-AA and a log improvement 311 

compared to DHB. All three matrices resulted in detection of the singly charged lipid A 312 

in negative ion mode, where the monoisotopic peak is m/z 1744 from 1000 pg MPLA, 313 

the total amount in a single spot (Fig. S1). MPLA was undetectable below 100 pg when 314 

spotted with DHB and 1000 pg when spotted with 9-AA. Only NRM yielded the 315 

monoisotopic peak and at least two additional isotopic peaks from 10 pg MPLA (Fig. 316 

S1C). To evaluate performance in a narrow range of concentration near and below 317 

LOD, signal-to-noise (S:N) ratios were calculated from triplicate samples (Table 1) 318 

diluted to an intermediate range bracketing 10pg MPLA. MPLA spotted at 12.5 pg and 319 

6.3 pg total results in an average S:N ratios of 7.0 and 3.9, respectively. For the 320 

purposes of defining an endpoint value S:N≥3 (for m/z 1744) was established as a 321 

detection cutoff. MPLA applied at 5.0 pg yielded an average S:N<3 (2.5), establishing 322 
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the refined LOD at 6.3 pg total material, the lowest concentration tested resulting in 323 

S:N≥3.  324 

   Low-level detection of lipid A is central to structural analysis from biological extracts, 325 

including infected tissues and primary clinical isolates.  Given that 109-10 CFU, 326 

representing a small colony of bacteria on an agar plate will yield approximately 10 327 

micrograms of LPS (~3-5 μg hydrolyzed lipid A, E. coli for reference), this improved 328 

LOD for lipid A represents a detectable signal from 6 orders of magnitude fewer 329 

bacteria.(Watson et al. 1977) Detection of lipid A from less than 103 CFU puts detection 330 

by MALDI on a clinically relevant scale, for example in a typical urinary tract infection 331 

104-5 CFU mL-1 are present.(Schmiemann et al. 2010; Kwon et al. 2012) Therefore, we 332 

sought to detect lipid A directly from infected tissues.     333 

   For lipid A detection from biological samples, we extracted lipid A from two sources: 334 

cultures (in vitro) and infected mouse spleen (in vivo). Francisella novicida (Fn) lipid A is 335 

a tetra-acylated, mono-glycosylated structure and is readily detectable as a negative ion 336 

at m/z 1665 (Fig. 1A). The m/z 1637 species represents a shortening of one of the fatty 337 

acids by two carbon units (Fig. S2). We infected mice subcutaneously with Fn, 338 

harvested infected spleens (2.8 x 106 CFU mL-1, blood) and extracted lipid A using the 339 

microextraction method.(Hamidi et al. 2005) Fn lipid A was extracted from liquid culture 340 

using the Caroff isobutyric acid/ammonium hydroxide microextraction method, solvated 341 

in 2:1 chloroform:methanol (50 μL) from which 1 μL was spotted onto a MALDI target 342 

plate with 1 μL NRM matrix and analyzed using MALDI.(Hamidi et al. 2005) As 343 

expected, extracted Fn lipid A is readily detectable (Fig. 1A) from a 1 mL in vitro culture 344 

(>108 CFU mL-1) as two major species, m/z 1665 and m/z 1637. The previously 345 
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described structure of the larger molecule (m/z 1665) is given in Figure S2 and is the 346 

dominant structure when Fn is grown at 37°C.(Shaffer et al. 2007) Both of the Fn lipid A 347 

products detected in vitro were robustly detected in vivo, and in similar relative 348 

abundances (Fig. 1B) to the in vitro lipid A profile; the dominant lipid A species (m/z 349 

1665) along with the minor species at (m/z 1637) were both observed in vivo. These 350 

results represent the first lipid A analysis by MALDI-MS from directly extracted infected 351 

tissue, as opposed to lipid A extraction from expanded cultures, ex vivo. This approach 352 

will be a powerful tool to study the effect of host influences on bacterial lipid A 353 

structures.  354 

   Given the low input necessary for lipid A detection using the combination of NRM 355 

matrix and the Caroff microextraction method, we aimed to confirm the major lipid A 356 

ions of Fn growing in ticks, one of the arthropod vectors of multiple Francisella 357 

subspecies.(Nano 2006) We posited that an intermediate (vector, tick) temperature-358 

controlled structure of Fn lipid A should increase in relative abundance compared to the 359 

warm (host, mouse) temperature-controlled structure as demonstrated previously, in 360 

vitro.(Li et al. 2012) D. variabilis (Dv) ticks were injected with Fn and maintained at 23°C 361 

for 48 hours. Lipid A was extracted from whole ticks (1 x 107 CFU per tick) by 362 

microextraction and spotted with NRM matrix for analysis. Compared to the relative 363 

abundance of the warm temperature structure of Fn lipid A (m/z 1665) we observed a 364 

nearly equal balance (Fig. 1C) with a previously described intermediate-length structure 365 

