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Abstract

This thesis investigates properties of classical and quantum spin systems on lattices. These
models have been widely studied due to their relevance to condensed matter physics.

We identify the ground states of an antiferromagnetic RP2 model, these ground states are
very different from the ferromagnetic model and there was some disagreement over their
structure, we settle this disagreement.

Correlation inequalities are proved for the spin- 1
2 XY model and the ground state of the

spin-1 XY model. This provides fresh results in a topic that had been stagnant and allows
the proof of some new results, for example existence of some correlation functions in the
thermodynamic limit.

The occurrence of nematic order at low temperature in a quantum nematic model is proved
using the method of reflection positivity and infrared bounds. Previous results on this ne-
matic order were achieved indirectly via a probabilistic representation. This result is main-
tained in the presence of a small antiferromagnetic interaction, this case was not previously
covered.

Probabilistic representations for quantum spin systems are introduced and some conse-
quences are presented. In particular, Néel order is proved in a bilinear-biquadratic spin-1
system at low temperature. This result extends the famous result of Dyson, Lieb and Simon
[35].

Dilute spin systems are introduced and the occurrence of a phase transition at low tempera-
ture characterised by preferential occupation of the even or odd sublattice of a cubic box is
proved. This result is the first of its type for such a mixed classical and quantum system. A
probabilistic representation of the spin-1 Bose-Hubbard model is also presented and some
consequences are proved.
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Chapter 1

Introduction and outline

1.1 Introduction

It became clear in the last century that the classical view of elementary particles using

classical mechanics is insufficient for a complete description of atomic phenomena. This is

especially clear when considering the Hydrogen atom, according to classical mechanics the

orbiting electron would continuously lose energy due to its radial acceleration causing it to

spiral into the nucleus. However it is clear that this cannot be the case, the Hydrogen atom

is stable over very long periods of time. A new theory applicable to fundamental particles is

required. This theory is, of course, quantum mechanics. One aspect of quantum mechanics

is that particles, even elementary particles, posses an “intrinsic” angular momentum known

as spin. We will consider properties of systems of particles with interactions coming from

their spins.

Statistical mechanics (both classical and quantum) is concerned with systems consisting of

a large number of subsystems (e.g. particles) whose interaction produces macroscopic ef-

fects. This is known as thermodynamic behaviour and is obtained by some process of aver-

aging over individual systems. This thermodynamic behaviour is described by equilibrium

states (states of an isolated system after large amounts of time) consisting of macroscopic

homogeneous regions (phases) which can be described by a finite number of parameters

of the system. Making such a description of the thermodynamics of a system rigorous is

difficult and has been a topic of intense study during the last century, we refer to [95]. This

thesis will mainly concern itself with the infinite volume equilibrium states of systems and

the phases which are present.
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Quantum spin systems and phase transitions

Proving rigorous statements about quantum spin systems is a difficult task. We will often

be informed by the expected phase diagram of the systems we consider. In certain situa-

tions one may be able to consider a quantum system as being a (small) perturbation of a

classical model. This idea has led to positive results. It was shown in [20] that under cer-

tain conditions the low temperature phase diagram for a classical system accompanied by a

small quantum perturbation is only a small perturbation of the zero temperature phase dia-

gram of the classical system. Similar results were also obtained independently around the

same time [29]. These results required finitely many ground states of the classical model.

This requirement was lifted via a unitary conjugation of the system where the quantum per-

turbation lifts the ground-state degeneracy [30]. These results all rely on (extensions of)

Pirogov-Sinai theory [91, 104] that systematically extends contour techniques, which find

their origin in the work of Peierls [89] on the Ising model, to a wide class of models.

Proving the occurrence of phase transitions remains a major area of research in statistical

mechanics. One sees from nature that physical changes such as condensation of a gas below

the boiling point or magnetisation of a ferromagnetic material below the Curie temperature

occur quite abruptly as (for example) the temperature of the system is lowered. Capturing

this phenomenon mathematically is notoriously difficult. It can be characterised by non-

analyticity of the free energy, fΛ, of the system but for finite systems (with finitely many

degrees of freedom) on space Λ (lattice, box,...) fΛ is usually real analytic in each of its

variables. There is, however, a solution. When studying phase transitions we are interested

in very large systems. We work with the infinite volume limit f = lim|Λ|→∞ fΛ and this limit

may not be analytic in one or more variables. This raises another major issue; can we take

this limit? The answer for many systems is yes. We take |Λ| → ∞ as follows; let {Λn}n≥1 be

a collection of sublattices of some infinite reference lattice A (for example A = Zd), we say

Λn → A as n → ∞ if for every finite Λ ⊂ A there is an N ≥ 1 such that Λ ⊂ Λn if n ≥ N.

We could take limits in a more general way if we wished (Van Hove) [95].

Often it will be very difficult to deduce that the free energy is not analytic directly. The

free energy is defined as the logarithm of the partition function, divided by the volume.

The functional derivatives of this free energy give, formally, correlations in the system

with total mass given by the partition function. This suggests it may be more sensible

to look at the Gibbs measure/Gibbs state that the partition function is the normalisation

constant of (we will see its definition in Chapter 2). How we take the infinite volume limit

of this Gibbs measure/state is open to some choice. We can take weak cluster points as

Λ → Zd (and, if we want, take the limit in a more general way than above) with various

2



boundary conditions (see Section 2.1.1). Alternatively we could decide on some important

property of these measures/states in finite dimensions and define an infinite dimensional

analogue (in classical systems this is the DLR condition and in quantum systems it is the

KMS condition). The existence of more than one infinite volume DLR/KMS state means

that there is a phase transition of the system. In this thesis we will use both approaches

but when taking the first approach we will always take periodic boundary conditions for

convenience, see Section 2.2.5 for discussion on these points.

Once we know that such a limit exists we can attempt to prove that a phase transition oc-

curs. Unsurprisingly this is notoriously difficult even when heuristic or numerical evidence

suggests it should happen. For classical systems things are somewhat easier (despite still

being difficult). For quantum systems there are extra difficulties coming from observables

being operators, causing commutativity issues. One can use results from classical systems

and transfer this to quantum spin systems for high spin [16], for example by using coherent

states, but one must still have a way to deal with the quantum system to some extent.

It is well known that the set of infinite volume KMS states form a simplex and that in the

extremal states truncated correlations decay. This means that showing the non-decay of

some truncated correlation proves that there is not a unique KMS state, hence there is a

phase transition. See, for example, [56, 103] for a discussion of such results. Many of the

results on phase transitions in this thesis are achieved by proving long-range order, that is,

the non-decay of a (spin-spin) correlation as the distance between the spin-carrying particles

diverges, see (for example) chapters 5, 6 and 7. This non-decay of a correlations indicates

some type of order (as opposed to disorder) of the spins in a system at a macroscopic scale.

Phase transitions are often accompanied by the breaking of an internal symmetry of the sys-

tem, for example magnetisation may correspond to a discontinuity in one of the derivatives

of the free energy [39], the symmetry is broken by the alignment of spins in the direction of

an external field whose strength is reduced to zero. This alignment of spins over long dis-

tances is referred to as ferromagnetic order, in the classical case it means that the spins (unit

vectors) point in the same direction, in the quantum case it means that the state of the system

is strongly correlated to a state that is symmetric under switching of individual particles (for

example a product state where each particle is in the same state). The rotational symmetry

has been broken as one particular direction is preferred. In this thesis phase transitions will

often correspond to a breaking of a rotational (more precisely SU(2)) symmetry, this is an

example of a continuous symmetry. We will also see an example of a phase transition cor-

responding to the breaking of a discrete (translational) symmetry in Section 7.4. Two types

of order will be of particular interest. The first is antiferromagnetic order, also referred to

as Néel order after Louis Néel who first noted the occurrence, [83]. It is characterised in

3



the classical case by neighbouring spins pointing in opposite directions. The quantum case

is characterised by strong correlation to a state of the system where neighbouring spins are

opposite, for example in spin-1 the Néel state has spins alternating between the +1 and -1

eigenstate (see sections 2.2.2 and 2.2.5). The second type of order is nematic order, also

called ferro-quadrupolar order. In the classical case this is characterised by spins aligning

along the same axis but not necessarily pointing in the same direction or alternating direc-

tion, this is clearly a weaker order than Néel order. In the quantum case nematic order is

more mysterious, in spin-1 it corresponds to being strongly correlated to the product state of

the 0 eigenstate [113]. In this case the precise relationship between Néel and nematic order

remains unknown. Nematic order has been a topic of interest due to its occurrence in Ni-

based compounds such as NiGa2S 4 [82, 114] and other compounds such as PrCu2, CeAg

[79, 99]. There is also a related staggered-nematic order, also called antiferro-quadrupolar

order, proposed for other compounds such as CeB6 and PrPb3 [80, 85], we will not dis-

cuss this order further as very little can be rigorously achieved. See Section 2.2.5 for more

precise statements and definitions.

Some available methods for proving the occurrence of phase transitions

There are few methods available to prove a system undergoes a phase transition. The first

was Peierls’ method, which finds its origin in the the work of Peierls [89] and was developed

for classical spin systems by Dobrushin [33] and Griffiths [51]. Extensions of Peierls’

method were used to treat anisotropic quantum Heisenberg models by Ginibre [47] and

Robinson [94]. This method shows spontaneous symmetry breaking, which implies a phase

transition. However it can only deal with breaking of discrete symmetries.

It is known for translation invariant models on Zd that if continuous symmetry breaking

occurs there is a gapless excitation spectrum. There is much literature on spectral gaps

[5, 6, 7, 25] and recent interest has been piqued due to the possibility that systems with

gapped ground states may support topological order.

For continuous symmetries it is known that in one or two dimensional lattice models there

can be no breaking of the symmetry at positive temperatures. This result is usually attributed

to Mermin and Wagner [78] who proved this was the case for the quantum Heisenberg

model. Fisher and Jasnow [37] proved decay of two point correlations in the anisotropic

case. The classical O(n) model was covered in two dimensions by McBryan and Spencer

[77] where power-law decay of two point correlations was proved, this was generalised to

two dimensional classical systems with symmetry groups that are compact connected Lie

groups [90].
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Despite the theorem of Mermin and Wagner and its extensions there is a method (in fact

it is essentially the only method currently available) for proving the occurrence of phase

transitions in systems with continuous symmetries in dimensions three or more (and in the

ground state of dimension two); the method of reflection positivity. See sections 2.1.3 and

2.2.6 for a discussion of reflection positivity. This method dates back to the remarkable

work of Fröhlich, Simon and Spencer [43] who proved that a phase transition occurs in

(φ · φ)2
3 quantum field theories and the classical isotropic Heisenberg model on a cubic

lattice in dimension d ≥ 3. The result was extended to quantum models in the now famous

paper of Dyson, Lieb and Simon [35]. It was proved, in particular, that the isotropic spin- 1
2

XY model and the Heisenberg antiferromagnet with spin S ≥ 1 undergo a phase transition

in dimension d ≥ 3. This was extended to the XY model with spin S ≥ 1 for the ground

state in dimension d ≥ 2 by Kennedy, Lieb and Shastry [58]. A proof for the quantum

Heisenberg ferromagnet is absent, this model does not enjoy the very useful property of

reflection positivity. This remains a big open problem.

A major drawback of reflection positivity is that it usually imposes very strictly require-

ments on the underlying structure (the lattice). It requires that the underlying lattice has

significant reflection symmetry, such as a cubic lattice in Zd or the hexagonal lattice. Tri-

angular lattices can not be dealt with in quantum models due to reflections through sites

causing commutativity issues between each side of the reflection. There has been some

work that does not require this spatial reflection symmetry by using the notion of spin-

reflection positivity. This technique was used by Lieb to prove uniqueness of the ground

state of the Hubbard model at half filling [73], both the attractive and repulsive case were

considered. It was later shown that in the repulsive case there is ferrimagnetic order in the

ground state on bipartite lattices (see [100] for a definition of ferrimagnetic order). The idea

of spin-reflection positivity has been developed by Tasaki and Tian [107, 108].

Since these initial works the theory surrounding reflection positivity has seen much interest

[39, 41, 42]. A consequence of reflection positivity is Gaussian domination which allows

to obtain an infrared bound, a bound on the higher Fourier modes of (spin or particle)

correlations. We will see this method used in Section 5.2, 6.2.6, 6.2.7, 6.2.8, 6.2.9 and

7.3.1. This was used in previously mentioned works [35, 43]. The result of Dyson, Lieb

and Simon [35] was used by Neves and Perez to prove that there is Néel order in the ground

state of the antiferromagnet for d = 2 and spin S ≥ 3/2 [84]. Kennedy, Lieb and Shastry

extended the result to the spin- 1
2 antiferromagnet in d = 3 [58], the same authors also proved

that there is a phase transition for the XY models for all spins S ∈ 1
2N and dimensions d ≥ 2

[59]. Other models such as the spin-1 bilinear-biquadratic exchange Hamiltonian have also

benefited from the technique. It was shown in [106] that Néel order occurs in the ground

5



state of the antiferromagnetic case in dimensions d = 2, 3 if the biquadratic interaction is

small enough. Nematic order was also shown in the ferromagnetic case if the biquadratic

interaction is slightly stronger than the ferromagnetic interaction. This nematic order has

also been proved to occur in spin-1 for a purely biquadratic interaction [69]. This is the

content of Chapter 5. The result also holds in the presence of a small antiferromagnetic

interaction however it is expected that the stronger Néel order is present here. Infrared

bounds have also been used with probabilistic representations of quantum spin systems,

this will be discussed in the sequel.

A further consequence of reflection positivity are chessboard estimates. See Section 2.2.7

for a discussion of chessboard estimates, we will use them in Section 7.4. These estimates

can be used to show phase transitions in cases where infrared bounds cannot be used. Chess-

board estimates find their origins in the work of Fröhlich and Lieb [39] and were developed

subsequently [41, 42]. This method has been used on the q state Potts model with q � 1

[60]. It was used to prove the occurrence of a phase transition in the classical 120◦ model.

The method has also been used to prove that if use of chessboard estimates provides proof

of a phase transition in a classical spin system then there will also be a phase transition

in the corresponding quantum spin model provided the magnitude of the quantum spin is

large enough [16]. It has more recently been used to prove long range order in quantum

dimer models [49]. The method can also be applied to diluted spin systems [23, 24] this is

the content of Section 7.4. Chessboard estimates allow to prove breaking of discrete sym-

metries. For example in [24] it was shown that for certain annealed classical models on

bipartite lattices there is a phase characterised by the preferential occupation of either the

even or odd sublattice.

Correlation inequalities

Correlation functions are often of interest. If we knew everything about correlations of a

system we would usually know everything about the system as they often characterise the

distribution. In this thesis we will often be concerned with two-point correlations and their

behaviour in the infinite volume limit. It is not trivial to prove that these correlations exist

in infinite volume. Despite this there are results using correlation inequalities. These in-

equalities date back to the work of Griffiths [51] for the Ising model. They have been very

useful for classical models for establishing infinite volume limits of correlation functions,

proving the monotonicity of spontaneous magnetisation and to establish inequalities on crit-

ical exponents. Quantum systems have proved more difficult to study. Ginibre proposed a

general setting under which correlation inequalities hold [48]. This included many classi-

6



cal systems and some quantum systems. Proving that a given quantum system satisfies the

requirement of this framework is difficult. It has been shown that the quantum XY model

fits this setting for spin- 1
2 and the ground state in spin-1 [10], this is the content of Chapter

4. Correlation inequalities had previously been shown for the quantum XY model with pair

interactions [45]. Inequalities for (untruncated) correlations in more general models were

proposed in [40].

Probabilistic representations of quantum spin systems

Useful connections between many-body quantum systems and probabilistic models have

seen growing recent interest. These representations date back to Feynman but since then

there has been much work. It is expected that there are deep connections between the Bose

gas and models of spatial random permutations [110] however this has not been rigorously

proved. For quantum spin systems this work dates back to the work of Tóth [107] who used

an interacting self-avoiding random walk representation of the Heisenberg ferromagnet to

bound the pressure. A similar model for the antiferromagnet was introduced by Aizenman

and Nachtergaele [2]. These models were combined and extended by Ueltschi [111]. We

explain this model in Section 6.1. A connection between the probabilistic representation

and various quantum spin systems was proved. For example for the nematic region of a

general spin-1 bilinear-biquadratic interaction where it was proved that nematic order oc-

curs for d ≥ 5. It was also shown that in the presence of a purely biquadratic interaction on

a bipartite lattice there is Néel order. The work of Crawford, Ng and Starr [28] on empti-

ness formation makes use of the model, as does the work of Björnberg and Ueltschi [19]

on decay of correlations in the presence of a transverse magnetic field. We also consider

the same spin-1 model [70] using and developing another loop model introduced in [81].

In this work it was shown that there is Néel order for a large range of parameters of an

antiferromagnet interaction accompanied by a nematic interaction in dimension d ≥ 3. This

work also obtained some inequalities for different correlation functions that seemed very

hard to obtain otherwise. We will see this work in Section 6.2.

These models have also seen significant interest from a purely probabilistic perspective.

For probabilistic models such as those presented in [2, 69, 81, 111] it has been shown

that macroscopic loops occur in the infinite volume limit, this is equivalent to symmetry

breaking in the corresponding quantum models. It remains an open problem to rigorously

describe the structure of these macroscopic loops (indeed there are expected to be multiple

macroscopic loops). It is conjectured [111, 113] that these loops have a Poisson Dirichlet

structure with parameter depending on the interactions. For example the loop model corre-
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sponding to the ferromagnet is expected to have a PD(2) structure whereas for the nematic

region PD( 3
2 ) is expected. Proof of such a result would provide much information on spin-

spin correlations. For example, as mentioned in the prequel, proof of phase transitions can

be achieved through proof of the non-decay of some relevant spin correlation by showing

that the Cesàro average of the correlations is bounded away from zero. This result does not

give information on the correlation between specific sites (other than that some unknown

sites have a spin correlation that is bounded away from zero). Using the conjectured struc-

ture of macroscopic loops an explicit expression for spin correlations between sites can

be obtained that becomes exact in the large volume, large distance limit. Recent work by

Kotecký, Miłos and Ueltschi [65] showed occurrence of macroscopic cycles for the random

interchange process on the hypercube. Work by Schramm [98] and Berestycki [11] proved

that the random interchange model on the complete graph undergoes a phase transition

characterised by the emergence of infinite cycles whose sizes satisfy a Poisson Dirichlet

law. It has recently been proved by Björnberg that large cycles also appear when permu-

tations receive a weighting of θ#cycles where θ > 1. Probabilistic representations have also

been used to explore other properties of quantum spin systems. They were used to bound

the emptiness formation probability (the probability that a region has all spins in the same

eigenspace) for the Heisenberg antiferromagnet [28], to investigate gapped ground states

of systems with continuous symmetries [5] and to classify pure Gibbs states of certain spin

systems [111, 113].

Dilute spin systems and systems of itinerant particles

Systems where spin-carrying particles are itinerant have also received much attention in the

literature. One such example is the Hubbard model. As mentioned before this model was

studied using the method of spin-reflection positivity with great success. The model is very

relevant as a system of many electrons for the study of ferromagnetism. In particular, if the

spin interaction is neglected, is the Coulomb interaction a possible cause of ferromagnetic

ordering [107]? Experiments on Bosons in optical lattices have also renewed interest in

the Bose-Hubbard model. The Bose-Hubbard model has some significant differences with

the Hubbard model, which models fermions, due to the system allowing many particles to

occupy the same site. One can also include a spin interaction with this model and study the

effect of this interaction. We will do this in Section 7.5. Bosons with spin are relevant to the

theory of He3 super-fluidity [68]. They have also been discussed due to connections with

multicomponent Bose-Einstein condensation, [97, 105]. It was shown that in the absence

of explicit spin interactions the system has a groundstate that is fully polarised. The case

of explicit spin interactions has also been dealt with [57], it was shown that the structure of
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the ground state only depends on the sign of the spin-dependent term. Various authors have

looked at systems involving explicit spin-1 interactions using perturbative methods [54, 61]

or using a mean-field approach [88, 92].

One can also consider systems where particles may not possess a spin that interacts with

its neighbours (e.g. systems with impurities). These dilute spin systems have only limited

results in the quantum case, although the classical case has seen some positive progress. The

case of the Potts model with a large number of states was studied under annealed dilution,

it was shown that the model has a phase where staggered order occurs; order characterised

by preferential occupation of the even or odd sublattice for a system on a bipartite lattice

[23]. This was later extended to classical systems with continuous spin [24]. Extending

such results to a quantum system will be the content of Section 7.4.

1.2 Key results

In chapters 5 and 6 we consider a spin-1 quantum spin system with a bilinear-biquadratic

interaction. We prove that Néel order occurs when the sign of the bilinear interaction is

negative (the antiferromagnetic case) and the sign of the biquadratic interaction is positive

(the nematic case) and not too large compared to the bilinear interaction (Theorem 6.2.6,

found in [70]). This result extends the famous result of Dyson, Lieb and Simon [35] by

handling the terms coming from the biquadratic interaction and therefore allowing an ex-

plicit region where Néel order occurs to be identified. We also prove that for the bilinear

interaction accompanied by a small antiferromagnetic interaction nematic order is present

(Theorem 5.1.1, found in [69]). This result applies to the region of the phase diagram that

is expected to be antiferromagnetic. This raises the interesting question of the connection

between nematic and Néel order for this quantum model.

In Section 7.4 we present a dilute quantum spin system. We consider dilution coming from

site annealing. It is proved that for some region of the systems parameters and low enough

temperature there is a phase transition categorised by preferential occupation of the odd or

even sublattice (Theorem 7.4.1, found in [63]). Such results had previously been obtained

for classical systems but this result is (to our knowledge) the first result for quantum spin

systems.

In Chapter 4 we prove correlation inequalities for the quantum XY model. Proving corre-

lation inequalities for quantum systems has been difficult, with limited results. We are able

to treat the spin- 1
2 case at all temperatures and the spin-1 case in the ground state. This is

based on [10].

9



1.3 Outline of thesis

In Chapter 2 some theory for the general setting of classical and quantum spin systems on a

lattice is presented. For classical systems we outline the set up for a classical spin system on

a lattice as well as examples of some well known classical spin systems. We then discuss the

issues of defining infinite volume systems such as DLR states. The property of reflection

positivity for classical spin systems is also introduced. For quantum systems we outline

the set up for a quantum spin system on a lattice including the definition and properties of

quantum spin operators. Examples of some well known quantum spin systems including

ones that will be considered in later chapters are given. There is then a discussion on the

issues of defining infinite volume systems such as the evolution operator and KMS states, as

well as some theorems on infinite volume limits of thermodynamic functions and a precise

definition of Néel and nematic order. The property of reflection positivity for quantum

spin systems is introduced and some of its consequences are discussed. We conclude this

chapter with a small result concerning double commutators of matrices that may be of use

when using the Falk-Bruch inequality [36], as is done several times in this thesis.

In Chapter 3 we present a brief result on the ground states of a particular classical spin

system. This model will be referred to as the staggered nematic model but is also referred

to as the antiferromagnetic RP2 model. We prove that the ground states of this model have

a certain chessboard structure characterised by a high degeneracy despite being frustration

free.

In Chapter 4 we show the positivity or negativity of truncated correlation functions in the

quantum XY model with spin- 1
2 (at any temperature) and spin-1 (in the ground state). These

Griffiths-Ginibre inequalities of the second kind generalise an earlier result of Gallavotti.

This is achieved by proving that the system under consideration fits the general framework

presented by Ginibre [48]. In order to treat the spin-1 case we use the ideas of Nachtergaele

[81] by representing a spin-1 system as a projection of two spin- 1
2 systems onto the spin

triplet.

Chapter 5 is based on the paper [69]. We introduce a spin-1 quantum nematic model (also

known as a biquadratic model) and prove that this model undergoes a phase transition at

low temperature in high dimension of the lattice. This result extends the work [3] to the

quantum case. It also complements the work of Biskup, Chayes and Starr [16] whose

methods proved the occurrence of a phase transition for this model in high (� 1) spin. It is

then proved that this result is maintained if a small antiferromagnetic interaction is added.

In Chapter 6 we introduce several probabilistic representations for quantum spin systems
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that have seen interest in recent years. To begin we introduce the Aizenman-Nachtergaele-

Tóth-Ueltschi representation and prove the connection with quantum spin systems. Section

6.2 begins with the content of [70]. The loop model introduced by Nachtergaele [81] is

presented and several results concerning the connection between spin and loop correlations

are proved. It is proved that for a general spin-1 interaction that is SU(2) invariant there

is a phase transition (Néel order, or equivalently occurrence of macroscopic loops) for a

large region of the model parameters at low temperature and for lattice dimension three or

above. An alternate proof from [70] is provided that uses the loop model directly, reflection

positivity is an essential tool. A result related to nematic order (which was relevant in

Chapter 5) is then proved, a discussion on what is needed to improve this to a proof of

nematic order is included. These two results are then reproved using the method of space-

time reflection positivity introduced in [17]. This result offers a slight improvement over

the previous result concerning Néel order.

In Chapter 7 we consider several quantum lattice systems where sites are allowed to have

particle occupation numbers other than 1. In Section 7.1 the setting for a lattice system with

quenched dilution is presented and an example of both a classical and quantum quenched

system is given. In Section 7.2 the setting for a lattice system with annealed dilution is pre-

sented. In Section 7.3 it is proved that there is a phase transition for an annealed Heisenberg

model whenever there is also a phase transition for the non-diluted system as long as the

particle density is sufficiently close to 1. This section serves to show the (simple) adapta-

tion of a well known result to the annealed case and also as a warm up to the next section.

Section 7.4 is based on the paper [63]. It is proved for a quantum annealed system that

for some values of the systems parameters and low temperatures there is a phase transition

characterised by distinct states that prefer occupation of either the even or odd sublattice of

the (bipartite) lattice. Finally Section 7.5 introduces a model of itinerant Bosons on a lattice

(the Bose-Hubbard model) where particles interact according to a general spin-1 interac-

tion. A probabilistic representation for this model is derived which is of a similar flavour to

those seen in Chapter 6. This representation is used to derive expressions for off diagonal

correlations and spin correlations between particles in terms of probabilities of events in the

loop model.
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Chapter 2

Setting for classical and quantum
spin systems on a lattice

2.1 Classical spin systems on a lattice

2.1.1 Setting and examples

Consider a finite lattice, Λ, with a set of edges, E. In examples we will take Λ ⊂ Zd to be

a box with nearest neighbour edges, E, or the discrete torus in dimension d. Each x ∈ Λ

will have an associated classical spin, Sx ∈ Ω, where Ω ⊂ RN is a closed set (discrete or

continuous). Denote by SΛ = {Sx}x∈Λ ∈ ΩΛ a spin configuration consisting of a spin for

each x ∈ Λ. We call a configuration, SΛc , of spins outside Λ a boundary condition. Particles

at sites connected by an edge will interact according to their spins. For A ⊂ Zd we denote

by φA a function depending only on {Sx}x∈A. In order to describe the energy of a spin system

we specify its Hamiltonian. The Hamiltonian will involve interactions φA for A ∩ Λ , ∅.

For the Hamiltonian to be well defined we require translation invariant interactions and a

decay condition for the norm of the interactions:

1. φA({Sx}x∈A) = φA+a(τa{Sx}x∈A), a ∈ Zd where τa is the translation operator by a.

2.
∑
A30

‖φA‖ < ∞ where ‖ · ‖ is some appropriately chosen norm.

(2.1.1)

For S = (SΛ,SΛc) the most general Hamiltonian can then be written as

HΛ(S) =
∑

A⊂Zd finite
A∩Λ,∅

φA({Sx}x∈A), (2.1.2)
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the conditions (2.1.1) ensure the sum is well defined. There are many excellent references

on this topic, for example [13, 95] and references therein.

The law of spin configurations, SΛ, is then given by a Gibbs distribution at inverse tem-

perature β of the form e−βHΛ(S)µ(dSΛ) where µ is some a priori Borel product measure

on ΩΛ. β ≥ 0 is given by β = 1
KBT where T is the temperature in Kelvins and KB =

1.38 × 10−23m2Kgs−2K−1 is Boltzmann’s constant. We refer the reader to the literature

[46, 56, 96, 103] for treatment of Gibbs measure theory. Note that we only define this

measure for finite Λ. We now present some examples of classical spin systems.

1. The Ising model. This is undoubtedly the most famous model of lattice spins. We

denote the spin at x ∈ Λ by σx. The set of possible spins is Ω = {−1,+1} with the a

priori measure, µ, the uniform measure. The Hamiltonian is given by

HΛ(σΛ) = −
∑

x,y∈Λ
|x−y|=1

σxσy − µ
∑
i∈Λ

σi. (2.1.3)

For µ = 0 we can see that having neighbouring spins aligned leads to more ener-

getically favourable configurations. Note that the configurations with lowest energy

(the ground state configurations) correspond to all spins being either +1 or −1, this

configuration has energy −|E|. The minus sign in the Hamiltonian means that is is a

ferromagnetic model, removing it results in an antiferromagnetic model. The model

was invented by Lenz [71] and studied by his student, Ising in the 1920’s. Ising

solved the system in dimension one, showing that there is no phase transition [55].

It was assumed that there was also no phase transition in dimension two, however

it was shown by Peierls [89] that in fact there is a phase transition. The proof used

the beautiful and now famous Peierls’ argument, we shall see it in section 7.4. In

the absence of an external field the two dimensional case was solved analytically by

Onsager [86]. The subsequent literature on the Ising model is extremely large.

2. The Potts model. This model generalises the Ising model to more than two possible

spin states. It was introduced by Renfrey Potts in his 1951 thesis. An excellent review

of the Potts model can be found in Wu’s article [115]. We have spins σx ∈ {1, ..., q},

q ∈ N, again with uniform a priori measure. The Hamiltonian is

HΛ(σΛ) = −
∑

x,y∈Λ
|x−y|=1

δσx,σy . (2.1.4)

It is energetically favourable to have all spins aligned. In two dimensions there is a

first order phase transition if q > 4 and a continuous transition when q ≤ 4.
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3. The Heisenberg model. This model is used to model both ferromagnetism and anti-

ferromagnetism. It can be seen as a generalisation of the Potts model to continuous

spins, S, taking values in Ω = S2 with a priori measure the Haar measure on the

surface of S2 with total mass 1. The Hamiltonian is

HΛ(SΛ) = −J
∑

x,y∈Λ
|x−y|=1

Sx · Sy. (2.1.5)

Taking J > 0 gives the Heisenberg ferromagnet and taking J < 0 gives the Heisen-

berg antiferromagnet. Note that on a bipartite lattice the sign of J does not matter

as we can flip all the spins on the even sublattice to effectively switch the sign of J.

This model has an obvious O(3) symmetry. It was famously shown that in d ≥ 3 the

ferromagnet exhibits a phase transition [43]. The proof used the method of reflection

positivity and infrared bounds that will feature often in this thesis. It was known due

to the Mermin-Wagner theorem [78] and its extensions that no such phase transition

could occur for d ≤ 2. Note that we could also take a more general model where

Ω = SN for other values of N ∈ N, this is called the O(N) model. The O(N) model

has (unsurprisingly) an O(N) symmetry. Formally the Ising model is the O(1) model.

4. The nematic model. This is a model of liquid crystals. We refer the reader to [31] for

theory on the physics of liquid crystals. The spins, Sx, take values in Ω = S2 as in the

Heisenberg model. The Hamiltonian is

HΛ(SΛ) = −J
∑

x,y∈Λ
|x−y|=1

(Sx · Sy)2. (2.1.6)

This model is invariant under reversal of any spins due to the square in the interac-

tion. The case J > 0 and J < 0 are not equivalent in this model and in fact behave

quite differently. For J > 0 ground state configurations will involve nearest neigh-

bour spins being aligned in the same direction. It has been proved that the system

undergoes a phase transition in dimension d ≥ 3 [3]. The quantum version of this

model will be the topic of Chapter 5. For J < 0 the ground state configurations are

more complicated [8, 9, 60], this will be the context of chapter 3.

2.1.2 Infinite volume Gibbs measures

For the models presented in Section 2.1.1 we considered only finite Λ. To consider the

infinite volume limit of these models we must make sense of both the Hamiltonian and the
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Gibbs measures. The problem is that neither are well defined for infinite volumes. We will

deal with Λ ⊂ Zd and for convenience consider only Λ that are boxes centered at the origin.

We can take more general sets as in [95] (e.g. the limit in the sense of Van Hove) but for us

boxes will be sufficient. If we wish to consider spins on the entirety of Zd we must take into

account spins outside of Λ. For a system with Hamiltonian HΛ(SΛ) and boundary condition

SΛc at inverse temperature β we define the systems partition function by

ZΛ(SΛc , β) =

∫
ΩΛ

µ(dSΛ)e−βHΛ(S). (2.1.7)

Expectations in this system will be given by the Gibbs states

〈 f 〉SΛc ,β =
1

ZΛ(SΛc , β)

∫
ΩΛ

µ(dSΛ) f (S)e−βHΛ(S), (2.1.8)

denote the associated measure by µΛ(·|SΛc , β). The two standard ways of defining infinite

volume Gibbs states are either to consider weak cluster points of 〈·〉SΛc ,β as Λ → Zd with

various boundary conditions or to use the DLR condition [13, 32] (named after Dobrushin,

Lanford and Ruelle).

Definition 2.1.1. For Hamiltonian, H, on Zd and inverse temperature, β, a measure, µ,

on ΩZ
d

is called an infinite volume Gibbs measure if for every finite Λ ⊂ Zd and µ−a.e.

boundary condition we have that µ satisfies the DLR condition

µ(·|SΛc) = µΛ(·|SΛc , β). (2.1.9)

The set of all infinite volume Gibbs states, Gβ, for a given β is of interest. Gβ is a weakly

closed convex set. When |Gβ| > 1 we say that the system undergoes a phase transition.

