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Abstract

Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs) is an important topic in the
pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level
eventually affects a cell’s behavior. This is because complex information at both the protein and pathway level has to be
integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of
missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by
formulating mathematical models and comparing them with experimental data to study missense mutations. We present
two case studies: (1) interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to
mitosis transition) for yeast; (2) phenotypic classification of neuron-related human diseases associated with mutations
within the mitogen-activated protein kinase (MAPK) pathway. We show that the application of simplified mathematical
models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that
the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and
pathway perturbation.
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Introduction

How one links genetic information to physiological outcomes is an
important issue in the current ‘post-GWAS’ (genome-wide association
studies) era [1]. One specific topic regarding this problem is the
functional annotation of non-synonymous single nucleotide polymor-
phisms (nsSNPs) that cause amino acid changes in proteins. However,
the difficulty of annotating nsSNPs has slowed down the pace of
investigating their molecular consequences. Therefore, as the speed of
identifying new SNPs is high, there is now a distinct sense of urgency to
resolve this problem – an immediate focus is the 1000 Genomes Project
(http://www.1000genomes.org/) that has identified approximately
100,000 nsSNPs in need of further analyses. Indeed, the urgent
requirement for SNP annotation has also motivated the CAGI
experiment (Critical Assessment of Genome Interpretation; http://
genomeinterpretation.org/) that encourages community-wide efforts in
predicting the phenotypic impacts of genome variation.

Interpreting the physiological effect on cells due to missense
mutations in proteins is not a simple task. This is partly achievable
through analyzing the increasing number of protein structures
deposited in the Protein Data Bank (http://www.rcsb.org/) and
through functional annotation of proteins [2]. Investigating protein
structures allows for a qualitative view of pathway dynamics; a more

quantitative approach is to use mathematical modeling. Indeed, our
understanding of cellular behavior during the last two decades has
been significantly improved through the application of mathemat-
ical modeling methods such as ordinary differential equations
(ODE) and rule-based simulations [3,4,5,6,7,8]. However, the idea
of integrating the dynamical aspects of proteins and their associated
pathways to investigate the systemic impact of missense mutations is
still in an early stage of development. In 2007 Stein et al. proposed
the idea of integrating structural and pathway information for
estimating key kinetic constants associated with biochemical
pathways [9]. More recently, Kiel and Serrano [10] studied how
missense mutations in the Ras-binding domain of c-Raf (RafRBD)
affect the expression of the downstream protein Erk by investigating
the structure of RafRBD and constructing an ODE model
describing Erk signaling pathway [10].

The work of Kiel and Serrano suggests that integrating protein
structural analysis with pathway modeling can be a useful method to
facilitate the physiological annotation of missense mutations in
proteins. However, the effectiveness of this approach at quantifying
missense mutations located in different proteins remains unex-
plored. Also unexplored is the utility of this approach with simpler
mathematical models, considering only the dynamics of key proteins
while the remaining proteins in the pathway are omitted – this is

PLOS Computational Biology | www.ploscompbiol.org 1 October 2012 | Volume 8 | Issue 10 | e1002738

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham Trent Institutional Repository (IRep)

https://core.ac.uk/display/46562779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


potentially a more practical approach for achieving an improved
inference of the parameter space, thereby increasing the reliability
of the analysis (current ODE models describing biological pathways
often contain tens or hundreds of parameters that can neither be
easily measured nor calibrated experimentally). Furthermore,
extensive investigation is required to determine how the approach
performs when annotating missense mutations whose physiological
outcomes can be clinically defined and examined.

These issues are discussed in this work by gauging the systemic
impacts of missense mutations through integrating protein and
pathway behavior via reduced ODE models. Here we present and
discuss the measurement of a ‘systemic impact factor’ (SIF),
defined as a function of free energy change (DDG) and systemic
control (CS

pi, see Methods section ‘Control coefficient’), as a
practical approach for evaluating the relative effects of missense
mutations in a specific system. For mutations appearing in proteins
whose complexed and uncomplexed states are both considered in
the model, we calculate their maximum SIFs by taking the
maximum DDG between the two states. This is because the
average score of the two protein states does not necessarily have a
clear biophysical meaning in terms of describing the overall
stability change of a mutation. Although summing the DDGs
calculated in the two protein states may have biophysical meaning,
complications will be incurred when comparing the SIFs to other
proteins that only have one conformational state analyzed in the
model (either complexed or uncomplexed). Therefore, by using
the maximum DDGs we do not compromize the biophysical
meaning of SIF and at the same time make the SIF scores more
comparable across different proteins that may or may not have
two states.

The benchmark includes two biological systems: (1) the fission
yeast G2 to Mitosis (G2-M) transition and (2) the human MAPK
signaling pathway. The first system is a well-defined system for
studying the genotype-phenotype relationship as the systemic
perturbation of missense mutations can be directly benchmarked
to the length change of yeast cells. We use the temperature-
sensitive yeast strains as experimental models, each of them
containing a single missense mutation in protein Cdk1 or Cyclin B

(CycB), and we measure their cell lengths at septation (septation is
immediately followed by mitosis). Finally, the practicality of the
SIF score in quantifying the systemic effect of missense mutations
is evaluated by the correlation between the calculated SIF scores
and in vivo cell lengths. The second benchmark system represents a
more complex example in which the target mutations are spread
within four different proteins (H-Ras, Raf-1, Braf and Me) and
lead to clinical symptoms (in this case the neuro-cardio-facial-
cutaneous syndrome) that have different prognoses and risk of
complication. To determine whether or not a simple ODE model
can be used to infer the systemic perturbation of missense
mutations, we construct a reduced ODE model that includes only
12 parameters for the calculation of SIF values. We then place the
mutations into subgroups according to their predicted SIF scores,
and record whether our classification reveals the underlying
difference between disease mechanisms.

Results

In silico model of the G2-M transition in yeast
The G2-M transition controls when a cell enters mitosis and

determines the size of a cell at the point of division into two
daughter cells. In fission yeast, Schizosaccharomyces pombe, this
involves Cdk1, CycB, Wee1 and Cdc25. In the G2 phase, Cdk1
and CycB form a complex known as the mitosis promoting factor
(MPF), which brings about the G2-M transition [11]. The activity
of MPF is regulated by the protein kinase Wee1 [12] and the
protein phosphatase Cdc25 [13,14]: Wee1 inhibits the activity of
MPF by phosphorylating Cdk1, and Cdk1 also exerts negative
feedback on Wee1 by phosphorylating it. In addition, Cdc25
activates MPF by dephosphorylating Cdk1 and vice versa [15].
The Wee1-MPF-Cdc25 control system increases the ratio of active
MPF over its inactive state and eventually promotes a cell into
mitosis (Figure 1A).