(m/z 1637) in the whole tick extracts.(Li, Wang and Ernst 2011; Shaffer et al. 2007) 366 

These results taken together support the hypothesis that Fn lipid A structure is 367 
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modulated in response to local environmental cues such as growth at alternative 368 

temperatures or in an arthropod vector.(Shaffer et al. 2007; Li et al. 2012)  369 

   The LOD to detect lipid A was compared using NRM, 9-AA, and DHB revealing a two-370 

log improvement in LOD between 9-AA (100-fold) and NRM and a log improvement 371 

between DHB (10-fold) and NRM. The expansion of the working range of lipid A LOD, 372 

from routine analysis of nanogram quantities to routine analysis of picogram quantities, 373 

makes NRM a powerful tool for characterizing low-yield lipid A extractions from clinical 374 

or environmental samples, including bacteria isolated from biofilms on implanted 375 

devices or directly from infected wound sites. Overall, NRM will have wide applications 376 

for the detection and study of complex lipids.  377 

 378 

Simultaneous Bacterial Lipid A and Phospholipid Profiling from Lipid Extracts 379 

After growth at environmental (≤25°C) and mammalian (37°C) temperatures, bacteria 380 

rapidly remodel their membrane lipids to maintain proper membrane function and 381 

fluidity.(Li et al. 2012) Profiling these changes at both the phospholipid and lipid A 382 

levels, simultaneously, will yield a greater understanding of the relationship between 383 

temperature and global membrane remodeling. Harnessing the improved lipid A 384 

detection level conferred by NRM, we profiled both lipid A and phospholipids from a Fn 385 

lipid extract using two-dimensional (2D) thin layer chromatography (TLC) coupled to 386 

MALDI (2D-TLC-MALDI). Due to the complexity of bacterial lipid preparations, we 387 

wanted to first resolve lipid classes and subsequently visualize the discrete acyl length 388 

variants of two major Fn lipid components: lipid A and phosphatidylglycerol (PG). For 389 

this analysis, we separated total Fn lipid extracts in a 2D-TLC format followed by MALDI 390 
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mass spectrometry imaging (MSI) to visualize discrete lipid bands. Figure 2 illustrates 391 

the separation approach, as well as co-detection of lipid A and several PG lipids. The 392 

previously observed improvements in LOD of lipid A from primary extracts using NRM 393 

was also apparent in the TLC silica plate format, with three lipid A variant structures 394 

detectable: m/z 1665, 1637, and 1609, a minor constituent at mammalian growth 395 

temperature (37°C) representing a further shortening of one of the fatty acids by 2 396 

carbon units. The reference Fn lipid A structures (Fig. S2), their expected temperature-397 

controlled abundance ratios, and the major ions within the peaks have been previously 398 

described. (Shaffer et al. 2007; Li et al. 2012) TLC-MALDI is an established method for 399 

rapid phospholipid profiling. Here, we have demonstrated the use of a single matrix to 400 

profile both lipid A and phospholipids simultaneously from a single TLC-MALDI 401 

experiment. The approach can be readily translated to multiple infection model systems.  402 

   The spleen is a dynamic secondary lymphoid organ responsible for clearance of 403 

compromised red blood cells in the red pulp and immune response and surveillance in 404 

the white pulp. During the course of an immune response, splenic architecture 405 

undergoes dramatic restructuring, forming germinal centers and follicles. To determine if 406 

NRM could be effective as a lipid matrix for MSI of the host response, naïve spleen 407 

sections were prepared with NRM matrix dissolved in a single-phase lipid extraction 408 

solution (1:2:0.8 chloroform:methanol:water) and spot analyzed in positive- and 409 

negative-ion modes.(Cerruti et al. 2012; Scott et al. 2014) We sought to establish a 410 

baseline profile of lipids in the spleen in both polarities, including those containing 411 

polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA), released from 412 

membrane phospholipids and required for the production of specific classes of 413 
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inflammatory lipids. The most abundant ion detected in negative-ion mode was m/z 414 