We can show that the Ising model undergoes a phase transition by taking Λ to be a box in

Zd centred at the origin with boundary conditions all set to +1 or all set to −1. This is the

famous result of Peierls whose beautiful contour method will be seen in Section 7.4.

2.1.3 Reflection positivity for classical models

Reflection positivity (RP) is one of the main tools of this thesis. Although it will mainly be

applied to quantum systems it is useful to first consider the classical version of this property.

The technique was developed in the now famous works of Dyson, Fröhlich, Isreal, Lieb,

Simon and Spencer [35, 41, 42, 43]. Reflection positivity requires a great deal of symmetry

of the lattice, namely reflection symmetry in any plane bisecting edges. For this reason we

will work with the d-dimensional torus, TL, of side length, L ∈ 2N. Note that the torus also
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has symmetry under reflections through planes of sites and for classical systems we can also

use RP for such reflections. Let R be a reflection in a plane splitting TL into two halves,

T1,T2. We have RT1 = T2. Denote byA1 the set of all functions ΩTL → R that only depend

on spins in T1. R acts on such functions by reflecting sites, for example R(Sx) = SRx.

Definition 2.1.2. We say a state 〈·〉 is reflection positive with respect to a reflection, R, if

for any f , g ∈ A1

〈 f Rg〉 = 〈gR f 〉, (2.1.10)

〈 f R f 〉 ≥ 0. (2.1.11)

The content of this definition is mainly in the second condition, the first condition usually

follows from the structure of the lattice. Trivially the product measure, µ(dSΛ), is RP. One

can think of RP as an inner product condition, the function f , g → 〈 f Rg〉 is a positive-

semidefinite, symmetric bilinear form. From this we have the Cauchy-Schwarz inequality

(〈 f Rg〉)2 ≤ 〈 f R f 〉〈gRg〉. (2.1.12)

This is the main tool for using reflection positivity. Using this it can be proved [13, 41]

that for a reflection, R, in a plane bisecting edges the Gibbs measure for β will be reflection

positive if its associated Hamiltonian can be written in the form

HΛ = −A − RA −
∑
α

BαRBα, (2.1.13)

for A, Bα ∈ A1. We will see how to apply this property to prove the occurrence of a phase

transition in later chapters. Note that all of the examples in Section 2.1.1 can be brought to

RP form. For example for the Hamiltonian 2.1.6 we reason as follows: for spin S define a

3 × 3 matrix Q by

Qα,β := SαSβ −
1
3
δα,β. (2.1.14)

Note that Q is a traceless matrix and for two spins Sx,Sy we have

Tr(QxQy) =

3∑
α,β=1

(Qx)α,β(Qy)α,β = (Sx · Sy)2 −
1
3
. (2.1.15)

This form was used in [3] to prove the occurrence of a phase transition for J > 0.
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2.2 Quantum spin systems on a lattice

2.2.1 Setting

In this section we will present a general setting for a quantum spin system on a lattice and

discuss topics such as infinite volume Gibbs states and reflection positivity. We will then

have the tools required to move into the later chapters. Some of the setting for quantum spin

systems on a lattice bears a resemblance to the classical setting. However the two settings

depart in some major ways. Let Λ be a finite lattice with a set of edges, E. We will usually

take Λ ⊂ Zd to be a box with a set of nearest neighbour edges, E. We denote by H a finite

dimensional local Hilbert space. For each x ∈ Λ denote by Hx a copy of H . Let A be the

algebra of operators onH and letAx be its copy for x ∈ Λ. For a subset A ⊂ Λ we define a

Hilbert space,HA, and algebra of operators,AA, by

HA = ⊗x∈AHx, (2.2.1)

AA = ⊗x∈AAx. (2.2.2)

We can define a partial order on these algebras. For A ⊂ B, and a ∈ AA we identify the

operator a ⊗ 1B\A inAB. We use this to sayAΛ′ ⊂ AΛ if Λ′ ⊂ Λ. An interaction φ = {φA}

for A ∩ Λ , ∅ is then a family of operators satisfying:

1. φA ∈ AA. (2.2.3)

2. φA+a = τaφA where τa is the translation operatorAA → AA+a. (2.2.4)

3. φ∗A = φA. (2.2.5)

For r > 0 we introduce a norm on interactions given by

‖φ‖r =
∑
A30

‖φA‖er|A|. (2.2.6)

With this norm the space of interactions is a Banach space. For a given interaction and finite

Λ we can define a Hamiltonian by

HΛ =
∑

A⊂Zd finite
A∩Λ,∅

φA, (2.2.7)
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and finite volume Gibbs states at inverse temperature β ≥ 0 by

〈·〉Λ,β =
1

ZΛ,β
Tr · e−βHΛ , (2.2.8)

with the partition function ZΛ,β = Tr e−βHΛ . We will define more general states in Section

2.2.4 when the infinite volume limit will be studied.

2.2.2 Spin operators

Many quantum spin systems, including all those considered in this thesis, are defined via

interactions involving spin operators. It is known that quantum models behave in some way

similarly to their classical counterparts at finite temperature (but there are some significant

differences!). It is the case that as the spin parameter S → ∞ we recover the classical

spin system however a rigorous treatment of this is still missing. There have been precise

statements for the free energy of certain systems as S → ∞ [12, 44, 72, 101]. We now

present an introduction to these operators and their properties1. For S ∈ 1
2N consider the

matrices (S 1, S 2, S 3) on C2S +1 generating a (2S +1)-dimensional irreducible representation

of su(2). They satisfy the commutation relations[
S α, S β

]
= i

∑
γ

EαβγS γ, (2.2.9)

for α, β, γ ∈ {1, 2, 3} and Eαβγ the Levi-Civita symbol (= 1(−1) if (α, β, γ) is an even (odd)

permutation of (1, 2, 3) and 0 else). Denote S = (S 1, S 2, S 3), we take the normalisation

S · S = S (S + 1)1. (2.2.10)

These properties uniquely define the S i up to unitary transformations (see [102] Section

VIII.4). The case S = 1
2 gives 1

2 the Pauli spin matrices:

S 1 =
1
2

0 1

1 0

 , S 2 =
1
2

0 −i

i 0

 , S 3 =
1
2

1 0

0 −1

 . (2.2.11)

For S = 1 we have the following matrices:

S 1 =
1
√

2


0 1 0

1 0 1

0 1 0

 , S 2 =
1
√

2


0 −i 0

i 0 −i

0 i 0

 , S 3 =


1 0 0

0 0 0

0 0 −1

 . (2.2.12)

1Several results concerning spin matrices were communicated to me by Daniel Ueltschi.
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For general S ∈ N we prove the existence of these matrices by construction. For a ∈

{−S , ..., S } let {|a〉} be an orthonormal basis of C2S +1. Denote the spin raising/lowering

operators by S ±. We define S 3, S ± by

S 3|a〉 =a|a〉,

S +|a〉 =
√

S (S + 1) − a(a + 1) |a + 1〉,

S −|a〉 =
√

S (S + 1) − a(a − 1) |a − 1〉,

(2.2.13)

with S +|S 〉 = S −| − S 〉 = 0. Then taking S 1 = 1
2 (S + + S −) and S 2 = 1

2i (S
+ − S −) gives

matrices S 1, S 2, S 3 satisfying (2.2.9) and (2.2.10). Note that S ± = S 1 ± iS 2.

Lemma 2.2.1. For Hermitian matrices S 1, S 2, S 3 satisfying (2.2.9) and (2.2.10) each S i

has eigenvalues {−S ,−S + 1, ..., S }.

Proof. We prove the claim for S 3. We have

S +S − =S (S + 1) − (S 3)2 + S 3,

S −S + =S (S + 1) − (S 3)2 − S 3.
(2.2.14)

Then if |a〉 is an eigenvector of S 3 with eigenvalue a we have

‖S +|a〉‖2 =〈a|S −S +|a〉 = S (S + 1) − a2 − a,

‖S −|a〉‖2 =〈a|S +S −|a〉 = S (S + 1) − a2 + a.
(2.2.15)

Hence we must have |a| ≤ S and S +|a〉 = 0 ⇐⇒ a = S . Now as [S 3, S +] = S + we have

that S 3S +|a〉 = (a + 1)S +|a〉. From this we see that if a < S is an eigenvalue so is a + 1.

Similarly for S − if a > −S is an eigenvalue so is a − 1. Hence the set of eigenvalues is

{−S , ..., S }. �

Spin matrices are well behaved under rotations. For u ∈ R3 define S u = u · S, we have

[S u, S v] = iS u×v. (2.2.16)

Lemma 2.2.2. If Ruv is the result of rotating vector v by angle ‖u‖ around u then

e−iSu
S veiSu

= SRuv. (2.2.17)

To prove this identity let u → su and differentiate both sides with respect to s, one finds

they satisfy the same ODE.
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If we look at two spins with operators S i
1 = S i ⊗ 1 and S i

2 = 1 ⊗ S i on C2S +1 ⊗ C2S +1 the

following lemma is well known.

Lemma 2.2.3. The matrix (S1 + S2)2 has eigenvalues J(J + 1) where J ∈ {0, 1, ..., 2S }. The

subspace corresponding to J has degeneracy 2J + 1. Further [S i
1 + S i

2, (S1 + S2)2] = 0 for

i = 1, 2, 3 and the eigenvalues of S i
1 + S i

2 in sector J are −J, ..., J.

More generally for particles on a lattice Λ with spins we take the operator S i
x for i = 1, 2, 3

to be shorthand for the operator S i
x ⊗ IdΛ\{x}. We use the notation |a, b〉 = |a〉 ⊗ |b〉 etc.

2.2.3 Examples

1. The quantum Ising model. Consider a graph (Λ,E) with sites x ∈ Λ having a spin- 1
2

degree of freedom and E a set of edges. The Hamiltonian is

HΛ = −λ
∑
{x,y}∈E

S 3
xS 3

y − δ
∑
x∈Λ

S 1
x. (2.2.18)

HΛ acts on the Hilbert space ⊗x∈ΛC
2. S i are the spin- 1

2 matrices. The parameters

λ, δ > 0 are the spin-coupling and transverse field intensities, respectively. This

model was introduced in [75] where its ground state and free energy were found

exactly. It has since been widely studied, for example in [52] where ground state

entanglement in dimension d = 1 was studied and in [18] where it was shown that

the system undergoes a unique sharp phase transition.

2. The anisotropic Heisenberg model. The Hamiltonian is given by

HΛ = −
∑
{x,y}∈E

(J1S 1
xS 1

y + J2S 2
xS 2

y + J3S 3
xS 3

y) (2.2.19)

where −1 ≤ J1, J2, J2 ≤ 1 and S i are the spin-S operators. Taking all Ji = J gives

the Heisenberg ferromagnet for J > 0 and the Heisenberg antiferromagnet for J < 0.

Taking J1 = J3 , 0 and J2 = 0 gives the XY model. Note that for the XY model on a

bipartite lattice the sign of J1 does not matter as the spins can be reversed on half the

sites by the operators eiπS 2
x . It is known that on a bipartite lattice the antiferromagnet

has a unique ground state [74], however the exact structure is unknown. It is also

known that the antiferromagnet undergoes a phase transition [35]. By contrast for

the ferromagnet there is an entire O(3) symmetry of the ground states that can be

identified (see for example [113]) but it remains a huge open problem to prove the

occurrence of a phase transition.
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3. The bilinear-biquadratic exchange Hamiltonian. The Hamiltonian is given by

HΛ = −
∑
{x,y}∈E

(
J1

(
Sx · Sy

)
+ J2

(
Sx · Sy

)2
)
. (2.2.20)

The case J1 = 0 < J2 is the content of chapter 5, it is proved that there is nematic

order. The first result on phase transitions for this model is the famous result of

Dyson, Lieb and Simon [35] for J1 < 0 = J2 and S ≥ 1, d ≥ 3 or S ≥ 1/2, d ≥ 4.

Kennedy, Lieb and Shastry extended this result to the case (S , d) = (1/2, 3) [58]. For

S = 1 and d ≥ 3 it was shown [70] that Néel order is actually present in a large

portion of the quadrant J1 < 0 < J2. For example in d = 3 Néel order is proved for

0 ≤ J2 < −2.161J1, this is the content of Section 6.2.6. Section 6.2.8 improves this

to 0 ≤ J2 < −4.431J1 in d = 3. These regions increase in size as d increases. In the

limit d → ∞ we have Néel order for the entire quadrant. In the region J2 < 0 very

little is known. One result is for the AKLT model [1] for S = 1 where the presence

of a “massive” phase was presented, in agreement with Haldane’s conjecture. It was

shown in [111] that for 0 < J2 ≤ J1/2 there is nematic order on a cubic lattice in Zd

for d ≥ 5 at low temperature. For J1 = 0 < J2 it was shown that there is the stronger

Néel order. Similar results were found independently in [106] for the ground state in

dimensions three for 0 < J1 ≤ J2/2 < 1.332J1, it was also shown that there is Néel

order in dimensions two and three for 0 ≤ J2 < −0.188J1 and 0 ≤ J2 < −1.954J1

respectively. For the Heisenberg ferromagnet with (S , d) = (1/2, 3) there are several

results bounding the pressure, [26, 107]. Sharp bounds were recently found [27].

4. The orbital compass model. The Hamiltonian on Z2 is

HΛ =
∑
{x,y}∈E

S 1
xS 1

y if y = x ± e1,

−S 3
xS 3

y if y = x ± e3.
(2.2.21)

This model has been studied in several works [21, 34, 38, 53, 87] using numerical

techniques, evidence points towards a phase transition in dimension 2 for spin- 1
2 .

5. The plaquette orbital model. The Hamiltonian on Z2 is

HΛ = −
∑
{x,y}∈E

J1S 1
xS 1

y if x even/odd and y = x ± e1 or y = x ± e2,

J2S 3
xS 3

y if x odd/even and y = x ± e1 or y = x ± e2.
(2.2.22)

It was shown in [15] this model exhibits orientational long-range order at low tem-

peratures in one of the two lattice directions for S large enough. The case of lower

spins, in particular spin- 1
2 , remains open.
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2.2.4 Infinite volume states and the KMS condition

We can construct infinite volume Gibbs states from cluster points of 〈·〉Λ,β for Λ→ Zd. We

observe that by taking the spiral order on Zd it is an ordered set. With this order 〈·〉Λ,β is then

a net (a sequence indexed by Zd rather thanN) and by compactness of the set of observables

there exist converging subnets. We will take Λ to be a box centred at the origin, this will be

sufficient for our needs. The equivalent of the DLR condition for quantum systems is the

KMS condition (named after Kubo, Martin and Schwinger [66, 76]). In order to state this

condition we must introduce the time evolution operator.

Definition 2.2.4. For a Hamiltonian HΛ of the form in (2.2.7), a ∈ AΛ, and t ∈ C we define

the time evolution, α(Λ)
t (a), of a by t as

α(Λ)
t (a) = eitHΛae−itHΛ . (2.2.23)

In finite volume we have the following identity by cyclicity of the trace for a, b ∈ AΛ:

〈aα(Λ)
t (b)〉Λ,β =

1
ZΛ,β

Tr aeitHΛbe−itHΛe−βHΛ

=
1

ZΛ,β
Tr eitHΛ+βHΛbe−itHΛ−βHΛae−βHΛ = 〈α(Λ)

t−iβ(b)a〉Λ,β.
(2.2.24)

This identity in infinite volume is the KMS condition. Before we state the KMS condition

precisely we need a time evolution operator for infinite volume. For infinite volume systems

we cannot use the Hilbert space ⊗x∈ZdHx as it is non-separable. Instead we define the

algebra of quasi-local observables by

A = A0, where A0 =
⋃

Λ finite

AΛ, (2.2.25)

where the overbar means the norm closure. A state is a positive normalised linear functional

ρ onA i.e. it has the properties

1. ρ(1) = 1 (2.2.26)

2. ρ(A∗A) ≥ 0. (2.2.27)

The following lemma is well known, see [93] for a proof.

Lemma 2.2.5. For t ∈ R and interaction {φA} with ‖φ‖r < ∞ for some r > 0 there exists a
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unique bounded operator αt : A → A such that

lim
Λ↗Zd

‖α(Λ)
t (a) − αt(a)‖ = 0 ∀a ∈ A0, (2.2.28)

αs+t(a) = αs(αt(a)) ∀s, t ∈ C, (2.2.29)

for Λ→ Zd along a sequence Λn of sets such that any finite set is contained in all Λ′ns once

n is large enough. αt(A) has an analytic continuation to t ∈ C for every A ∈ A0.

Definition 2.2.6. A state ρ on A satisfies the KMS condition for a Hamiltonian H if for

every a, b ∈ A

ρ(aαt(b)) = ρ(αt−iβ(b)a). (2.2.30)

It is known ([56] Theorem III.3.8) that every equilibrium state for an interaction, φ, is a

KMS state for φ. The existence of more than one KMS state ensures a phase transition. A

major tool for proving the occurrence of a phase transition is reflection positivity.

2.2.5 Phase transitions for quantum systems

In this section we will briefly outline some known results involving phase transitions includ-

ing the existence of the infinite volume limit of some physical quantities and the relation

relevance of correlations. We will also define quantities such as the Néel and nematic cor-

relation functions that are relevant for Néel and nematic order discussed in Chapter 1. For

notions of thermodynamic limits we follow the treatment in [95].

To begin we introduce a slightly different norm on interactions. For an interaction, φ, satis-

fying (2.2.3), (2.2.4) and (2.2.5), we define the norm

‖φ‖0 =
∑
X30

‖φX‖

|X|
. (2.2.31)

Recall the norm ‖φ‖r, r > 0 (2.2.6), we have trivially that ‖φ‖0 ≤ ‖φ‖r (with the interpreta-

tion that the right side could be infinite). Denote B = {φ : ‖φ‖0 < ∞} and let B0 ⊂ B be

those interaction in B with finite range (i.e. there is an N > 0 such that φX = 0 for |X| > N).

For Hamiltonian, HΛ(φ) =
∑

A⊂Zd finite
A∩Λ,∅

φA, with associated partition function ZΛ(φ) =

Tr e−HΛ(φ) (we have absorbed the β into the interaction for notational convenience) we define

the free energy of the system as

fΛ(φ) = −
1
|Λ|

log ZΛ(φ). (2.2.32)
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The following proposition can be found in [95].

Proposition 2.2.7. If φ, ψ ∈ B then

| fΛ(φ) − fΛ(ψ)| ≤ ‖φ − ψ‖0, (2.2.33)

further, fΛ is convex on B.

We now want to introduce the thermodynamic limit. In future chapters we will take the

limit Λ → Zd along a sequence of boxes but here we introduce a slightly more general

notion. For a = (a1, ..., ad) ∈ Zd with ai > 0 for each i, define Λ(a) = {x ∈ Zd : 0 ≤ xi <

ai for i = 1, ..., d}. For n ∈ Zd we define Λn = Λ(a) + na as the translate of Λ(a) by na. For

Λ ⊂ Zd denote by N+
a (Λ) the number of sets, Λn, such that Λn ∩ Λ , ∅ and by N−a (Λ) the

number of sets, Λn, such that Λn ⊂ Λ.

Definition 2.2.8. We say that sets Λ tend to infinity in the sense of Van Hove if

N−a (Λ)→ ∞, N−a (Λ)/N+
a (Λ)→ 1. (2.2.34)

We will denote this by lim|Λ|→∞ or limΛ↗Zd .

The following theorem can be found in [93].

Theorem 2.2.9. If φ ∈ B then the following limit exists and is finite

f (φ) = lim
Λ→∞

fΛ(φ), (2.2.35)

where the limit is in the sense of Van Hove. Further, f is convex on B and for φ, ψ ∈ B

| f (φ) − f (ψ)| ≤ ‖φ − ψ‖0. (2.2.36)

As was mentioned in Chapter 1, in finite volume the important quantities of the system such

as its free energy will be real analytic in each of their variables. This may not be the case in

infinite volume. The first problem, taking an infinite volume limit, can be overcome as we

saw in Theorem 2.2.9. We take the view that phase transitions correspond to points of non-

analyticity of a thermodynamic function. It is known ([95, Section 5.7]) that the functional

derivative of the free energy with respect to a k-body potential (φX ∈ φ with |X| = k)

is, formally, the k-body correlation function. This means that passing between different

analytic portions of f through a singularity corresponds to a point of discontinuity of the

correlation functions. From this we see that the existence of multiple KMS states (which

characterise the equilibrium states) ensures a phase transition. Note that this argument is

far from rigorous, however, we adopt the view that this is the correct approach to phase
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transitions.

Although this thesis is interested in phase transitions at low temperatures there are several

results concerning the absence of phase transitions, for example the following theorem can

be found in [40].

Theorem 2.2.10. Assume that

β‖φ‖N+1 < (2N)−1, (2.2.37)

then there exists a unique KMS state at inverse temperature β.

The set of KMS states forms a simplex (in fact a Choquet simplex) [56, Theorem IV.3.12].

It is known [56, Section IV] that in the extremal states truncated correlations (those of the

form 〈AB〉 − 〈A〉〈B〉) decay. This property will be extremely useful as we will often prove

the that a phase transition occurs by proving that a given (truncated) correlation does not

decay. We will generally consider periodic boundary conditions for convenience. If one

wished to identify different KMS states it is often helpful to consider infinite volume limits

with different boundary conditions. There are two correlations of particular interest to us.

Definition 2.2.11. Let HΛ be a Hamiltonian which is a function of the spin-S operators

given in Section 2.2.2 with Gibbs states at inverse temperature β given by 〈·〉Λ,β. We de-

fine the Néel correlation function as (−1)‖x−y‖〈S 3
xS 3

y〉Λ,β with x, y ∈ Λ and ‖x − y‖ the lat-

tice distance between x and y. We similarly define the nematic correlation function as

〈(S 3
x)2(S 3

y)2〉Λ,β − 〈(S 3
x)2〉Λ,β〈(S 3

y)2〉Λ,β.

Analogously to the classical case we say a system exhibits Néel order (resp. nematic order)

if the Néel (resp. nematic) correlation function does not decay in the infinite volume limit.

It is worth noting that Néel order is also referred to as antiferromagnetic order or antiferro-

dipolar order and that nematic order is also referred to as ferro-quadrupolar order. The

method of reflection positivity will allow us to show such order by showing that the Cesàro

mean does not decay.

2.2.6 Reflection positivity for quantum models

We now present some general theory of reflection positivity (RP) for quantum models, again

we refer to previous literature [13, 16, 35, 39, 41, 42, 43]. We work with the d-dimensional

torus, TL, of side length, L ∈ 2N. It is possible to work on other lattices that have a lot

of reflection symmetry, for example the hexagonal/honeycomb lattice. Unlike the classical

case, in the quantum case we cannot use reflections through planes of sites due to operators

on each side of the reflection plane no longer commuting. Let R be a reflection in a plane

bisecting edges splitting TL into two halves, T1,T2. We have RT1 = T2. Denote byA1 the
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algebra of operators on ⊗x∈T1Hx. We identify A ∈ A1 with the operator A ⊗ 1T2 ∈ A. R

acts on such operators by reflecting sites, for example the spin operators: R(Sx) = SRx. The

reflection acts as an involution R : A1 → A2 as R(A1 ⊗1T2) = 1T1 ⊗RA1 for A1 ∈ A1. The

following definition is analogous to definition 2.1.2.

Definition 2.2.12. A state, 〈·〉, on ATL is reflection positive with respect to reflection R if

for every A, B ∈ A1

〈AR(B)〉 = 〈BR(A)〉, (2.2.38)

〈AR(A)〉 ≥ 0. (2.2.39)

As in the classical case it follows that if 〈·〉 is RP with respect to R then for every A, B ∈ A1

(〈AR(B)〉)2 ≤ 〈AR(A)〉〈BR(B)〉. (2.2.40)

A sufficient condition for RP, analogous to (2.1.13) for the classical case, is proved in [35]:

For a reflection, R, through edges the Gibbs states associated to Hamiltonian HL acting on

ATL are reflection positive if

HL = A + R(A) −
∫

ρ(dα)BαR(Bα), (2.2.41)

where A, Bα ∈ A1 and ρ is a finite measure. We refer to [35] for a proof. Note that each

of the examples in Section 2.2.3 can be written in this form. This is more clear for some

systems than for others. For example for the bilinear-biquadratic exchange Hamiltonian

with J1 = 0 < J2 it is not immediately clear how to write HΛ in this form however it will

be shown in Chapter 5 how this can be achieved.

Two consequences of RP are Gaussian domination, which we will see in sections 5.2, 6.2.6,

6.2.7, 6.2.8, 6.2.9 and 7.3.1 and chessboard estimates, which we will see in Section 7.4. The

reader is encouraged to consult some of the many references on Gaussian domination [13,

35, 41, 42, 43] and chessboard estimates [13, 16, 39, 41, 42, 60]. Chessboard estimates are

used to control the energy of contours in contour expansions, see [20, 29, 30, 64] for work

on contour expansions. As Gaussian domination and its important consequence, infrared

bounds, will be seen in several places in this thesis we leave this property for now and

instead explain chessboard estimates.
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2.2.7 Chessboard estimates

This section will introduce the general setting of chessboard estimates. Let 〈·〉 be a state

satisfying the properties of reflection positivity in definition 2.2.12 on TL = Zd/LZd (the

torus with Ld sites that can be identified with (−L, L]d ∩ Zd) and define

TB = {0, 1, ..., B − 1}d (2.2.42)

for B ∈ Z dividing L. Further denote by TB + Bt the translation of TB by Bt ∈ Zd. We see

TL =
⋃

t∈TL/B

(TB + Bt). (2.2.43)

We know an operator A ∈ ATB can be identified with A⊗1 ∈ ATL . For t ∈ TL/B with |t| = 1

let Rt be the reflection between edges on the side of TB corresponding to t. Define

R̂t(A) = Rt(A). (2.2.44)

For other t’s we define R̂t by a sequence of reflections (this doesn’t depend on the choice

of sequence). Now we state the chessboard estimate, the proof can be found in [16].

Theorem 2.2.13. Suppose 〈·〉 is reflection positive for any reflection between sites. Then if

A1, ..., Am ∈ ATB and t1, ..., tm ∈ TL/B are distinct,

〈 m∏
j=1

R̂t j(A j)
〉
≤

m∏
j=1

〈 ∏
t∈TL/B

R̂t(A j)
〉(B/L)d

. (2.2.45)

The proof involves repeatedly applying (2.2.40) to tile the Ai’s throughout the lattice.

2.2.8 Double commutators of spin operators

In this section we present a result concerning double commutators of symmetric matrices.

Our motivation is the Falk-Bruch inequality which was proposed independently in two pa-

pers [35, 36]. For a system with Hamiltonian H, partition function Zβ, and Gibbs states

〈·〉β,
1
2
〈A∗A + AA∗〉β ≤

1
2

√
(A, A)Duh

√
〈[A∗, [H, A]]〉β +

1
β

(A, A)Duh (2.2.46)

where (·, ·)Duh is the Duhamel inner product

(A, B)Duh =
1
Zβ

∫ β

0
dsTr A∗e−sH Be−(β−s)H . (2.2.47)
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This inequality will be essential in future chapters and has been essential in past major

works. The importance of this inequality means that the double commutator on the right

side is also important for computation. When we use this inequality in the sequel we will

be dealing with symmetric matrices.

Proposition 2.2.14. Suppose A, B are real symmetric n × n matrices, then

[B, A] , 0⇒ [A, [B, A]] , 0. (2.2.48)

Proof. Let { fi}ni=1 be an eigenbasis of B with corresponding eigenvalues {λi}
n
i=1 (B fi = λi fi).

If [B, A] , 0 there is an fm that is not an eigenvector of A, hence there is an fm such that

[B, A] fm = (B − λm)A fm,

[B, A] fm , 0.
(2.2.49)

Indeed if not then [B, A] fi = 0 for any shared eigenvector of A and B and also for other

eigenvectors of B but we know [B, A] , 0. Denote by fk an eigenvector satisfying (2.2.49)

with the least eigenvalue. We thus have (as [B, A] is skew symmetric) for some i , k

0 , f T
i [B, A] fk = f T

i BA fk − f T
i Aλk fk =

∑
j

((
f T
i B f j

) (
f T

j A fk
)
−

(
f T
i A f j

) (
f T

j λk fk
))

=λi f T
i A fk − λk f T

i A fk = (λi − λk)︸    ︷︷    ︸
≥0

f T
i A fk︸ ︷︷ ︸

= f T
k A fi

.

(2.2.50)

Where the inequality λi − λk ≥ 0 follows as [B, A] is skew-symmetric. Now suppose that

[A, [B, A]] = 0, we consider two cases:

Case 1 A[B, A] = 0: Then 0 =
∑

j( f T
k A f j)( f T

j [B, A] fk) =
∑

j(λ j − λk)( f T
k A f j)2 > 0 where

the equality is due to A being symmetric. This is a contradiction.

Case 2 A[B, A] , 0: As A, B are symmetric A[B, A] is skew symmetric, hence f T
j (A[B, A]) f j =

0 ∀ j. We calculate as follows:

0 = f T
k (A[B, A]) fk =

∑
j

( f T
k A f j)( f T

j [B, A] fk) =
∑

j

(λ j − λk)( f T
j A fk)2. (2.2.51)

This means that for every j either f T
j A fk = 0 or λ j = λk. However as (λi − λk) f T

i A fk , 0

and λi − λk ≥ 0 from above we have (λi − λk)( f T
i A fk)2 > 0 and (λ j − λk)( f T

j A fk)2 ≥ 0 ∀ j.

Hence [A, [B, A]] , 0. This completes the proof. �
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Chapter 3

Classical staggered nematic ground
states

Spin models with nearest neighbour ferromagnetic interactions have simple and easily de-

scribed ground states using the symmetries of the Hamiltonian. For antiferromagnetic in-

teractions on bipartite lattices the equivalence with the ferromagnetic interactions provides

an equally simple description of the ground states. On non-bipartite lattices the situation is

quite different, antiferromagnetic models experience frustration and have highly degenerate

ground states. For example the antiferromagnetic Ising model on a triangular lattice is max-

imally frustrated. We consider a model of nematic liquid crystals involving spins placed on

a cubic lattice with nearest neighbour interactions of the form J(σx ·σy)2 with each σ ∈ S2.

For J < 0 the system exhibits a phase transition at low temperatures [3]. The ground states

of this system correspond to all spins being aligned. The case of the lattice-gas with longer

range interactions was also studied in lower dimensions with success [4]. It was also shown

that with the addition of a small ferromagnetic interaction the system has an intermediate

phase with non-zero nematic order parameter but zero magnetisation [22]. For J > 0 the

system behaves very differently, this case will be the focus of the current article. Monte

Carlo studies suggest the occurrence of a phase transition in this model for low tempera-

tures [8, 9, 62]. The ground states for J > 0 are more complicated, they are characterised

by chessboard configurations with the spins on the even (odd) sublattice taking the same

fixed value and spins on the odd (even) sublattice having free choice on a copy of S1 per-

pendicular to spins on the even (odd) sublattice. These ground states are highly degenerate.

Kohring and Shrock [62] noted that these configurations had a nonzero disordering entropy

but believed that the true ground states were more complicated, we prove that this is not the

case.
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3.1 The model and main result

We will work on a finite bipartite lattice, ΛL ⊂ Z
d,

ΛL =

{
−

L
2

+ 1, ...,
L
2

}d
, (3.1.1)

with nearest neighbour edges with periodic boundary conditions, EL. Let ΛA (ΛB) denote

the even (odd) sublattice. At each x ∈ ΛL we assign a classical spin σx ∈ S
2, hence we have

state space ΩΛL =
(
S2

)ΛL . The Hamiltonian of the system is

Hh(σ) = 2
∑
{x,y}∈EL

(σx · σy)2 −
∑
x∈ΛL

hx

(
(σ3

x)2 −
1
3

)
. (3.1.2)

Here σi
x denotes the ith component of the spin at x ∈ ΛL. Notice the model does not see any

difference between σx and −σx. The partition function is

Z(β,ΛL,h) =

∫
ΩΛL

dσe−βHh(σ), (3.1.3)

with inverse temperature β ≥ 0 and dσ the Haar measure on ΩΛL with
∫
ΩΛL

dσ = 1. We will

take h = 0 and write H0(σ) = H(σ) and Z(β,ΛL, 0) = Z(β,ΛL). Expectations are given by

〈·〉β =
1

Z(β,ΛL)

∫
ΩΛL

dσ · e−βH(σ). (3.1.4)

We want to understand the ground states of this system. Intuitively the possible configura-

tions will have nearest neighbours with perpendicular spins. We will call uniform measures

on such configurations ground-states and we will see this is justified. The states adopted by

the system at low temperature are the chessboard states, where spins on one sublattice are

equal (up to sign) and spins of the second sublattice lie on a circle perpendicular to the spins

on the first, see Fig. 3.1. Before we state our main result we must introduce the chessboard

measure, this will be the limiting measure of our system as we shall see.
Definition 3.1.1. We define the chessboard measure, ρ as follows: Let D ⊂ ΩΛL then

ρ(D) =
1
2

( ∫
D

dα
∏
x∈ΛA

(δ(σx−α)+δ(σx+α))
∏
x∈ΛB

dνα(σx)+
∫

D
dα

∏
x∈ΛB

(δ(σx−α)+δ(σx+α))
∏
x∈ΛA

dνα(σx)
)

(3.1.5)

where dα is the Haar measure on S2 with
∫
ΩΛA

dα = 1 and να is the Haar measure on the

set of u ∈ S2 such that u · α = 0, again with total weight 1.
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Figure 3.1: Illustration of a possible chessboard configuration. Here the crosses denote that
spins on one sublattice are pointing into (or out of) the page, the spins on the other sublattice
can take any value on the circle parallel to the plane of the page.