The model we present here (Table 1) is based on the first
realistic model of MPF activation published by Novak and Tyson
[16]. Two basic assumptions of our model are 1) the total amount
of Cdk1 (Cdk1T) present in the system is constant and in excess (far
greater than the initial concentration of CycB) [17], and 2) all
CycB forms a complex with Cdk1 immediately after it is
synthesized since Cdk1 binds to CycB strongly and is in excess
of CycB: that is, CycBT = MPF (active form of MPF)+preMPF
(inactive form of MPF).

Investigation of the parameter space through the replica
exchange Monte Carlo algorithm (see Methods section ‘Replica
exchange Monte Carlo method’) shows that the parameters in our
in silico model are confined to a small range (Figure S1A) and
parameter variations do not change the general trend of the
relation between the various rate constants (Figure S1B).

Here we consider each missense mutation as a perturbation to the
wild-type status as described in the in silico model mentioned above,
and the systemic impact of each mutation is projected as the extent
that a mutation is likely to deviate from the wild-type state. In our
model, entry into mitosis occurs when CycB reaches a concentration
(dimensionless) equivalent to an active MPF concentration of 2.0.
Assuming cells grow continuously and linearly in time during
interphase, the systemic impact of perturbing each rate constant can
be gauged through the change of CycB concentration when active MPF = 2.0:
the higher (lower) the CycB concentration, the longer (shorter) the cell
size at mitosis (Figure 1C). Mathematically, this is implemented by
calculating the control coefficients CS

pi that indicate the change of
CycB concentration under a consistent amount of perturbation to
each rate constant (Methods section ‘Control coefficient’). The sign of
CS

pi shows the direction of CycB concentration change: positive CS
pi

Author Summary

Small changes in protein sequences, such as missense
mutations resulting from genetic variations in the genome,
can have a large impact on cellular behavior. Consequent-
ly, numerous studies have been carried out to evaluate the
disease susceptibility of missense mutations by directly
analyzing their structural or functional impact on proteins.
Such an approach has been shown to be useful for
inferring the likelihood of a mutation to be disease-
associated. However, there are still many unexplored
avenues for improving disease-association studies, due to
the fact that the dynamics of biological pathways are rarely
considered. We therefore explore the practicality of a
structural systems biology approach, combining pathway
dynamics with protein structural information, for project-
ing the physiological outcomes of missense mutations. We
show that stability changes of proteins due to missense
mutations and the sensitivity of a protein in terms of
regulating pathway dynamics are useful measures for this
purpose. Furthermore, we demonstrate that complicated
mathematical models are not a prerequisite for mapping
protein stabilities to network perturbation. Thus it may be
more feasible to study the systemic impact of missense
mutations associated with complex pathways.

Quantifying Systemic Impact of Missense Mutations
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Figure 1. The procedure of calculating SIF scores. (A) Identifying the target system for study. In this case we show the scheme of the G2-M
model that regulates the G2 to mitosis transition in the cell cycle. (B) Mapping mutations onto their 3D structures (Cdk1 and CycB in this example)
and associating them with the ODE parameters. Mutations located at or close to the active site (colored in blue) are considered to perturb the ODE
rate constants that describe interactions between MPF and their regulating kinases wee1 and cdc25 (shown with blue circles). Mutations that are not
in the functional sites (colored in red) are considered to perturb the ODE rate constants describing the rate of protein degradation (shown with red
circles). Also, for each mutation we evaluate its DDG that is considered as the perturbation of ODE parameters. (C) Calculating the CS

pi that reflects
the sensitivity of perturbing ODE parameters in terms of regulating the downstream reporter protein (MPF in the G2-M model). Here we show the
perturbation on the degradation rate of MPF as an example: The green arrows mark the effect of perturbation on CycB concentration when cells
enter mitosis, which is a result of MPF curve shifts (the red line represents wild type whereas orange and purple lines are mutant types). (D) Inferring
the systemic consequences of mutations based on DDG and CS

pi. Mutations that have smaller or larger SIF scores are likely to have smaller or larger
sizes at septation, respectively. The scale bars shown in the microscopic photos represent the average length of wild-type yeasts.
doi:10.1371/journal.pcbi.1002738.g001
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values correspond to an increase of CycB concentration, whereas a
negative CS

pi indicates the opposite. An overall view of CS
pi

calculated for the G2-M mechanism shows that perturbing the
Cdc25-related rate constants has a larger impact on the shift of the
MPF curve compared to perturbations to the Wee1-related rate
constants (Figure S2). This suggests an asymmetric relationship
between the positive and negative feedback loops on MPF activation
controlled by Cdc25 and Wee1 respectively, which is in agreement
with the recent paper by Domingo-Sananes and Novak [18].
Although the unequal impact between Wee1 and Cdc25 has not been
confirmed, previous experimental evidence in Xenopus egg extracts
[19,20] suggests this may be the case.

Mapping missense mutations onto the 3D structures of
Cdk1 and CycB

The systemic perturbation of the G2-M transition (Table 2) is
studied by examining the effect of four temperature-sensitive
mutations in Cdk1 (all mutations except C67Y and G183E) and
two temperature-sensitive mutations in CycB that attenuate the
function of MPF. The effect of these mutations on protein stability
or function is more pronounced when the temperature increases (as
proteins are allowed a greater degree of movement). Phenotypically,
these mutations allow cells to divide at a greater length than their
wild type states when the temperature increases. The cell does
divide with the non-temperature sensitive mutant in Cdk1 (C67Y
and G183E), but at a smaller cell size.

The modeled structure of MPF shows that mutation G43E in
Cdk1 is located at the interface of MPF subunits and thus is likely
to have a significant effect on the stability of the MPF complex (see
Methods section ‘Homology modeling of Cdk1, CycB and MPF
structures’ regarding structural modeling). Mutations A177T,
G183E and P208S in Cdk1 are located at or close to the active

site and hence are likely to cause functional effects; C67Y and
G227C in Cdk1 and W395R in CycB are at the periphery of the
proteins and thus are mainly structurally related. Mutation C379Y
in CycB is within a hydrophobic core and is likely to have a
considerable impact on the MPF complex by destabilizing the
structure of CycB (Figure 1B).

SIF values of Cdk1 and CycB mutations correlate to in
vivo cell lengths

The link between SIF and systemic perturbation (SP) can be
statistically established through regression:

SP*SIF!DDG:CS
pi

where DDG is the free energy change caused by a mutation to a
target protein (here FoldX [21] is applied to approximate the DDG
of the mutations studied), which approximates the change in a
specific rate constant of the target ODEs (see Text S2 for further
information regarding the application of DDG as an evaluation for
systemic perturbations); CS

pi is the control coefficient (Methods
section ‘Control coefficient’) that reflects how sensitive the
concentration change of the reporter protein (in this case protein
CycB) is to the specific parameter.

Hence for the G2-M model the magnitude of each SIF value
indicates the degree of impact a mutation can have on the quantity
of CycB, which determines when a cell enters mitosis and
therefore the length of the cells.