885.6, an arachidonic acid-containing lipid phosphatidylinositol (PI) described in 415 

numerous other tissues (Fig. 3).(Murphy, Hankin and Barkley 2008) Higher molecular 416 

weight lipid ions were also detected in the spleen, again highlighting increased NRM 417 

efficiency in higher mass ranges (Figs. 3 and S3, Supplemental Text). Together, these 418 

data highlight the dual polarity application of NRM for efficient lipid profiling experiments 419 

on-tissue and widen the available methods to study lipid-mediated inflammation.  420 

   Profiling the extent of incorporation of PUFAs in the phospholipid repertoire may have 421 

interesting implications for host lipid based inflammatory response, including our 422 

understanding of the overall potential for a tissue to absorb damage from reactive 423 

oxygen species. Additionally, release of specific PUFAs from the parent phospholipid is 424 

a critical initiation point for production of lipid signaling molecules that can be potent 425 

modulators in the context of inflammation and immunity.  Prostaglandins, produced from 426 

liberated AA have an important, yet poorly defined role in Francisella infections. 427 

Woolard et al demonstrated in 2007 that the T cell blocking mechanism observed in 428 

Francisella tularensis LVS infected macrophages was due to production of 429 

prostaglandin E2 (PGE2).(Woolard et al. 2007) Mapping the AA-containing 430 

phospholipids upstream of these immunomodulatory effects will be the focus of further 431 

study.   432 

 433 

Simultaneous Mapping of Unique Bacterial and Host Lipids 434 

In an effort to harness the improved performance of our lipid detection and mapping 435 

experiments, we sought to use NRM to further describe the host-pathogen interaction 436 
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within infected tissue. Fn is a Gram-negative species with two membranes, the inner 437 

membrane consisting of phospholipids and the asymmetrical outer membrane. 438 

Comprising the outer membrane are phospholipids on the inner leaflet of the outer 439 

membrane and LPS (the lipid A anchor component) on the outer leaflet of the outer 440 

membrane. Bacterial membranes contain a dominant fraction of PG and PE, though 441 

generalizations about individual bacterial backgrounds are difficult since the unique lipid 442 

composition is linked to taxonomy.(Ratledge and Wilkinson 1988)  We have previously 443 

characterized the in vitro phospholipid and lipid A populations of Fn using standard lipid 444 

extraction methods and determined that phosphatidylglycerol (PG) 32:0 was a major 445 

component of the bacterial membrane.(Zhang and Rock 2008; Li, Wang and Ernst 446 

2011) Using MSI we sought to map the distribution of PG 32:0 in Fn infected tissue. 447 

Figure 4 demonstrates the distribution of PG 32:0 (m/z 721.5) within Fn infected spleen 448 

versus naïve spleen, with high relative abundances observed in the red pulp following 449 

infection. At 48 hours post-infection organisms are present in the spleen, especially the 450 

red pulp.(Conlan et al. 2003; Elkins, Cowley and Bosio 2007; Kanistanon et al. 2008; 451 

Ojeda et al. 2008; Rasmussen et al. 2012) Although PG 32:0 is not exclusively a 452 

bacterial phospholipid, the relative abundance in the naive spleen profile (Fig. 3) is low 453 

and near the detection threshold. PG levels in mouse tissues (liver, <5%) are modest 454 

compared to other phospholipid classes.(White 1973) It is worth noting that PG 32:0 455 

was not reported present in human plasma samples analyzed by the Lipid Maps 456 

Consortium; however, absent complete comparative descriptions of the mouse and 457 

human splenic lipidomes, it is impossible to directly compare PG 458 

content.(Quehenberger et al. 2010) For the purposes of this work, PG was considered 459 
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an abundant bacterial marker, though the possibility exists that the presence of bacteria 460 

or simply of an activated immune response may be sufficient to stimulate production of 461 

host-borne PG 32:0. 462 

   In contrast, several classes of lipid are not made by Fn including the PIs, thus they are 463 

exclusively host lipids in this infection.(Li, Wang and Ernst 2011) To demonstrate the 464 

simultaneous host-pathogen lipid monitoring made we mapped PI 42:8 (m/z 933.5), an 465 

extensively polyunsaturated PI with 42 total acyl carbons (Table S1), throughout the 466 

infected spleen with some bias toward a red pulp distribution. Similarly, PE 38:4 (m/z 467 

766.5) is another exclusively host lipid as it is not found in lipid extracts of Fn. Curiously, 468 