Theorem 3.1.2. For L even and any continuous bounded function f on ΩΛL

lim
β→∞

1
Z(β,ΛL)

∫
ΩΛL

dσ f (σ)e−βH(σ) =

∫
ΩΛL

f (σ)dρ(σ). (3.1.6)

3.2 Proof of theorem 3.1.2

The proof of Theorem 3.1.2 will be split into several parts. First we will prove that our

expectations concentrate onto the ground-states described above. For ε > 0 let

Dε = {σ ∈ ΩΛL : ∃{x, y} ∈ EL s.t. |σx · σy| ≥ ε}, (3.2.1)

Gε = Dc
ε = {σ ∈ ΩΛL : |σx · σy| < ε ∀{x, y} ∈ E}. (3.2.2)

Then Dε consists of those states that are ‘far away’ from ground-states. We first show that

〈·〉β converges to the uniform measure on G = ∩ε>0Gε, denoted by µ.

Lemma 3.2.1. For any ε > 0 we have that 〈1Dε〉β → 0 as β→ ∞.

Proof.

〈1Dε〉β =

∫
Dε

dσe−βH(σ)∫
Dε

dσe−βH(σ) +
∫

Dc
ε

dσe−βH(σ)
≤

∫
Dε

dσe−2βε2∫
Dc
ε

dσe−βH(σ)
≤

e−2βε2∫
Dc
ε

dσe−βH(σ)
. (3.2.3)

To estimate the denominator we let β be large enough that 1/
√
β < ε, then∫

Dc
ε

dσe−βH(σ) ≥

∫
Dc

1/
√
β

dσe−βH(σ) ≥

∫
Dc

1/
√
β

dσe−2d|ΛL | ≥ e−2d|ΛL |Aσ(Dc
1/
√
β

). (3.2.4)
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Where Aσ(Dc
1/
√
β

) is the area of Dc
1/
√
β

under the Haar measure. We have

Aσ
(
Dc

1/
√
β

)
≤ Aσ

({
|σ0 · σe1 | <

1
√
β

})d|ΛL |

= Aσ
({
|σ1

e1
| <

1
β

})d|ΛL |

=

(√
1 −

1
β

)d|ΛL |

.

(3.2.5)

Hence 〈1Dε〉 ≤ e−2βε2
e2d|ΛL |Aσ(Dc

1/
√
β

)−1 → 0 as β→ ∞ for any ε > 0. �

Lemma 3.2.2. We have that 〈·〉β ⇀ µ as β→ ∞.

Proof. We prove the equivalent statement that lim supβ→∞〈1C〉β ≤ µ(C) for any closed

C ⊂ ΩΛL . Firstly if C ⊂ Dε for some ε then by Lemma 3.2.1 lim supβ→∞〈1C〉β = 0 = µ(C).

If Aσ(C) is the area under the Haar measure on ΩΛL of C then if Aσ(C) = 0 we have

lim supβ→∞〈1C〉β = 0 ≤ µ(C). Suppose Aσ(C) , 0 and C ∩Gε , ∅ ∀ε > 0 then

lim sup
β→∞

〈1C〉β = lim sup
β→∞

1
Zβ,ΛL

∫
dσ1C∩Gεe

−βH(σ) ≤ lim sup
β→∞

1
Zβ,ΛL

Aσ(C ∩Gε) ∀ε > 0.

(3.2.6)

Hence we need a lower bound on the partition function, this is easy to obtain,

Z(β,ΛL) ≥
∫

dσ1Gεe
−βH(σ) ≥ Aσ(Gε)e−2βε2d|ΛL | ∀ε > 0. (3.2.7)

If we take ε = 1/β we finally have

lim sup
β→∞

〈1C〉β ≤ lim sup
β→∞

Aσ(C ∩G1/β)
Aσ(G1/β)e−2d|ΛL |/β

= µ(C). (3.2.8)

�

What we want now is that of all possible ground-states we will µ-a.s. be in the set of

chessboard states. Hence the limiting measure will be a uniform measure on chessboard

configurations, i.e. the chessboard measure. This gives us Theorem 3.1.2 for indicator

functions, for general functions we use the standard machinery of measure theory.

Now we must define the set of ‘approximate chessboard states’, Cε,δ. We initially define

C̃ε,δ = {σ ∈ Gε : |σx − σy| ∈ [δ, 2 − δ]c ∀x, y ∈ ΛA or |σw − σz| ∈ [δ, 2 − δ]c ∀w, z ∈ ΛB}.

(3.2.9)

So now we have relaxed the configurations so that spins may occupy small regions around

the spin of the groundstate configuration thatσ ∈ Gε approximates. However we could have

an approximate ground state where spins on the ‘fixed’ (to within distance δ) sublattice are

slowly rotated as we move in some direction across Λ, if Λ is large enough and the rotation
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gradual enough we could end up with a state with a small energy (comparable to a state in

C̃ε,δ) where we could appear to be in different states in C̃ε,δ depending on where we were

looking. To avoid this scenario we could take ε to be small enough but then ε must depend

on ΛL. Instead we make our proper definition as follows

Cε,δ = {σ ∈ Gε : |σx − σy| ∈ [δ, 2 − δ]c ∀ next nearest neighbours x, y ∈ ΛA or

∀ next nearest neighbours x, y ∈ ΛB}.
(3.2.10)

Then

C̃ε,2δ/dL ⊂ Cε,2δ/dL ⊆ C̃ε,δ ⊂ Cε,δ. (3.2.11)

We will see that we require δ < ε. We therefore take δ = ε/2. If we can show that

|Gε \Cε,ε/dL|/|Cε,ε/dL| → 0 as ε→ 0 (3.2.12)

then we will be done. Intuitively approximate chessboard states will be preferred because

they give the most possible choice. |ΛL|/2 of the sites have a choice from an entire strip

around a copy of S1 ⊂ S2 and other states will not have such choice.

Now we can estimate the sizes of Gε and Cε,ε/2. The area of C̃ε,ε/2 gives a lower bound on

the area of Cε,ε/2. Suppose that |σx − σy| ∈ [ε/2, 2 − ε/2]c ∀x, y ∈ ΛA. All spins on sites in

ΛA lie on one of two spherical caps defined by a cone with vertex (0, 0, 0) and circular base

of diameter ε/2 lying on S2. These caps have combined surface area (Haar measure)1 −
√

1 −
ε2

16

 =
ε2

32
+

ε4

128
+ O(ε6). (3.2.13)

Because we also require |σx · σy| < ε ∀{x, y} ∈ E the spins on ΛB must lie on a strip around

S2 consisting of vectors approximately perpendicular to all vectors in the spherical cap.

This explains our requirement that δ < ε as the strip only exists in this case. With a little

thought and a suitably drawn diagram we can see that, for δ = ε/2, this strip is defined by

an arc of a circle with angle

2 cos−1

ε2

4
+

√
ε4

16
−

17ε2

16
+ 1

 ≤ θ ≤ 2 cos−1

ε2

4
−

√
ε4

16
−

17ε2

16
+ 1

 . (3.2.14)

This strip has surface area given by sin(θ) and (recall we have
∫
ΩΛ

dσ = 1) we have

3ε
4

+
3ε2

32
+

63ε5

2048
+ O(ε7) ≤ sin(θ) ≤

5ε
4
−

5ε2

32
−

65ε5

2048
+ O(ε7). (3.2.15)
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Hence, because in an approximate chessboard configuration the sites on one sublattice can

take spins on spherical caps and sites on the other sublattice can take spins on a strip around

S2 we have (noting the symmetry under swapping of the sublattices) the bound

|Cε,ε/dL| ≥ 2
[(
ε2

32
+

ε4

128

)
×

(
3ε
4

+
3ε2

32
+

63ε5

2048

)]|ΛL |/2

+ O(ε13|ΛL |/2)

= 2
(

3
128

)|ΛL |/2

ε3|ΛL |/2 + O(ε2|ΛL |)

(3.2.16)

The following lemma completes the proof of Theorem 3.1.2.

Lemma 3.2.3. For some k ≥ 1

|Gε \Cε,ε/dL| ≤ O(ε3|ΛL |/2+k). (3.2.17)

Proof. For concreteness we will work in d = 2, the proof can easily be generalised to

higher dimensions. Let σ ∈ Gε. Consider a site x = (x1, x2) ∈ ΛL, when looking at the set

of possible spins for site x there are two cases:

1. |σ(x1−1,x2) − σ(x1,x2−1)| ∈

[
ε

2
, 2 −

ε

2

]c
, then σx can lie in a strip of area O(ε).

2. |σ(x1−1,x2) − σ(x1,x2−1)| ∈

[
ε

2
, 2 −

ε

2

]
, then because we need |σ(x1−1,x2) · σx| < ε and

|σ(x1,x2−1) ·σx| < ε, σx must lie in intersection of two strips (defined by σ(x1−1,x2) and

σ(x1,x2−1)) tilted at an angle of φ > 2 arcsin ε
4 to each other. This means the spin lies

in a section of the sphere defined by a rhombus of side ε and hence area O(ε2).

If σ < Cε,ε/dL at least one pair of sites must be in case 2, hence locally approximate chess-

board configurations are preferable. Let B be the set of states in Gε with sites x, y ∈ ΛL

such that there is a region Ux 3 x that has an approximate chessboard configuration and

no neighbourhood of y is compatible with the same approximate chessboard configuration.

Note B = Gε \Cε,ε/dL. Hence there must be a contour γ ⊂ ΛL surrounding the approximate

chessboard state at x. From above we know this contour can only have spins on an area

of order at least ε|γ| higher than an approximate chessboard state would. Let c > 1 be a

constant such that the number of contours of length n on ΛL is bounded by cn then

Aσ(B)
Aσ(Cε,ε/dL)

≤

 |ΛL|

2

∑
γ

ε|γ| ≤

 |ΛL|

2

∑
n≥1

cnεn =

 |ΛL|

2

 cε
1 − cε

→ 0 as ε→ 0.

(3.2.18)

This shows that Aσ(B) ≤ O(ε)Aσ(Gε), completing the proof. �
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Chapter 4

Correlation inequalities for the
quantum XY model

4.1 Introduction & results

In his extension of Griffiths’ inequalities, Ginibre proposed a setting that also applies to

quantum spin systems [48]. The goal of this chapter is to show that the quantum XY model

fits the setting, at least with S = 1
2 and S = 1. It follows that many truncated correlation

functions take a fixed sign.

Let Λ denote the (finite) set of sites that host the spins. The Hilbert space of the model is

HΛ = ⊗x∈ΛC
2S +1 with S ∈ 1

2N. Let S i, i = 1, 2, 3 denote usual spin operators on C2S +1; that

is, they satisfy the commutation relations [S 1, S 2] = iS 3, and other relations obtained by

cyclic permutation of the indices 1, 2, 3. They also satisfy the identity (S 1)2+(S 2)2+(S 3)2 =

S (S + 1). Finally, let S i
x = S i ⊗ 1lΛ\{x} denote the spin operator at site x. We consider the

Hamiltonian

HΛ = −
∑
A⊂Λ

(
J1

A

∏
x∈A

S 1
x + J2

A

∏
x∈A

S 2
x

)
. (4.1.1)

Here, Ji
A is a nonnegative coupling constant for each subset of A ⊂ Λ and each spin direction

i ∈ {1, 2}. The expected value of an observable a (that is, an operator on HΛ) in the Gibbs

state with Hamiltonian HΛ and at inverse temperature β > 0 is

〈a〉 =
1

Z(Λ)
Tr a e−βHΛ , (4.1.2)
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where the normalisation Z(Λ) is the partition function

Z(Λ) = Tr e−βHΛ . (4.1.3)

Traces are taken inHΛ. We also consider Schwinger functions that are defined for s ∈ [0, 1]

by

〈a; b〉s =
1

Z(Λ)
Tr a e−sβHΛ b e−(1−s)βHΛ . (4.1.4)

Our first result holds for S = 1
2 and all temperatures.

Theorem 4.1.1. Assume that Ji
A ≥ 0 for all A ⊂ Λ and all i ∈ {1, 2}. Assume also that

S = 1
2 . Then for all A, B ⊂ Λ, and all s ∈ [0, 1], we have〈∏

x∈A

S 1
x;

∏
x∈B

S 1
x

〉
s
−

〈∏
x∈A

S 1
x

〉 〈∏
x∈B

S 1
x

〉
≥ 0;〈∏

x∈A

S 1
x;

∏
x∈B

S 2
x

〉
s
−

〈∏
x∈A

S 1
x

〉 〈∏
x∈B

S 2
x

〉
≤ 0.

Clearly, other inequalities can be generated using spin symmetries. The corresponding

inequalities for the classical XY model have been proposed in [67].

The proof of Theorem 4.1.1 can be found in Section 4.3. It is based on Ginibre’s structure

[48]. It is simpler than Gallavotti’s, who used an ingenious approach based on the Trotter

product formula, on a careful analysis of transition operators, and on Griffiths’ inequalities

for the classical Ising model [45]. Our proof allows us to go beyond pair interactions.

A consequence of Theorem 4.1.1 is the monotonicity of certain spin correlations with re-

spect to the coupling constants:

Corollary 4.1.2. Under the same assumptions as in the above theorem, we have for all

A, B ⊂ Λ that

∂

∂J1
A

〈∏
x∈B

S 1
x

〉
≥ 0;

∂

∂J1
A

〈∏
x∈B

S 2
x

〉
≤ 0.

The first inequality states that correlations increase when the coupling constants increase

(in the same spin direction). The second inequality is perhaps best understood classically;

if the first component of the spins increases, the other components must decrease because
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the total spin is conserved. Corollary 4.1.2 follows immediately from Theorem 4.1.1 since

1
β

∂

∂Ji
A

〈∏
x∈B

S j
x

〉
=

∫ 1

0

[〈∏
x∈B

S j
x;

∏
x∈A

S i
x

〉
s
−

〈∏
x∈B

S j
x

〉 〈∏
x∈A

S i
x

〉]
ds. (4.1.5)

We use this corollary in Section 4.2 to give a partial construction of infinite-volume Gibbs

states.

The case of higher spins, S > 1
2 , is much more challenging, but we have obtained an

inequality that is valid in the ground state of the S = 1 model. Recall that the states 〈·〉 and

〈·; ·〉s, defined in Eqs (4.1.2) and (4.1.4), depend on the inverse temperature β.

Theorem 4.1.3. Assume that Ji
A ≥ 0 for all A ⊂ Λ and all i ∈ {1, 2}. Assume also that

S = 1. Then for all A, B ⊂ Λ, and all s ∈ [0, 1], we have

lim
β→∞

[〈∏
x∈A

S 1
x;

∏
x∈B

S 1
x

〉
s
−

〈∏
x∈A

S 1
x

〉 〈∏
x∈B

S 1
x

〉]
≥ 0;

lim
β→∞

[〈∏
x∈A

S 1
x;

∏
x∈B

S 2
x

〉
s
−

〈∏
x∈A

S 1
x

〉 〈∏
x∈B

S 2
x

〉]
≤ 0.

The proof of this theorem can be found in Section 4.4. It uses Theorem 4.1.1.

4.2 Infinite volume limit of correlation functions

Infinite volume limits of Gibbs states are notoriously delicate issues; we show in this sec-

tion that Theorem 4.1.1 (and Corollary 4.1.2) give partial but useful information: For Gibbs

states “with + boundary conditions”, the infinite volume limits of many correlation func-

tions exist.

Let us recall the notion of infinite volume limit. Let (tΛ)Λ⊂⊂Zd be a sequence of real or

complex numbers, indexed by finite subsets of Zd. We say that tΛ → t as Λ↗ Zd if

lim
n→∞

tΛn = t (4.2.1)

along every sequence (Λn) of increasing finite subsets that tends to Zd. That is, the sequence

satisfies Λn+1 ⊃ Λn, and, for any finite A ⊂⊂ Zd, there exists nA such that Λn ⊃ A for all

n ≥ nA.

We assume the interaction is finite-range: There exists R such that Ji
A = 0 whenever
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diam A > R. Let ΛR denote the enlarged domain

ΛR = {x ∈ Zd : dist(x,Λ) ≤ R}. (4.2.2)

Let ∂RΛ = ΛR \ Λ be the exterior boundary of Λ. We consider the Hamiltonian Hη
ΛR

with

field on the exterior boundary:

Hη
ΛR

= −
∑

A⊂ΛR

(
J1

A

∏
x∈A

S 1
x + J2

A

∏
x∈A

S 2
x

)
− η

∑
x∈∂RΛ

S 1
x. (4.2.3)

Temperature does not play a rôle in this section so we set β = 1. The relevant (finite volume)

Gibbs state is the linear functional that, to any operator a onHΛ, assigns the value

〈a〉(+)
Λ

= lim
η→∞

Tr a e−Hη
ΛR

Tr e−Hη
ΛR

. (4.2.4)

Traces are taken in HΛR (and a on HΛ is identified with a ⊗ 1l∂RΛ on HΛR). We comment

below on the relevance of this definition for Gibbs states. But first, we observe that the limit

η→ ∞ exists.

Proposition 4.2.1. For all operators a onHΛ, the limit in (4.2.4) exists and is equal to

〈a〉(+)
Λ

=
Tr a e−H(+)

Λ

Tr e−H(+)
Λ

,

where traces are taken inHΛ and

H(+)
Λ

= −
∑
A⊂Λ

(
J1

A

∏
x∈A

S 1
x + J2

A

∏
x∈A

S 2
x

)
−

∑
A⊂ΛR

A∩∂RΛ,∅

2−|A∩∂RΛ|J1
A

∏
x∈A∩Λ

S 1
x.

Proof. We can add a convenient constant to the Hamiltonian without changing the corre-

sponding Gibbs state, so we consider

Tr a exp
{ ∑

A⊂ΛR

(
J1

A

∏
x∈A

S 1
x + J2

A

∏
x∈A

S 2
x

)
+ η

∑
x∈∂RΛ

(S 1
x −

1
2 )

}
. (4.2.5)

We have

lim
η→∞

eη(S 1
x−

1
2 ) = P+

x , (4.2.6)

where P+
x is the projector onto the eigenstates of S 1

x with eigenvalue 1
2 . Writing P+

A =
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∏
x∈A P+

x , we have

P+
∂RΛ

(∏
x∈A

S 1
x

)
P+
∂RΛ = 2−|A∩∂RΛ|

( ∏
x∈A∩Λ

S 1
x

)
P+
∂RΛ,

P+
∂RΛ

(∏
x∈A

S 2
x

)
P+
∂RΛ = 0 if A ∩ ∂RΛ , ∅.

(4.2.7)

Then, since the Trotter expansion converges uniformly in η, we have

lim
η→∞

Tr a exp
{ ∑

A⊂ΛR

(
J1

A

∏
x∈A

S 1
x + J2

A

∏
x∈A

S 2
x

)
+ η

∑
x∈∂RΛ

(S 1
x −

1
2 )

}
= lim

n→∞
lim
η→∞

Tr a
[(

1 + 1
n

∑
A⊂ΛR

(
J1

A

∏
x∈A

S 1
x + J2

A

∏
x∈A

S 2
x

))
e

1
n η

∑
x∈∂RΛ(S 1

x−
1
2 )

]n

= lim
n→∞

Tr a
[
1 − 1

n H(+)
Λ

]n

= Tr a e−H(+)
Λ .

(4.2.8)

�

The challenge is to prove that 〈a〉(+)
Λ

converges as Λ ↗ Zd, for any operator a on HΛ′ with

Λ′ ⊂⊂ Zd (again, a on HΛ′ is identified with a ⊗ 1lΛ\Λ′ on HΛ with Λ ⊃ Λ′). We can use

the correlation inequalities to establish the existence of the infinite volume limit for certain

operators a.

Theorem 4.2.2. For every finite A ⊂⊂ Zd and every i ∈ {1, 2},
〈∏

x∈A S i
x
〉(+)
Λ

converges as

Λ↗ Zd.

Proof. If Λ ⊂ Λ′, let us define the Hamiltonian

Hη
Λ,Λ′R

= −
∑

A⊂Λ′R

(
J1

A

∏
x∈A

S 1
x + J2

A

∏
x∈A

S 2
x

)
− η

∑
x∈Λ′R\Λ

S 1
x. (4.2.9)

Adapting the proof of Proposition 4.2.1, we can check that we have, for all operators on

HΛ,

〈a〉(+)
Λ

= lim
η→∞

Tr a e
−Hη

Λ,Λ′R

Tr e
−Hη

Λ,Λ′R

, (4.2.10)

where traces are taken inHΛ′R
. Corollary 4.1.2 implies that

Tr
(∏

x∈A S 1
x
)

e
−Hη

Λ,Λ′R

Tr e
−Hη

Λ,Λ′R

≥
Tr

(∏
x∈A S 1

x
)

e
−Hη

Λ′R

Tr e
−Hη

Λ′R

; (4.2.11)

the opposite inequality holds when
∏

S 1
x is replaced by

∏
S 2

x. Thus 〈
∏

x∈A S i
x〉

(+)
Λ

is mono-
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tone decreasing for i = 1, and monotone increasing for i = 2. It is also bounded, so it

converges. �

Finally, let us comment on the relevance of this Gibbs state with + boundary conditions.

Consider the case of the isotropic XY model, where J1
A = J2

A for all A ⊂⊂ Zd. At low

temperatures, the infinite volume state 〈·〉(+) = limΛ↗Zd〈·〉
(+)
Λ

is expected to be extremal and

to describe a system with spontaneous magnetisation in the direction 1 of the spins. One

can apply rotations in the 1-2 plane to get all other (translation-invariant) extremal Gibbs

states. Much work remains to be done to make this rigorous, but Theorem 4.2.2 seems to

be a useful step.

4.3 The case S = 1
2

We can define the spin operators as S i = 1
2σ

i, where the σis are the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (4.3.1)

It is convenient to work with the Hamiltonian with interactions in the 1-3 spin directions,

namely

HΛ = −
∑
A⊂Λ

(
J1

A

∏
x∈A

S 1
x + J3

A

∏
x∈A

S 3
x

)
. (4.3.2)

Following Ginibre [48], we introduce the product spaceHΛ ⊗ HΛ. Given an operator a on

HΛ, we consider the operators a+ and a− on the product space, defined by

a± = a ⊗ 1l ± 1l ⊗ a. (4.3.3)

The Gibbs state in the product space is

〈〈·〉〉 =
1

Z(Λ)2 Tr · e−HΛ,+ , (4.3.4)

where HΛ,+ = HΛ ⊗ 1l + 1l⊗HΛ. Without loss of generality, we set β = 1 in this section. We

also need the Schwinger functions in the product space, namely

〈〈·; ·〉〉s =
1

Z(Λ)2 Tr · e−sHΛ,+ · e−(1−s)HΛ,+ . (4.3.5)
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Lemma 4.3.1. For all observables a, b onHΛ, we have

〈ab〉 − 〈a〉〈b〉 = 1
2 〈〈a−b−〉〉,

〈a; b〉s − 〈a〉〈b〉 = 1
2 〈〈a−; b−〉〉s.

Proof. It is enough to prove the second line. The right side is equal to

〈〈a−; b−〉〉s =
1

Z(Λ)2

[
Tr (a ⊗ 1l) e−sHΛ,+ (b ⊗ 1l) e−(1−s)HΛ,+

+ Tr (1l ⊗ a) e−sHΛ,+ (1l ⊗ b) e−(1−s)HΛ,+

− Tr (1l ⊗ a) e−sHΛ,+ (b ⊗ 1l) e−(1−s)HΛ,+

− Tr (a ⊗ 1l) e−sHΛ,+ (1l ⊗ b) e−(1−s)HΛ,+
]
.

(4.3.6)

The first two lines of the right side give 2〈a; b〉s and the last two lines give 2〈a〉〈b〉. �

Next, a simple lemma with a useful formula.

Lemma 4.3.2. For all operators a, b onHΛ, we have

(ab)± = 1
2 a+b± + 1

2 a−b∓.

The proof is straightforward algebra. Notice that both terms of the right side have positive

factors. Now comes the key observation that leads to positive (and negative) correlations.

Lemma 4.3.3. There exists an orthonormal basis on C2 ⊗ C2 such that S 1
+, S

1
−, S

3
+,−S 3

−

have nonnegative matrix elements.

As a consequence, there exists an orthonormal basis ofHΛ ⊗HΛ such that S 1
x,+, S

1
x,−, S

3
x,+,

and −S 3
x,− have nonnegative matrix elements.

Proof of Lemma 4.3.3. For ε1, ε2 = ±, let |ε1, ε2〉 denote the eigenvectors of S 3 ⊗ 1l and

1l ⊗ S 3 with respective eigenvalues 1
2ε1 and 1

2ε2. It is well-known that S 1 ⊗ 1l |ε1, ε2〉 =
1
2 | − ε1, ε2〉 and similarly for 1l ⊗ S 1. The convenient basis in C2 ⊗ C2 consists of the

following four elements:

p+ = 1√
2

(
| + +〉 + | − −〉

)
, q+ = 1√

2

(
| − +〉 + | + −〉

)
,

p− = 1√
2

(
| + +〉 − | − −〉

)
, q− = 1√

2

(
| − +〉 − | + −〉

)
.

(4.3.7)
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Direct calculations show that

(p+, S 1
+q+) = (q+, S 1

+ p+) = 1,

(p−, S 1
−q−) = (q−, S 1

−p−) = 1,

(p+, S 3
+ p−) = (p−, S 3

+ p+) = 1,

(q+, S 3
−q−) = (q−, S 3

−q+) = −1.

(4.3.8)

All other matrix elements are zero. �

Proof of Theorem 4.1.1 for S = 1
2 . We use Lemma 4.3.1 in order to get〈∏

x∈A

S 1
x;

∏
x∈B

S 1
x

〉
s
−

〈∏
x∈A

S 1
x

〉 〈∏
x∈B

S 1
x

〉
= 1

2

〈〈(∏
x∈A

S 1
x

)
−

;
(∏

x∈B

S 1
x

)
−

〉〉
s
. (4.3.9)

In order to make visible the sign of the right side, we expand the exponentials in Taylor

series, so as to get a positive linear combination of terms of the form

TrHΛ⊗HΛ

(∏
x∈A

S 1
x

)
−

(−HΛ,+)k
(∏

x∈B

S 1
x

)
−

(−HΛ,+)` (4.3.10)

with k, ` ∈ N. Expanding (−HΛ,+)k and (−HΛ,+)`, we get a positive linear combination of

TrHΛ⊗HΛ

(∏
x∈A

S 1
x

)
−

k∏
i=1

(∏
x∈Ai

S εi
x

)
+

(∏
x∈B

S 1
x

)
−

∏̀
j=1

(∏
x∈A′j

S
ε′j
x

)
+

(4.3.11)

with εi, ε
′
j ∈ {1, 3}. Further, all products (

∏
S i

x)± can be expanded using Lemma 4.3.2 in

polynomials of S i
x,±, still with positive coefficients. Finally, observe that the total number

of operators S 3
x,−, x ∈ Λ, is always even; then each S 3

x,− can be replaced by −S 3
x,−. We

now have the trace of a polynomial, with positive coefficients, of matrices with nonnegative

elements (by Lemma 4.3.3). This is positive.

The second inequality (with S 3 instead of S 2) is similar. The only difference is that (
∏

S 3
x)−

gives a polynomial where the number of S 3
x,− is odd. Hence the negative sign. �

4.4 The case S = 1

This section is much more involved, and our result is sadly restricted to the ground state.

Our strategy is inspired by the work of Nachtergaele on graphical representations of the

Heisenberg model with large spins [81]. We consider a system where each site hosts a
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pair of spin 1
2 particles. The inequalities of Theorem 4.1.1 apply. By projecting onto the

triplet subspaces, one gets a correspondence with the original spin 1 system. We prove

that all ground states of the new model lie in the triplet subspace, so the inequality can be

transferred. These steps are detailed in the rest of the section.

It is perhaps worth noticing that the tensor products in this section play a different rôle than

those in Section 4.3.

4.4.1 The new model

We introduce the new lattice Λ̃ = Λ × {1, 2}. The new Hilbert space is

H̃Λ = ⊗x∈Λ(C2 ⊗ C2) ' ⊗x∈Λ̃C
2. (4.4.1)

Let Ri be the following operator on C2 ⊗ C2:

Ri = 1
2 (σi ⊗ 1 + 1 ⊗ σi). (4.4.2)

Here, σi are the Pauli matrices inC2 as before. We denote Ri
x = Ri⊗1lΛ\{x} the corresponding

operator at site x ∈ Λ. As before, we choose the interactions to be in the 1-3 spin directions;

the Hamiltonian on H̃Λ is

H̃Λ = −
∑
A⊂Λ

(
J1

A

∏
x∈A

R1
x + J3

A

∏
x∈A

R3
x

)
. (4.4.3)

The coupling constants Ji
A are the same as those of the original model onHΛ. The expected

value of an observable a in the Gibbs state with Hamiltonian H̃Λ is

〈a〉∼ =
1

Z̃(Λ)
Tr a e−βH̃Λ , (4.4.4)

where the normalisation Z̃(Λ) is the partition function

Z̃(Λ) = Tr e−βH̃Λ . (4.4.5)

We similarly define Schwinger functions 〈·; ·〉∼s for s ∈ [0, 1].

It is useful to rewrite H̃Λ as the Hamiltonian of spin 1
2 particles on the extended lattice Λ̃.

Given a subset X ⊂ Λ̃, we denote suppX its natural projection onto Λ, i.e.

suppX =
{
x ∈ Λ : (x, 1) ∈ X or (x, 2) ∈ X

}
. (4.4.6)
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We also denote D(Λ̃) the family of subsets of Λ̃ where each site of Λ appears at most once.

Notice that |D(Λ̃)| = 3|Λ|. Finally, let us introduce the coupling constants

J̃i
X =

2−|X| Ji
suppX if X ∈ D(Λ̃),

0 otherwise.
(4.4.7)

From these definitions, we can write H̃Λ using Pauli operators as

H̃Λ = −
∑
X⊂Λ̃

(
J̃1

X

∏
x∈X

σ1
x + J̃3

X

∏
x∈X

σ3
x

)
. (4.4.8)

4.4.2 Correspondence with the spin 1 model

The Hilbert space at a given site, C2 ⊗ C2, is the orthogonal sum of the triplet subspace

(that is, the symmetric subspace, which is of dimension 3) and of the singlet subspace (of

dimension 1). Let Ptriplet denote the projector onto the triplet subspace, and let Ptriplet
Λ

=

⊗x∈ΛPtriplet. We define a new Gibbs state, namely

〈a〉′ =
1

Z′(Λ)
Tr aPtriplet

Λ
e−βH̃Λ , (4.4.9)

with partition function Z′(Λ) = Tr Ptriplet
Λ

e−βH̃Λ . In order to state the correspondence be-

tween the models with different spins, let V : C3 → C2 ⊗ C2 denote an isometry such

that

V∗V = 1lC3 ,

VV∗ = Ptriplet,
(4.4.10)

One can check that S i = V∗RiV , i = 1, 2, 3, give spin operators in C3. Let VΛ = ⊗x∈ΛV . For

all observables on a ∈ HΛ, we have the identity

〈a〉 = 〈VΛaV∗Λ〉
′. (4.4.11)

4.4.3 All ground states lie in the triplet subspace

Let QΛ,A be the projector onto triplets on A, and singlet on Λ \ A:

QΛ,A =
(
⊗x∈APtriplet

)
⊗

(
⊗x∈Λ\A(1 − Ptriplet)

)
. (4.4.12)
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One can check that [Ri
x,QΛ,A] = 0 for all i = 1, 2, 3, all x ∈ Λ, and all A ⊂ Λ. Further, since

the operators Ri give zero when applied on singlets, we have

QΛ,A H̃Λ = −QΛ,A

∑
B⊂A

(
J1

B

∏
x∈B

R1
x + J3

B

∏
x∈B

R3
x

)
. (4.4.13)

Lemma 4.4.1. The ground state energy of H̃Λ is a strictly decreasing function of Ji
A, for all

i = 1, 3 and all A ⊂ Λ.

It follows from this lemma and Eq. (4.4.13) that all ground states lie in the subspace of

QΛ,Λ = Ptriplet
Λ

. To see this, note that QΛ,A has the effect of setting J1
B = 0 for B * A. Then

if A′ ⊃ A, QΛ,A′ H̃Λ has larger coupling constants for those B such that B * A but B ⊂ A′

(other coupling constants are unaffected). Hence having more sites in the triplet subspace

leads to strictly lower energy.

Proof of Lemma 4.4.1. We actually prove the result for the hamiltonian (4.4.8) and the cou-

plings J̃i
X , which implies the lemma. With E0(a) denoting the ground state energy of the

operator a, we show that

E0
(
H̃Λ − ε

∏
x∈Y

σ1
x

)
< E0(H̃Λ), (4.4.14)

for any ε > 0, and any Y ⊂ Λ̃. Let ψ0 denote the ground state of H̃Λ. It is also eigenstate of

e−H̃Λ with the largest eigenvalue. Using the Trotter product formula, we have

e−H̃Λ = lim
n→∞

[(
1 +

1
n

∑
X⊂Λ

J̃1
X

∏
x∈X

σ1
x

)
e

1
n
∑

X⊂Λ J̃3
X
∏

x∈X σ
3
x

]n
, (4.4.15)

which, in the basis where the Pauli matrices are given by (4.3.1), is a product of matrices

with nonnegative elements. By a Perron-Frobenius argument, ψ0 can be chosen as a linear

combination of the basis vectors with nonnegative coefficients. Then

E0
(
H̃Λ − ε

∏
x∈Y

σ1
x

)
≤

(
ψ0,

(
H̃Λ − ε

∏
x∈Y

σ1
x

)
ψ0

)
= E0(H̃Λ) − ε

(
ψ0,

(∏
x∈Y

σ1
x

)
ψ0

)
. (4.4.16)

If (ψ0, (
∏

x∈Y σ
1
x)ψ0) , 0, then it is positive and the conclusion follows. Otherwise, let ĤΛ =

H̃Λ−c1l with c large enough so that all eigenvalues of ĤΛ are negative. If (ψ0, (
∏

x∈Y σ
1
x)ψ0) =

0, using
(∏

x∈Y σ
1
x
)2

= 4−|Y |1l, we have(
ψ0,

(
ĤΛ − ε

∏
x∈Y

σ1
x

)2
ψ0

)
= E0(ĤΛ)2 + (4−|Y |ε)2. (4.4.17)

This implies that E0(ĤΛ − ε
∏
σ1

x) < E0(ĤΛ), hence the strict inequality (4.4.14).