The fundamental concept of our approach is to build a wild-
type model that faithfully reflects in vivo cellular behavior and then
considers each missense mutation as a perturbation to the wild-
type status. We do not intend to formulate a model that describes
the mutant-type states; we only project the extent that a mutation
is likely to deviate from the wild-type state. The procedure of
calculating SIF scores is shown in Figure 1. Firstly, a target
biological system (in this case the G2-M transition in the cell cycle)
is chosen and a reporter protein, whose expression profile can be
used to gauge the systemic behavior, is identified. The reporter
protein used here is the MPF protein complex. The mutations are
then mapped onto three-dimensional protein structures and linked
to the associated parameters in the ODEs. For each mutation, its
DDG is approximated as the size of perturbation introduced to the
associated ODE parameter. To improve the estimation of DDG
for each mutation, we applied molecular dynamic (MD) simula-
tions to sample the movement of the flexible regions in the
modeled Cdk1 and CycB structures, and then calculated an
average DDG based on the sampled conformations (Methods
section ‘Molecular dynamic simulations and free energy calcula-
tions’). Next, the sensitivity of the expression profile of the reporter
protein to each ODE parameter is explored by calculating the
CS

pi. Finally, the systemic consequence of each mutation is
inferred by calculating its SIF score based on DDG and CS

pi. In
the case of the G2-M model, a larger SIF reflects a greater delay
for a cell to enter mitosis. Hence a longer cell length should be
observed.

For the eight missense mutation studies presented here, their
SIF values are calculated (Table 3) and the length of their host
yeast cells are measured at septation (Methods and Material
section ‘Yeast strains and cell length measurement’). As shown in
Figure 2, the in silico SIF score generally reflects the in vivo cell
length well: at the semi-restrictive temperature (30uC) a medium-
to-strong correlation R2 = 0.69 (p value = 0.04; all the p values
shown in this study are based on the two-tailed model) is obtained.

Table 1. Differential equations of the G2-M model.

d

dt
CycB~kS{kd

:CycB

d

dt
MPF~V25

:(CycBT{MPF){Vwee
:MPF{kd

:MPF

d

dt
Wee1~

kawee
:(1{Wee1)

Jaweez1{Wee1
{

kiwee
:MPF:Wee1

JiweezWee1

d

dt
Cdc25~

ka25
:MPF:(1{Cdc25)

Ja25z1{Cdc25
{

ki25
:Cdc25

Ji25zCdc25

V25~k025
:(1{Cdc25)zk0 025

:Cdc25

Vwee~k0wee
:(1{Wee1)zk0 0wee

:Wee1

Initial conditions (dimensionless):

CycB = 0.01; MPF = 0.01; Wee1 = 1.0; Cdc25 = 0.01

kS = 0.2; kd = 0.008;

k925 = 0.008; k025 = 0.89; k9wee = 0.03; k0wee = 0.18;

kawee = 0.61; kiwee = 0.71; ka25 = 0.80; ki25 = 0.35

Michaelis constants (dimensionless):

Jawee = 0.90; Jiwee = 0.21; Ja25 = 0.19; Ji25 = 0.93

The parameters of the ODEs are: ks is the rate of CycB synthesis and is
associated with the concentration of Cdk1; kd describes the degradation rate of
CycB and the degradation rates of MPF. V25 and Vwee are the activation and
inactivation rates of MPF, respectively. Kawee and Kiwee are the rates of Wee1
being activated by a phosphatase (which is not explicitly formulated in our
model) and inactivated by MPF, respectively. Ka25 and Ki25 are the rates of Cdc25
being activated by MPF and inactivated by a phosphatase, respectively. Ja25 and
Jiwee are the Michaelis constants of MPF for Cdc25 and Wee1, and Ji25 and Jawee

are the Michaelis constants of a phosphatase for Cdc25 and Wee1, respectively.
doi:10.1371/journal.pcbi.1002738.t001
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To validate the function of our temperature-sensitive yeast strains,
their lengths are also measured at the permissive temperature of 25uC:
a condition that allows all the mutants and wild-type cells to grow
normally, so the effect of mutation on cell length should be minimal. As
shown in Figure 2, there is indeed a much smaller effect of the
mutations on cell length at division and a weak correlation (R2 = 0.29)
between SIFs and in vivo cell lengths was observed.

In silico model of the human MAPK pathway
The MAPK pathway plays an essential role in cell survival,

proliferation, differentiation and development (Figure 3A). Its three-
tier MAPK cascade, i.e. Raf-Mek-Erk, is a highly conserved
systemic structure that regulates the switch-like behavior of the
pathway’s signal transduction mechanism [22]. The important
features of this cascade manifest themselves as representatives to
evaluate the behavior of the parental pathway, and previous studies
of the human MAPK pathway have shown analytical results which

support this [23,24]. To explore the effectiveness of a model that
focuses on the dynamics of the three-tier structure, a reduced model
is constructed here based on previous work that simulated the
signaling cascade from the epidermal growth factor (EGF) receptor
to the Erk reporter protein [25]. By omitting redundant terms
whose removal has little effect on the expression curve of the
downstream protein Erk, a set of succinct ODEs is derived as shown
in Table 4 (the derivation is presented in Text S3).

To benchmark the behavior of both the reduced and original
model, a sensitivity analysis is performed over three target
quantities of the reporter protein Erk (Methods section ‘Quanti-
fying the change of expression curves’): the amplitude (maximum
activation), duration (time until signal drops down to 50% of its
maximum activation) and peak time (time of maximum activa-
tion). For the test, the initial concentration of the key proteins in
both models is varied and their effects on controlling the target
quantities of Erk is compared (the key proteins include ShcGS
(Shc: Src homology and collagen domain protein), GS, Grb2

Table 2. In vivo length of the yeast trains in the G2-M model.

Cell Length (mm) Cell Length (mm)

Strain Number Strain Name Mutated Protein Residue Change 256C 306C

Mean Stdev Mean Stdev

275 M35 Cdk1 G43E 16.3 1.5 23.4 6.0

368 3w Cdk1 C67Y 11.1 1.1 9.8 1.4

8 33 Cdk1 A177T 15.2 1.2 18.2 1.8

154 56/130 Cdk1 G183E 10.4 1.0 12.2 1.9

274 L7 Cdk1 P208S 16.4 1.0 17.6 2.0

515 M63 Cdk1 G227C 16.2 1.3 19.9 2.1

6 NA CycB C379Y 14.5 1.4 19.3 2.2

4932 NA CycB W395R 18.2 1.0 18.9 1.0

972 WT NA NA 12.8 1.6 14.5 1.1

doi:10.1371/journal.pcbi.1002738.t002

Table 3. In silico measurements of the mutant cells in the G2-M model.