PE 38:4 was found in the white pulp with high relative intensity organized puncta (Fig. 4) 469 

suggesting that this may be a marker for a specific cell type or a highly localized 470 

immune process. By co-localizing components of the immune response to Fn in tandem 471 

with the host and pathogen lipid distributions we aim to further describe the basic 472 

pathogenic mechanisms of this infection. Achieving higher sensitivity for a wide variety 473 

of pathogen lipids is crucial to the success of this approach and the studies herein 474 

implicate its feasibility for numerous infection models. Further studies will be necessary 475 

to define imaging parameters for exclusive bacterial lipids, such as lipid A; however, 476 

highly expressed bacterial lipids can serve as proxy markers to map bacterial infection 477 

from a new perspective while simultaneously mapping the host response. This is a 478 

valuable combination for future host-pathogen interaction studies. 479 

 480 

Conclusions 481 
 482 
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When used in MALDI-coupled techniques for bacterial, vector, and host lipid analysis, 483 

NRM is a powerful and versatile matrix allowing picogram-level detection of MPLA and 484 

enabling analysis of lipid A from primary extracts of in vitro and in vivo infection model 485 

systems. Beyond MALDI spot analysis, the use of NRM in alternative MALDI-coupled 486 

techniques resulted in the detection of a wide range of lipids and facilitated analysis of 487 

both lipid A and phospholipids directly from 2D-TLC-MALDI plates making it possible to 488 

survey many lipid components of bacterial membranes in a single scan. It also 489 

increased the presence of higher mass lipids, extending the useable information range 490 

from a single experiment. The overall utility of NRM is underlined by improved LOD of 491 

lipid A, robust performance in positive- and negative-ion modes, and versatility across 492 

multiple MALDI applications. Finally, we demonstrated the capability of coupling 493 

bacterial lipid mapping to host lipid mapping using this simultaneous monitoring 494 

approach. Lipids exclusive to the host were found in the same regions as specific 495 

bacterial lipids as well as in unique tissue structures (organized splenic white pulp) 496 

involved in the immune response to Fn infection. Future studies will focus on the direct 497 

mapping of lipid A within infected tissues, including optimization of the on-tissue LPS 498 

hydrolysis steps that will be necessary for robust MSI of lipid A signal from bacterial 499 

infections bearing smooth LPS. Together, our results establish a path to describe novel 500 

lipid-based mechanisms of microbial pathogenesis that will find wide utility within the 501 

infection and immunity fields.  502 

 503 

 504 

 505 

 506 

 507 



 24 

Funding 508 
 509 

This work was supported by the National Institute for Allergy and Infectious Diseases at 510 

the National Institutes of Health [R21 AI101691 to R.K.E.] with training support for 511 

A.J.S. [T32 AI007540 and T32 AI095190].  512 

 513 
514 



 25 

Graphical Abstract Sentence 515 
 516 
Simultaneous profiling of Francisella novicida lipid A and phospholipids from 517 
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norharmane.   519 



 26 

References 520 

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian 521 
Journal of Biochemistry and Physiology 1959;37:1–7. 522 

Brown T, Clipston NL, Simjee N et al. Matrix-assisted laser desorption/ionization of 523 
amphiphilic fullerene derivatives. International Journal of Mass Spectrometry 524 
2001;210/211:249–63. 525 

Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of 526 
peptides and proteins using MALDI-TOF MS. Anal Chem 1997;69:4751–60. 527 

Cerruti CD, Benabdellah F, Laprévote O et al. MALDI imaging and structural analysis of 528 
rat brain lipid negative ions with 9-aminoacridine matrix. Anal Chem 2012;84:2164–529 
71. 530 

Chaurand P. Imaging mass spectrometry of thin tissue sections: A decade of collective 531 
efforts. J Proteomics 2012;75:4883–92. 532 

Conlan JW, Chen W, Shen H et al. Experimental tularemia in mice challenged by 533 
aerosol or intradermally with virulent strains of Francisella tularensis: bacteriologic 534 
and histopathologic studies. Microbial Pathogenesis 2003;34:239–48. 535 

Cornett DS, Reyzer ML, Chaurand P et al. MALDI imaging mass spectrometry: 536 
molecular snapshots of biochemical systems. Nat Methods 2007;4:828–33. 537 

d'Hauteville H, Khan S, Maskell DJ et al. Two msbB genes encoding maximal acylation 538 
of lipid A are required for invasive Shigella flexneri to mediate inflammatory rupture 539 
and destruction of the intestinal epithelium. The Journal of Immunology 540 
2002;168:5240–51. 541 