45



One can replace σ1
x with σ3

x and prove Inequality (4.4.14) in the same fashion; indeed, one

can choose a basis where σ3 is like σ1 in (4.3.1), and σ1 is like −σ3. �

4.4.4 Proof of Theorem 4.1.3

We can assume that for any x ∈ Λ, there exist i ∈ {1, 3} and A 3 x such that Ji
A > 0 —

the extension to the general case is straightforward. Since all ground states lie in the triplet

subspace, we have for all subsets A, B ⊂ Λ and for all s ∈ [0, 1],

lim
β→∞

〈∏
x∈A

S 1
x;

∏
x∈B

S 1
x

〉
s

= 2−|A|−|B|
∑

X∈D(Λ̃)
suppX=A

∑
Y∈D(Λ̃)
suppY=B

lim
β→∞

〈∏
x∈X

σ1
x;

∏
x∈Y

σ1
x

〉∼
s

≥ 2−|A|−|B|
∑

X∈D(Λ̃)
suppX=A

∑
Y∈D(Λ̃)
suppY=B

lim
β→∞

〈∏
x∈X

σ1
x

〉∼ 〈∏
x∈Y

σ1
x

〉∼
= lim

β→∞

〈∏
x∈A

S 1
x

〉 〈∏
x∈B

S 1
x

〉
.

(4.4.18)

We used Theorem 4.1.1. We have obtained the first inequality of Theorem 4.1.3. The

second inequality follows in the same way.
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Chapter 5

Long-range order for the spin-1
Heisenberg model with a small
antiferromagnetic interaction

This chapter is based on the paper [69]. We look at the general SU(2) invariant spin-1

Heisenberg model and prove nematic order occurs for some values of the model parame-

ters. As we have seen, this family includes the well known Heisenberg ferromagnet and

antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious

staggered-nematic interaction. We use of a type of matrix representation of the interaction

making clear several identities that would not otherwise be noticed. This representation can

be seen as an adaptation of (2.1.14) to the quantum case. Inspiration is taken from the proof

for the classical case [3]. We use the method of reflection positivity in order to obtain an

infrared bound, that is, a bound on the Fourier transform of the correlation in question. One

can then easily show that the correlation function does not decay if the infrared bound is

sufficiently strong. The infrared bound proven in [35] allows to show a phase transition for

the antiferromagnet. It is straightforward to extend this result to a model with an antiferro-

magnetic interaction accompanied by a small nematic (biquadratic) interaction. However

when the nematic interaction is too large the result will no longer apply. This chapter fol-

lows the approach of [35], starting with the nematic model, obtaining a lower bound that

involves some other correlation functions. This bound can be shown to be positive for

low temperatures by relating these correlations to probabilities in the random loop model

introduced in [2] and presented in Chapter 6. It is then easy to show (due to reflection posi-

tivity of the antiferromagnetic interaction) that adding an antiferromagnetic interaction will

maintain the positivity of the lower bound, providing the interaction is small enough.
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5.1 The spin-1 SU(2)-invariant model

Denote by S 1, S 2 and S 3 the spin-1 matrices. Denote S = (S 1, S 2, S 3). Consider a pair

(ΛL,E) of a lattice ΛL ⊂ Z
d and a set of edges E between points in ΛL. Here we will take

ΛL =

{
−

L
2

+ 1, ...,
L
2

}d
, (5.1.1)

for integer L. For the set of edges E we take nearest-neighbour with periodic boundary

conditions. Recall the operators S i
x for i = 1, 2, 3 with S i

x ⊗ IdΛL\{x}. The Hamiltonian of

interest is the general Spin-1 SU(2)-invariant Hamiltonian with a two-body interaction, it is

known that this can be written as

HJ1,J2
ΛL

= −2
∑
{x,y}∈E

(
J1

(
Sx · Sy

)
+ J2

(
Sx · Sy

)2
)
. (5.1.2)

The phase diagram for this model is only partially understood. If J2 = 0 and J1 < 0 we

have the Heisenberg antiferromagnet that is known to undergo a phase transition at low

temperatures [35]. As the interaction when J2 > 0 is reflection positive it is also possible

to extend this result to J2 > 0 when the ratio J1/J2 is sufficiently small. The line J1 = 0

has been shown to exhibit Néel order for low temperatures when J2 > 0 [111], for J2 < 0

there are few rigorous results, it would be a challenging task to obtain results. The line

J2 = J1/3 < 0 is the AKLT model [1].

The main result of this chapter is to show that there is a phase transition in this model for

J2 > 0 and J1 < 0 with |J1| sufficiently small compared to |J2|, the statement will be made

precise below.

First we define the partition function and Gibbs states of our model as

ZJ1,J2
β,ΛL

=Tr e−βHJ1 ,J2
ΛL , (5.1.3)

〈·〉
J1,J2
β,ΛL

=
1

ZJ1,J2
β,ΛL

Tr · e−βHJ1 ,J2
ΛL , (5.1.4)

where β > 0 is the inverse temperature. The quantity of interest is then the correlation

ρ(x) =

〈(
(S 3

0)2 −
2
3

) (
(S 3

x)2 −
2
3

)〉J1,J2

β,ΛL

. (5.1.5)

This correlation is specifically of interest for spin-1, in general spin-S 2
3 will be replaced

with 1
3 S (S + 1). The result is then given by the following theorem.
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Figure 5.1: The phase diagram for the general SU(2) invariant spin-1 model. Some regions have rigorous
proofs that the expected order is indeed correct. The line J1 < 0, J2 = 0 is the Heisenberg antiferromagnet
where antiferromagnetic order has been proven [35], this region extends slightly into the dark yellow region.
Increasing the size of this dark yellow region will be the focus of Section 6.2.6 The dark green region has
nematic order at low temperatures [111], with Néel order on the line J2 > 0, J1 = 0, the adjacent dark yellow
region also has long range order, however only the nematic correlation function has been shown not to decay,
antiferromagnetic order is expected here but is not yet proved.

Theorem 5.1.1. Let S = 1, J2 > 0, L be even and d ≥ 5. Then there exists J0
1 < 0, β0 and

C = C(β, J1) > 0 such that if J0
1 < J1 ≤ 0 and β > β0 then

1
|ΛL|

∑
x∈ΛL

ρ(x) ≥ C.

for all L large enough.

The proof of the result will be in two steps, first the result will be proved for J1 = 0, this

will be the content of the next section. Second it will be shown how the result for J1 = 0

extends to sufficiently small J1 < 0, this should come as no surprise as the interaction is

reflection positive for J1 < 0 hence adding a small interaction in this direction should not

alter the result too much.
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5.2 The model J2 > 0, J1 = 0

We will now consider the so-called quantum nematic model J2 > 0, J1 = 0, the aim is to

prove long-range order for this model using a similar approach to the proofs in [35, 41, 42,

43]. To do this we will use a representation that is an analogue of the matrix representation

used in [3]. Care must be taken as now we are working with matrices rather than vectors and

so commutativity becomes an issue. We introduce an external field, h, to the Hamiltonian

H0,1
ΛL,h = −2

∑
{x,y}∈E

(Sx · Sy)2 −
∑
x∈ΛL

hx

(
(S 3

x)2 −
1
3

S (S + 1)1
)
. (5.2.1)

Here 1 is the identity matrix. Equilibrium states are given by

〈A〉0,1
β,ΛL,h =

1

Z0,1
β,ΛL,h

Tr Ae−βH0,1
ΛL ,h . (5.2.2)

Note that the J2 has been absorbed into the parameter β. Using the direct analogue of [3]

will not work here, the reason is that reflection positivity will fail as S 2 = −S 2. We will

instead use a matrix representation of a Hamiltonian that is unitarily equivalent to (5.2.1).

From now on we will work with the following Hamiltonian

HU
ΛL,h = −2

∑
{x,y}∈E

(S 1
xS 1

y − S 2
xS 2

y + S 3
xS 3

y)2 −
∑
x∈ΛL

hx

(
(S 3

x)2 −
1
3

S (S + 1)1
)
, (5.2.3)

and partition function

ZU
ΛL,β,h = Tr e−βHU

ΛL ,h . (5.2.4)

Similarly to before, equilibrium states are given by

〈A〉UΛL,β,h =
1

ZU
ΛL,β,h

Tr Ae−βHU
ΛL ,h . (5.2.5)

As ΛL has a bipartite structure, ΛL = Λe∪Λo where Λe,Λo are the even and odd sublattices,

respectively. We define U =
∏

x∈Λe eiπS 2
x we have

U−1HU
ΛL,hU = H0,1

ΛL,h. (5.2.6)
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Note that this leaves ρ(x) unchanged. Before the theorem we introduce integrals,

Id =
1

(2π)d

∫
[−π,π]d

√
ε(k + π)
ε(k)

1
d

d∑
i=1

cos ki


+

dk, (5.2.7)

Jd =
1

(2π)d

∫
[−π,π]d

1
ε(k)

dk (5.2.8)

where

ε(k) = 2
d∑

i=1

(1 − cos ki) . (5.2.9)

We have Id < ∞ for d ≥ 3 and it can be shown that Id → 0 as d → ∞ [58]. We have the

following result:

Theorem 5.2.1. Let S = 1. Assume h = 0 and L is even with d ≥ 3. Then we have the

bound

lim inf
L→∞

1
|ΛL|

∑
x∈ΛL

ρ(x) ≥ lim inf
L→∞

ρ(e1) − Id

√〈
S 1

0S 3
0S 1

e1S 3
e1

〉U

ΛL,β,0
−

1
2β

Jd

 . (5.2.10)

If this lower bound is strictly positive it implies a phase transition, note that the lower bound

is valid in any dimension d ≥ 3, in d ≤ 2 Jd is not finite, hence no phase transition. This

is consistent with the well known Mermin-Wagner theorem [78]. Using the loop model

introduced in [2] and extended in [111] we can relate the expectations in the lower bound

to the probability of the event E0,e1 , that two nearest neighbours are in the same loop as

ρ(e1) =
2
9
P
[
E0,e1

]
,

〈
S 1

0S 3
0S 1

e1
S 3

e1

〉U

ΛL,β,h
=

1
3
P
[
E0,e1

]
. (5.2.11)

So we can write the lower bound as
√
P
[
E0,e1

] (
2
9

√
P
[
E0,e1

]
−

Id√
3

)
− 1

2β Jd. This means a

sufficiently large lower bound on P
[
E0,e1

]
will allow to show the lower bound is positive in

high enough dimension for β large. Note that the dependence on β is hidden in P, we shall

see the dependence in Chapter 6.

Proposition 5.2.2. For d ≥ 1, S = 1 and L even. In the limit β → ∞ we have the lower

bound

P
[
E0,e1

]
≥

2
5
. (5.2.12)

Putting this bound into the theorem and computing Id for various d shows that there is a

positive lower bound (and hence phase transition) for d ≥ 5 if β is large enough ((5.2.12)

will be weaker for β < ∞ but we will have a lower bound 2
5 − o(β)).
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Proof. For any state ψ ∈ ⊗x∈ΛLC
3 we have that in the ground state

lim
β→∞
〈H0,1

ΛL
〉
0,1
ΛL,β
≤ 〈ψ,H0,1

ΛL,0
ψ〉. (5.2.13)

We pick the Néel state, ψNéel, as a trial state

ψNéel = ⊗x∈ΛL |(−1)x〉. (5.2.14)

We have used Dirac notation here where S 3|a〉 = a|a〉. For the left of (5.2.13) we recall

that for x and y nearest neighbours (Sx · Sy)2 has three terms of the form (S i
x)2(S i

y)2, hav-

ing expectation 2
9P

[
E0,e1

]
+ 4

9 independent of i, three terms of the form S i
xS j

xS i
yS j

y having

expectation 1
3P

[
E0,e1

]
independent of i and j (this is due to the equivalent roles of i and j

coupled with (S i
xS j

x)T = ±S j
xS i

x where the sign depends on the value of i or j) and finally

three terms of the form S i
xS j

xS j
yS i

y having zero expectation. This gives

lim
β→∞
〈H0,1

ΛL
〉
0,1
ΛL,β

= −2
∑
{x,y}∈ΛL

[
2
3
P
[
E0,e1

]
+

4
3

+ P
[
E0,e1

]]
= −2d|ΛL|

5P
[
E0,e1

]
+ 4

3
. (5.2.15)

For the right side of (5.2.13) it can be checked that, for S = 1, (Sx · Sy)2 = Pxy + 1 where
1
3 Pxy is the projector onto the spin singlet. Hence

〈1,−1|(Sx · Sy)2|1,−1〉 = 〈1,−1|Px,y + 1|1,−1〉 = 2, (5.2.16)

from this we see that the right side of (5.2.13) is −4d|ΛL|. Inserting each of these values

into (5.2.13) and rearranging gives the claim of the proposition. �

Note that if one could find a state with lower energy than the Néel state this lower bound

could be improved and hence potentially the theorem strengthened to show phase transitions

in lower dimensions. However the problem of finding lower energy states does not appear

an easy one.

The rest of the section will be dedicated to the proof of Theorem 5.2.1. We will proceed

with calculations for general spin until it becomes necessary to restrict to the case S = 1.

Fortunately for this Hamiltonian we can find a matrix representation. Define Qx as

Qx =


(S 1

x)2 − 1
3 S (S + 1) S 1

xiS 2
x S 1

xS 3
x

S 1
xiS 2

x (S 2
x)2 − 1

3 S (S + 1) iS 2
xS 3

x

S 1
xS 3

x iS 2
xS 3

x (S 3
x)2 − 1

3 S (S + 1)

 . (5.2.17)

We introduce the operation TR, which is the sum of diagonal entries of matrices of the
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form of Qx, however this ‘trace’ will return an operator, not a number, so we distinguish it

from the normal trace. As an example we see that TR(Qx) = 0, the zero matrix. We have

the relation (note that below we do not mean ‘normal’ matrix multiplication, we only write

QxQy for convenience as explained in the remark).

TR(QxQy) = (S 1
xS 1

y − S 2
xS 2

y + S 3
xS 3

y)2 −
1
3

S 2(S + 1)2
1. (5.2.18)

Remark 5.2.3. We must be careful here, as we are working with a matrix of matrices, as

to what we mean by multiplication. The representation (5.2.17) is not at all essential to the

proof, the advantage of using it is that once (5.2.18) has been verified other relations can

be stated much more concisely and clearly and easily checked, these relations are not at all

obvious or easy to come up with without using (5.2.18).

By the product QxQy we follow the ‘normal’ matrix multiplication with the added stipula-

tion that for the ith diagonal entry of QxQy the operator S i will appear first. For example in

entry {1, 1} of QxQy there is the term S 1
xiS 2

xS 1
y iS 2

y , in the entry {2, 2} this term will become

iS 2
xS 1

xiS 2
yS 1

y , this ensures that we have each of the cross terms in the right-hand side of

(5.2.18). For off-diagonal entries we are not concerned as we are always taking a ‘trace’.

In the case x , y less care is needed as components of Sx and Sy commute (in fact

TRQxQy = TRQyQx, hence we must only take care that the product order of components

of spin at the same site is maintained).

We also have that TRQ2
x = CS

x −
1
3 S 2(S + 1)2 acting onHx. In S = 1

C1
x =


2 0 2

0 0 0

2 0 2


x

. (5.2.19)

Using this we can represent our interaction as

(S 1
xS 1

y − S 2
xS 2

y + S 3
xS 3

y)2 =
1
2

(
CS

x + CS
y − TR

[
(Qx − Qy)2

])
. (5.2.20)

We introduce the field v on ΛL with value vx ∈ R at the site x ∈ ΛL. We denote by v the

field of 3× 3 matrices on ΛL such that each vx has one non-zero entry, the entry {3, 3} being

vx ∈ R. We define

H(v) =
∑
{x,y}∈E

(
TR

[
(Qx − Qy)2

]
−CS

x −CS
y

)
−

∑
x∈ΛL

(∆v)x

(
(S 3

x)2 −
1
3

S (S + 1)
)
, (5.2.21)

Z(v) = Tr e−βH(v). (5.2.22)
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Note that from (5.2.20) H(v) = HU
ΛL,∆v. Here we have used the lattice Laplacian and below

we use the inner product ( f , g) =
∑

x∈ΛL fxgx with the identity ( f ,−∆g) =
∑
{x,y}∈E( fx −

fy)(gx − gy). Then we can calculate as follows:

H(v) =
∑
{x,y}∈E

{
TR

[
(Qx +

vx

2
− Qy −

vy

2
)2
]
− TR

[
(Qx − Qy)(vx − vy)

]
−CS

x −CS
y + (vx − vy)

(
(S 3

x)2 − (S 3
y)2

)
−

1
4

(vx − vy)2
}

=
∑
{x,y}∈E

{
TR

[
(Qx +

vx

2
− Qy −

vy

2
)2
]
−CS

x −CS
y

}
−

1
4

(v,−∆v).

(5.2.23)

We must check carefully when dealing with the cross terms (Qx − Qy)(vx − vy) and (vx −

vy)(Qx − Qy), they are not equal but TR(Qx − Qy)(vx − vy) = TR(vx − vy)(Qx − Qy), so

the calculation is correct. From this it makes sense to define the following Hamiltonian and

partition function:

H′(v) = H(v) +
1
4

(v,−∆v), (5.2.24)

Z′(v) = Tr e−βH′(v). (5.2.25)

Now the property of Guassian Domination is

Z(v) ≤ Z(0)e
β
4 (v,−∆v) ⇐⇒ Z′(v) ≤ Z′(0), (5.2.26)

as in the classical case it follows from reflection positivity. The proof of the following re-

flection positivity lemma follows from Trotter’s formula. As in the classical case, reflection

positivity is a very powerful tool, for more information see [13, 14, 16, 35, 39, 41, 42, 43,

109, 111, 112].

Lemma 5.2.4. Let H = h ⊗ h, dim h < ∞, fix a basis. Let A, B,Ci,Di for i = 1, ..., k be

matrices in h, then∣∣∣∣∣∣TrH exp
{
A ⊗ 1+1 ⊗ B −

k∑
i=1

(Ci ⊗ 1 − 1 ⊗ Di)2
}∣∣∣∣∣∣2

≤ TrH exp
{

A ⊗ 1 + 1 ⊗ Ā −
k∑

i=1

(Ci ⊗ 1 − 1 ⊗ C̄i)2
}

×TrH exp
{

B̄ ⊗ 1 + 1 ⊗ B −
k∑

i=1

(D̄i ⊗ 1 − 1 ⊗ Di)2
}

(5.2.27)

where Ā is the complex conjugate of A.
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Before we prove reflection positivity for our partition function we should calculate the trace

in Z′(v), recall how we have defined our multiplication.

TR

[
(Qx +

vx

2
− Qy −

vy

2
)2
]

=
(
(S 1

x)2 − (S 1
y)2

)2
+

(
(S 2

x)2 − (S 2
y)2

)2

+

(
(S 3

x)2 +
vx

2
− (S 3

y)2 −
vy

2

)2
+

(
S 1

xiS 2
x − S 1

y iS 2
y

)2

+
(
S 1

xS 3
x − S 1

yS 3
y

)2
+

(
iS 2

xS 3
x − iS 2

yS 3
y

)2

+
(
iS 2

xS 1
x − iS 2

yS 1
y

)2
+

(
S 3

xS 1
x − S 3

yS 1
y

)2
+

(
S 3

xiS 2
x − S 3

y iS 2
y

)2
.

(5.2.28)

Now we have enough information to use the Lemma, let R : ΛL → ΛL be a reflection that

swaps Λ1 and Λ2 where Λ = Λ1 ∪ Λ2, each such reflection defines two sub-lattices of ΛL

in this way, we split the field v = (v1, v2) on the sub-lattices Λ1 and Λ2.

Lemma 5.2.5. For S ∈ 1
2N and any reflection, R, across edges and v = (v1, v2)

Z((v1, v2))2 ≤ Z((v1,Rv1))Z((Rv2, v2)).

Proof. We cast Z′(v) in RP form. Let

A = − β
∑
{x,y}∈E1

TR

[
(Qx +

vx

2
− Qy −

vy

2
)2
]
− βd

∑
x∈Λ1

CS
x ,

B =same in Λ2,

(5.2.29)

where E1 is the set of edges in Λ1 and we note that the term CS
x occurs d times in the sum

over E for each x ∈ ΛL. Further define

C1
i =
√
β (S 1

xi
)2, D1

i =
√
β (S 1

yi
)2.

C2
i =
√
β (S 2

xi
)2, D2

i =
√
β (S 2

yi
)2.

C3
i =
√
β ((S 3

xi
)2 +

vxi
2 ), D3

i =
√
β ((S 3

yi
)2 +

vyi
2 ).

C4
i =
√
β S 1

xi
iS 2

xi
, D4

i =
√
β S 1

yi
iS 2

yi
.

C5
i =
√
β S 1

xi
S 3

xi
, D5

i =
√
β S 1

yi
S 3

yi
.

C6
i =
√
β iS 2

xi
S 3

xi
, D6

i =
√
β iS 2

yi
S 3

yi
.

C7
i =
√
β iS 2

xi
S 1

xi
, D7

i =
√
β iS 2

yi
S 1

yi
.

C8
i =
√
β S 3

xi
S 1

xi
, D8

i =
√
β S 3

yi
S 1

yi
.

C9
i =
√
β S 3

xi
iS 2

xi
, D9

i =
√
β S 3

yi
iS 2

yi
.

(5.2.30)

Here {xi, yi} are edges crossing the reflection plane with xi ∈ Λ1 and yi ∈ Λ2. Because

S 1
x = S 1

x, S 3
x = S 3

x, iS 2
x = iS 2

x we see from the previous lemma that Z′((v1, v2))2 ≤

Z′((v1,Rv1))Z′((Rv2, v2)), from which the result follows. �
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The Gaussian domination inequality (5.2.26) follows from this just as in the classical case,

a proof can be found in [35]. The next step in the classical case was to obtain an infrared

bound for the correlation function ρ(x), we cannot do this directly but we can obtain an

infrared bound for the Duhamel correlation function.

Definition 5.2.6. For matrices A, B we define the Duhamel correlation function (A, B)Duh

as

(A, B)Duh =
1

Z(0)
1
β

∫ β

0
dsTr A∗e−sH(0)Be−(β−s)H(0).

Note that this is an inner product.

Now to use this correlation function we must first fix our definition of the Fourier transform

F ( f )(k) = f̂ (k) =
∑
x∈ΛL

e−ikx f (x) k ∈ Λ∗L,

f (x) =
1
|Λ|

∑
k∈Λ∗L

eikx f̂ (k) x ∈ ΛL.
(5.2.31)

where

Λ∗L =
2π
L

{
−

L
2

+ 1, ...,
L
2

}d
, (5.2.32)

Lemma 5.2.7. For S ∈ 1
2N and L even we have the following infrared bound

F

(
(S 3

0)2 −
1
3

S (S + 1), (S 3
x)2 −

1
3

S (S + 1)
)

Duh
(k) ≤

1
2βε(k)

. (5.2.33)

Proof. We begin as usual by choosing vx = η cos(kx) for k ∈ Λ∗L, then from Taylor’s

theorem and using h = ∆v = −ε(k)v we see

Z(v) = Z(0) +
1
2

(
h,
∂2Z(v)
∂hx∂hy

∣∣∣∣∣∣
h=0

h
)

+ O(η4). (5.2.34)

Using the Duhamel formula

eβ(A+B) = eβA +

∫ β

0
dsesABe(β−s)(A+B) (5.2.35)

with A = H(0) and B = −
∑

x∈ΛL(∆v)x
(
(S 3

x)2 − 1
3 S (S + 1)

)
gives

1
Z(0)

∂2Z(v)
∂hx∂hy

∣∣∣∣∣∣ = β2
(
(S 3

x)2 −
1
3

S (S + 1), (S 3
y)2 −

1
3

S (S + 1)
)

Duh
. (5.2.36)
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Putting this together we have

Z(v) − O(η4) =

Z(0) +
1
2

Z(0)(ηε(k)β)2
∑

x,y∈ΛL

cos(kx) cos(ky)
(
(S 3

x)2 −
1
3

S (S + 1), (S 3
y)2 −

1
3

S (S + 1)
)

Duh

=Z(0) +
1
2

Z(0)β2η2ε(k)2F

(
(S 3

0)2 −
1
3

S (S + 1), (S 3
y)2 −

1
3

S (S + 1)
)

Duh

∑
x∈ΛL

cos2(kx).

(5.2.37)

Also

e−
1
4β(v,∆v) = e

1
4βε(k)η2 ∑

cos2(kx), (5.2.38)

comparing the order η2 terms gives the result. �

To transfer the infrared bound to the normal correlation function we would like to use the

Falk-Bruch inequality [36]:

1
2
〈A∗A + AA∗〉 ≤ (A, A)Duh +

1
2

√
(A, A)Duh〈[A∗, [HU

ΛL,h, A]]〉 . (5.2.39)

If we attempt to use this inequality with A = F
(
(S 3

x)2 − 1
3 S (S + 1)

)
(k) and H = βHU

ΛL,0
,

we must calculate the double commutator to find 〈[A∗, [HU
ΛL,h, A]]〉. In general spins this is

a huge calculation, instead we specialise to the case S = 1. In this case we can calculate

as below, it uses several special properties of the Spin-1 matrices. To make use of this

inequality we note that

F

〈(
(S 3

0)2 −
1
3

S (S + 1)
) (

(S 3
x)2 −

1
3

S (S + 1)
) 〉U

ΛL,0
(k)

=
∑
x∈ΛL

e−ikx
〈(

(S 3
0)2 −

1
3

S (S + 1)
) (

(S 3
x)2 −

1
3

S (S + 1)
)〉U

ΛL,0

=
1
|ΛL|

∑
x,y∈Λ

e−ik(x−y)
〈(

(S 3
x)2 −

1
3

S (S + 1)
) (

(S 3
y)2 −

1
3

S (S + 1)
)〉U

ΛL,0

=
1
|ΛL|

〈
F

(
(S 3

x)2 −
1
3

S (S + 1)
)

(−k)F
(
(S 3

y)2 −
1
3

S (S + 1)
)

(k)
〉U

ΛL,0
.

(5.2.40)

This relation holds for other correlation functions, including the Duhamel correlation func-
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tion, but for Duhamel

F

(
(S 3

0)2 −
1
3

S (S + 1), (S 3
x)2 −

1
3

S (S + 1)
)

Duh
(k)

=
1
|ΛL|

(
F

(
(S 3

x)2 −
1
3

S (S + 1)
)

(k),F
(
(S 3

y)2 −
1
3

S (S + 1)
)

(k)
)

Duh
,

(5.2.41)

there is no −k because of the definition of the Duhamel correlation function and the equality(
F

[
(S 3

x)2
])

(k)∗ = F
[
(S 3

x)2
]

(−k).

First we prove a preliminary lemma regarding the double commutator

Lemma 5.2.8. For S = 1, A = F
(
(S 3

x)2 − 2
3

)
(k) and H = βHΛL,0 we have

〈[A∗, [H, A]]〉UΛL,0 = 8β|ΛL|ε(k + π)
〈
S 1

0S 3
0S 1

e1
S 3

e1

〉U

ΛL,0

where e1 is the first basis vector in Zd.

Proof. The proof is just a calculation, although it is somewhat complicated, we begin by

noting that in the case S = 1 the matrices (S i)2 and (S j)2 commute and (S i)3 = S i for

i, j = 1, 2, 3.

[H, A] = − 2β
∑

x,y:{x,y}∈E

e−ikx
[
(S 1

xS 1
y − S 2

xS 2
y + S 3

xS 3
y)2, (S 3

x)2
]

= − 2β
∑

x,y:{x,y}∈E

e−ikx
[
(S 1

xS 3
xS 1

yS 3
y − S 1

xS 2
xS 1

yS 2
y − S 2

xS 1
xS 2

yS 1
y

− S 2
xS 3

xS 2
yS 3

y + S 3
xS 1

xS 3
yS 1

y − S 3
xS 2

xS 3
yS 2

y), (S 3
x)2

]
.

(5.2.42)

The square terms have dropped out as they commute with (S 3
x)2, as does the constant term

S (S + 1)/3. Now we calculate the commutator for each term in the sum, here we make use

of the fact that S iS jS i = 0 for i , j, i, j = 1, 2, 3 for S = 1.

[H, A] = − 2β
∑

x,y:{x,y}∈E

e−ikx
(
S 1

xS 3
xS 1

yS 3
y +

=0︷          ︸︸          ︷[
(S 3

x)2, S 1
xS 2

x

]
S 1

yS 2
y +

=0︷          ︸︸          ︷[
(S 3

x)2, S 2
xS 1

x

]
S 2

yS 1
y

− S 2
xS 3

xS 2
yS 3

y − S 3
xS 1

xS 3
yS 1

y + S 3
xS 2

xS 3
yS 2

y

)
= + 2β

∑
x,y:{x,y}∈E

e−ikx
( [

S 2
xS 2

y , S
3
xS 3

y

]
+

[
S 3

xS 3
y , S

1
xS 1

y

] )
.

(5.2.43)

Now calculating the commutator of these products and using the spin commutation relations
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we obtain

[H, A] = 2βi
∑

x,y:{x,y}∈E

e−ikx
(
S 2

xS 3
xS 1

y + S 3
xS 1

xS 2
y + S 1

xS 3
yS 2

y + S 2
xS 1

yS 3
y

)︸                                                  ︷︷                                                  ︸
f (Sx,Sy)

. (5.2.44)

Now we can use this to calculate the double commutator, firstly we split the commutator

into the sum of two similar terms[
A∗, [H, A]

]
=2βi

∑
x,y:{x,y}∈E

e−ikx
[
eikx(S 3

x)2 + eiky(S 3
y)2, f (Sx,Sy)

]
= 2βi

∑
x,y:{x,y}∈E

[
(S 3

x)2, f (Sx,Sy)
]

+ cos(k(x − y))
[
(S 3

y)2, f (Sx,Sy)
]
.

(5.2.45)

We can calculate each of these commutators separately, the first double commutator can be

calculated as follows

[
(S 3

x)2, f (Sx,Sy)
]

=
[
(S 3

x)2, S 2
xS 3

xS 1
y + S 3

xS 1
xS 2

y + S 1
xS 3

yS 2
y + S 2

xS 1
yS 3

y

]
= − S 2

xS 3
xS 1

y + iS 3
xS 2

xS 3
yS 2

y + iS 2
xS 3

xS 3
yS 2

y

+ S 3
xS 1

xS 2
y − iS 3

xS 1
xS 3

yS 1
y − iS 1

xS 3
xS 1

yS 3
y .

(5.2.46)

We recognise the commutator relations above to finally give[
(S 3

x)2, f (Sx,Sy)
]

= iS 2
xS 3

xS 2
yS 3

y + iS 3
xS 2

xS 3
yS 2

y − iS 3
xS 1

xS 3
yS 1

y − iS 1
xS 3

xS 1
yS 3

y . (5.2.47)

For the other commutator we follow the previous calculation almost exactly and in fact we

find the two commutators are equal[
(S 3

y)2, f (Sx,Sy)
]

=
[
(S 3

x)2, f (Sx,Sy)
]
. (5.2.48)

To finish the calculation we take expectations

〈[A∗, [H, A]]〉UΛL,0 =

−4β|ΛL|

d∑
i=1

(1+ cos(ki))
〈
S 2

0S 3
0S 2

ei
S 3

ei
+ S 3

0S 2
0S 3

ei
S 2

ei
− S 3

0S 1
0S 3

ei
S 1

ei
− S 1

0S 3
0S 1

ei
S 3

ei

〉U

ΛL,0

(5.2.49)
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now use the identities (S 3S 2)T = −S 2S 3 and (S 3S 1)T = S 1S 3 and get

〈[A∗, [H, A]]〉UΛL,0 = − 8β|ΛL|

d∑
i=1

(1 + cos(ki))
〈
S 2

0S 3
0S 2

ei
S 3

ei
− S 3

0S 1
0S 3

ei
S 1

ei

〉U

ΛL,0

=8β|ΛL|

d∑
i=1

(1 + cos(ki))
〈
2S 2

0S 3
0S 2

ei
S 3

ei

〉0,J2

β,ΛL,0
.

=8β|ΛL|ε(k + π)
〈
S 1

0S 3
0S 1

e1
S 3

e1

〉0,J2

β,ΛL,0
.

(5.2.50)

On the second line we have used that US 2
e1

S 3
e1

= −S 2
e1

S 3
e1

U to move from states 〈·〉U
ΛL,0

to states 〈·〉0,J2
β,ΛL,0

and on the third line we have used that each cross term 〈S i
xS j

xS i
yS j

y〉
0,J2
β,Λ,0

has the same expectation value. Now simply note that the above correlation is the same in

〈·〉U
ΛL,0

and in 〈·〉0,J2
β,ΛL,0

. �

Using this in Falk-Bruch we have the bound

ρ̂(k) ≤

√〈
S 1

0S 3
0S 1

e1S 3
e1

〉0,J2

β,ΛL,0

√
ε(k + π)
ε(k)

+
1

2βε(k)
. (5.2.51)

The possibility of obtaining a result is not ruled out for other values of S , I expect it to be the

case for other values of S , but computing the double commutator in Falk-Bruch becomes

extremely complicated.