Amino acid
change

Target
Protein

Impact
Typea DDG (Cdk1/CycB)b DDG (MPF)c

Maximum DDG
(kcal/mol)d CS

pi SIF

kd(CycB)e kd (Cdk1)f Jwee+J25
g

G43E Cdk1 S 2.10 24.9h 24.9 - 0.011 - 0.27

C67Y Cdk1 S 3.17 1.31 3.17 - 0.011 - 0.035

A177T Cdk1 F 5.97 3.65 5.97 - - 0.011 0.066

G183E Cdk1 F 3.72 4.13 4.13 - - 0.011 0.045

P208S Cdk1 F 3.56 2.35 3.56 - - 0.011 0.039

G227C Cdk1 S 7.69 7.23 7.69 - 0.011 - 0.085

C379Y CycB S 31.92h 34.56h 34.56 0.004 - - 0.138

W395R CycB S 6.57 6.15 6.57 0.004 - - 0.026

aEach mutation is considered to have mainly functional (F) or structural (F) impact according to their locations in its target protein.
bDDG of the mutations in individual Cdk1 or CycB; each of them is an average value considering structures sampled from molecular dynamic simulations.
cDDG of the mutations in Cdk1-CycB complex (MPF); each of them is an average value considering structures sampled from molecular dynamic simulations.
dMaximum of DDG considering both complexed and uncomplexed states of the target protein.
ePerturbation on CycB degradation was weighted 0.3 for the degradation of monomeric CycB and weighted 0.7 for the degradation of complexed CycB (MPF).
fPerturbation on Cdk1 degradation was estimated through the degradation of MPF only since the amount of total Cdk1 is constant.
gPerturbation on the interaction between CycB and Cdk1 was estimated through Jwee and J25 with a weighting 0.9*Jwee+0.1*J25.
hThe high DDG is a result of van der Waals clashes when the target residue is mutated to a larger side chain.
doi:10.1371/journal.pcbi.1002738.t003
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(growth factor receptor binding protein 2), SOS (son of sevenless
homologous protein), Ras, Raf, Mek and Erk). As a result, the
control coefficients in both models demonstrate a similar pattern
across all three-target quantities (Figure 4A,B), which indicate that
the reduced model does not sacrifice the overall dynamics of the
original model to achieve its simpler structure.

Mapping missense mutations onto the 3D structures of
H-Ras, Raf-1, B-Raf and Mek

Here 40 mutations associated with neuro-cardio-facial-cutane-
ous syndrome are collected and studied (Table S1). As shown in
Figure 3B, all the mutations can be mapped to crystal structures of
H-Ras, Raf-1, B-Raf and Mek, and each mutation is classified as
mainly functionally or mainly structurally important according to
its location in the target protein.

H-Ras mutations cause different systemic effect from
other mutations

Unlike missense mutations in the yeast G2-M model, there are
no quantitative measurements of the physiological outcomes for
the mutations in the MAPK pathway that can be used to calculate
the correlation with SIF scores. Hence, as an indirect way to
evaluate the relationship between mutations and clinical symp-
toms, each mutation is represented by three SIF scores calculated
according to the systemic impact on the wild-type Erk expression
curve: measured as amplitude, duration and peak time differences.
The trajectory of the SIFs corresponding to each mutation as a
function of these three target quantities shows that mutations in
Raf1, B-Raf and Mek are more likely to be overlapped in a similar
region, whereas mutations in H-Ras tend to distribute in a very
different trajectory to the direction of the other mutations
(Figure 5A). To determine if the different distribution of H-Ras
mutations is a robust feature, a different set of initial concentra-
tions that were measured experimentally in HeLa cells by Fujioka
et al. [26] is used to derive two new parameter sets: one produces
expression curves similar to those of the original model, whilst the
other one produces curves fitted to the in vivo FRET data measured
by Fujioka et al [26] (the parameters of both models are available
in Text S1). As shown in Figure 5B and 5C, both parameter sets
distribute H-Ras mutations in a trajectory different from other
mutations, which suggests that the separation of H-Ras is not
sensitive to variations to initial concentrations and parameter
space. As a benchmark, the three dimensional SIF scores from the
original model are also presented (Figure 5D). Consistently, H-Ras
mutations are distributed into a distinctly different group.

It has been demonstrated that using ensembles of simulated protein
structures, rather than a single conformation as represented by a crystal
or modeled structure, can improve the estimation of free energy
change [27]. In order to determine if the use of structural ensembles
affects the SIF distribution, molecular dynamic (MD) simulations are
also applied to sample the movement of flexible regions in the key
kinases. Eventually an average DDG, and therefore an average SIF
score, was calculated for each mutation based on the alternative
structures sampled by the MD simulations (Methods section ‘Molec-

Figure 3. The mutations studied in the MAPK model. (A) A scheme of the MAPK pathway. (B) Mapping the mutations onto the three
dimensional structures; mutations located at or close to the active site are colored in blue, otherwise colored in red.
doi:10.1371/journal.pcbi.1002738.g003

Figure 2. Correlation between SIF and in vivo cell length of
missense mutations in the G2-M model. The experimentally
measured cell lengths and the calculated SIF scores at 25uC and 30uC
are shown in grey and black, respectively. The x-axis error bars show the
standard error of cell lengths; the y-axis error bars show the standard
error of SIF scores, resulting from the evaluation of DDG.
doi:10.1371/journal.pcbi.1002738.g002

Quantifying Systemic Impact of Missense Mutations
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ular dynamic simulations and free energy calculations’). By using the
average SIF scores calculated over the conformation ensemble, a less
narrow distribution for B-Raf and Raf-1 mutations is observed in the
reduced model with parameters fitted to the experimental FRET data
while the distribution of mutations in other models remained largely
unchanged (Figure S4). Moreover, the overall distribution of the SIF
scores in all of the models is in agreement with the results using only the
crystal structures. This suggests that the SIF scores are not overly
sensitive to movements away from the experimentally determined
atomic positions.

A closer examination of mutant SIF scores reveals that H-Ras
mutations perturb the MAPK pathway in a distinctly different manner
from that of the mutations in Raf-1, B-Raf and Mek (Figure 5A–D): H-
Ras mutations tend to dominantly affect the duration of the Erk
expression profile whereas the other mutations mainly affect the
amplitude of the expression profile, followed by a smaller impact on
peak time and an even smaller effect on the duration of the Erk
activation. Physiologically, this indicates that the cellular response to H-
Ras mutations is different to the other mutations. Indeed, the duration
of Erk activation is known to be a critical factor for determining cell
fate: in PC12 cells, it has been shown experimentally that prolonged

activation of Erk is sufficient for cell differentiation whereas transient
activation is associated more closely with cell proliferation; in fibroblast,
a reverse relationship between duration and cell fate is observed [28].
Although the amplitude of Erk activation has also been experimentally
shown to be a determinant of cell fate, its effect is more complicated:
high level of Erk activation usually promotes cell-cycle progression but
sometimes it leads to cell-cycle arrest as well [28]. Also, the mutations in
Raf-1, B-Raf and Mek mainly reduce the amplitude of Erk expression
and hence it is likely that they have less effect on cell growth than H-
Ras mutations, which mainly increase the duration of Erk expression.