Elkins KL, Cowley S, Bosio CM. Innate and adaptive immunity to Francisella. Annals of 542 
the New York Academy of Sciences 2007;1105:284–324. 543 

Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification 544 
of total lipides from animal tissues. J Biol Chem 1957;226:497–509. 545 

Fuchs B, Bischoff A, Süss R et al. Phosphatidylcholines and -ethanolamines can be 546 
easily mistaken in phospholipid mixtures: a negative ion MALDI-TOF MS study with 547 
9-aminoacridine as matrix and egg yolk as selected example. Anal Bioanal Chem 548 
2009;395:2479–87. 549 

Fuchs B, Schiller J, Süss R et al. A direct and simple method of coupling matrix-550 
assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-551 
TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from 552 
egg yolk. Anal Bioanal Chem 2007;389:827–34. 553 

Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid 554 



 27 

research. Prog Lipid Res 2010;49:450–75. 555 

Gunn JS, Ernst RK. The structure and function of Francisella lipopolysaccharide. Annals 556 
of the New York Academy of Sciences 2007;1105:202–18. 557 

Gunn JS. Bacterial modification of LPS and resistance to antimicrobial peptides. J 558 
Endotoxin Res 2001;7:57–62. 559 

Gusev AI, Proctor A, Rabinovich YI. Thin-layer chromatography combined with matrix-560 
assisted laser desorption/ionization mass spectrometry. 1995. 561 

Hagar JA, Powell DA, Aachoui Y et al. Cytoplasmic LPS activates Caspase-11: 562 
implications in TLR4-independent endotoxic shock. Science 2013;341:1250–3. 563 

Hajjar AM, Ernst RK, Tsai JH et al. Human Toll-like receptor 4 recognizes host-specific 564 
LPS modifications. Nat Immunol 2002;3:354–9. 565 

Hamidi El A, Tirsoaga A, Novikov A et al. Microextraction of bacterial lipid A: easy and 566 
rapid method for mass spectrometric characterization. Journal of Lipid Research 567 
2005;46:1773–8. 568 

Heeren RMA. Getting the picture: The coming of age of imaging MS. International 569 
Journal of Mass Spectrometry 2015;377:672–80. 570 

Kanistanon D, Kanistanon D, Hajjar AM et al. A Francisella mutant in lipid A 571 
carbohydrate modification elicits protective immunity. PLoS Pathog 2008;4:e24. 572 

Kwon JH, Fausone, MK, Du H et al. Impact of laboratory-reported urine culture colony 573 
counts on the diagnosis and treatment of urinary tract infection for hospitalized 574 
patients. Am J Clin Pathol 2012;137:778-784. 575 

Li Y, Powell DA, Shaffer SA et al. LPS remodeling is an evolved survival strategy for 576 
bacteria. Proc Natl Acad Sci USA 2012;109:8716–21. 577 

Li Y, Wang X, Ernst RK. A rapid one-step method for the characterization of membrane 578 
lipid remodeling in Francisella using matrix-assisted laser desorption ionization time-579 
of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 2011;25:2641–580 
8. 581 

Luxembourg SL, Mcdonnell LA, Duursma MC et al. Effect of local matrix crystal 582 
variations in matrix-assisted ionization techniques for mass spectrometry. Anal 583 
Chem 2003;75:2333–41. 584 

Murphy RC, Hankin JA, Barkley RM. Imaging of lipid species by MALDI mass 585 
spectrometry. Journal of Lipid Research 2008;50: S317–S322. 586 

 587 



 28 

Nano FE. The Genus Francisella. Prokaryotes 2006;6:1119–32. 588 

Nchoutmboube JA, Grüner BM, Spector AA et al. Increased long chain acyl-coa 589 
synthetase activity and fatty acid import is linked to membrane synthesis for 590 
development of picornavirus replication organelles. PLoS Pathog 2013;9:e1003401. 591 

Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on 592 
bacterial pathogenesis. Nature Reviews Microbiology 2013;11:467–81. 593 

Nicola AJ, Gusev AI, Hercules DM. Direct Quantitative Analysis From Thin-Layer 594 
Chromatography Plates Using Matrix-Assisted Laser Desorption/Ionization Mass 595 
Spectrometry. Society for Applied Spectroscopy, 1996:1479–82. 596 