Now using the Fourier transform in the following way:〈(
(S 3

0)2 −
2
3

) (
(S 3

y)2 −
2
3

)〉0,J2

ΛL,0
=

1
|ΛL|

∑
x∈ΛL

ρ(x) +
1
|Λ|

∑
k∈Λ∗L\{0}

eik·yρ̂(x)(k) (5.2.52)

with y = e1 we get the lower bound

1
|ΛL|

∑
x∈ΛL

ρ(x) ≥ ρ(e1)−

√〈
S 1

0S 3
0S 1

e1S 3
e1

〉0,J2

β,ΛL,0

|ΛL|

∑
k∈Λ∗L\{0}

√
ε(k + π)
ε(k)

1
d

d∑
i=1

cos ki


+

−
1

2βε(k)
.

(5.2.53)

This proves Theorem 5.2.1. �
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5.3 Extending to J1 < 0

The aim of this section is to extend the proof of Theorem 5.2.1 to a proof of Theorem 5.1.1.

The proof of long-range order for J1 < 0 is a straightforward extension of the previous

results. Like before we will work with a Hamiltonian that is Unitarily equivalent to HJ1,J2
ΛL,0

,

we also introduce an external field h as before. Recall the unitary operator U =
∏

x∈Λe eiπS 2
x ,

let

H̃U
ΛL,h = UHJ1,J2

ΛL,0
U−1 −

∑
x∈ΛL

hx

(
(S 3

x)2 −
1
3

S (S + 1)
)
. (5.3.1)

The effect of the unitary operator here is to replace S 1
x and S 3

x in HJ1,J2
ΛL,0

with −S 1
x and −S 3

x

respectively. By using the representation (5.2.17) we can write H̃U
ΛL,0

as

H̃U
ΛL,0 = −

∑
{x,y}∈E

[
J1

(
(S 1

x − S 1
y)2−(S 2

x − S 2
y)2 + (S 3

x − S 3
y)2

)
− J2

(
TR

[
(Qx − Qy)2]) + CΛL(J1, J2)

]
.

(5.3.2)

Then as to before we introduce the field v and associated 3 × 3 field of matrices v. Define

H̃(v) = −
∑
{x,y}∈E

[
J1

(
(S 1

x − S 1
y)2 − (S 2

x − S 2
y)2 + (S 3

x − S 3
y)2

)
(5.3.3)

− J2
(
TR

[
(Qx +

vx

2
− Qy −

vy

2
)2]) + CΛL(J1, J2)

]
−

1
4

(v,−∆v),

Z̃(v) =Tr e−βH̃(v), (5.3.4)

and

H̃′(v) =H̃(v) +
1
4

(v,−∆v), (5.3.5)

Z̃′(v) =Tre−βH̃′(v). (5.3.6)

From this reflection positivity follows just as in Lemma 5.2.5, with the obvious changes to

A and B and the extra terms

C10
i =

√
−J1 S 1

xi
, D10

i =
√
−J1 S 1

yi
,

C11
i =

√
−J1 iS 2

xi
, D11

i =
√
−J1 iS 2

yi
,

C12
i =

√
−J1 S 3

xi
, D12

i =
√
−J1 S 3

yi
,

(5.3.7)
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(recall that J1 < 0). From this we obtain the Gaussian domination inequality

Z̃(v) ≤ Z̃(0)e
β
4 (v,−∆v) ⇐⇒ Z̃′(v) ≤ Z̃′(0), (5.3.8)

just as before. We also obtain the same infrared bound as in Lemma 5.2.7, with an identical

proof

F

(
(S 3

0)2 −
1
3

S (S + 1), (S 3
x)2 −

1
3

S (S + 1)
)

Duh
(k) ≤

1
2βε(k)

. (5.3.9)

Again the results up to here work for general S ∈ 1
2N, at this point we must specialise to S =

1 to be able to calculate the quantities in the double commutator of the Falk-Bruch inequal-

ity. From this we can see that by using Falk-Bruch inequality with A = F
(
(S 3

x)2 − 2
3

)
(k)

and H = βH̃U
ΛL,0

the linearity of the double commutator means that there will be an extra

term in the analogous result to Lemma 5.2.8 equal to 〈J1[A∗, [−2
∑
{x,y}∈E(Sx ·Sy), A]]〉. This

will result in the IRB analogous to (5.2.51) potentially being larger, weakening the result.

If |J1| is small enough this weakening will not be too severe so as to make the lower bound

analogous to the bound in Theorem 5.2.1 negative in cases where we know the original

lower bound was positive. This ensures that we have a positive lower bound C = C(β, J1)

in Theorem 5.1.1 when β and |J1| are small enough. It is worth noting that for the same

reason as just described, extending the result of Dyson, Lieb and Simon [35] to J2 > 0 also

requires that |J2| is small. This means the two results will not overlap, leaving part of the

quadrant J1 ≤ 0 ≤ J2 still open to investigation in Chapter 6.
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Chapter 6

Probabilistic representations of
quantum spin systems

In this chapter we consider random loop representations of various quantum spin sys-

tems. We begin by introducing the Aizenman-Nachtergaele-Tóth-Ueltschi model and men-

tion some results obtained using the model. We then introduce the ‘multi-line’ model of

Nachtergaele and prove its relation to quantum spin systems. Using this relation it is shown

that for dimensions 3 and above Néel order occurs for a large range of values of the relative

strength of the bilinear (−J1) and biquadratic (−J2) interaction terms of a general two-body

SU(2) invariant spin-1 interaction. We also prove results related to nematic order. The

proofs use the method of reflection positivity and infrared bounds. Links between spin

correlations and loop correlations are also proved. We look at the general SU(2) invariant

spin-1 Heisenberg model with a two-body interaction

HJ1,J2
Λ

= −
∑
{x,y}∈E

(
J1

(
Sx · Sy

)
+ J2

(
Sx · Sy

)2
)
. (6.0.1)

Here we will have x ∈ Λ ⊂ Zd and E the set of nearest neighbour edges. The operators

S = (S 1, S 2, S 3) are the spin-1 matrices, see Section 6.2.4 for details of the model. The

work in [111] shows that in the region 0 ≤ J1 ≤
1
2 J2 the system exhibits nematic order in

the thermodynamic limit if the temperature is low enough and the dimension is high enough.

Nematic order was also shown independently using different methods in [106]. It is also

shown that if Λ is bipartite there will be Néel order for J1 = 0 ≤ J2 at low temperature. This

corresponds to the occurrence of infinite loops in the related loop model. Alternatively in

d ≤ 2 infinite loops should not occur, it is proved in [40] that this is the case for J2 = 0, the

extension to J2 > 0 should be straightforward.
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6.1 The Aizenman-Nachtergaele, Tóth, Ueltschi representation

In this section we discuss Ueltschi’s extension [113] of the probabilistic representation in-

troduced in the work of Aizenman and Nachtergaele [2] and Tóth [107]. Both these works

considered the spin- 1
2 Heisenberg model. It was shown in [113] that the representations

can be combined and extended to cover the spin- 1
2 XY model and higher spin models. The

equivalence of the loop and spin models will be proved and several results concerning long-

range order will be stated. We begin by introducing the loop model.

6.1.1 The Loop Model

We work on a finite graph (Λ,E) with Λ the set of vertices and E the set of edges. For

β > 0 we attach to each edge {x, y} ∈ E an interval [0, β]. We further define a Poisson

point process on each edge {x, y} × [0, β] consisting of two types of events. The events are

crosses, with intensity u and double bars, with intensity 1 − u, for u ∈ [0, 1]. Let ρ denote

the process of an independent Poisson process on each edge {x, y} × [0, β] with the above

intensities. To a realisation ω of this process we can associate a set of loops, L(ω) (L

maps from realisations of the process to positive integers). These loops are best understood

pictorially, see Fig. 6.1. We define them mathematically as follows. A loop of length l is a

closed trajectory γ : [0, βl]per → Λ × [0, β]per following certain rules:

• γ is piecewise differentiable with derivative ±1 at points of differentiability.

• γ is injective at its points of differentiability.

• If s is a point of non-differentiability then {γ(s−), γ(s+)} ∈ E × {x, y}.

Loops that are the same up to reparameterisation are identified. The events are incorporated

into the loops as the points of non-differentiability. Starting at a point (x, t) ∈ Λ × [0, β]per

we move upwards until an event is reached. If the event is a cross we cross it to the other

associated edge and continue moving upwards, if the event is a double bar we cross it

to the associated edge and reverse direction. See, for example, [50, 65, 111] for further

information on the state space, ΩΛ,β, for loop ensembles. The partition function, Y (u)
θ (Λ, β)

is given by

Y (u)
θ (Λ, β) =

∫
ρ(dω)θ|L(ω)|, (6.1.1)
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Figure 6.1: Example of realisations of ρ from [113] with loops coloured.

where the integral is over ΩΛ,β (we will omit the region of integration from integrals unless

it is not ΩΛ,β). The measure is given by

P(dω) =
1

Y (u)
θ (Λ, β)

ρ(dω)θ|L(ω)|, (6.1.2)

hence a realisation, ω, has weight θ|L(ω)|, this leads to very complicated dependencies on

the events of ρ. There are three main events of interest. The first is that points (x, 0) and

(y, t) are in the same loop, denoted Ex,y,t. Other events are that (x, 0) and (y, t) are in the

same loop and have either the same or opposite vertical direction at these points, denoted

by E+
x,y,t and E−x,y,t respectively.

6.1.2 Connection with spin systems

We begin by defining space-time spin configurations, piecewise constant functions

σ : Λ × [0, β]per → {−S ,−S + 1, ..., S }. (6.1.3)

For a realisation, ω, of ρ we say σ is compatible with ω if it is constant on the vertical

segments of each loop in L(ω) and flips sign when crossing a double bar. Denote the set

of all compatible configurations by Σ(ω). More precisely, a compatible configuration, σ is

a function that is piecewise constant on each x ∈ Λ which must satisfy certain restrictions.

The value σx,t must be constant in t for each x ∈ Λ unless an event is encountered on an

edge containing x. If a cross is encountered at ({x, y}, t) ∈ E × [0, β] we must have that

σx,t− = σy,t+ and σy,t− = σx,t+. If a bar is encountered at ({x, y}, t) ∈ E × [0, β] we must

have that σx,t− = −σy,t− and σy,t+ = −σx,t+. Note that each loop has (2S + 1) possible

assignments of spin for a compatible configuration, hence for θ = 2S + 1

Y (u)
2S +1(Λ, β) =

∫
ρ(dω)

∑
σ∈Σ(ω)

1. (6.1.4)
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We now define two operators, Txy, Pxy on local Hilbert spaces Hx ⊗ Hy. We define these

operators by

Txy|a, b〉 = |b, a〉, (6.1.5)

Pxy =

S∑
a,b=−S

(−1)a−b|a,−a〉〈b,−b|, (6.1.6)

and define a Hamiltonian

H(u)
Λ

= −
∑
{x,y}∈E

(
uTxy + (1 − u)Pxy − 1

)
. (6.1.7)

This Hamiltonian is relevant for the spin-1 system. Another Hamiltonian is introduced in

[113] that is relevant to the spin- 1
2 model. We denote by Z(u)(Λ, β) and 〈·〉(u)

Λ,β
the usual

partition function and Gibbs states. The following equality is proved in [113], we present it

here ∫
(2S + 1)|L(ω)|ρ(dω) = Z(u)(Λ, β). (6.1.8)

Proof. We use Trotter’s formula

Tr e−βH(u)
Λ = lim

N→∞
Tr

 ∏
{x,y}∈E

[
1 −

β

N
+
β

N
(uTxy + (1 − u)Pxy

]
N

. (6.1.9)

Now expanding the trace and inserting a resolution of the identity between each factor we

have

Tr e−βH(u)
Λ = lim

N→∞

∑
σ(1),...σ(N)

N∏
i=1

〈
σ(i)

∣∣∣∣∣∣∣∣
∏
{x,y}∈E

[
1 −

β

N
+
β

N
(uTxy + (1 − u)Pxy

]∣∣∣∣∣∣∣∣σ(i+1)
〉
. (6.1.10)

The sum is over all configurations σ(i) ∈ {−S , ..., S }Λ with σ(N+1) ≡ σ(1). Note that if we

view σ(i) as the space-time spin configuration between events i − 1 and i in realisation ω of

ρ then Txy corresponds to crosses and Pxy corresponds to bars. Note the identity

exp

− ∑
{x,y}∈E

(uTxy + (1 − u)Pxy − 1)

 =

∫
ρ(dω)

∗∏
(xi,yi,t)∈ω

R(i)
xiyi (6.1.11)

where
∏∗ is the time ordered product of events in the realisation, ω, of ρ and each R(i)

xiyi is

an event (Txiyi , Pxiyi) on the edge {xi, yi} at time t. Using this and taking the limit N → ∞

gives (6.1.8). �
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For this model it is also shown that

〈S i
xS i

y〉
(u)
Λ,β

=
1
3

S (S + 1)(P[E+
x,y,t] − P[E

−
x,y,t]), (6.1.12)

〈(S i
x)2(S i

y)2〉
(u)
Λ,β
− 〈(S i

x)2〉
(u)
Λ,β
〈(S i

y)2〉
(u)
Λ,β

=
1
45

S (S + 1)(2S − 1)(2S + 3)P[Ex,y,t]. (6.1.13)

The proof involves a similar expansion as the proof of (6.1.8). Similar results will be pre-

sented for Nachtergaele’s loop model in Proposition 6.2.3 hence the reader is directed there

for the methods of the proof. It is also proved that for d ≥ 3 and u ∈ [0, 1
2 ] if S is small

enough then there is a c > 0 such that

lim
β→∞

lim inf
|Λ|→∞

1
|Λ|

∑
x∈Λ

P[E0,x,0] ≥ c, (6.1.14)

where the limit |Λ| → ∞ is taken along cubic lattices of even side length. This result can be

translated into results for corresponding spin models. For S = 1 we take Hamiltonian

H = −
∑
{x,y}∈E

J1Sx · Sy + J2(Sx · Sy)2 (6.1.15)

then for 0 < J1 ≤
1
2 J2 it is shown that there is nematic order at low temperatures for d ≥ 5.

In fact for 0 = J1 < J2 there is Néel order in d ≥ 5 at low temperatures. This result fits

nicely with the results concerning Néel order via the loop representation of Nachtergaele.

6.2 Existence of Néel order in the S=1 bilinear-biquadratic
Heisenberg model via random loops

This section is mainly based on the paper [70]. We present the main result and then intro-

duce the model. Several secondary theorems are also proved using similar methods.

6.2.1 Main result

We use the method of reflection positivity and infrared bounds on a the loop model intro-

duced in [81]. Links between correlations in the spin model and probabilities of events in

the loop model are also derived in Section 6.2.5. We focus on the quadrant J1 ≤ 0 ≤ J2

for (6.1.15), see Fig. 6.2. We prove results for Néel and nematic correlations using both

‘normal’ and space-time reflection positivity. The following result concerning Néel order

follows from proposition 6.2.3 a), theorem 6.2.6 and the discussion that follows. For the
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Figure 6.2: The phase diagram for the general SU(2) invariant spin-1 model. Regions that are shaded darker
have rigorous proofs of the relevant phases. The line J1 < 0, J2 = 0 is the Heisenberg antiferromagnet where
antiferromagnetic order has been proven [35], Néel order extends into the dark yellow region. The dark blue
region 0 ≤ J1 ≤

1
2 J2 has nematic order at low temperatures [111], with Néel order on the line J2 > 0, J1 = 0.

The adjacent dark yellow region has been proved to exhibit nematic order in high enough dimension [69].
Antiferromagnet order is expected here but is not yet proved.

precise statements see Section 6.2.6.

Theorem. For Λ ⊂ Zd a box of even side length, L, and d ≥ 3 there exists α = α(d) > 0

and 0 < β0 < ∞ such that for J1 ≤ 0 ≤ J2 if −J1/J2 > α and β > β0 there exists

c = c(α, d, β) > 0 such that

lim inf
L→∞

1
Ld

∑
x∈Λ

(−1)‖x‖〈S 3
0S 3

x〉Λ,β ≥ c. (6.2.1)

Furthermore α(d)→ 0 as d → ∞.

Analogous theorems are also proved for nematic correlations. It is shown in the discussion

after Theorem 6.2.6 that this sum is positive for β large enough if

IdKd < (−4J1)/(−J1 + 4J2). (6.2.2)

Id and Kd are integrals to be introduced in (6.2.64). Their values for various d are given in

the table below.
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d Id Kd

3 0.349882 1.15672
4 0.253950 1.09441
5 0.206878 1.06754
6 0.177716 1.05274

It can be shown [35, 58] that Id → 0 and Kd → 1 as d → ∞ and that both are decreasing

in d. This means we can prove that the region where Néel order occurs will increase to the

entire quadrant J1 ≤ 0 ≤ J2 as d → ∞ i.e. the ratio α(d) is decreasing. In d = 3 there

is Néel order in the spin system for −J1/J2 < 0.46, this is a triangular region of angle 65◦

measured from the J1 axis.

Reflection positivity for this quadrant is already known, for J1 < 0 = J2 it was shown in

[35] and for J1 = 0 < J2 one can see Lemma 6.2.13 ([69] Lemma 3.4) for an explicit proof.

It was proved in [35] that Néel order occurs for J1 < 0 = J2, it is clear the result extends

to a neighbourhood of the axis for J1 < 0 < J2 with J2/J1 sufficiently small. However it is

impossible to extend the result concerning Néel order any significant amount without some

new results. This is where the loop model has been essential. Indeed in [35] an infrared

bound is obtained of the form

̂(S 3
0, S

3
x)Duh(k) ≤

1
2(−J1)ε(k)

(6.2.3)

where (A, B)Duh is the Duhamel correlation function and ε(k) = 2
∑d

i=1(1 − cos ki) for k ∈

Λ∗. Notice that this bound becomes weaker as |J1| decreases (equivalently on the unit

circle as |J1|/|J2| decreases). Transferring this bound to ̂〈S 3
0S 3

x〉β(k) requires the Falk-Bruch

inequality which would involve dealing with the term 〈[Ŝ 3
−k, [J2

(
Sx · Sy

)2
, Ŝ 3

k]]〉β. After

some calculation one obtains correlations in Proposition 6.2.3 such as 〈S 1
xS 1

yS 3
xS 3

y〉β. Hence

to work directly in the quantum system using the methods of [35] one must obtain good

bounds on these correlations. Simple bounds such as taking the operator norm are not

sufficient due to the weakening of (6.2.3) as |J1|/|J2| decreases. Without using the loop

model it is not clear how to obtain such bounds currently.

The random loop model is presented in sections 6.2.2 and 6.2.3. The spin-1 Heisenberg

model is introduced in Section 6.2.4. In Section 6.2.5 the connection between the loop

model and the quantum system is proved. In particular it is shown how to write various

correlation functions in terms of probabilities of events in the loop model, some of these

correlations are also presented in [113]. In Section 6.2.6 the main result concerning Néel

order is presented and proved. Section 6.2.7 presents and proves an analogous result for

nematic correlations, both sections 6.2.6 and 6.2.7 rely on reflection positivity of the loop
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Figure 6.3: Events of the process ρJ1,J2 , a) represents single bars, b) represents double bars
and c) represents the uniform measure on vertical segments being either parallel or crossing.

model. Sections 6.2.8 and 6.2.9 present results analogous to sections 6.2.6 and 6.2.7 re-

spectively using space-time reflection positivity.

6.2.2 The random loop model

We now introduce the loop model presented in [81]. To begin we take a finite set of vertices,

Λ, with a set of edges, E ⊂ {{x, y}|x, y ∈ Λ, x , y}. We associate to this lattice a new lattice,

Λ̃, and edge set, Ẽ:

Λ̃ =Λ × {0, 1}, (6.2.4)

Ẽ ={{(x, i), (y, j)}|i, j ∈ {0, 1}, {x, y} ∈ E}. (6.2.5)

There are two lattice sites in Λ̃ for every site in Λ and four edges in Ẽ for each edge in E.

We will write x0, x1 in place of (x, 0), (x, 1).

For β > 0 consider a process, ρJ1,J2 , consisting of a Poisson point process on E× [0, β] and a

uniform measure on segments of Λ×[0, β] between events of the Poisson point process. The

Poisson point process has two events that we will refer to as ‘single bars’ and ‘double bars’.

Note that this process is on the edge set E, the events define corresponding events on the

edge set Ẽ. The single bars will occur at rate −2J1 and double bars at rate J2 for J1 ≤ 0 ≤ J2.

The rate for the single bars is written in this way to be consistent with the connection to the

quantum spin system that will be introduced in Section 6.2.4. The interval [0, β] will be

referred to as a time interval. The uniform measure is on two possibilities, “crossing” and

“parallel”. How to build loops from these events is described in detail below, see Fig. 6.3 for

pictorial representations of the events. The construction is much in analogue with Section

6.1.

We first define the single and double bars. Single bars occur at a point (x, y, t) for {x, y} ∈ E.

We define the corresponding geometric event on Ẽ as a bar joining x1 and y0 at time t.

Double bars occur at a point (x, y, t) and the corresponding event on Ẽ is a bar joining

x1 and y0 and a bar joining x0 and y1, both at time t. A loop of length l is then a map

γ : [0, βl]per → Λ̃× [0, β]per such that γ(s) , γ(t) if s , t, γ is piecewise differentiable with
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Figure 6.4: An example realisation with loops coloured in red, green and blue. Here there
are four sites in the underlying Λ and for this realisation |L(ω)| = 3.

derivate ±1 where it exists. If s is a point of non-differentiability then {γ(s−), γ(s+)} ∈ Ẽ.

Loops with the same support and different parameterisations are identified. For a realisation

ω of ρJ1,J2 we associate a set of loops as follows: Starting at a point (xi, s) ∈ Λ̃ × [0, β] we

move upwards (i.e. in direction of increasing s). If a bar is met at time t it is crossed and

we then continue in the opposite direction from (y j, t), where y j is the other site associated

to the bar. Each maximal vertical segment between bars (x0, x1) × [s, t] (i.e. bars involving

the site x occur at times s and t and no bar involving x occurs for u such that s < u < t)

is either parallel (nothing happens) or crossing (the sites x0 and x1 are exchanged). If time

β is reached the periodic time conditions mean we continue in the same direction starting

from time 0. We denote by L(ω) the set of all loops associated to a realisation ω. Loops are

most easily understood pictorially, see Fig. 6.4. Note that the loops could be defined via a

Poisson point process on Ẽ × [0, β] where bars can occur between xi and y j with each (i, j)

being equally likely. However one would still need to introduce the crossing or parallel

events so that it is still possible to have x0 and x1 in the same loop even when there is no

bar occurring on any edge containing x.

For this loop model we have partition function

Y J1,J2
θ (β,Λ) =

∫
ρJ1,J2(dω)θ|L(ω)|. (6.2.6)

Here θ > 0 is a parameter and ρJ1,J2 is the probability measure corresponding to a Pois-
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son point process of intensity −2J1 for single bars and J2 for double bars. The relevant

probability measure is then

P(dω) =
1

Y J1,J2
θ (β,Λ)

ρJ1,J2(dω)θ|L(ω)|. (6.2.7)

We are interested in sets of realisations, ω, where certain points of Λ̃ × [0, β] are in the

same loop. Probabilities of these events are connected to correlations in the spin-1 quantum

system presented in Section 6.2.4, they will be required in the proof of Néel order in Section

6.2.6. Particular events of interest will be denoted pictorially , see Fig. 6.5. These events

are defined and denoted as follows.

a) The event that sites xi and y j are connected (in the same loop). Note that the probability

of xi and y j being connected is independent of i and j. Denoted E[xi y j].

b) The event that x0 and x1 are connected, y0 and y1 are connected but there is no connec-

tion from any xi to any y j. Denoted E
[

x0

x1

y0

y1

]
.

c) The event that x0 and y0 are connected, x1 and y1 are connected but x0 and x1 are not

connected. Denoted E
[

x0

x1

y0

y1

]
. We can also have x0 and y1 connected and x1 and y0

connected but x0 and x1 not connected and denote the event in the analogous way.

These events both have the same probability.

d) The event that all four sites x0, x1, y0, y1 are connected. Denoted E
[

x0

x1

y0

y1
��@@

]
.

The definition of bars means that if a loop is followed starting from a point xi ∈ Λ̃ (by

moving in either the up or down direction) then the direction it is travelling upon arriving

at a point y j ∈ Λ̃ in the same loop is determined only by the number of bars the loop has

encountered between the sites. For example on a bipartite lattice defined by sublattices ΛA

and ΛB such that {x, y} ∈ E ⇐⇒ x ∈ ΛA, y ∈ ΛB the direction that xi is left and y j is

entered will be the same if x and y are in the same sublattice and different if they are in

different sublattices.

Sometimes the order in which sites are encountered along the loop will be important. In

this case arrows will indicate the order that sites will be encountered in on following the

loop (up to parameterisation). The events E
[

x0

x1

y0

y1

-

�6 ?

]
, E

[
x0

x1

y0

y1
���@@I? ?

]
and E

[
x0

x1

y0

y1

�

����@@R

]
are the events

that all four sites are connected and are encountered along the loop in the order indicated

by the arrows. For example the first event,E
[

x0

x1

y0

y1

-

�6 ?

]
, means that upon leaving site x0 if we

encounter y0 before encountering x1 then we will encounter y1 and then x1 before closing

the loop. As this notation is potentially confusing (but also seemingly unavoidable) the

reader will be told explicitly when the order is important. When wanting the probability of
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Figure 6.5: Pictures representing the set of realisations where the pictured connections are
present.

these events we will drop the E from the notation, as below.

It is intuitively clear that P(x0 y0 ) decays exponentially fast with respect to ‖x − y‖ for

β small. Hence P
(

x0

x1

y0

y1
��@@

)
and P

(
x0

x1

y0

y1

)
must also have exponential decay. P

(
x0

x1

y0

y1

)
should

depend weakly on ‖x− y‖ for small enough β. For ‖x− y‖ large enough the probability may

approach P(x0 x1)2, it is not clear how to prove or disprove such a relation at this time.

6.2.3 Space-time spin configurations

In order to make the connection with spin systems we need the notion of a space-time spin

configuration. The spin system we shall connect to is the spin-1 Heisenberg model, we shall

make this connection via an intertwining that merges two spin- 1
2 models. For this reason

we will take θ = 2 from Section 6.2.2 (2S + 1 for S = 1
2 ). This is also the reason the lattice

Λ̃ has two sites for every site in Λ. It is also possible to represent the spin-S model for

general S by merging 2S spin- 1
2 models, this will mean Λ̃ will have 2S sites for every site

in Λ. See [81] for more details. This generalisation together with some results analogous

to the ones presented here should be straightforward once the spin-1 model is understood.

It is not immediately clear which results will still hold however, investigation is required.

From now on we take the cubic lattice in Zd with side length L, denoted ΛL, with periodic

boundary conditions. The edge set, EL, will consist of pairs of nearest neighbour lattice

points. Precisely

ΛL =

{
−

L
2

+ 1, ...,
L
2

}d
, (6.2.8)

EL ={{x, y} ⊂ ΛL| ‖x − y‖ = 1 or |xi − yi| = L − 1 for some i = 1, ..., d}. (6.2.9)

Where ‖x − y‖ is the graph distance between x and y. A space-time spin configuration is a

function

σ : Λ̃ × [0, β]per →

{
−

1
2
,

1
2

}
. (6.2.10)

σxi,t is piecewise constant in t for any xi. We further define Σ to be the set of all such

functions with a finite number of discontinuities. For a realisation of the process ω we
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consider σ that are constant on the vertical segments of each loop in L(ω) and that change

value on crossing a bar. This restriction on configurations will allow to make the link with

spin systems. We call such configurations compatible with ω and denote by Σ(1)(ω) the set

of all compatible configurations, this is analogous to Section 6.1. The following relation

holds as we work on a bipartite lattice, meaning fixing a configuration’s value at some (xi, t)

determines the configuration on the entire loop containing (xi, t):

|Σ(1)(ω)| = 2|L(ω)|, (6.2.11)

from which we can obtain

Y J1,J2
2 (β,Λ) =

∫
ρJ1,J2(dω)

∑
σ∈Σ(1)(ω)

1. (6.2.12)

We further define the set Σ
(1)
xi,y j(ω) ⊃ Σ(1)(ω) to be compatible configurations along with

configurations that flip spin at points (xi, 0) or (y j, 0) (or both) but are otherwise compatible.

When the occurrence of macroscopic loops is proved we will not require the condition that

compatible configurations flip value on crossing a bar, in fact this condition would add an

unnecessary extra complication. Hence we further define Σ(2)(ω) to be configurations that

are constant on loops (and hence do not flip value at bars). Σ
(2)
xi,y j(ω) ⊃ Σ(2)(ω) denotes the

set of configurations in Σ(2)(ω) along with configurations that flip spin at points (xi, 0) or

(y j, 0) (or both) but are otherwise consistent with the definition of Σ(2)(ω).

As in [111] we will later need a more general setting for the measure on space-time spin

configurations. We consider a Poisson point process on Ẽ × [0, β] with events being specifi-

cations of the local spin configuration. We will consider discontinuities involving two pairs

of sites (x0, x1, y0, y1). The objects of the process will be a set of allowed configurations at

these sites immediately before and after t. We can denote these events as

(6.2.13)

σx0 ,t+σx1 ,t+ σy0 ,t+σy1 ,t+

σx0 ,t−σx1 ,t− σy0 ,t−σy1 ,t−

Implicit here is an ordering on Λ with x < y. An event A is a subset of {−1/2, 1/2}8 and

occurs with intensity ι(A). More precisely we let ι : P({−1/2, 1/2}8) → R denote the

intensities of the Poisson point process, denoted ρι. Given a realisation, ξ, of ρι let Σ(ξ) be

the set of configurations compatible with ξ meaning that σ ∈ Σ(ξ) if
σx0 ,t+σx1 ,t+ σy0 ,t+σy1 ,t+

σx0 ,t−σx1 ,t− σy0 ,t−σy1 ,t−

∈ A whenever ξ contains the event A at point (x0, x1, y0, y1, t),
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and σxi,t is otherwise constant in t. The measure is then given by ρι with the counting

measure on compatible configurations. We note that different intensities can give the same

measure as in [111], for ι and ι′ intensities it is shown in [111] that∫
ρι(dξ)

∫
ρι′(dξ′)

∑
σ∈Σ(ξ∪ξ′)

F(σ) =

∫
ρι+ι′(dξ)

∑
σ∈Σ(ξ)

F(σ). (6.2.14)

We want to write the Poisson point process involving bars in terms of intensities of specifi-

cations of spins. We require that specifications corresponding to single and double sets of

bars have intensity −2J1 and J2 respectively. If we naively define ι̃ by

a′ a a b
a′ c c b

a′ a a a′

c′ c c c′
ι̃

({ })
= −2J1, ι̃

({ })
= J2. (6.2.15)

For any a, a′, b, c, c′ ∈ {1/2,−1/2}, where the first event corresponds to single bars and the

second event to double bars. We see there is an overlap on the specification

b a a b
b c c b

so this assignment of intensities of specifications cannot be correct. Simply removing the

overlapping case from one of the specifications will result in events not having the required

intensities. This suggests we should instead define ι by

a′ a a b
a′ c c b

a′ a a a′

c′ c c c′
ι

({ }
a′,b

)
= −2J1, ι

({ }
a′,c′

)
= J2, (6.2.16)

b a a b
b c c b

ι

({ })
= J2 − 2J1.

For any a, a′, b, c, c′ ∈ {1/2,−1/2}. Now each specification is disjoint from the other two

and single and double sets of bars have intensities −2J1 and J2 respectively, as required.

We also have ι(A) = 0 for any other specification. Then

Y J1,J2
2 (β,Λ) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

1. (6.2.17)

This representation will be needed when we show reflection positivity of the loop model.
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6.2.4 The general spin-1 SU(2) invariant Heisenberg model

Let S 1, S 2 and S 3 denote the spin-1 matrices as introduced in 2.2.2. Denote S = (S 1, S 2, S 3).

We will use the following matrices:

S 1 =
1
√

2


0 1 0

1 0 1

0 1 0

 , S 2 =
1
√

2


0 −i 0

i 0 −i

0 i 0

 , S 3 =


1 0 0

0 0 0

0 0 −1

 . (6.2.18)

Consider a pair (Λ,E) of a lattice, Λ ⊂ Zd, and a set of edges, E, between points in Λ. We

will take Λ to be a box in Zd, hence Λ is bipartite. We denote by ΛA and ΛB the two disjoint

lattices such that ΛA∪ΛB = Λ and every e ∈ E contains precisely one site from ΛA and one

site from ΛB.

Recall we take the operator S i
x for i = 1, 2, 3 to be shorthand for the operator S i

x ⊗ IdΛ\{x}.

Recall the definition of Λ̃ and Ẽ above, we shall use these below.

The most general SU(2) invariant Hamiltonian with two-body interactions for spin-1 is

HJ1,J2
Λ

= −
∑
{x,y}∈E

(
J1

(
Sx · Sy

)
+ J2

(
Sx · Sy

)2
)
. (6.2.19)

We will soon drop the parameters J1, J2 from HJ1,J2
Λ

for readability. In this chapter we will

be concerned with the region where J1 ≤ 0 ≤ J2. Associated to this Hamiltonian we have

the following partition function and Gibbs states for β > 0:

ZJ1,J2
Λ,β

=Tr e−βHJ1 ,J2
Λ , (6.2.20)

〈·〉
J1,J2
Λ,β

=
1

ZJ1,J2
Λ,β

Tr · e−βHJ1 ,J2
Λ . (6.2.21)

Again we shall drop the parameters J1, J2 from the notation.