Discussion

Systemic impact is a result of protein stability change
and pathway perturbation

In this work we presented the SIF function as an effective
measure for the systemic impact of missense mutations. SIF values
reflect in a simple manner the fact that proteins are functional units
in the cell whose interaction networks regulate cellular behavior. It
is of particular interest to see that SIF scores reflect the in vivo
phenotype in the yeast G2-M model when there is no additional
parameter introduced to distinguish functionally and structurally
important mutations. This suggests that, although they change
protein behavior in different ways, functional and structural
mutations can perturb a pathway to a similar extent.

A potential way to improve the current correlation between SIF
and systemic outcome is to consider an additional parameter l
that describes the amount of parameter perturbation caused by
free energy change. Now the SIF function becomes:

SIF~DDG:l:CS
pi

By assigning different l constants for functional and structural
mutations in the G2-M model, we found that using a larger l for
functional mutations consistently provides smaller correlations (less
than 0.68). This suggests that DDG in this case over-estimates the
systemic impact of functional mutations and thus should be scaled
down by a smaller l when used for analyzing mutations at
functional sites. This also indicates that functional mutations may
be better annotated by considering other protein-protein interac-
tions besides protein stability. However, this would make it much
more difficult to quantify the impact of protein interactions. Using
a smaller l for functional mutations may be suitable for the
mutations studied here; nevertheless further investigation is

Table 4. Differential equations of the reduced MAPK model.
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{
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Initial conditions (molecules cell21):

ShcGS = 20,000; RasGDP = 20,000; RasGTP = 0; Raf = 10,000;

Raf* = 0; Mek = 360,000; Mek* = 0; Erk = 750,000; Erk* = 0

Rate constants (molecules21 cell min21):

c2 = 7.7?1024; c6 = 8.3; c8 = 4?105; c10 = 15; c12 = 4?1026

Rate constants (molecules cell21):

c7 = 9?104; c9 = 6?105; c11 = 1.53?103

Rate constants (min21):

c1 = 69; c3 = 14; c4 = 50; c5 = 0.78

c1 and c2 are the rate and Michaelis constant for RasGDP activation by the Shc-
Grb-Sos (ShcGS) complex, respectively; c3 is the rate for RasGTP to be converted
to RasGDP; c4 is the rate for RasGTP to convert Raf from an inactive to an active
form (Raf*); c5 is the rate for RasGTP to convert Raf* to Raf; c6 is the rate for Raf*

to convert Mek from an inactive to an active form (Mek*); c7 is the rate for Mek*

to be converted to Mek; c8 and c9 are the rate and Michaelis constant,
respectively, for Mek* to convert Erk from an inactive form to an active form
(Erk*); c10 and c11 are the rate and Michaelis constants, respectively, for Erk* to
be converted to Erk. Finally, c12 is the rate for the ShcGS complex to be
inhibited by Erk* (See simulated curves in Figure S3).
doi:10.1371/journal.pcbi.1002738.t004

Figure 4. The sensitivity of the key proteins in the MAPK
pathway in terms of regulating the Erk expression. (A) The
reduced G2-M model. (B) The original non-reduced (Brightman and Fell)
model.
doi:10.1371/journal.pcbi.1002738.g004
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required to determine if this is a general criterion that could be
applied for mutations in other biological systems.

When we considered only structural mutations in the G2-M
model, the correlation between SIF and cell length increases from
0.69 to 0.73 (p value = 0.026). This suggests that the current SIF
formula may perform much better in annotating the systemic
effect of mutations whose role is more structural than functional.
This could be due to the way we approximate the functional
impact of a missense mutation through Michaelis constants and
link its perturbation to DDG as an approximation of Kd (Text S2).

Although the current SIF function correlates linearly with in vivo
measurements, the data cannot rule out an exponential relationship
between SIF and phenotypic outcome. As described in Text S2, if we
broadly approximate the amount of perturbation in each rate constant

to be e{DDG
RT , SIF can be formulated as cell length*SIF!e{DDG

RT :CS
Pi

,To approximate the direct use of DDG, we may transform the SIF

function to ln cell lengthð Þ*ln SIFð Þ!{DDGzln CS
pi

# $
. Follow-

ing this formula, the correlation between ln(cell length) and ln(SIF) is
reasonable: 0.62. Further studies will be required to explore the optimal
correlation between SIF and systemic effects.

Simple models are beneficial for extrapolating systemic
impacts

A very intriguing result of this study is that systemic impacts can
be reasonably gauged through simple or reduced ODEs. This
indicates that it is possible to study the systemic perturbation of a
pathway when there is incomplete information about its compo-
nents – an important observation, given the fact that the majority
of biological pathways have missing components waiting to be
discovered or confirmed. Another import aspect of this work is
that, for the purpose of studying systemic perturbation, it is feasible
to study the missense mutations through ‘‘fuzzy’’ parameters – that
is, the systemic impact of a mutation can be extrapolated through
rate constants that account for general protein-protein interactions
rather than detailed enzyme catalytic reactions. Finally, the

Figure 5. (A)–(D) shows the SIF cores of the mutations studied in the MAPK model. (A) The reduced model; (B) the reduced model with
initial conditions from Fujioka et al; (C) the reduced model with initial conditions from Fujioka et al and parameters optimized by fitting to the time
course data in Fujioka et al; (D) the original non-reduced model. (E) A scheme shows the relationship between the key proteins and their clinical
syndromes.
doi:10.1371/journal.pcbi.1002738.g005
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advantage of using a simpler model is also reflected in facilitating a
lower chance of associating multiple parameters with a perturba-
tion, which means the difficulty of discussing the impact of a
missense mutation can be reduced.

The simplicity of the G2-M model lies in two aspects. First, it
has only four major component proteins (Cdk1, CycB, Wee1 and
Cdc25) used to simulate cell growth, and the model can be
considered to be linear, terminating when MPF reaches a certain
critical concentration. The second aspect is that, rather than
capturing their time-course data, the model reflects the relation-
ship between the component proteins. Normally this raises the
difficulty of parameter optimization, as it increases the chance of
converging to multiple parameter sets that all give simulation
curves satisfying a particular phenotypic outcome. Fortunately,
parameter inference is not a concern in this case, since the general
trend of the Cs

pi relation between parameters is conserved,
regardless of parameter variations (Figure S1B), i.e. the correlation
between the SIF values and in vivo cell lengths is not sensitive to
parameter variation.