O'Hara JA, Ambe LA, Casella LG et al. Activities of vancomycin-containing regimens 597 
against colistin-resistant Acinetobacter baumannii clinical strains. Antimicrobial 598 
Agents and Chemotherapy 2013;57:2103–8. 599 

Ojeda SS, Doyle MR, Wang ZJ et al. Rapid dissemination of Francisella tularensis and 600 
the effect of route of infection. BMC Microbiol 2008;8:215. 601 

Pelletier MR, Casella LG, Jones JW et al. Unique structural modifications are present in 602 
the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii. 603 
Antimicrobial Agents and Chemotherapy 2013;57:4831–40. 604 

Quehenberger O, Armando AM, Brown AH et al. Lipidomics reveals a remarkable 605 
diversity of lipids in human plasma. Journal of Lipid Research 2010;51:3299–305. 606 

Rasmussen JW, Tam JW, Okan NA et al. Phenotypic, morphological, and functional 607 
heterogeneity of splenic immature myeloid cells in the host response to Tularemia. 608 
Infection and Immunity 2012;80:2371–81. 609 

Ratledge C, Wilkinson SG. An overview of microbial lipids. Microbial lipids 1988;1:3–22. 610 

Schmeltz I, Hoffmann D. Nitrogen-containing compounds in tobacco and tobacco 611 
smoke. Chem Rev 1977;77:295–311. 612 

Schmiemann G, Kniehl E, Gebhardt K et al. The diagnosis of urinary tract infection. 613 
Dtech Arztebl Int 2010;107:361-367. 614 

Schwamborn K, Caprioli RM. Molecular imaging by mass spectrometry — looking 615 
beyond classical histology. Nature Publishing Group 2010;10:639–46. 616 

Scott AJ, Jones JW, Orschell CM et al. Mass spectrometry imaging enriches biomarker 617 
discovery approaches with candidate mapping. Health Phys 2014;106:120–8. 618 

Shaffer SA, Harvey MD, Goodlett DR et al. Structural heterogeneity and 619 
environmentally regulated remodeling of Francisella tularensis subspecies novicida 620 
lipid A characterized by tandem mass spectrometry. J Am Soc Mass Spectrom 621 



 29 

2007;18:1080–92. 622 

Shirey KA, Lai W, Scott AJ et al. The TLR4 antagonist Eritoran protects mice from lethal 623 
influenza infection. Nature 2013;497:498–502. 624 

Soltwisch J, Kettling H, Vens-Cappell S et al. Mass spectrometry imaging with laser-625 
induced postionization. Science 2015;348:211–5. 626 

Stoeckli M, Staab D, Staufenbiel M et al. Molecular imaging of amyloid β peptides in 627 
mouse brain sections using mass spectrometry. Analytical Biochemistry 628 
2002;311:33–9. 629 

van Hove ERA, Smith DF, Heeren RMA. A concise review of mass spectrometry 630 
imaging. Journal of Chromatography A 2010;1217:3946–54. 631 

Watson SW, Novitsky TJ, Quinby HL et al. Determination of bacterial number and 632 
biomass in the marine environment. Appl Environ Microbiol 1977;33:940–6. 633 

White DA. The Phospholipid Composition of Mammalian Tissues. 3rd ed. Ansell GG, 634 
Dawson RMC, Hawthorne JN (eds.). Elsevier, NY, 1973. 635 

Wojtowicz E, Zawirska-Wojtasiak R, Przygoński K et al. Bioactive β-carbolines 636 
norharman and harman in traditional and novel raw materials for chicory coffee. 637 
Food Chemistry 2015;175:280–3. 638 

Woolard MD, Wilson JE, Hensley LL et al. Francisella tularensis-infected macrophages 639 
release prostaglandin E2 that blocks T cell proliferation and promotes a Th2-like 640 
response. Journal of Immunology 2007;178:2065–74. 641 

Yamagaki T, Nakanishi H. A new technique distinguishing α2-3 sialyl linkage from α2-6 642 
linkage in sialyllactoses and sialyl-N-acetyllactosamines by post-source decay 643 
fragmentation method of MALDI-TOF mass spectrometry - Springer. 644 
Glycoconjugate Journal 1999;16:385–9. 645 

Zemiski Berry KA, Li B, Reynolds SD et al. MALDI imaging MS of phospholipids in the 646 
mouse lung. Journal of Lipid Research 2011;52:1551–60. 647 

Zhang Y-M, Rock CO. Membrane lipid homeostasis in bacteria. Nature Reviews 648 
Microbiology 2008;6:222–33. 649 

 650 

 651 