The following new definitions come from Nachtergaele [81]. We introduce an isometry

V : C3 → C2 ⊗C2 with the property VD1(g) = (D
1
2 (g))⊗2V for g ∈ S U(2) and DS the spin-

S representation of SU(2). Here the representation D1 is given by the matrices (2.2.12)

and D
1
2 is given by the Pauli matrices. It is clear such an isometry exists as we can define

it for spin matrices and then extend by linearity (recall that the spin matrices generate the

representation). From this we obtain the key relation

VS i = (σi ⊗ 1 + 1 ⊗ σi)V, (6.2.22)
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where σi are the spin- 1
2 matrices (hence 2σi are the Pauli matrices). Further we have

V∗V = 1 and VV∗ = P, (6.2.23)

where P is the projection onto the spin triplet. Hence VS i acts on C2 ⊗ C2 and so using the

notation as before VxS i
x acts on ⊗y∈ΛC

2 ⊗ C2. We make the following definition

Ri := VS iV∗. (6.2.24)

One can check that Ri = (σi ⊗ 1 + 1 ⊗ σi). To make expressions more concise we will also

denote AX := ⊗x∈XAx for X ⊂ Λ. For these new operators we have a new Hamiltonian (note

we have now dropped the J1 and J2 parameters)

H̃(1)
Λ̃

= −
∑
{x,y}∈E

(
J1

(
Rx · Ry

)
+ J2

(
Rx · Ry

)2
)
, (6.2.25)

and associated Gibbs states

Z(1)
Λ̃,β

=Tr PΛe−βH̃(1)
Λ̃ , (6.2.26)

〈·〉
(1)
Λ̃,β

=
1

Z∼
Λ̃,β

Tr · PΛe−βH̃(1)
Λ̃ . (6.2.27)

The connection with the previous Gibbs state can easily be made explicit,

〈A〉Λ,β = 〈VΛAV∗Λ〉
(1)
Λ̃,β
. (6.2.28)

We use Dirac notation in the following way: |a, b〉 denotes an element of the one site Hilbert

space C2 ⊗ C2 and |a, b〉 ⊗ |c, d〉 for two sites etc.

There are two operators of particular interest, both act on two sites. Firstly we define S(1)′

by its matrix elements

〈a′, b′| ⊗ 〈c′, d′|S(1)′ |a, b〉 ⊗ |c, d〉 = (−1)b−b′δa,a′δd,d′δb,−cδb′,−c′ . (6.2.29)

Geometrically this requires spin b and c and the spins b′ and c′ to be the negative of each

other and also requires a = a′ and d = d′. This corresponds to the the single bars in the

loop picture. The second operator,D(1)′ , is also defined via its matrix elements

〈a′, b′| ⊗ 〈c′, d′|D(1)′ |a, b〉 ⊗ |c, d〉 = (−1)a−a′(−1)b−b′δa,−dδb,−cδa′,−d′δb′,−c′ . (6.2.30)

The geometrical interpretation this time is that of the double bars. The actual operators
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needed are S(1) = PS(1)′P and D(1) = PD(1)′P in order to account for bars occurring

between any xi and y j with each i and j from {0, 1} being equally likely. Note here that

from this definition we see that we require the spin value to change sign on crossing a bar

as was mentioned in Section 6.2.3. There are also extra factors in S(1) and D(1) of eiπa for

the bottom half of a bar (denoted u) and e−iπa for the top half of a bar (denoted t) where

a = ± 1
2 is the spin value on the site in ΛA associated to the bar. By direct computation of

the matrix elements we can prove the relations

S
(1)
x,y = −

1
2

Rx · Ry +
1
2

Px,y, (6.2.31)

D
(1)
x,y =

(
Rx · Ry

)2
− Px,y. (6.2.32)

Using these relations we can rewrite the Hamiltonian in the region J1 ≤ 0 ≤ J2 as

H̃(1)
Λ̃

= −
∑
{x,y}∈E

(
−2J1S

(1)
x,y + J2D

(1)
x,y + (J1 + J2)Px,y

)
. (6.2.33)

We further introduce S(2)′ andD(2)′ by

〈a′, b′| ⊗ 〈c′, d′|S(2)′ |a, b〉 ⊗ |c, d〉 = δa,a′δd,d′δb,cδb′,c′ , (6.2.34)

〈a′, b′| ⊗ 〈c′, d′|D(2)′ |a, b〉 ⊗ |c, d〉 = δa,dδb,cδa′,d′δb′,c′ . (6.2.35)

We again need the symmetrised version of these operators S(2) = PS(2)′P and D(2) =

PD(2)′P. The corresponding Hamiltonian is

H̃(2)
Λ̃

= −
∑
{x,y}∈E

(
−2J1S

(2)
x,y + J2D

(2)
x,y + (J1 + J2)Px,y

)
. (6.2.36)

This Hamiltonian will be used when showing the occurrence of long loops. This Hamilto-

nian’s Gibbs states will be denoted 〈·〉(2)
Λ̃,β

.

6.2.5 The random loop representation

We can neglect the term (J1 + J2)Px,y in the Hamiltonian (6.2.33) and (6.2.36) and instead

add (2J1 − J2)1, this does not change the Gibbs states. Doing this allows to use a useful

lemma from [2]

exp

− ∑
{x,y}∈E

(
uAx,y + νBx,y − u − ν

) =

∫
ρ(dω)

∏∗

(x,y)∈ω

Cx,y. (6.2.37)
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Here ρ is the measure associated to a Poisson point process on E × [0, 1] with two events

occurring with intensities u and ν respectively. The product is ordered according to the

times at which the events occur. C is either A or B depending on which event occurs. This

is actually a slight extension of the lemma presented in [2]. From this we can obtain

exp

− ∑
{x,y}∈E

(
−2J1S

(n)
x,y + J2D

(n)
x,y + 2J1 − J2

) =

∫
ρ(dω)

∏∗

(xi,y j)∈ω

A(n)
xi,y j (6.2.38)

here each A(n) is one of S(n) or D(n), this holds for both systems H̃(1)
Λ̃

and H̃(2)
Λ̃

. Again the

product is ordered by the time events occur.

We now prove the connection between the loop model and the quantum system. This

will enable us to understand certain important correlation functions. After this we should

have the tools we need to calculate any two point correlation (at least ones involving only

spin operators). The first thing to understand is the extra factor, which we shall denote by

zxi,y j(σ,ω), the product of all factors e±iπa from operators S(1) and D(2) corresponding to

the bars in loop(s) containing xi and y j in a realisation ω of ρJ1,J2 . Again a ∈ {1/2,−1/2}

is the value that σ assigns to the portions of these loop(s) in the ΛA sublattice (or if all of

a loop is on the sublattice ΛB a is given by the negative of the value assigned to the loop).

The value of zxi,y j(σ,ω) is specified by the following lemma:

Lemma 6.2.1. For Λ bipartite we have for all i, j

zxi,y j(σ,ω) =

 1 if σ ∈ Σ(1)(ω)

(−1)‖x−y‖ if σ ∈ Σ
(1)
xi,y j(ω) \ Σ(1)(ω) and ω ∈ E[xi y j].

(6.2.39)

Before the proof we should note that the lemma says that the only dependence on σ is at xi

and y j at time zero. If the spin does not flip at both sites that we get total factor 1, else it

depends on which sublattices the sites are in. If the spin only flips at one site then there are

no compatible configurations hence the value of the total extra factor is unimportant.

Proof. To begin note that we can take (i, j) = (0, 0). The result for (i, j) , (0, 0) follows as

the choice of i or j does not affect which sublattice the two sites are in. Supposeσ ∈ Σ(1)(ω).

Moving upwards from x0 the first bar encountered is u, the bars encountered then alternate

between t and u. Moving downwards from x0 we first encounter a bar t then alternate

between u and t. This means we can make a matching between bars of the form u and

bars of the form t. Because there are no spin flips at time zero all the bars u have factors

eiπa and all the bars t have factor e−iπa where a is the spin value σ gives to x0 at time zero.

Hence we have full cancellation and are left with factor 1. If there were a spin flip then bars
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between x0 at time 0− and y0 at time 0± would have factors eiπ(−a) and e−iπ(−a) for u and t

respectively.

If σ ∈ Σ
(1)
x0,y0(ω)\Σ(1)(ω) and (−1)‖x−y‖ = 1 and ω ∈ E[x0 y0], then x0 and y0 are in the same

sublattice. We can thus deduce that the section of loop that moves upwards/downwards from

x0 crosses an even number of bars before reaching y0. This means that the loop containing

x0 and y0 contains an even number of bars of each type (u or t). Hence we can make a

matching of a bar t in one ‘half’ of the loop with a bar t in the other ‘half’ and the same

with bars u, with some bars left over. The factors from bars in the matching will thus be 1

as the spin flip at x0 at time 0 means one bar in each pair has factor e±iπa and one bar has

factor e±iπ(−a). Here by ‘half’ of a loop we mean the section that connects x0 at time 0+

with y0 at time 0− or x0 at time 0− with y0 at time 0+. There are still possibly some bars left

over as each half of the loop may have a different number of bars in it. A moments thought

reveals that there must be an even number of bars left, half of type u and half of type t. As

the bars u have factor e−iπ(±a) and the bars t have factor eiπ(±a) we have full cancellation

again and have total factor 1.

For the remaining case σ ∈ Σ
(1)
x0,y0(ω) \ Σ(1)(ω) and (−1)‖x−y‖ = −1 and ω ∈ E[x0 y0], we

have x0 and y0 in different sublattices. We can see as last time that the factors from the

‘extra bars’ (that arise from each half of the loop having a different number of bars) will

cancel as again there are equal numbers of u and t. For the remaining bars there are an

odd number in each half of the loop, this means we can make a matching for all but two of

the bars. The factors from bars in the matching will cancel each other. For the remaining

two bars one is a u with factor eiπ(±a) and one is a t with factor e−iπ(∓a) (the sign of a is

opposite due to the spin flip at x0 at time 0). This means the overall factor is (±i)2 = −1.

This completes the proof. �

In light of Proposition 6.2.1 the following proposition can be proved in the same way as

Theorem 3.2 in [111].

Proposition 6.2.2. The partition functions Z(i)
Λ̃,β

i = 1, 2 are given by

Z(i)
Λ̃,β

=

∫
ρ(dω)

∑
Σ(i)(ω)

∏
{xi,y j}∈E

zxi,y j(σ,ω) =

∫
ρ(dω)2|L(ω)| = Y J1,J2

2 (β,Λ). (6.2.40)

We also have the following identity, note that for H̃(2)
Λ̃L

the factor zxi,y j(σ,ω) does not appear

as there are no spin flips at bars.

Tr (σ3 ⊗ 1)x(σ3 ⊗ 1)ye−βH̃(i)
Λ̃ =

∫
ρ(dω)

∑
Σ(i)(ω)

 ∏
{xi,y j}∈E

zxi,y j(σ,ω)

σx0σy0 , (6.2.41)
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where σzi is the value of a space time configuration, σ, at time 0 and site zi.

With the important details understood we can calculate some correlations in terms of prob-

abilities in the loop model. The most important correlations here are the Néel and nematic

correlations (Proposition 6.2.3 a) and b) respectively).

Proposition 6.2.3. For i, j = 1, 2, 3, x , y, i , j and Λ bipartite

a) 〈S i
xS i

y〉Λ,β = (−1)‖x−y‖P(x0 y0),

b) 〈(S i
x)2(S i

y)2〉Λ,β − 〈(S i
x)2〉Λ,β〈(S i

y)2〉Λ,β = − 1
36 + 1

4P
(

x0

x1

y0

y1

)
+ 1

2P
(

x0

x1

y0

y1

)
+ 1

4P
(

x0

x1

y0

y1
��@@

)
,

c) 〈S i
xS j

xS i
yS j

y〉Λ,β = 1
4

[
−(−1)‖x−y‖P(x0 y0) + P

(
x0

x1

y0

y1

)]
,

d) 〈S i
xS j

xS j
yS i

y〉Λ,β = 1
4

[
(−1)‖x−y‖P(x0 y0) + P

(
x0

x1

y0

y1

)]
,

e) 〈(S i
x)2(S j

y)2〉Λ,β = 5
12 + 1

4

[
P
(

x0

x1

y0

y1

)
+ P

(
x0

x1

y0

y1

-

�6 ?

)
− P

(
x0

x1

y0

y1

�

����@@R

)]
.

Proof. We will calculate the correlations in order. First note that each S i plays an equivalent

rôle, hence cyclic permutations of the indices (1, 2, 3) does not alter the expectation. Using

this together with (S iS j)T = ±(S jS i) (the sign depending on the value of i and j) means we

can take i = 3 and j = 1. For each we will expand using (6.2.24) and (6.2.28).

Proof of a). First

〈S 3
xS 3

y〉Λ,β = 〈(σ3⊗1⊗σ3⊗1+σ3⊗1⊗1⊗σ3+1⊗σ3⊗σ3⊗1+1⊗σ3⊗1⊗σ3)x,y〉
(1)
Λ̃,β
. (6.2.42)

We see that due to sites z0 and z1 being interchangeable for z ∈ Λ each of the four terms in

the sum have the same expectation. We also know from Proposition 6.2.2

Tr (σ3 ⊗ 1)x(σ3 ⊗ 1)ye−βH̃Λ̃ =

∫
ρ(dω)

∑
Σ(1)(ω)

σx0σy0 . (6.2.43)

We note that the integral differs from zero only on the set where x0 and y0 are connected. If

x and y are in different sublattices the product of spin configuration values is − 1
4 , if in the

same sublattice the product is 1
4 . We can deduce that

〈S 3
xS 3

y〉Λ,β = (−1)‖x−y‖P(x0 y0). (6.2.44)

Proof of b). For the second correlation

(R3
x)2 = (σ3 ⊗ 1 + 1 ⊗ σ3)2

x =

(
1
2
1 ⊗ 1 + 2σ3 ⊗ σ3

)
x
. (6.2.45)
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We see that expanding as before gives

〈(S 3
x)2〉Λ,β = 〈(R3

x)2〉
(1)
Λ̃,β

=
1

Z(1)
Λ̃,β

∫
ρ(dω)

∑
σ∈Σ(1)(ω)

(
1
2

+ 2σx0σx1

)
=

1
2

+
1
2
P(x0 x1). (6.2.46)

From this and the fact that 〈(S 3
x)2〉Λ,β = 1

3 〈Sx · Sx〉Λ,β = 2
3 we can deduce that

P(x0 x1) =
1
3
. (6.2.47)

For the first term in the correlation we again note that 〈(S 3
x)2(S 3

y)2〉Λ,β = 〈(R3
x)2(R3

y)2〉1
Λ,β.

We then calculate as before:

(R3
x)2(R3

y)2 =(σ3 ⊗ 1 + 1 ⊗ σ3)2
x(σ3 ⊗ 1 + 1 ⊗ σ3)2

y

=

(
1
2
1 ⊗ 1 + 2σ3 ⊗ σ3

)
x

(
1
2
1 ⊗ 1 + 2σ3 ⊗ σ3

)
y

=

(
1
4
1
⊗4 + σ3 ⊗ σ3 ⊗ 1 ⊗ 1 + 1 ⊗ 1 ⊗ σ3 ⊗ σ3 + 4(σ3)⊗4

)
x,y
.

(6.2.48)

Now following through the same expansion as before we have

〈(S 3
x)2(S 3

y)2〉Λ,β =
1

Z(1)
Λ̃,β

∫
ρ(dω)

∑
σ∈Σ(1)(ω)

(
1
4

+ σx0σx1 + σy0σy1 + 4σx0σx1σy0σy1

)
.

(6.2.49)

Using (6.2.47) and noting that the last term in the sum requires either two loops containing

two of the sites x0, x1, y0, y1 each or one loop containing all four sites to give a non-zero

contribution to the sum overall (if one site is not connected to any other its spin value can

be ± 1
2 independently of other sites, averaging the integral on this set to zero) we have

〈(S 3
x)2(S 3

y)2〉Λ,β−〈(S 3
x)2〉Λ,β〈(S 3

y)2〉Λ,β = −
1
36

+
1
4
P
(

x0

x1

y0

y1

)
+

1
2
P
(

x0

x1

y0

y1

)
+

1
4
P
(

x0

x1

y0

y1
��@@

)
. (6.2.50)

The probability P
(

x0

x1

y0

y1

)
comes with twice the weight because there are two ways to connect

both sites at x to different sites at y (but only one way both sites at x can be connected and

both sites at y can be connected).

Proof of c). For the third correlation we use the same expansion

〈S 1
0S 3

0S 1
xS 3

x〉Λ,β =
4

Z(1)
Λ̃,β

Tr (σ1σ3 ⊗ 1 + σ1 ⊗ σ3)x(σ1σ3 ⊗ 1 + σ1 ⊗ σ3)yPΛe−βH̃(1)
Λ̃ . (6.2.51)

The factor 4 has come from grouping together terms such as σ1 ⊗σ3 and σ3 ⊗σ1 that have
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the same expectation. A useful observation at this stage is that σ1σ3 = −i
2 σ

2. Calculating

further and noting that the two cross terms in the above product have the same expectation

we see

〈S 1
0S 3

0S 1
xS 3

x〉Λ,β = 4
〈
−

1
4
σ2 ⊗ 1 ⊗ σ2 ⊗ 1 − iσ2 ⊗ 1 ⊗ σ1 ⊗ σ3 + σ1 ⊗ σ3 ⊗ σ1 ⊗ σ3

〉(1)

Λ̃,β

.

(6.2.52)

From the symmetric roles of σi for i = 1, 2, 3 and part a) we know the first term is

−
(−1)‖x−y‖

4 P(x0 y0). For the second term we need 〈σ2 ⊗ 1 ⊗ σ1 ⊗ σ3〉
(1)
Λ̃,β

. This is the expec-

tation of a matrix with purely imaginary entries, due to the one appearance of σ2. Now we

note three pieces of information that allow us to calculate this expectation. All the matrices

e−βH̃(1)
Λ̃ , PΛ, σ

1, σ2 and σ3 are Hermitian. The matrices σi are acting on different sites in

Λ̃ and hence they commute. e−βH̃(1)
Λ̃ and PΛ commute and have real entries. This means

taking the adjoint of the operator leaves the expectation unchanged. Because the operator

is purely imaginary we should obtain the negative of what we started with on taking the

adjoint. Hence the correlation must be zero.

For the last term we expand as in Proposition 6.2.2 and obtain

〈σ1 ⊗σ3 ⊗σ1 ⊗σ3〉
(1)
Λ̃,β

=
1

Z(1)
Λ̃,β

∫
ρ(dω)

∑
σ∈Σ(1)

x0 ,y0 (ω)

zx0,y0(σ,ω)〈σ·,0+|σ
1 ⊗σ3 ⊗σ1 ⊗σ3|σ·,0−〉

(6.2.53)

Hereσ·,0± denotes the full spin configuration for someσ ∈ Σx0,y0(ω) at time 0± respectively.

Also note that as σ1 flips spins and σ3 does not the set of space-time spin configurations

Σ
(1)
x0,y0(ω) is the correct set. We could expand the set of configurations we sum over to include

configurations that flip spin at sites x1 and y1 at time zero but these would not be compatible

with σ3 acting at time zero at those sites hence they would not contribute. Recall that a loop

that contains a site that spin flips at time zero cannot contain only one such site, hence the set

of configurations that contribute to the integral is E[x0 y0]. Again the set of configurations

where one of the sites x1 or y1 is not connected to any of the other three does not contribute

to the integral. Combining these two facts we see that the only sets of configurations that

contribute to the integral are those where there are two loops each containing two sites (one

with x0 and y0 and the other with x1 and y1), or one loop containing all four sites. For the

case of two loops there is one factor of zx0,y0(σ,ω) = (−1)‖x−y‖ from the loop containing x0

and y0 (where σ1 acts). Another factor of (−1)‖x−y‖ comes from the loop containing x1 and

y1 and the condition that the spin flips on crossing a bar. Note that for the first loop there is

no such factor coming from spin flips at bars because σ1| ± 1
2 〉 = +1

2 | ∓
1
2 〉 hence there is a

factor of + 1
2 regardless of the spin value at the site. For the case of one loop containing all

sites the order that sites occur in the loop is important, this is because both σ1 and σ3 are
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acting at sites in the loop. If, when following the loop, the site y1 appears directly before

or after the site x1 then the section of loop between these sites follows the normal rule of

flipping spins at bars (or if we follow the loop the other way we pass through two spin flips

at time zero as well, these cancel each other out as far as the product of spins at sites x1 and

y1 is concerned). This means we have a factor of (−1)‖x−y‖ as before. If one of the sites x0

or y0 appears between sites x1 and y1 on the loop the effect of the extra spin flip changes the

sign of the factor coming from the product of spins, giving a factor of −(−1)‖x−y‖. As before

we also have the factor zx0,y0(σ,ω) = (−1)‖x−y‖ in both cases. This means the correlation is

〈σ1 ⊗ σ3 ⊗ σ1 ⊗ σ3〉
(1)
Λ̃,β

=
1

16

[
P
(

x0

x1

y0

y1

)
+ P

(
x0

x1

y0

y1

-

�6 ?

)
− P

(
x0

x1

y0

y1
���@@I? ?

)]
. (6.2.54)

Recall that the arrows in the events show the direction that the loop is traversed. From this

we can finally deduce that

〈S 1
xS 3

xS 1
yS 3

y〉Λ,β =
1
4

[
−(−1)‖x−y‖P(x0 y0) + P

(
x0

x1

y0

y1

)
+ P

(
x0

x1

y0

y1

-

�6 ?

)
− P

(
x0

x1

y0

y1
���@@I? ?

)]
. (6.2.55)

Now we note that the last two probabilities are equal (swap y0 and y1).

The correlations d) and e) follow easily using the same techniques and considerations as

above. �

For the H̃(2)
Λ̃

model the factor zxi,y j(σ,ω) does not play a role (it is equal to one in all cases).

There are no spin flips at bars, making several aspects simpler. We will require the following

identity, it is easy to prove

〈R3
xR3

y〉
(2)
Λ̃,β

= P(x0 y0). (6.2.56)

From this we can easily obtain some bounds on these correlations that are potentially very

difficult to obtain without the loop model.

Corollary 6.2.4. For i, j = 1, 2, 3, x , y, i , j and Λ bipartite

a) 〈(S i
x)2(S i

y)2〉Λ,β − 〈(S 3
x)2〉Λ,β〈(S 3

y)2〉Λ,β ≤
1

18 + 3
4 (−1)‖x−y‖〈S i

xS i
y〉Λ,β

b) 〈S i
xS j

xS i
yS j

y〉Λ,β ≤
1
4 ((−1)‖x−y‖ − 1)〈S i

xS i
y〉Λ,β

c) 〈S i
xS j

xS j
yS j

y〉Λ,β ≤
1
4 ((−1)‖x−y‖ + 1)〈S i

xS i
y〉Λ,β

d) 〈S i
xS j

xS i
yS j

y〉Λ,β

 ≥ 0 if ‖x − y‖ is odd

≤ 0 if ‖x − y‖ is even

e) 〈S i
xS j

xS j
yS i

y〉Λ,β

 ≤ 0 if ‖x − y‖ is odd

≥ 0 if ‖x − y‖ is even
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Proof. All inequalities are immediate from Proposition 6.2.3 when we note that E
[

x0

x1

y0

y1

]
is

a sub-event of E[x0 x1] and E
[

x0

x1

y0

y1

]
is a sub-event of E[x0 y0]. �

Other inequalities of interest involve correlations between nearest neighbour points. Equa-

tion (29) in [106] allows us to obtain the following bound in the ground state (β→ ∞)

P(00 e10 ) ≥
1
d

2J2 − 3J1

4J2 − 3J1
. (6.2.57)

Now looking at Proposition 6.2.3 b) for ‖x− y‖ = 1 (say x = 0, y = e1) we see that if J1 = 0

then the event P(00 e10 ) puts us into the case of one of the last two probabilities. Ignoring

the first probability (as it is difficult to control) we obtain (for J2 > 0 = J1)

〈(S 3
0)2(S 3

e1
)2〉Λ,β − 〈(S 3

0)2〉Λ,β〈(S 3
e1

)2〉Λ,β ≥ −
1
36

+
1

8d
. (6.2.58)

This bound is positive for d ≤ 4, however it was not sufficient to deduce nematic order

Theorem 6.2.12. A lower bound on ρ(e1) in terms of P(00 e10 ) can be deduced.

Proposition 6.2.5. For J2 > 0

ρ(e1) ≥
−J1

3J2
+

2
9
−

(
−J1

J2
+

1
2

)
P(00 e10 ). (6.2.59)

Proof. We use that limβ→∞〈H
J1,J2
ΛL
〉β ≤ 〈ψ,H

J1,J2
ΛL

ψ〉 for any state ψ. The expectation of

HJ1,J2
ΛL

can be calculated as

〈HJ1,J2
ΛL
〉β = −d|ΛL|〈J1Sx · Sy + J2(Sx · Sy)2〉β

= −d|ΛL|

(
− 3J1P(00 e10 ) + 3J2

(
ρ(e1) +

4
9

)
+

3
2

J2P
(

00

01

e10
e11

))
.

(6.2.60)

Now we define a state ψNéel = ⊗x∈ΛL |(−1)x〉 and find

〈ψNéel,H
J1,J2
ΛL

ψNéel〉 = −d|ΛL|(−J1 + 2J2). (6.2.61)

The result follows from using the bound P
(

00

01

e10
e11

)
≤ P(00 e10 ). �
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6.2.6 Occurrence of macroscopic loops

Setting and results

We take the cubic lattice in Zd with side length L, denoted ΛL, with periodic boundary con-

ditions. The edge set, EL, will consist of pairs of nearest neighbour lattice points. Precisely

ΛL =

{
−

L
2

+ 1, ...,
L
2

}d
, (6.2.62)

EL ={{x, y} ⊂ ΛL| ‖x − y‖ = 1 or |xi − yi| = L − 1 for some i = 1, ..., d}. (6.2.63)

For the main theorem we need to introduce two integrals, they come about due to similar

considerations as in [58]

Id =
1

(2π)d

∫
[−π,π]d

1
d

d∑
i=1

cos ki


+

√
ε(k + π)
ε(k)

dk, (6.2.64)

Kd =
1

(2π)d

∫
[−π,π]d

√
ε(k + π)
ε(k)

dk. (6.2.65)

Here (·)+ denotes the positive part and ε(k) = 2
∑d

i=1(1 − cos(ki)).

Theorem 6.2.6. Let d ≥ 3 and J1 ≤ 0 ≤ J2, there is a β0 such that for β > β0 and L even

there is a c = c(J1, J2, d, β) > 0 such that

lim inf
L→∞

1
|ΛL|

∑
x∈ΛL

P(00 x0 ) ≥ c. (6.2.66)

More precisely we obtain two possibilities for this constant, c:

lim inf
L→∞

1
|ΛL|

∑
x∈ΛL

P(00 x0 ) ≥ lim inf
L→∞


√
P(00 e10 )

(
√
P(00 e10 ) − Id

√
1
4 −

J2
J1

)
+ o

(
1
β

)
,

1 − Kd
√
P(00 e10 )

√
1
4 −

J2
J1

+ o
(

1
β

)
.

(6.2.67)

Note we have already taken a lim infL→∞ for the integrals Id,Kd but we do not write their

discrete version here for brevity, the origin of their discrete versions is at the end of this

section. Showing that there is a positive lower bound for (6.2.67) is sufficient to prove the

theorem. It can be seen from the proof that a positive lower bound will exist for L large

enough, however it is the infinite volume limit that we are really interested in. Positivity

of this lower bound implies the occurrence of macroscopic loops and hence implies Néel

order for those values of J1 and J2 in the spin-1 system.
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Of course we see that for −J1 + J2 > 0 the positivity of the lower bound doesn’t depend

on the value of J2
1 + J2

2 , only on the ratio −J1/J2. This means there corresponds an angle,

measured from the J1 axis, such that for angles less than this we have proved the existence

of macroscopic loops. The bound is positive for large enough β if

√
P(00 e10 ) <

1
Kd

√
−4J1

−J1 + 4J2
or

√
P(00 e10 ) > Id

√
1
4
−

J2

J1
. (6.2.68)

One of these is certainly satisfied if IdKd < (−4J1)/(−J1 + 4J2). A table of values of Id and

Kd for various d is presented Section 6.2.1 and in [111]. If J2
1 + J2

2 = 1 this is the case in

d = 3 for J1 < −0.42, d = 4 for J1 < −0.28 and d = 5 for J1 < −0.22.

A similar theorem (Theorem 6.2.12) concerning nematic order (corresponding to correla-

tion b) in 6.2.3) can be proved using the same methods. Unfortunately showing that one of

the lower bounds obtained was positive proved difficult due to the seemingly unavoidable

issue of bounding more complicated connection probabilities from below.

In [70] the theorem is proved by appealing to previous literature and using the loop model

when required. The theorem can also be achieved by just using the loop model. The proof

will be laid out as follow. Firstly reflection positivity will be proved for the loop model.

From this we obtain an infrared bound for a correlation function related to P(00 e10 ). We

will then use the Falk-Bruch inequality to transfer this bound to a bound on the Fourier

transform of P(00 e10 ). We work with this model as the lack of spin flips at bars makes it

possible to prove reflection positivity and obtain the required infrared bound.

Reflection positivity for the random loop model

We first introduce some new notation for readability. The aim is to follow the approach

in [111] hence notation will be largely consistent where possible. First, for t ∈ [0, β] and

x ∈ ΛL we denote the probability that the point (00, 0) ∈ Λ̃L × [0, β] is connected to the

point (x0, t) by κ(x, t), when t = 0 we will abbreviate this to κ(x). We define the Fourier and

inverse Fourier transform as follows

κ̂(k, t) =
∑
x∈ΛL

e−ik·xκ(x, t), (6.2.69)

κ(x, t) =
1
Ld

∑
k∈Λ∗L

eik·xκ̂(k, t). (6.2.70)

Here Λ∗L =
{
k ∈ 2π

L Z
d
∣∣∣ − π < kn ≤ π, n = 1, ..., d

}
is the dual lattice to ΛL.
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Recall the definition of a space-time spin configuration σ : Λ̃L × [0, β] → {−1/2, 1/2}. We
will work with H̃2

Λ̃L
for the remainder of this section as we are currently interested in loops

(so no spin flips at bars). These results automatically transfer to results about long-range
order in the spin models. We also introduce real vector fields v = (vxi)x∈ΛL that act on sites
of Λ̃L (but with values that only depend on x ∈ ΛL, not on i ∈ {0, 1}). More precisely v is
a function Λ̃L → R such that vx0 = vx1 for every x ∈ ΛL. Now we define a new partition
function

Z(v) =

∫
ρι(dξ)

∑
σ∈Σ(2)(ξ)

exp
{
−(−2J1)

∑
{xi,y j}∈ẼL

∫ β

0
dt

[
(σxi,t−σy j,t)(vxi−vy j )+

1
4

(vxi−vy j )
2
]}
. (6.2.71)

Notice that Z(0) = Z(2)
Λ̃,β

. We write vxi even though there is no dependence on i as it will be

convenient to define an inner product on Λ̃L (6.2.81) to avoid chasing extra factors of 2 in
calculations. We can also write this as

Z(v) =

∫
ρι(dξ)

∑
σ∈Σ(2)(ξ)

exp
{
− (−2J1)

∑
{xi,y j}∈ẼL

∫ β

0
dt

[
(σxi,t +

1
2

vxi −σy j,t −
1
2

vy j )
2 − (σxi,t −σy j,t)

2
]}
.

(6.2.72)

In order to prove reflection positivity for this partition function we must introduce reflec-

tions in a concrete way, it turns out that they can be simply indexed. For i ∈ {1, ..., d} and

l ∈
{

1
2 ,

3
2 , ..., L −

1
2

}
let Ri,l be the reflection Λ̃L → Λ̃L across edges associated to {x, y} ∈ E

for xi = l − 1
2 , yi = l + 1

2 . Recall that sites x0, x1 ∈ Λ̃L play identical roles in the random

loop model and we consider them as having the same spatial coordinates. We also define

the parts of Λ̃L to the ‘left’ and ‘right’ of the plane of reflection as the set of points in Λ̃L

associated to the following subsets of ΛL

Λ
(1)
L =

{
x ∈ ΛL

∣∣∣∣xi = l −
L
2
, ..., l −

1
2

}
, Λ

(2)
L =

{
x ∈ ΛL

∣∣∣∣xi = l +
1
2
, ..., l +

L
2

}
. (6.2.73)

We can then write the field as v = (v(1), v(2)) where v(i) = v|
Λ̃

(i)
L

. Also write Rv(1) for the

field (Rv(1))x = v(1)
Rx , x ∈ Λ̃

(1)
L and define Rv(2) similarly. Note that if x ∈ Λ(1) then Rx ∈ Λ(2).

Now we can state and prove the property of reflection positivity.

Lemma 6.2.7.
Z(v(1), v(2))2 ≤ Z(v(1),Rv(1))Z(Rv(2), v(2)) (6.2.74)

Proof. We want to split the assignment of intensities ι into ι′ and ι′′ such that ι = ι′ + ι′′ in

a helpful way. ι′′ will consist of single bar events where the spin value at time t− and t+ are

the same at each of the four sites associated to it.

a′ a a b
a′ a a b

ι′′
({ })

= −2J1 (6.2.75)
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ι′ makes up the remaining events in ι

ι′
({ }

a,c

)
= −2J1, ι′

({ }
a′,c′

)
= J2, ι′

({ })
= J2.

(6.2.76)

a′ a a b

a′ c c b

a′ a a a′

c′ c c c′
b a a b

b c c b

Here it may be helpful to interpret these intensities slightly differently. One way is to
interpret the point process as above with the understanding that events obtained from above
specifications by switching ‘0’ and ‘1’ sites occur with the same intensity. This switching of
sites plays the role of the crosses. Another interpretation is that a bar event at (x, y, t) always
connects x1 and y0, how the bar effects the loop structure then depends on the number of
crosses that have occurred in the preceding vertical segment. Now using Lemma 2.2 of
[111] we have

Z(v) =

∫
ρι′ (dξ′)

∫
ρι′′ (dξ′′)

∑
σ∈Σ(2)(ξ′∪ξ′′)

exp
{
− (−2J1)

∑
{xi ,y j}∈ẼL

∫ β

0
dt

[
(σxi ,t − σy j ,t)(vxi − vy j ) +

1
4

(vxi − vy j )
2
]}
.