In preserving the overall dynamics of the original model (Figure
S5), our reduced MAPK model is efficient in terms of parameter-
ization; it has only 12 rate constants, compared to the original 27.
The simplified ODEs allow us to conduct a straightforward analysis
on missense mutations, which may not be the case in a more
complicated model. For example, a mutation in the functional site
of Ras can affect two downstream interactions in the original model
(see Figure S5: one is between Ras and Gap; the other is between
Ras and Raf), whereas it can only affect the interaction between Ras
and Raf in the reduced model. Furthermore, without reduction we
would not be able to implement the robustness test on the SIF
projections shown in Figure 5, since it is most unlikely that one could
obtain robust parameters given the expression data profile from
Fujioka et al [26]. The practicality of a simpler model suggest that
the idea of using ODEs to model the dynamics of a pathway can be
more feasible than previously thought, as long as we can reduce a
complex pathway to smaller modules that account for the functional
core of a pathway.

Investigating systemic perturbation helps to understand
the phenotype or underlying mechanism of missense
mutations

It is generally non-trivial to infer cellular phenotypes from
studying pathway dynamics since many cellular functions have
complex underlying mechanisms. However, the medium-to-strong
correlation between the SIF values and in vivo yeast cell lengths in
the G2-M model shows that it is possible to estimate effectively the
phenotypic effect of missense mutations through gauging systemic
impacts. This is due to two essential factors underlying our G2-M
model. Firstly, cell length at septation (cell division) is a faithful
indicator for identifying cells at the beginning of mitosis. This is
because fission yeast grows only in length and thus it can be
positioned in its cell cycle simply by its length and does not grow
between entry into mitosis and septation. Secondly, the chosen
reporter protein, MPF, is closely linked to the initiation of mitosis.
A strong support for this is a recent discovery that MPF is a
necessary and non-redundant factor for triggering mitosis [29].

The SIF values simulated from the MAPK model, on the other
hand, reflect a more complex relationship with phenotype. We
expected that most of the mutations studied here should be projected
into similar regions, as they are associated with overlapping symptoms
under a broad term ‘neuro-cardio-facial-cutaneous syndrome’. How-
ever, H-Ras mutations are projected into distinctly different trajectories
from the other mutations with respect to their effects on the ERK
expression profile. This suggests that H-Ras mutations are likely to

have different characters in terms of the disease prognosis and risk of
complications depending more upon the genotype than on the
phenotype. Given the clinical symptoms of patients from which the
missense mutations studied here were identified (as shown in Figure 5E,
all the H-Ras mutations are associated with Costello syndrome (CS);
most of the Raf-1 mutations are associated with Noonan syndrome
(NS); most of the B-Raf and all of the Mek mutations are associated
with cardio-facio-cutaneous syndrome (CFCS)), the result in
Figure 5A–5D suggests that NS and CFCS may share some degree
of similarity in terms of disease development. Indeed, it is often difficult
to distinguish an infant with CFCS from NS, although the phenotype
becomes more distinctive with time [30]. Interestingly, current
knowledge of the genotype-phenotype correlations suggests that the
presence of mutations in the H-Ras gene is associated with a much
higher tendency of cancer compared to the other mutations [31],
indicating a potentially different system dynamic, as indeed demon-
strated in this study. As a whole, the MAPK model serves as a good
example to show how qualitative annotation of mutations (the
classification of mutations) can contribute to the understanding of
disease mechanisms. This is practically useful as it is often hard to
clinically quantify various disease phenotypes that lead to differences in
prognosis and drug response.

The two systems in our study show that SIF can reflect
phenotype or the underlying mechanism of missense mutations in
proteins. In general, we may confidently interpret systemic impacts
as an indicator for phenotype only if a reporter protein is strongly
and non-redundantly linked to a target phenotype; otherwise a
more reserved view would be appropriate.

Potential limitations of SIF
One confounding factor associated with the performance of SIF

is the relationship between DDG of a mutation and its actual
phenotypic effect. This is because different proteins may have
different stability states and hence they may respond differently to
the same amount of DDG caused by missense mutations. The issue
of benchmarking the effect of DDG on different proteins has been
an active topic in annotating nsSNPs. Previous studies show that
proteins belonging to different structural families can respond
differently to the same amount of DDG, but in general a small
margin of DDG (1–3 kcal/mol) can be approximately used to
define missense mutations that may not cause an immediate effect
on protein fitness [32,33,34]. On the other hand, for proteins that
share Immunoglobulin-like folds, a clearer phenotypic threshold of
DDG (2 kcal/mol) can be used to define missense mutations that
generally result in severe disease phenotypes [35,36]. Hence,
taking a more stringent view, this implies that proteins sharing
similar structures are more likely to react similarly to mutations
that cause the same amount of DDG.

For the proteins studied in this work, the concern of comparing
the effect of DDG across different proteins is likely to be alleviated
due to the above reasoning. In the G2-M model, CycB and Cdk1
form a complex and hence the uncertainty of comparing DDG in
two different proteins is reduced. In the MAPK model, all the key
proteins are kinases that share the same well-structured fold.

Another factor that may affect the performance of SIF is the
complication of assigning the role of a mutation as mainly
functional or structural. This issue is especially hard to deal with if
a missense mutation is likely to cause long-range structural effects
on its host proteins - for example, a mutation can exist far away
from a functional site (and thus is considered as a structural
mutation) but still affect the function of its host protein by inducing
long-range conformational changes. Hence additional attention
should be paid to calculating SIF for mutations located in proteins
that are not well studied or have versatile conformations. For the
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cases studied in this work, the problem of assigning functional and
structural mutations is not significant because most of the key
proteins are kinases that have well-defined functional sites (see
Text S2 for further information).

One other factor that is associated with SIF performance is the
accuracy of calculating DDG. So far most of the methods for predicting
DDG do not show a good correlation with the experimental DDG;
however, they do perform well when used to estimate the average effect
of mutations on protein stability [37]. This is likely to support the good
correlation between SIFs and the in vivo cellular phenotypic outcomes
measured in our study, since we calculated an average DDG for each
missense mutation based on the simulated structures and used it to
correlate with the experimental data.

Finally, it is worth mentioning that the performance of SIF can be
considerably compromised by mutations with largeDDG values. These
mutations can be too extreme to be considered a perturbation to a
target system, and hence the ODE model describing the wild-type
condition is not applicable. On the other hand, large DDG values can
also be the result of Van der Waals clash that are often heavily
penalized in DDG calculations (as likely the case for mutations G43E
and C379Y in the yeast G2-M model). All in all, in the cases where
DDG is large, caution should be taken when applying the SIF function.

Concluding remarks
Our study as a whole suggests that it is beneficial to combine multi-

level knowledge to investigate the effects of missense mutations on
cellular behavior. The advance in protein structure prediction
techniques will particularly make the calculation of SIF more feasible,
since it requires the structural information of proteins that host the
target missense mutations. Overall, there is sufficient reason for us to be
confident that future studies on integrating protein and pathway
dynamics will become increasingly viable, as there are constant efforts
across the scientific community in solving protein structures and
identifying new components in biological pathways.

Simulating pathway dynamics through ODEs, as demonstrated
here, provides a convenient platform for utilizing the information
on protein structures. However, the application of ODEs implies
two major limitations. One is in the availability of time-course data
of protein expression in public resources; at the moment this is
relatively low and sparse compared to that of gene expression data.
This will be alleviated as more high-throughput time course data
becomes available. The other limit is in our knowledge of the
biological pathways – a majority of them have only been partially
uncovered. A feasible way to circumvent the problem is to develop
a simpler model by considering only key proteins that are essential
for preserving pathway behaviors, as we have demonstrated in the
case of MAPK pathway and G2-M transition.

The SIF function in its current form gives a good approximation of
systemic perturbation resulting from the missense mutations in the G2-
M and MAPK models. With further development on a larger dataset,
especially with the inclusion of more parameters to further characterize
protein function and structure, we are likely to obtain better
correlations with quantitative phenotypes. The process of refining the
SIF equation will tell us more about the relationships between protein
function and structure, and pathway dynamics, which is one of the
most important questions considered by structural biologists.

The advance of high throughput technology has enabled us to
identify mutations in a large number of inter-connected pathways. It
is becoming apparent that performing experiments to check the
impact of individual mutations on the pathway level will be
extremely time-consuming and costly, let alone monitoring all the
possible cross-interactions and combinatorial effect of multiple
mutations. From this perspective, multi-level mathematical model-
ing, such as that described here, will provide an efficient mechanism

for pre-screening systemic impact in a cost-effective way. This is
particularly useful for studying the etiology of complex diseases that
are usually the result of accumulating multiple mutations.

Materials and Methods

Yeast strains and cell length measurement
Yeast strains used in this study are listed in Table 3.
All the strains except strain 4932 were generated following our

protocol previously published by Nurse et al. [38]. Strain 4932 was
generated and identified as described in the work of Fong et al.
[39] with the following changes: Genomic DNA from a cdc13hph
tagged strain was used as the starting template. TaKaRa LA-Taq
polymerase (Takara Bio) was used for the first round of PCR and
Z-Taq (Takara Bio) for the mutagenic PCR reaction that was
supplemented with 10XdGTP. Mutation positions were identified
using Big Dye (Applied Biosystems) terminator cycle sequencing.

Cells were grown to mid exponential growth (,56106 cells/ml)
in rich media at 25uC and 30uC [40] and photographed using a
Zeiss Axioplan microscope. Cell lengths upon mitosis, by unbiased
sampling of 30 septated cells, were measured using ImageJ.

Replica exchange Monte Carlo method
Here we applied the replica exchange Monte Carlo method

(REM) – also known as parallel tempting (PT) – to implement
parameter inference. For a non-linear system, as represented by
the G2-M and MAPK model, the energy surface is normally
rugged and it is hard to ensure unbiased sampling along the
uneven energy space. Nevertheless REM has been shown to be
very useful for this purpose, especially at low temperatures, and
has been used extensively for finite-temperature simulation of
biomolecules [41,42]. The general idea of REM is to simulate a
number of subsystems {X(m)} with different inverse temperatures
bm (replicas) in parallel. At particular intervals, the sampling
trajectory is exchanged from one subsystem to the others (usually
adjacent replicas) with the following probability specified in [43]:

P X mz1ð Þ<X mð Þ
% &

~ min 1,eDb DE
' (

where Db= bm+12bm is the difference between the inverse
temperature of the two replicas and DE = E (X(m+1))2E (X(m)) is
the energy difference between them (in our case the deviation of
the protein expression time course).

Practically, the exchange of replicas with different temperatures
effectively generates repeated heating and annealing cycles, which
avoids the parameter search from becoming trapped in a local
energy minimum.

For sampling the trajectories, PEPP used the Metropolis
algorithm [44] with modifications that allow uneven sizes of
sampling steps. This echoes the idea that the coexistence of large
and small changes in phase space is essential for sampling unstable
structures [45]. To determine the size of each sampling step (Dx),
PEPP adopted the method introduced in [45]:

Dx~s:d:10-e

where d and e are random integers uniformly distributed in

d[[1,9] and e[[Nmin
e , Nmax

e ] and s is a binary random number that

is either 1 or 21 with probability of 0.5. Nmin
e and Nmax

e determine
the logarithmic scales of the smallest and largest step move,
respectively. As a result, the overall sampling density is a mixture
of uniform distributions with different scales; it has a sharp peak
near zero and very long tails.
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The iteration of the Metropolis algorithm in our model is as
following:

1) Introduce a perturbation (Dx), whose scale is determined
according to the last function shown above, to the initial
parameter (X) in a target system.

2) Run the simulation with the initial X and the perturbed X9,
which generates the respective energy E and E9.

3) Draw a uniform randomly number R[[0,1]. Whether X9 is
accepted as the next move of sampling depends on

Rv e(-bE(x0))

e(-bE(x))
:

4) Return to step 1)

Quantifying the systemic impacts of the mutations

Control coefficient (CS
pi).

CS
pi

~
pi

S
: LS

Lpi

~
LlnS

Llnpi

where pi is the parameters in the model and S is a downstream

reporter that is tightly associated with a specific phenotype.
In both G2-M and MAPK models, was calculated given

hpi = 0.1. For mutations that can be associated with two rate
constants, e.g. X and Y, hpi is defined as hpi

X+hpi
Y = 0.1.

Quantifying the change of expression curves. As men-
tioned above, is calculated based on hS that is the deviation between
wild type and mutant type curves of a reporter protein. In the G2-M
model, the deviation of the CycB curve is measured as the
concentration change of CycB when MPF reaches a dimensionless
concentration 2.0. In the MAPK model, the deviation of the Erk
curve is measured in three dimensions that are commonly
investigated in studying pathway behavior: (1) peak difference, i.e.
the difference of the maximum activation; (2) duration difference,
i.e. the difference of time until the signal drops down to 50% of its
maximum activation; (3) peak time difference, i.e. the difference of
the time that the curves reach its maximum activation (Figure S6).

Structural analysis of the target proteins
Homology modeling of Cdk1, CycB and MPF

structures. We modeled Cdk1 using human cyclin-dependent
kinase 2 (CDK2, PDB code: 1FIN, chain A, sequence identity shared
with Cdk1: 64%) as a template. Here we employed MODELLER
(version 9v2; set deviation = 4.0; number of models = 50; call
routine = ‘model’) [46] to construct the three-dimensional structure
of Cdk1, guided by a sequence to structure alignment between the
query and the template using the program JOY [47] (Figure S7A).
Examination of the model by PROCHECK [48] shows 90% of the
Cdk1 model’s backbone angles are within the core region of
Ramachandran plot while only one loop residue (L37) is within the
generally allowable region (Figure S7B). For the case of CycB, it was
modeled by applying JOY and MODELLER using both human
Cyclin A (PDB: 3DOG, chain B, sequence identity shared with CycB:
36%) and human cyclin B (PDB: 2JGZ, chain B, sequence identity:
40%) as templates (Figure S8A). Evaluation of the model by
PROCHECK shows that 93% of the modeled CycB backbone angles
are within the core region and only one loop residue W249 is within
the generally allowable region (Figure S8B). For all constructed models,
there are no backbone angles, other than for the residue glycine, in
disallowed regions of the Ramachandran plot. Lastly, the MPF
complex was modeled by superimposing modeled Cdk1 and CycB
onto the human Cdk2-Cyclin A complex (1PDB: 1FIN).