(6.2.77)

We can now make use of the way we split the intensities in ι′ and ι′′. If F : Σ → R is a

function on space-time spin configurations then∫
ρι′′(dξ′′)

∑
σ∈Σ(2)(ξ′∪ξ′′)

F(σ) =
∑

σ∈Σ(2)(ξ′)

F(σ)
∫

ρι′′(dξ′′)
∏

(xi,y j,t)∈ξ′′
δσxi ,t ,σy j ,t

. (6.2.78)

This is because all that the function F ‘sees’ at ι′′ events is that σxi,t = σy j,t for a pair of

sites joined by a bar. Here (x, y, t) is a point where an event of type (6.2.75) occurs. We also

have for ξ′ and σ ∈ Σ(2)(ξ′) that

∫
ρι′′(dξ′′)

∏
(xi,y j,t)∈ξ′′

δσxi ,t ,σy j ,t
= exp

−(−2J1)
∑

{xi,y j}∈ẼL

∫ β

0
dt(1 − δσxi ,t ,σy j ,t

)

 . (6.2.79)

Using 1 − δσxi ,t ,σy j ,t
= (σxi,t − σy j,t)

2 with (6.2.78) and (6.2.79) gives

Z(v) =

∫
ρ′ι(dξ

′)
∑

σ∈Σ(2)(ξ′)

exp
{
− (−2J1)

∑
{xi,y j}∈ẼL

∫ β

0
dt

(
σxi,t +

1
2

vxi − σy j,t −
1
2

vy j

)2 }
.

(6.2.80)

This can now be treated as in [111] as the measure ρι′ is reflection symmetric. This can be

seen by noting that for a reflection through edges any event of ι′ associated to an edge {x, y}

crossed by the reflection plane is symmetric with respect to swapping of the sites x0, x1 with

the sites y0, y1 (recall that the sites x0 and x1 play equivalent roles). �

Lemma 6.2.8. Z(v) is maximised by v ≡ 0.
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Proof. See [13, 35, 43, 111] for details. Showing maximisers exist is simple. We can fix

the field value at 00 to be 0 and take v(n) such that v(n)
00

= 0 and supxi
|v(n)

xi | → ∞ as n → ∞,

note that Z(v(n))→ 0 for any such v(n). Hence we can take the maximum on a compact set,

as Z(v) is continuous and positive maximisers exist.

The proof that the maximiser is given by v ≡ 0 is easy. Take an arbitrary maximising field,

v, by Lemma 6.2.7 the field (v(1),Rv(1)) is also a maximising field with vxi = v(Rx)i for

each xi ∈ Λ̃
(1)
L . Notice that if we repeat this procedure then after log2(|ΛL|) we will have a

maximising field that is constant. Now we note that the value of Z(v) for a constant field

does not depend on the value of that constant, hence we can take the constant v ≡ 0. �

Infrared bound for the correlation function

From the preceding section we can obtain an infrared bound (IRB) on the correlation func-

tion. First we define the inner product and discrete Laplacian on Λ̃L. For v and v′ fields on

Λ̃L we define their inner product, and the discrete Laplacian as

(v, v′) =
∑

xi∈Λ̃L

v̄xiv
′
xi

(6.2.81)

(∆v)xi =
∑

y j:{xi,y j}∈ẼL

(vy j − vxi) (6.2.82)

Lemma 6.2.9. For k ∈ Λ∗L \ {0}

κ̃(k, 0) =:
∫ β

0
dtκ̂(k, t) ≤

1
(−2J1)ε(k)

(6.2.83)

where ε(k) = 2
∑d

i=1(1 − cos ki).

Proof. To begin we see

Z(v) =

∫
ρ(dω)

∑
σ∈Σ(2)(ω)

exp
{

(−2J1)
(∫ β

0
(σ·,t,∆v)dt +

β

4
(v,∆v)

)}
. (6.2.84)

As usual we choose our field to be given by vxi = cos(k · x) where xi = (x, i) and expand
around v = 0 to second order. We will make use of the identity −∆v = ε(k)v for this
particular choice of v. Let η > 0 be a (small) parameter. Now

Z(ηv) = Z(0) +

∫
ρ(dω)

∑
σ∈Σ(2)(ω)

η2(−2J1)2ε(k)2

2

∫ β

0
dt

∫ β

0
dt′(σ·,t, v)(σ·,t′ , v) −

η2

4
(−2J1)βε(k)(v, v) + O(η4).

(6.2.85)
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Collecting terms gives

Z(0)
(
1 + 2η2J2

1ε(k)2β

∫ β

0
dtE

[
(σ·,0, v)(σ·,t, v)

]
−
η2

2
(−J1)βε(k)(v, v)

)
+ O(η4). (6.2.86)

We can calculate the expectation quite easily.

E
[
(σ·,0, v)(σ·,t, v)

]
=

∑
xi,zn∈Λ̃L

cos(k · x) cos(k · (x − z))

1
4 κ(z,t)︷         ︸︸         ︷

E
[
σ00,0σzn,t

]
=

∑
xi∈Λ̃L

1
2

cos2(k · x) κ̂(k, t)

=
1
2

(v, v)κ̂(k, t).

(6.2.87)

On the second line we have used that cos θ = Re
(
eiθ

)
. Finally we have

Z(ηv) = Z(0)(v, v)
(
1 + η2J2

1βε(k)2
∫ β

0
dtκ̂(k, t) −

η2

2
(−J1)βε(k)

)
+ O(η4). (6.2.88)

From the Gaussian domination inequality Z(v) ≤ Z(0) we know the bracket is bounded by

1 for small enough η, hence rearranging gives∫ β

0
dtκ̂(k, t) ≤

1
(−2J1)ε(k)

. (6.2.89)

�

The next step is to transfer this infrared bound to κ̂(k, 0). We will need the Falk-Bruch

inequality.

1
2
〈A∗A + AA∗〉(2)

Λ̃L,β
≤

1
2

√
(A, A)(2)

Duh

√
〈[A∗, [H̃(2)

Λ̃L
, A]]〉(2)

Λ̃L,β
+

1
β

(A, A)(2)
Duh. (6.2.90)

Where (·, ·)(2)
Duh is the Duhamel inner product

(A, B)(2)
Duh =

1

Z(2)
Λ̃L,β

∫ β

0
dsTr A∗e

−sH̃(2)
Λ̃L Be

−(β−s)H̃(2)
Λ̃L . (6.2.91)

We will use this inequality with A = R̂3
k =

∑
x∈ΛL e−ik·xR3

x (and hence A∗ = R̂3
−k). The main
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task is calculating the double commutator. It is simple to show

[R̂3
−k, [H̃

2
Λ̃L
, R̂3

k]] =
∑

x,y:{x,y}∈EL

[R3
x + cos(k(x − y))R3

y , [2J1S
(2)
x,y − J2D

(2)
x,y,R

3
x]]. (6.2.92)

We need to calculate some the expectations of these double commutators. To begin we

define new operators S33
x,y andD33

x,y by their matrix elements,

〈a′, b′| ⊗ 〈c′, d′|S33
x,y|a, b〉 ⊗ |c, d〉 = (b − b′)2δa,a′δd,d′δb,cδb′,c′ , (6.2.93)

〈a′, b′| ⊗ 〈c′, d′|D33
x,y|a, b〉 ⊗ |c, d〉 = (a − a′ + b − b′)2δa,dδb,cδa′,d′δb′,c′ . (6.2.94)

We have the following result

Lemma 6.2.10.

S33
x,y = −[R3

x, [S
(2)
x,y,R

3
x]] = −[R3

y , [S
(2)
x,y,R

3
x]], (6.2.95)

D33
x,y = −[R3

x, [D
(2)
x,y,R

3
x]] = −[R3

y , [D
(2)
x,y,R

3
x]]. (6.2.96)

Proof. The proof is tedious (and somewhat messy). The propensity for making mistakes is

high, hence one of the calculations will be done explicitly.

[R3
x, [S

(2)
x,y,R

3
x]] = 2R3

xS
(2)
x,yR3

x︸      ︷︷      ︸
1

−S
(2)
x,y(R3

x)2︸    ︷︷    ︸
2

− (R3
x)2S

(2)
x,y︸    ︷︷    ︸

3

. (6.2.97)

1. 2〈a′, b′| ⊗ 〈c′, d′|R3
xS

(2)
x,yR3

x|a, b〉 ⊗ |c, d〉

= 2(a + b)〈a′, b′| ⊗ 〈c′, d′|
∑
α,β,γ,δ

R3
x|α, β〉 ⊗ |γ, δ〉〈α, β| ⊗ 〈γ, δ|S

(2)
x,y|a, b〉 ⊗ |c, d〉

= 2(a + b)〈a′, b′| ⊗ 〈c′, d′|
∑
β

R3
x|a, β〉 ⊗ |β, d〉δb,c

= 2(a + b)(a′ + b′)δa,b′δa,a′δd,d′δb,cδb′,c′ .

2. −〈a′, b′| ⊗ 〈c′, d′|S(2)
x,y(R3

x)2|a, b〉 ⊗ |c, d〉 = −(a + b)2δa,a′δd,d′δb,cδb′,c′ .

3. −〈a′, b′| ⊗ 〈c′, d′|(R3
x)2S

(2)
x,y|a, b〉 ⊗ |c, d〉 = −(a′ + b′)2δa,a′δd,d′δb,cδb′,c′ .

(6.2.98)

For 3 we have used the same method as for 1. Combining these gives the result. �

Now to calculate the expectation of the double commutator we require 〈S33
0,e1
〉
(2)
Λ̃L,β

and

〈D33
0,e1
〉
(2)
Λ̃L,β

. Again we need a small lemma for this calculation.
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Lemma 6.2.11.

〈S33
0,e1
〉
(2)
Λ̃L,β

=P(00 e10 ), (6.2.99)

〈D33
0,e1
〉
(2)
Λ̃L,β
≤8P(00 e10 ), (6.2.100)

Remark. We could calculate 〈D33
0,e1
〉
(2)
Λ̃L,β

exactly. However it involves probabilities of the

kind seen in Section 6.2.5 (and even more that have not been seen). Many of these terms

are hard to bound other than by P(00 e10 ) and hence we would end up with a much bigger

multiple of P(00 e10 ) than we do here. Of course if we could bound these complicated

probabilities in theory the result could be improved, as could many results here.

Proof. For the first equality we let ω be a realisation of ρ and ω ∪ b0 be the realisation

where a single bar on edge {01, e10} has been added at t = 0. Then

〈S33
0,e1
〉
(2)
Λ̃L,β

=
1

Z(2)
Λ̃L,β

∫
ρ(dω)

∑
σ∈Σ(2)(ω∪b0)

(σ01,0+ − σ01,0−)2

=
1

Z(2)
Λ̃L,β

∫
ρ(dω)

(
χ(01 e10 ) + χ(00 e10 )

) ∑
σ∈Σ(2)(ω∪b0)

(σ01,0+ − σ01,0−)2.

(6.2.101)

Here χ(E) is the indicator function of the event E. Note that a bar added between disjoint

loops merges them and adding a bar within a loop splits it. The integral over E [00 e10 ]

with a bar added between (01, 0) and (e10 , 0), this forces σ01,0+ = σ01,0− so this contributes

nothing. The second term is over E [01 e10 ] with the same bar added. The sum becomes

∑
σ∈Σ(2)(ω∪b0)

(σ01,0+ − σ01,0−)2 = 2|L(ω)|−1
1/2∑

a,b=−1/2

(a − b)2 = 2|L(ω)|. (6.2.102)

Hence we have the first result. For the second result let ω ∪ d0 be the realisation with an
extra double bar on edge {0, e1} at t = 0 joining point 00 to e11 and point 01 to e10 . Then

〈D33
0,e1
〉

(2)
Λ̃L,β

=
1

Z(2)
Λ̃L,β

∫
ρ(dω)

∑
σ∈Σ(2)(ω∪d0)

(σ00,0+ − σ00,0− + σ01,0+ − σ01,0−)2

=
1

Z(2)
Λ̃L,β

∫
ρ(dω)

(
χ(01 e10 ) + χ(00 e10 )

) ∑
σ∈Σ(2)(ω∪d0)

(σ00,0+ − σ00,0− + σ01,0+ − σ01,0−)2

(6.2.103)

It can be seen (either by looking at the appropriate loop pictures or otherwise) that for

ω ∈ E [00 e10 ], the sum can be bounded by looking at the four sites 00, 01, e10 , e11 . We
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consider whether they are in one, two or three different loops as follows

∑
σ∈Σ(2)(ω∪d0)

(σ00,0+ − σ00,0− + σ01,0+ − σ01,0−)2 ≤


12 · 2|L(ω)|−1 one loop

16 · 2|L(ω)|−2 two loops

2 · 2|L(ω)|−3 three loops.

(6.2.104)

Noting that the four sites being in one, two or three separate loops are disjoint events we can

bound the integral over E [00 e10 ] by the most likely event giving a bound of 6P(00 e10 ).

As for the integral over E [01 e10 ], the same considerations result in a bound of 2P(00 e10 ).

In this case the sites can be in four loops but then adding a double bar makes the sum equal

to zero. In the case of three or two loops with the sum none zero we are in ω ∈ E [0i e1 j ]

for some (i, j) , (1, 0). The result follows. �

Finally we can use these results to see

〈[R̂3
−k, [H̃

(2)
Λ̃L
, R̂3

k]]〉(2)
Λ̃L,β

=
∑

x,y:{x,y}∈EL

(1 + cos(k · (x − y)))(−2J1S
33
x,y + J2D

33
x,y)

≤|ΛL|(−2J1 + 8J2)P(00 e10 )ε(k + π).
(6.2.105)

The first inequality used Lemma 6.2.10 and the inequality used Lemma 6.2.11. We also

have
̂(R3
0,R

3
x)

(2)

Duh(k) = κ̃(k, 0). (6.2.106)

From this we have the bound

̂〈R3
0R3

x〉
(2)

Λ̃L,β
(k) ≤

√
P(00 e10 )

2

√
−2J1 + 8J2

−2J1

√
ε(k + π)
ε(k)

+
1
β

1
(−2J1)ε(k)

(6.2.107)

Now we use the identity

1
|ΛL|

∑
x∈ΛL

P(00 x0) = κ(y) −
1
|ΛL|

∑
k∈Λ∗L\{0}

eikyκ̂(k) (6.2.108)

with y = 0 and y = ei. For the second choice we use the sum rule in [58], more precisely

we use (6.2.108) and the identity

∑
k∈Λ∗L\{0}

cos(k1)κ̂(k) =
∑

k∈Λ∗L\{0}

κ̂(k)

1
d

d∑
i=1

cos(ki)

 ≤ ∑
k∈Λ∗L\{0}

κ̂(k)

1
d

d∑
i=1

cos(ki)


+

. (6.2.109)

This gives the result.
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6.2.7 Nematic order for J1 ≤ 0 ≤ J2 - an initial result

The loop model was effective in giving an explicit region where macroscopic loops (and

Néel order for the corresponding spin system) occur. There remains part of the quadrant

J1 ≤ 0 ≤ J2 where long-range order has not been shown. The aim of this section is to

prove an analogous result to that of the previous section with the aim to eventually be able

to prove long-range order in the remainder of the quadrant. The result in [69] suggests the

possibility of showing nematic order for |J1| sufficiently small. Nematic order is expected

to be weaker than Néel order. Much of the argument is the same as in Section 6.2.6 however

the proof of reflection positivity is slightly more involved. We use the following notation,

ρ(x) =〈(S 3
0)2(S 3

x)2〉2ΛL,β
− 〈(S 3

0)2〉2ΛL,β
〈(S 3

x)2〉2ΛL,β

= −
1
36

+
1
4
P
(

00

01

x0

x1

)
+

1
2
P
(

00

01

x0

x1

)
+

1
4
P
(

00

01

x0

x1
��@@

)
.

(6.2.110)

This is a function of probabilities of sites being connected at time t = 0. The corresponding

event for the connections being between (0, 0) and (x, t) is denoted ρ(x, t). We can see from

the proof of Proposition 6.2.3 that ρ(x) is the same if we take expectations in 〈·〉(1)
ΛL,β

or

〈·〉
(2)
ΛL,β

. The main theorem of this section is the following:

Theorem 6.2.12. Let d ≥ 3 and J1 ≤ 0 ≤ J2, for L even we have two bounds

lim inf
L→∞

1
|ΛL|

∑
x∈ΛL

ρ(x) ≥ lim inf
L→∞


2
9 −
√
P(00 e10 )

√
−2J1+ 9

4 J2

4J2
Kd + o

(
1
β

)
,

ρ(e1) −
√
P(00 e10 )

√
−2J1+ 9

4 J2

4J2
Id + o

(
1
β

)
.

(6.2.111)

It is difficult to give a satisfactory bound on ρ(e1). But as for Néel order we reason as

follows. The sum is certainly positive for β large enough if

√
P(00 e10 ) <

2
9Kd

√
4J2

−2J1 + 9
4 J2

or
√
P(00 e10 ) <

ρ(e1)
Id

√
4J2

−2J1 + 9
4 J2

. (6.2.112)

Combining Proposition 6.2.5 with the second bound of (6.2.112) we have the sufficient

condition of

P(00 e10 )+
(

Id

−2J1 + J2

) √
J2

(
−2J1 +

9
4

J2

) √
P(00 e10 ) −

2
9

(
−3J1 + 2J2

−2J1 + J2

)
≤ 0. (6.2.113)

This is a quadratic inequality in
√
P(00 e10 ) . For d = 3 the largest root is bounded below

by 0.5 for all values of J1 ≤ 0 ≤ J2 on the unit circle. We then see that a modest upper
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bound on
√
P(00 e10 ) should yield nematic order, however finding such a bound seems

quite difficult. The rest of this section is dedicated to the proof of Theorem 6.2.12.

To begin we define a partition function dependent on external fields, v, as in Section 6.2.6

Z(v) =

∫
ρι(dξ)

∑
σ∈Σ(2)(ξ)

exp

−J2

∑
{xi,y j}∈ẼL

∫ β

0
(σx0,tσx1,t − σy0,tσy1,t)(vxi − vy j ) +

1
4

(vxi − vy j )
2dt


(6.2.114)

we can also write this as

Z(v) =

∫
ρι(dξ)

∑
σ∈Σ(2)(ξ)

exp
{
− J2

∑
{xi,y j}∈ẼL

∫ β

0
dt

[(
σx0,tσx1,t +

vxi

2
− σy0,tσy1,t −

vy j

2

)2

− (σx0,tσx1,t − σy0,tσy1,t)
2
]}
.

(6.2.115)

Hopefully the reader can forgive this clash of notation with the partition function on fields

introduced in Section 6.2.6. The partition function in Section 6.2.6 will not appear or be

used in this section. The partition function (6.2.114) will play the same role in this section

and the prospect of yet more new notation was not appealing.

Lemma 6.2.13. For any reflection, R, across edges

Z(v1, v2)2 ≤ Z(v1,Rv1)Z(Rv2, v2) (6.2.116)

Proof. We note here that

(σx0,tσx1,t − σy0,tσy1,t)
2 = 1 − δσx0 ,tσx1 ,t ,σy0 ,tσy1 ,t

. (6.2.117)

Recalling the proof of reflection positivity previously this suggests that we should split the

intensities of the Poisson point process as follows.

b a a b
b a a b

ι′′
({ })

= J2 (6.2.118)

ι′ makes up the remaining events in ι

ι′
({ }

a,c

)
= J2, ι′

({ })
= −2J1, ι′

({ }
a′,c′

)
= J2.

(6.2.119)

b a a b

b c c b

a′ a a b

a′ c c b

a′ a a a′

c′ c c c′

Again there are two possible interpretations of how the bars are incorporated. Now if F is

96



a function on space-time spin configurations then given a realisation ξ′ of ρι′∫
ρι′′ (dξ′′)

∑
σ∈Σ(2)(ξ′∪ξ′′)

F(σ) =
∑

σ∈Σ(2)(ξ′)

F(σ)
∫

ρι′′ (dξ′′)
∏

(x,y,t)∈ξ′′
δσxi ,t ,σy j ,t

δσxn ,t ,σym ,t
i , n, j , m

(6.2.120)

The product of delta functions incorporates the requirement that two sets of bars occur

between sites x and y at time t. It can be checked that

δσxi ,t ,σy j ,t
δσxn ,t ,σym ,t

= δσx0 ,tσx1 ,t ,σy0 ,tσy1 ,t
− δσx0 ,t ,−σy0 ,t

δσx1 ,t ,−σy1 ,t
δσx0 ,t ,σx1 ,t

. (6.2.121)

If we use this to rewrite (6.2.120) we can see that the second term on the right hand side is

not a double bar event, hence when multiplying out the product only the first term survives.

This means∫
ρι′′(dξ′′)

∑
σ∈Σ(2)(ξ′∪ξ′′)

F(σ) =
∑

σ∈Σ(2)(ξ′)

F(σ)
∫

ρι′′(dξ′′)
∏

(x,y,t)∈ξ′′
δσx0 ,tσx1 ,t ,σy0 ,tσy1 ,t

.

(6.2.122)

Given ξ′ and σ ∈ Σ(ξ′)

∫
ρι′′(dξ′′)

∏
(x,y,t)∈ξ′′

δσx0 ,tσx1 ,t ,σy0 ,tσy1 ,t
= exp

−J2

∑
{xi,y j}∈ẼL

∫ β

0
dt

(
1 − δσx0 ,tσx1 ,t ,σy0 ,tσy1 ,t

) .
(6.2.123)

Now it can be seen that the identity that informed the splitting of the intensities was a useful

one. Combining what we have as before we obtain

Z(v) =

∫
ρι′(dξ′)

∑
σ∈Σ(2)(ξ′)

exp

−J2

∑
{xi,y j}∈ẼL

∫ β

0
dt

(
σx0,tσx1,t +

vxi

2
− σy0,tσy1,t −

vy j

2

)2

 .
(6.2.124)

We are now in the same situation as we were for the previous proof of reflection positivity. It

is again standard to complete the proof by introducing extra fields, the reader is encouraged

to consult [111] for further details. �

From this it follows that Z(v) ≤ Z(0) for any field v as previously. Now we want an IRB,

for this we have the following lemma.

Lemma 6.2.14. For k ∈ Λ∗L \ {0} and J2 > 0∫ β

0
dtρ̂(k, t) ≤

1
J2ε(k)

(6.2.125)

Proof. One extra observation is required. We see that we can write
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Z(v) =

∫
ρι(dξ)

∑
σ∈Σ(2)(ξ)

exp
{
− J2

∑
{xi,y j}∈ẼL

∫ β

0
dt

[
((σx0,tσx1,t − α)

− (σy0,tσy1,t − α))(vxi − vy j) +
1
4

(vxi − vy j)
2
]} (6.2.126)

We then follow precisely the proof of Lemma 6.2.9 and see that if we take α = − 1
12 we

obtain the result. �

This time when we use Falk-Bruch we take A = F ((R3
x)2 − 2

3 )(k), where F (g) denotes the

Fourier transform of g. The double commutator calculation is similar to before,〈
A∗, [H̃(2)

Λ̃L
, A]]

〉(2)

β,Λ
= −

∑
x,y:{x,y}∈ẼL

[(R3
x)2 + cos k(x − y)(R3

y)2, [−2J1S
(2)
x,y + J2D

(2)
x,y, (R

3
x)2]].

(6.2.127)

Now we define operators that will give our double commutators. Recall the operator S33
x,y

and define Q(1)
x,y and Q(2)

x,y by

〈a′, b′| ⊗ 〈c′, d′|Q(1)x, y|a, b〉 ⊗ |c, d〉 =4ad(b − b′)2δa,a′δd,d′δb,cδb′,c′ (6.2.128)

〈a′, b′| ⊗ 〈c′, d′|Q(2)
x,y|a, b〉 ⊗ |c, d〉 =4(ab − a′b′)2δa,dδb.cδa′,d′δb′,c′ (6.2.129)

The relation between these operators and the double commutator is given by the following

lemma.

Lemma 6.2.15.

S33
x,y = − [(R3

x)2, [S(2)
x,y, (R

3
x)2]] (6.2.130)

Q(1)
x,y = − [(R3

y)2, [S(2)
x,y, (R

3
x)2]] (6.2.131)

Q(2)
x,y = − [(R3

x)2, [D(2)
x,y, (R

3
x)2]] = −[(R3

y)2, [D(2)
x,y, (R

3
x)2]] (6.2.132)

Proof. The proof is is essentially the same as that of Lemma 6.2.10, we calculate the ma-

trix elements of the double commutator and see that they are the same. The only slightly

surprising result is that [(R3
x)2, [S(2)

x,y, (R3
x)2]] , [(R3

y)2, [S(2)
x,y, (R3

x)2]] so the proof will be pre-

sented.

[(R3
y)2, [S(2)

x,y, (R
3
x)2]]

= (R3
y)2S

(2)
x,y(R3

x)2︸            ︷︷            ︸
1

+ (R3
x)2S

(2)
x,y(R3

y)2︸            ︷︷            ︸
2

− (R3
y)2(R3

x)2S
(2)
x,y︸            ︷︷            ︸

3

−S
(2)
x,y(R3

x)2(R3
y)2︸            ︷︷            ︸

4

(6.2.133)
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1. 〈a′, b′| ⊗ 〈c′, d′|(R3
y)2S

(2)
x,y(R3

x)2|a, b〉 ⊗ |c, d〉

= δa,b〈a′, b′| ⊗ 〈c′, d′|
∑
α,β,γ,δ

(R3
y)2|α, β〉 ⊗ |γ, δ〉〈α, β| ⊗ 〈γ, δ|S(2)

x,y|a, b〉 ⊗ |c, d〉

= δa,b〈a′, b′| ⊗ 〈c′, d′|
∑
β

(R3
y)2|a, β〉 ⊗ |β, d〉δb,c

= δa,bδc′,d′δa,a′δd,d′δb,cδb′,c′ ,

2. 〈a′, b′| ⊗ 〈c′, d′|(R3
x)2S

(2)
x,y(R3

y)2|a, b〉 ⊗ |c, d〉 = δc,dδa′,b′δa,a′δd,d′δb,cδb′,c′ ,

3. −〈a′, b′| ⊗ 〈c′, d′|(R3
y)2(R3

x)2S
(2)
x,y|a, b〉 ⊗ |c, d〉 = −δa′,b′δc′,d′δa,a′δd,d′δb,cδb′,c′ ,

4. −〈a′, b′| ⊗ 〈c′, d′|S(2)
x,y(R3

x)2(R3
y)2|a, b〉 ⊗ |c, d〉 = −δa,bδc,dδa,a′δd,d′δb,cδb′,c′ .

(6.2.134)

This gives matrix elements of

−(δa,b − δa′,b′)(δc,d − δc′,d′)δa,a′δd,d′δb,cδb′,c′ = −4ad(b − b′)2δa,a′δd,d′δb,cδb′,c′ . (6.2.135)

The other equality follow in the same way. �

We need the expectations of these operators. they are easily calculated using the same

considerations as in Section 6.2.6.

Lemma 6.2.16.

〈Q(1)
x,y〉

(2)
Λ̃L,β
≤ P(00 e10 ), (6.2.136)

〈Q(1)
x,y〉

(2)
Λ̃L,β
≤

9
4
P(00 e10 ). (6.2.137)

Proof. The first inequality is obvious as 4ad(b − b′)2 ≤ (b − b′)2 which puts us in the case

of S33
x,y. For the second integral we use the same method as when calculating 〈D33

0,e1
〉
(2)
Λ̃L,β

.

〈Q(2)
x,y〉

(2)
Λ̃L,β

=
1

Z2
Λ̃L,β

∫
ρ(dω̄)

∑
σ∈Σ(2)(ω̄∪d0)

4(σ00,0+σ01,0+ − σ00,0−σ01,0−)2. (6.2.138)

We look at the cases ω ∈ E [00 e10 ] and ω < E [00 e10 ]. For the cases of 00, 01, e10 , e11

being in 1,2,3 or 4 different loops we look at the possible ways of forming the loops (which

sites are connected and what order they are connected in). Then we can add the double bars

and see which spins are necessarily equal and which can be different. We then bound the

sum in each of these cases. If ω ∈ E [00 e10 ] the biggest contribution is the case of two

loops with two of the sites 00, 01, e10 , e11 each, adding the double bar puts each term in the

sum in a different loop giving a bound of 2 · 2|L(ω)|. In the case ω < E [00 e10 ] the largest

contribution is the case of three loops with 00 and e11 connected, the sum is 1
4 2|L(ω)|. Adding

these cases and recalling that P(xi y j ) does not depend on i or j gives the result. �
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Combining these gives us a bound on the double commutator〈[
(̂R3

x)2(−k), [H̃(2)
Λ̃L
, (̂R3

x)2(k)]
]〉(2)

β,Λ
≤ |ΛL|(−2J1 +

9
4

J2)P(00 e10 )ε(k + π). (6.2.139)

We have the identity F ((R3
0)2 − 2

3 , (R
3
x)2 − 2

3 )2
Duh(k) =

∫ β

0 dtρ̂(k, t). Then Falk-Bruch gives

F

〈(
(R3

0)2 −
2
3

) (
(R3

x)2 −
2
3

)〉(2)

Λ̃L,β

≤

√
P(00 e10 )

2

√
−2J1 + 9

4 J2

J2

√
ε(k + π)
ε(k)

+
1
β

1
J2ε(k)

.

(6.2.140)

Using this with (6.2.108) as before we obtain two bounds in the theorem.

6.2.8 Néel order via space-time reflection positivity

We now use the method of space-time reflection positivity first used in [17] for the quantum

Ising model and also used on loop models in [111]. The main difference is that the fields

we introduced to obtain infrared bounds in previous results will now also depend on time

(i.e. t ∈ [0, β]). We begin by introducing two integrals that will be needed for the statement

of the main theorem,

K′d =
1

(2π)d

∫
[π,π]d

√
d
ε(k)

dk, (6.2.141)

I′d =
1

(2π)d

∫
[π,π]d

√
1

dε(k)

 d∑
i=1

cos ki


+

dk. (6.2.142)

The main theorem of this section is then:

Theorem 6.2.17. Let L(00, 0) denote the length of the loop containing (00, 0). For L even

there is a β0 such that for β > β0 there is a c = c(J1, J2, d, β) > 0 such that

lim inf
L→∞

E

[
L(00, 0)
β|ΛL|

]
≥ c. (6.2.143)

More precisely, for β large enough we obtain two possibilities for this constant, c:

lim inf
L→∞

E

[
L(00, 0)
β|ΛL|

]
≥ lim inf

L→∞


2 − 2

√
(J2 − 2J1)P [00 e10 ]

(−J1)
K′d

(
1 + o

(
1
β

))

2
√
P [00 e10 ]

√P [00 e10 ] −

√
(J2 − 2J1)

(−J1)
I′d

(
1 + o

(
1
β

)) .
(6.2.144)
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For the explicit dependence on β see (6.2.178) and (6.2.181). As for Theorem 6.2.6 it is

sufficient to prove there is a positive lower bound for (6.2.144). There is a positive bound if

√
P [00 e10 ] <

1
K′d

√
(−J1)

(J2 − 2J1)
or

√
P [00 e10 ] > I′d

√
(J2 − 2J1)

(−J1)
. (6.2.145)

One of these inequalities is satisfied if

I′dK′d ≤
(−J1)

(J2 − 2J1)
. (6.2.146)

This is the case for d = 3 if J1 < −0.22 with J2
1 + J2

2 = 1 which is an improvement on

Section 6.2.6. The proof of this theorem comprises the rest of this section.

We now consider fields depending on space and time v : Λ̃L × [0, β]per → R such that
vx0,t = vx1,t for every x ∈ ΛL and t ∈ [0, β]. Define a partition function

Z(v) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{
− (−2J1)

∑
{xi,y j}∈ẼL

∫ β

0
dt[(σxi,t − σy j,t)(vxi,t − vy j,t) +

1
4

(vxi,t − vy j,t)
2

+
∑

xi∈Λ̃L

∫ β

0

aσxi,t
∂2vxi,t

∂t2 − b
(
∂vxi,t

∂t

)2 },
(6.2.147)

where a and b are constants to be chosen later. We consider only v’s that are twice differ-

entiable with respect to t and such that
∣∣∣∣∂vxi ,t

∂t

∣∣∣∣ ≤ c0 for every xi, t. Denote the set of all such

fields byVc0 .

Lemma 6.2.18. ∀v ∈ Vc0 ∃v∗ ∈ Vc0 depending on t but not on xi such that Z(v) ≤ Z(v∗).

Proof. The proof is the same as in Lemma 6.2.7, note that the sum over xi ∈ Λ̃L plays no

role and is easily reflected. �

We want that the field 0 (i.e. vxi,t = 0 ∀xi, t) is a maximiser. From the previous lemma

we need only consider fields constant in space. To prove the result we need to consider

reflections in time, the proof is more involved than previously.

Lemma 6.2.19. If b > 2a2d(J2 − 2J1)κ(e1) then ∃c0 > 0 such that Z(v) ≤ Z(0) ∀v ∈ Vc0 .

Proof. For N even we define

ZN(v) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp

−N
β

∑
xi∈Λ̃L

∑
t∈ β

N {1,...,N}

[
a(σxi,t+

β
N
− σxi,t)(vt+ β

N
− vt) + b(vt+ β

N
− vt)2

]
(6.2.148)
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where we have written vxi,t = vt as v is constant in space and have discretised the derivatives.