Molecular dynamic simulations and free energy
calculations. AMBER10 is employed with the ff99SB force field
[49,50] to generate conformation ensembles for each mutation
studied. Each target protein is solvated by water molecules. For
proteins with surface charges, salt ions are included in the solution
for maintaining stable protein structures. Each protein is first
equilibrated by a 50 picoseconds heating phase to 300 K, and 50
picoseconds of density equilibration with weak restraints on the
structure. This is followed by a simulation at constant pressure at
310 K (300 K for the proteins in the yeast system) up to 100
picoseconds. All simulations are run with the shake algorithm
applied to hydrogen atoms, a 2 femtoseconds time step and
Langevin dynamics for temperature control. For the final phase of
equilibration and subsequent simulation up to 100 nanoseconds, the
following parameters were used: imin = 0, irest = 1, ntx = 5,
nstlim = 50000000, dt = 0.002, ntc = 2, ntf = 2, cut = 8.0, ntb = 2,
ntp = 1, taup = 2.0, ntpr = 50000, ntwx = 50000, ntt = 3, gam-
ma_ln = 2.0, temp0 = 310 (300 for the yeast system).

For each mutation, 100 simulated structures are sampled across
the total 100 nanoseconds simulation time. The average DDG is
then calculated based on the Boltzmann-Gibbs distribution as

discussed in [51]: SDDGT~
1

b
ln Seb:DDGi T
% &

, where b~
1

KBT
, KB

is the Boltzmann constant and T is temperature, and DDGi is
individual sampled structure. Finally, an average SIF score for

each mutation is calculated based on SDDGT.
FoldX (version 3.0) is employed to calculate the DDG for each

mutation. Prior to the calculation of DDG, the RepairPDB
command in FoldX is used on each sampled structure to fix non-
standard angles, distances and side-chain conformations. The
default setting of FoldX is used to calculate the DDG of each
mutation: Temperature = 298 K, pH = 7, IonStrength = 0.050,
VdWDesign = 2.

Supporting Information

Figure S1 Checking the robustness of parameters in the G2-M
model. (A) Error distribution of the parameter sets sampled 1,000
times with random starting points shows two major clusters of
parameters. The first cluster of parameters have chi-squared errors
,5 and the other have chi-squared errors between 5 to15 (the
error estimates the difference between the simulated curves and
experimentally observed ones). The cluster with smaller errors
produce curves similar to those from the original Novak and
Tyson (1993) model whereas the other with larger errors results in
a flat curve of CycB and MPF. Therefore, in this case only the
parameters with error ,5 are considered. (B) Control coefficients
(CS

pi) of parameter sets that are close to local minimum of
parameter inference, i.e. within the cluster that have smaller
errors.
(PDF)

Figure S2 Asymmetric control of Wee1 and Cdc25 on the G2-
M model. The absolute values of the control coefficients for
Cdc25-associated reactions are larger than those for Wee1.
(PDF)

Figure S3 Simulated curves for the MAPK model. (A) The
reduced model (solid lines) and the original Brightman and Fell
model (dashed lines). (B) The reduced model with initial concen-
trations measured by Fujioka et al. (solid lines) and the expression
data from Fujioka et al. (dashed lines). (C) The reduced model with
initial concentrations measured by Fujioka et al. plus parameter sets
optimized according to the FRET data measured by Fujioka et al.
(solid lines) and the expression data from Fujioka et al [26].
(PDF)
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Figure S4 The SIF scores of the mutations in the MAPK model
considering conformational ensembles. (A) The reduced model; (B)
the reduced model with initial conditions from Fujioka et al.; (C)
the reduced model with initial conditions from Fujioka et al. and
parameters optimized by fitting to the time course data in Fujioka
et al.; (D) the original non-reduced model.
(PDF)

Figure S5 An overall structure of the original and reduced
model. (A) The original non-reduced model and (B) the reduced
model.
(PDF)

Figure S6 The three measurements used to quantify the
difference between two proteins expression curves.
(PDF)

Figure S7 Structural analysis of Cdk1 model. (A) The alignment
of Cdk1 sequence and the template structure PDB: 1FIN. The
structure features of the template are shown in the JOY [52]
format: each alpha helix is indicated in red, beta strand in blue and
310 helix in maroon. Solvent accessible residues are shown in lower
case, solvent inaccessible in upper cases. Residues hydrogen
bonded to main-chain amide groups are shown in bold style; those
hydrogen bonded to main-chain carbonyl groups are underlined.
Positive phi torsion angle in italic style; disulfide bonds are
indicated with cedilla (B) Ramachandran plot of the Cdk1
modeled structure. Residues that have a less favorable but
generally acceptable backbone conformation are highlighted in
red.
(PDF)

Figure S8 Structural analysis of CycB model. (A) The alignment
of CycB sequence and the template structures PDB: 2JGZ and
3DOG. The structural features of the template are shown in the
JOY [52] format, as explained in the legend of Figure S7. (B)
Ramachandran plot of the CycB modeled structure. Residues that
have less favorable but generally acceptable backbone conforma-
tion are highlighted in red.
(PDF)

Figure S9 Simulated curves of the reduced and original models.
(A) Comparison of the relative activation of Mek, for the
Brightman and Fell model (solid lines), and the situation where
the Mek activation is replaced by Eqn. 21 (dashed line). Here note
[Mek*] = [MekP]+[MekPP]. (B) Comparison of the relative
activation (concentration of active form, divided by initial
concentration of protein) of ErkPP between the original Brightman

and Fell model (solid line) and the simplified version in which the
Erk activation is replaced by Eqn. 24 (dashed line). (C)
Comparison of the relative activation between the Brightman
and Fell (2000) model (heavy lines) and the equivalent simplified
model (light lines).
(PDF)

Figure S10 Three-dimensional structure of a kinase. The G-rich
loop is colored in green; the C-alpha helix is colored in magenta;
the catalytic loop is colored in orange; the activation loop is
colored in cyan. The N-lobe region is colored in black while the C-
lobe is colored in grey.
(PDF)

Table S1 Mutations and model parameters associated with
neuro-cardio-facial-cutaneous syndrome.
(DOC)

Text S1 Additional information of the in silico MAPK model.
This file describes the parameter values optimized based on the
FRET data measured by Fujioka et al.
(DOC)

Text S2 Characterizing structural and functional mutations.
This file discusses the separation of structural and functional
mutations studied in this work.
(DOC)

Text S3 Formulating the reduced ODEs based on the Bright-
man and Fell model. This file describes the steps of producing the
reduced model.
(DOC)
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