We have the relation

lim
N→∞

ZN(v) = Z(v). (6.2.149)

We can reflect horizontally in the lines t =
β
N n for n = 1, ...,N. Using Cauchy-Schwarz

gives

ZN(v(1), v(2))2 ≤ ZN(v(1),Rv(1))Z(Rv(2), v(2)) (6.2.150)

where v(1) and v(2) are the parts of the field above and below the reflection plane, respec-

tively. This gives a maximiser of the form

v∗t = (−1)
N
β t c

N
, (6.2.151)

where |c| ≤ c0
N
2 . We want to show that c = 0, we first use this v∗

ZN(v∗) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp

−4bc2|Λ̃L|

β
−

2ac
β

∑
xi∈Λ̃L

∑
t∈ βN {1,...,N}

(−1)
N
β t(σxi,t+

β
N
− σxi,t)

 .
(6.2.152)

When integrating over the realisation, ξ, of ρι we can replace an event (x, y, t) ∈ ξ by 1
2 an

event at t and 1
2 an event at t +

β
N , this gives

ZN(v∗) = e−
4bc2 |Λ̃L |

β

∫
ρι(dξ)

∑
σ∈Σ(ξ)

∏
(x,y,t)∈ξ

∏
i, j

1
2

(
exp

{2ac
β

(σxi,t+
β
N

+ σy j,t+
β
N
− σxi,t − σy j,t)

}
+ exp

{
−

2ac
β

(σxi,t+
β
N

+ σy j,t+
β
N
− σxi,t − σy j,t)

})
+ O

(
1
N

)
.

(6.2.153)

The O
(

1
N

)
term corresponds to realistation where two transitions occur at the same edge in

a time interval
[
t, t +

β
N

]
. At a single bar the factor is

1
2

(
exp

{
2ac
β

(σx1,t+
β
N

+ σy0,t+
β
N
− σx1,t − σy0,t)

}
+ exp

{
−

2ac
β

(σx1,t+
β
N

+ σy0,t+
β
N
− σx1,t − σy0,t)

})
= exp

{
8a2c2

β2 (σx1,t+
β
N
− σx1,t)

2 + O(c4)
}
.

(6.2.154)

The factor at double bars is

exp
{

8a2c2

β2 (σx0,t+
β
N
− σx0,t)

2 + O(c4)
}

exp
{

8a2c2

β2 (σx1,t+
β
N
− σx1,t)

2 + O(c4)
}

= exp
{

8a2c2

β2

(
(σx0,t+

β
N
− σx0,t)

2 + (σx1,t+
β
N
− σx1,t)

2
)

+ O(c4)
}
.

(6.2.155)

Note that for a single bar joining x and y in interval
[
t, t +

β
N

]
we have σx0,t+

β
N

= σx0,t
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(assuming only one bar occurs) meaning we can use the factor for double bars at every
event in ξ, hence we have

ZN(v∗) = e−
4bc2 |Λ̃L |

β

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{

8a2c2

β2

∑
(x,y,t)∈ξ

(
(σx0,t+

β
N
− σx0,t)

2 + (σx1,t+
β
N
− σx1,t)

2
)

+ O(c4)
}

+ O
(

1
N

)
(6.2.156)

We now want to expand the exponential into terms that can be dealt with. Let A be the event
that an event occurs on edge {0, e1} in time interval

[
0, βN

]
we have

ZN(v∗) = ZN(0)
[
1 −

4bc2

β
|Λ̃L|

]
+

8a2c2

β2 |E|N
∫

A
ρι(dξ)

∑
σ∈Σ(ξ)

(
(σ00 ,

β
N
− σ00 ,0)2 + (σ01 ,

β
N
− σ01 ,0)2

)
+ O(c4) + O

(
1
N

)
,

(6.2.157)

here we have used space-time translation invariance. Now let ξ ∪ b0 be the realisation, ξ, of
ρι with an extra bar (single or double) at {0, e1} × {0}, then

lim
N→∞

1
ZN(0)

N
β

∫
A
ρι(dξ)

∑
σ∈Σ(ξ)

(
(σ00,

β
N
− σ00,0)2 + (σ01,

β
N
− σ01,0)2

)
= (J2 − 2J1) lim

N→∞

1
ZN(0)

N
β

∫
E[01 e10 ]

ρι(dξ)1[(00,0)−/−(00,0+)]∪[(01,0)−/−(01,0+)](ξ ∪ b0)∑
σ∈Σ(ξ∪b0)

(
(σ00,

β
N
− σ00,0)2 + (σ01,

β
N
− σ01,0)2

)
= 2(J2 − 2J1)P[00 e10 ].

(6.2.158)

Here we calculate the sum under the condition [(00, 0) −/− (00, 0+)]∪ [(01, 0) −/− (01, 0+)] as

follows ∑
σ∈Σ(ξ∪b0)

(
(σ00,

β
N
− σ00,0)2 + (σ01,

β
N
− σ01,0)2

)

≤ 2|L(ξ)|−1

1
2∑

a,b,c,d=− 1
2

(
(a − b)2 + (c − d)2

)
= 2 · 2|L(ξ)|.

(6.2.159)

Inserting this into (6.2.157) gives

ZN(v∗) ≤ ZN(0)
[
1 −

4bc2

β
|Λ̃L| +

16a2c2

β
|E|(J2 − 2J1)κ(e1)

]
+ O(c4) + O

(
1
N

)
. (6.2.160)

We see from this that c = 0 is a local maximiser if b > 2a2d(J2 − 2J1)κ(e1). �

We now use this lemma to obtain an infrared bound. We first introduce the space-time
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Fourier transform of κ(x, t),

κ̃(k, τ) =
∑
x∈ΛL

∫ β

0
dte−ik·x−iτtκ(x, t). (6.2.161)

We have the following inequality.

Lemma 6.2.20. If b > 2a2d(J2 − 2J1)κ(e1) assume c0 is such that Z(v) ≤ Z(0) ∀v ∈ Vc0

then for (k, τ) , (0, 0)

κ̃(k, τ) ≤
(−2J1)ε(k) + 4bτ2

((−2J1)ε(k) + aτ2)2 . (6.2.162)

Proof. Unsurprisingly we choose vxi,t = cos(k · x + τt) then for η > 0

Z(ηv) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{

(−2J1)
∫ β

0
dt

[
η(σ·,t,∆v·,t) +

1
4
η2(v·,t,∆v·,t)

]
+

∑
xi∈Λ̃L

∫ β

0
dt

[
aησxi,t

∂2vxi,t

∂t2 + bη2vxi,t
∂2vxi,t

∂t2

]}
,

(6.2.163)

where we have used the identity ( f ,−∆g) =
∑
{x,y}∈E( fx− fy)(gx−gy). Using that −∆v = ε(k)v

and −∂
2v
∂t2 = τ2v we have

Z(ηv) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{
−

∫ β

0
dt

[
η((−2J1)ε(k) + aτ2)(σ·,t, v·,t)

+
1
4
η2((−2J1)ε(k) + 4bτ2)(v·,t, v·,t)

]}
=

∫
ρι(dξ)

∑
σ∈Σ(ξ)

(
1 +

1
2
η2((−2J1)ε(k) + aτ2)2

∫ β

0
dt

∫ β

0
dt′(σ·,t, v·,t)(σ·,t′ , v·,t′)

−
1
4
η2((−2J1)ε(k) + 4bτ2

∫ β

0
dt(v·,t, v·,t)

)
+ O(η4).

(6.2.164)

We can calculate in the same way as in previous sections to obtain

(σ·,t, v·,t)(σ·,t′ , v·,t′) =
∑

xi,y j∈Λ̃L

cos(k · x + τt) cos(k · y + τt)σxi,tσy j,t′ , (6.2.165)

and
1

Z(0)

∫
ρι(dξ)

∑
σ∈Σ(ξ)

σxi,tσy j,t; =
1
4
κ(y − x, t′ − t). (6.2.166)
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Finally∫ β

0
dt

∫ β

0
dt′

∑
xi,y j∈Λ̃L

cos(k · x + τt) cos(k · y + τt)κ(y − x, t′ − t)

=

∫ β

0
dt

∫ β

0
dt′′

∑
xi,z j∈Λ̃L

cos(k · x + τt) cos(k · (x + z) + τ(t + t′′))κ(z, t′′)

=

∫ β

0
dt

∑
xi∈Λ̃L

cos(k · x + τt)Reeik·x+iτt
∑

z j∈Λ̃L

∫ β

0
dt′′eik·z+iτt′′κ(z, t′′)

=

∫ β

0
dt

∑
xi∈Λ̃L

cos(k · x + τt)2 × 2 κ̃(−k,−τ)︸     ︷︷     ︸
κ̃(k,τ)

(6.2.167)

Putting this together we get

Z(ηv) =Z(0)
[
1 +

1
4
η2((−2J1)ε(k) + aτ2)2κ̃(k, τ)

∫ β

0
dt(v·,t, v·,t)

−
1
4
η2((−2J1)ε(k) + 4bτ2)

∫ β

0
dt(v·,t, v·,t)

]
+ O(η4).

(6.2.168)

From this we know from the previous lemma that for η > 0 small enough

((−2J1)ε(k) + aτ2)2κ̃(k, τ) ≤ ((−2J1)ε(k) + 4bτ2). (6.2.169)

The result follows. �

Now we want to optimise over a and b to obtain the best bound possible. We first take

b > 2a2d(J2 − 2J1)κ(e1) for a ≥ 0 and optimise over a, first we differentiate

∂

∂a
(−2J1)ε(k) + 8da2(J2 − 2J1)κ(e1)τ2

((−2J1)ε(k) + aτ2)2

16da(J2 − 2J1)κ(e1)
((−2J1)ε(k) + aτ2)2 −

2τ2((−2J1)ε(k) + 8da2(J2 − 2J1)κ(e1)τ2)
((−2J1)ε(k) + aτ2)3 .

(6.2.170)

There is a minimum at

a =
1

8d(J2 − 2J1)κ(e1)
, (6.2.171)

note that taking a = 0 gives the bound ((−2J1)ε(k))−1, taking a as in (6.2.171) gives a strict

improvement:

κ̃(k, τ) ≤
1

(−2J1)ε(k) + τ2

8d(J2−2J1)κ(e1)

. (6.2.172)
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We now use a Fourier identity to obtain the bounds of the theorem. To begin

κ̂(k, 0) =
1
β

∑
τ∈ 2π

β Z

κ̃(k, τ)

≤
1
β

∑
τ∈ 2π

β Z

1

(−2J1)ε(k) + τ2

8d(J2−2J1)κ(e1)

=
1
β

∑
n∈Z

1

(−2J1)ε(k) +
(2π)2n2

8β2d(J2−2J1)κ(e1)

=
1
β

∑
n∈Z

8β2d(J2−2J1)κ(e1)
(2π)2

8β2d(J2−2J1)(−2J1)ε(k)κ(e1)
(2π)2 + n2

.

(6.2.173)

Now use the identity ∑
n∈Z

1
c2 + n2 =

π

c
coth(πc), (6.2.174)

after some cancellation we have

κ̂(k, 0) ≤

√
2d(J2 − 2J1)κ(e1)

(−2J1)ε(k)
coth(β

√
2d(J2 − 2J1)(−2J1)κ(e1)ε(k) ). (6.2.175)

For the first bound in Theorem 6.2.17 we calculate

1 = κ(0, 0) =
1

β|ΛL|

∑
k∈Λ∗L

∑
τ∈ 2π

β Z

κ̃(k, τ)

=
1

β|ΛL|
κ̃(0, 0) +

1
β|ΛL|

∑
τ∈ 2π

β Z\{0}

κ̃(0, τ) +
1

β|ΛL|

∑
k∈Λ∗L\{0}

∑
τ∈ 2π

β Z

κ̃(k, τ)
(6.2.176)

Let L(00, 0) denote the length of the loop containing the point (00, 0). The first term is given

by
1

β|ΛL|
κ̃(0, 0) =

1
2
E

[
L(00, 0)
β|ΛL|

]
, (6.2.177)

(recalling that sites x0 and x1 are equivalent). The second term vanishes in the limit |ΛL| →

∞ and we can bound the third term using (6.2.175). Putting this together and taking the

limit |ΛL| → ∞ gives

lim
|ΛL |→∞

E

[
L(00, 0)
β|ΛL|

]

≥ 2 − 2

√
2d(J2 − 2J1)κ(e1)

(−2J1)
1

(2π)d

∫
[−π,π]d

dk
coth(β

√
2d(J2 − 2J1)(−2J1)κ(e1)ε(k) )

ε(k)
.

(6.2.178)
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The cotangent→ 1 as β→ ∞, hence

lim
β→∞

lim
|ΛL |→∞

E

[
L(00, 0)
β|ΛL|

]
≥ 2 − 2

√
2(J2 − 2J1)κ(e1)

(−2J1)
K′d. (6.2.179)

For the second bound we note

κ(e1) =
1

β|ΛL|

∑
k∈Λ∗L

∑
τ∈ 2π

β Z

κ̃(k, τ)
1
d

d∑
i=1

cos ki. (6.2.180)

The same considerations give

lim
|ΛL |→∞

E

[
L(00, 0)
β|ΛL|

]

≥ 2κ(e1) − 2

√
2d(J2 − 2J1)κ(e1)

(−2J1)
1

d(2π)d

∫
[−π,π]d

dk
coth(β

√
2d(J2 − 2J1)κ(e1)ε(k) )

ε(k)

 d∑
i=1

cos ki


+

.

(6.2.181)

Taking the limit β→ ∞ gives the second bound

lim
β→∞

lim
|ΛL |→∞

E

[
L(00, 0)
β|ΛL|

]
≥ 2

√
P [00 e10 ]

√P [00 e10 ] −

√
(J2 − 2J1)
−J1

I′d

 . (6.2.182)

This completes the proof.

6.2.9 Nematic order via space-time reflection positivity - an initial result

We now use the method of space-time reflection positivity to study the nematic correlation

function (6.2.110). Recall the integrals in (6.2.141) and the correlation ρ(x, t) (6.2.110) then

for the space-time Fourier transform,

ρ̃(k, τ) =
∑
x∈ΛL

∫ β

0
dte−ik·x−iτtρ(x, t), (6.2.183)

we have the following theorem.

Theorem 6.2.21. For β large enough

lim
β→∞

lim inf
L→∞

1
β|ΛL|

ρ̃(0, 0) ≥ lim inf
L→∞


2
9
− 2

√
(J2 − 2J1)κ(e1)

J2
K′d

(
1 + o

(
1
β

))
ρ(e1) − 2

√
(J2 − 2J1)κ(e1)

J2
I′d

(
1 + o

(
1
β

))
.

(6.2.184)
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For the explicit dependence on β see (6.2.208). The proof of the theorem incorporates the

methods used in sections 6.2.7 and 6.2.8.

For a field v : Λ̃L× [0, β]per → R such that vx0,t = vx1,t for every x ∈ ΛL and t ∈ [0, β] define
the partition function

Z(v) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{
− (−2J1)

∑
{xi ,y j}∈ẼL

∫ β

0
dt[(σx0 ,tσx1 ,t − σy0 ,tσy1 ,t)(vxi ,t − vy j ,t) +

1
4

(vxi ,t − vy j ,t)
2

+
∑

xi∈Λ̃L

∫ β

0

a (
σx0 ,tσx1 ,t −

1
12

)
∂2vxi ,t

∂t2 − b
(
∂vxi ,t

∂t

)2 },
(6.2.185)

where a and b are constants (chosen later). We consider only v’s that are twice differentiable

with respect to t with
∣∣∣∣∂vxi ,t

∂t

∣∣∣∣ ≤ c0 for every xi, t. Denote the set of all such fields byVc0 .

Lemma 6.2.22. ∀v ∈ Vc0 ∃v∗ ∈ Vc0 depending on t but not on xi such that Z(v) ≤ Z(v∗).

Proof. The proof is the same as Proposition 6.2.13, the sum over xi ∈ Λ̃L plays no role. �

Lemma 6.2.23. If b > 4a2d(J2 − 2J1)κ(e1) then ∃c0 > 0 such that Z(v) ≤ Z(0) ∀v ∈ Vc0 .

Proof. The proof is similar to Lemma 6.2.19. First we discretise in time, noting we need
only consider fields constant in space, let N be even and define

ZN(v) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{
−

N
β

∑
xi∈Λ̃L

∑
t∈ β

N {1,...,N}

[
a(σx0,t+

β
N
σx1,t+

β
N
−σx0,tσx1,t)(vt+ β

N
−vt)−b(vt+ β

N
−vt)2

]}
.

(6.2.186)

Then again limN→∞ ZN(v) = Z(v). Reflecting horizontally in lines t =
β
N n for n = 1, ...,N

and using Cauchy-Schwarz gives ZN(v(1), v(2)) ≤ ZN(v(1),Rv(1))ZN(Rv(2), v(2)). Hence we

have a maximiser of the form

v∗t = (−1)
N
β t

|c| ≤ c0
N
2
. (6.2.187)

The aim is to show that c = 0. Inserting this v∗ into ZN gives

ZN(v∗) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{
−

4bc2|Λ̃L|

β
−

4ac
β

∑
x∈ΛL

∑
t∈ βN {1,...,N}

(−1)
N
β t(σx0 ,t+

β
N
σx1 ,t+

β
N
− σx0 ,tσx1 ,t)

}
. (6.2.188)

Note we have replaced the sum over xi ∈ Λ̃L with twice the sum over x ∈ ΛL. When
integrating over a realisation, ξ, of ρι we can replace an event (x, y, t) ∈ ξ by 1

2 an event at t
and 1

2 an event at t +
β
N , this gives

ZN(v∗) = e−
4bc2 |Λ̃L |

β

∫
ρι(dξ)

∑
σ∈Σ(ξ)

∏
(x,y,t)∈ξ

1
2

(
exp

{4ac
β

(σx0 ,t+
β
N
σx1 ,t+

β
N

+ σy0 ,t+
β
N
σy1 ,t+

β
N
− σx0 ,tσx1 ,t − σy0 ,tσy1 ,t)

}
+ exp

{
−

4ac
β

(σx0 ,t+
β
N
σx1 ,t+

β
N

+ σy0 ,t+
β
N
σy1 ,t+

β
N
− σx0 ,tσx1 ,t − σy0 ,tσy1 ,t)

})
+ O

(
1
N

)
.

(6.2.189)
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The O
(

1
N

)
term is for realisations where two events occur on the same edge in a time interval

[t, t +
β
N ]. At double bars we calculate the factor as

exp
{32a2c2

β2 (σx0,t+
β
N
σx1,t+

β
N
− σx0,tσx1,t)

2 + O(c4)
}

(6.2.190)

At single bars we calculate the factor as

exp
{8a2c2

β2 (σx0,t + σy1,t)
2(σx1,t+

β
N
− σx1,t)

2 + O(c4)
}

≤ exp
{8a2c2

β2 (σx1,t+
β
N
− σx1,t)

2 + O(c4)
}

≤ exp
{32a2c2

β2 (σx0,t)
2(σx0,t + σy1,t)

2(σx1,t+
β
N
− σx1,t)

2 + O(c4)
}

= exp
{32a2c2

β2 (σx0,t+
β
N
σx1,t+

β
N
− σx0,tσx1,t)

2 + O(c4)
}

(6.2.191)

where the last line used that σx0,t+
β
N

= σx0,t at a single bar (assuming only one bar occurs
in the time interval). Hence

ZN(v∗) ≤ e−
4bc2 |Λ̃L |

β

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{32a2c2

β2 (σx0,t+
β
N
σx1,t+

β
N
− σx0,tσx1,t)

2 + O(c4)
}

+ O
(

1
N

)
.

(6.2.192)

Let A denote the event that an event occurs on edge {0, e1} on time interval
[
0, βN

]
, expanding

the exponentials gives

ZN(v∗) ≤ ZN(0)
[
1 −

4bc2

β
|Λ̃L|

]
+

32a2c2

β2 |EL|N
∫

A
ρι(dξ)

∑
σ∈Σ(ξ)

(σx0,t+
β
N
σx1,t+

β
N
− σx0,tσx1,t)

2

+ O(c4) + O
(

1
N

)
.

(6.2.193)

Now let ξ ∪ b0 be the realisation, ξ, of ρι with an extra event at {0, e1} × {0}, then

lim
N→∞

1
ZN(v)

N
β

∫
A
ρι(dξ)

∑
σ∈Σ(ξ)

(σx0,t+
β
N
σx1,t+

β
N
− σx0,tσx1,t)

2

= (J2 − 2J1) lim
N→∞

1
ZN(v)

N
β

∫
E[01 e10 ]

ρι(dξ)1[(00,0)−/−(00,0+)]∪[(01,0)−/−(01,0+)](ξ ∪ b0)∑
σ∈Σ(ξ)

(σx0,t+
β
N
σx1,t+

β
N
− σx0,tσx1,t)

2

≤ (J2 − 2J1)P[00 e10 ].
(6.2.194)
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Where we used the bound

∑
σ∈Σ(ξ)

(σx0,t+
β
N
σx1,t+

β
N
− σx0,tσx1,t)

2 ≤ 2|L(ξ)|−1

1
2∑

a,b,c,d=− 1
2

(ab − cd)2 = 2|L(ξ)|. (6.2.195)

Inserting this we have

ZN(v∗) ≤ ZN(0)
[
1 −

4bc2

β
|Λ̃L| 32a2c2

β

|E|(J2 − 2J1)κ(e1)
]

+ O(c4) + O
(

1
N

)
(6.2.196)

and note that c = 0 is a local maximum if b > 4a2d(J2 − 2J1)κ(e1). �

Now we want to derive an infrared bound, we have the following lemma.

Lemma 6.2.24. If b > 2a2d(J2 − 2J1)κ(e1) assume c0 is such that Z(v) ≤ Z(0) ∀v ∈ Vc0

then for (k, τ) , (0, 0)

ρ̃(k, τ) ≤
J2ε(k) + 4bτ2

(J2ε(k) + aτ2)2 (6.2.197)

Proof. As usual for these proofs we choose field v with vxi,t = cos(k · x + τt). Now −∆v =

ε(k) and −∂
2v
∂t2 = τ2v. Now for η > 0

Z(ηv) =

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{
J2

∫ β

0
dt

[
η(σ·0,tσ·1,t,∆vt) +

1
4
η2(vt,∆vt)

]
+

∑
xi∈Λ̃L

∫ β

0
dt

[
aη

(
σx0,tσx1,t −

1
12

)
∂2vxi,t

∂t2 + bη2vxi,t
∂2vxi,t

∂t2

]}
=

∫
ρι(dξ)

∑
σ∈Σ(ξ)

exp
{
−

∫ β

0
dt

[
(ηJ2ε(k) + aητ2)(σ·0,tσ·1,t, vt) +

(
1
4
η2J2ε(k) + bη2τ2

)
(vt, vt)

=

∫
ρι(dξ)

∑
σ∈Σ(ξ)

(
1 +

1
2
η2(J2ε(k) + aτ2)2

∫ β

0
dt

∫ β

0
dt′(σ·0,tσ·1,t, vt)(σ·0,t′σ·1,t′ , vt′ )

−
1
4
η2(J2ε(k) + 4bτ2)

∫ β

0
dt(vt, vt)

)
+ O(η4).

(6.2.198)

Some calculation is required to deal with the double integral.(
σ·0,tσ·1,t −

1
12
, vt

)(
σ·0,t′σ·1,t′ −

1
12
, vt′

)
=

∑
xi,y j∈Λ̃L

cos(k · x + τt) cos(k · y + τt′)
(
σx0,tσx1,t −

1
12

)(
σy0,t′σy1,t′ −

1
12

)
,

(6.2.199)
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we further have

1
Z(0)

∫
ρι(dξ)

∑
σ∈Σ(ξ)

(
σx0,tσx1,t −

1
12

) (
σy0,t′σy1,t′ −

1
12

)
=

1
144
−

1
6
E[σ00,tσ01,t] + E[σx0,tσx1,tσy0,t′σy1,t′]

= −
1

144
+

1
4

(
ρ(y − x, t′ − t) +

1
36

)
=

1
4
ρ(y − x, t′ − t).

(6.2.200)

Putting this together we have

1
Z(0)

∫
ρι(dξ)

∫ β

0
dt

∫ β

0
dt′

∑
σ∈Σ(ξ)

(
σ·0,tσ·1,t −

1
12
, vt

) (
σ·0,t′σ·1,t′ −

1
12
, vt′

)

=
1
4

∫ β

0
dt

∫ β

0
dt′

∑
xi,y j∈Λ̃L

cos(k · x + τt) cos(k · y + τt′)ρ(y − x, t′ − t)

=
1
4

∫ β

0
dt

∫ β

0
dt“

∑
xi,z j∈Λ̃L

cos(k · x + τt) cos(k · (x + z) + τ(t + t
′′

))ρ(z, t
′′

)

=
1
4

∫ β

0
dt

∑
xi∈Λ̃L

cos(k · x + τt)Reeik·x+iτt
∑

z j∈Λ̃L

∫ β

0
dt“eik·z+iτt

′′

ρ(z, t“)

=
1
4

∫ β

0
dt

∑
xi∈Λ̃L

cos(k · x + τt) × 2 ρ̃(−k,−τ)︸     ︷︷     ︸
ρ̃(k,τ)

=
1
2
ρ̃(k, τ)

∫ β

0
dt(vt, vt).

(6.2.201)

From this we have

Z(ηv) = Z(0)
[
1 +

1
4
η2(J2ε(k) + aτ2)2ρ̃(k, τ)

∫ β

0
dt(vt, vt)−

1
4
η2(J2ε(k) + 4bτ2)

∫ β

0
dt(vt, vt)

]
+ O(η4).

(6.2.202)

We know from Lemma 6.2.23 that for η small enough

1
4

(J2ε(k) + aτ2)2ρ̃(k, τ) ≤
1
4

(J2ε(k) + 4bτ2), (6.2.203)

the result follows. �

Now we optimise a and b. We take b = 4a2d(J2 − 2J1)κ(e1) and

a =
1

16d(J2 − 2J1)κ(e1)
. (6.2.204)
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With a small calculation we now have the bound

ρ̃(k, τ) ≤
1

J2ε(k) + τ2

16d(J2−2J1)κ(e1)

. (6.2.205)

We relate this to ρ̂(k, 0) with some more calculation

ρ̂(k, 0) =
1
β

∑
τ∈ 2π

β Z

ρ̃(k, τ)

≤
1
β

∑
τ∈ 2π

β Z

1

J2ε(k) + τ2

16d(J2−2J1)κ(e1)

=
1
β

∑
n∈Z

16β2d(J2−2J1)κ(e1)
(2π)2n2

16β2d(J2−2J1)κ(e1)
(2π)2n2 + n2

.

(6.2.206)

Now we use the identity ∑
n∈Z

1
c2 + n2 =

π

c
coth(πc), (6.2.207)

after calculation we have

ρ̂(k, 0) ≤ 2

√
d(J2 − 2J1)κ(e1)

J2ε(k)
coth

(
β
√

4d(J2 − 2J1)J2κ(e1)ε(k)
)
. (6.2.208)

Now we are ready to derive the first bound in Theorem 6.2.21,

2
9

= ρ(0, 0) =
1

β|ΛL|

∑
k∈Λ∗L

∑
τ∈ 2π

β Z

ρ̃(k, τ)

=
1

β|ΛL|
ρ̃(0, 0) +

1
β|ΛL|

∑
τ∈ 2π

β Z\{0}

ρ̃(0, τ) +
1

β|ΛL|

∑
k∈Λ∗L\{0}

∑
τ∈ 2π

β Z

ρ̃(k, τ).
(6.2.209)

The second term vanishes as |ΛL| → ∞, the third term can be bounded using (6.2.208).

Hence

lim
β→∞

lim
|ΛL |→∞

1
β|ΛL|

ρ̃(0, 0) ≥
2
9
− 2

√
(J2 − 2J1)κ(e1)

J2
K′d. (6.2.210)

The second bound follows in the same way from the identity

ρ(e1, 0) =
1

β|ΛL|

∑
k∈Λ∗L

∑
τ∈ 2π

β Z

ρ̃(k, τ)
1
d

d∑
i=1

cos ki. (6.2.211)
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Chapter 7

Dilute spin systems

7.1 Setting for a quenched spin system

We begin by introducing the setting for quenched spin systems, both quantum and classical.

In keeping with the general theme of this thesis we will consider a quenched Heisenberg

model, we can easily generalise to other models. Experimentally speaking the quenched

system is more physically relevant than its annealed counterpart. Theoretically there should

not be a substantial difference between quenched and annealed, although techniques in this

thesis will find the annealed system much more amenable. Results for quenched systems

are out of reach using the techniques presented here due to reflection positivity not holding.

Nevertheless we present the quenched setting to demonstrate that dilution can be realised

mathematically in several ways.

Let (Λ,E) be a finite graph with vertices Λ and edges E. We call a subset, Ω ⊂ Λ, a partition

and note that Ω ∪ Ωc = Λ. Ω will correspond to occupied sites and its complement Ωc to

vacant sites. If Ω is a strict subset of Λ we call it a random partition or a random system.

We now look at the classical and quantum case separately.

7.1.1 A classical quenched system

For a fixed partition Ω we define Hamiltonian

Hcl
Λ(Ω, u, h) = −2

∑
〈x,y〉

(S 1
xS 1

y + uS 2
xS 2

y + S 3
xS 3

y) − h
∑
x∈Ω

S 3
x (7.1.1)
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where (S 1
x, S

2
x, S

3
y) ∈ S2 is a classical spin at x ∈ Λ and the first sum is over edges {x, y} ∈ E

such that x, y ∈ Ω. Recall that u = 1 corresponds to the Heisenberg ferromagnet. Then the

partition function and Gibbs states are given by

Zcl
Λ(Ω, u, h, β) =

∫
dSΛe−βHcl

Λ
(Ω,u,h), 〈·〉cl

Λ,Ω,u,h,β =
1

Zcl
Λ

(Ω, u, h, β)

∫
dSΛ · e−βHcl

Λ
(Ω,u,h),

(7.1.2)

where dSΛ is the Haar measure on (S2)Λ with
∫

dSΛ = 1. The aim is to assign a probability

P(Ω) to each partition, Ω. In addition to the averaging 〈·〉cl
Λ,Ω,u,h,β we take an average over

partitions. For a function g on partitions define

〈〈g〉〉Λ =
∑
Ω⊂Λ

P(Ω)g(Ω). (7.1.3)

For example we could take g(Ω) = 〈 f 〉cl
Λ,Ω,u,h,β for some function, f , of spins. One natural

candidate for P is P(Ω) = p|Ω|(1 − p)|Λ|−|Ω| with p ∈ [0, 1], equivalent to a Bernoulli(p)

variable at each x ∈ Λ.

7.1.2 A quantum quenched system

The setting for quantum systems is much the same as for classical systems. For fixed Ω ⊂ Λ

define

Hqu
Λ

(Ω, u, h) = −2
∑
〈x,y〉

(S 1
xS 1

y + uS 2
xS 2

y + S 3
xS 3

y) − h
∑
x∈Ω

S 3
x (7.1.4)

where now (S 1
x, S

2
x, S

3
y) is a spin-S operator at x ∈ Λ for S ∈ 1

2N and the first sum is over

edges {x, y} ∈ E such that x, y ∈ Ω. u = 1 corresponds to the Heisenberg ferromagnet and,

if (Λ,E) is bipartite, u = −1 is unitarily equivalent to the Heisenberg antiferromagnet. The

partition function and Gibbs states are

Zqu
Λ

(Ω, u, h, β) = Tr e−βHqu
Λ

(Ω,u,h), 〈·〉cl
Λ,Ω,u,h,β =

1
Zqu

Λ
(Ω, u, h, β)

Tr · e−βHqu
Λ

(Ω,u,h), (7.1.5)

where the trace is over ⊗x∈ΛC
2S +1. Again we can average over Ω ⊂ Λ according to some

probability distribution P,

〈〈g〉〉Λ =
∑
Ω⊂Λ

P(Ω)g(Ω). (7.1.6)
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For g a function on partitions. Another candidate for P can be defined for a fixed n by

P(Ω) =


 |Λ|n


−1

if |Ω| = n

0 else.

(7.1.7)

7.2 Setting for an annealed spin system

In this section we introduce a specific annealed system that we will work with in the next

section. We only introduce the quantum system. The classical case is very similar, as for

the quenched case.

We work on a graph consisting of a bipartite lattice, ΛL,

ΛL =

{
−

L
2

+ 1, ...,
L
2

}d
, (7.2.1)

with L ∈ N and periodic boundary conditions together with the set of nearest neighbour

edges, EL. Each site has an occupation number, nx ∈ {0, 1}.

Let S 1, S 2 and S 3 denote the usual spin-S matrices on C2S +1 for S ∈ 1
2N and let S =

(S 1, S 2, S 3). Denote S i
x = S i ⊗ 1ΛL\{x}. We take the algebra AΛL of observables of all

functions A : {0, 1}ΛL →MΛL whereMΛL is s the C∗-algebra of linear operators acting on

the space ⊗x∈ΛLC
2S +1. The Hamiltonian of the system HL = Hu

L(n, µ) is then

HL = −2
∑
<x,y>

nxny
(
S 1

xS 1
y + uS 2

xS 2
y + S 3

xS 3
y

)
− µ

∑
x∈ΛL

nx, (7.2.2)

for u, µ ∈ R and |u| ≤ 1. The case u = 1 is the Heisenberg ferromagnet, u = 0 is the

XY model and u = −1 is unitarily equivalent to the Heisenberg antiferromagnet. We have

partition function and Gibbs states given by

ZL(β) =
∑

n
Tr e−βHL , (7.2.3)

〈·〉β =
1

ZL(β)

∑
n

Tr · e−βHL . (7.2.4)
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7.3 Long-range order for an annealed quantum spin system

The aim of this section is to prove a phase transition occurs for some values of β and µ in

the model (7.2.2). We have reflection positivity for this model (Lemma (7.3.2)). It should

come as no surprise that Néel order can be recovered for this model for µ and β large enough.

What is perhaps more surprising is the occurrence of the more interesting staggered states

in Section 7.4.
Theorem 7.3.1. For S ∈ 1

2N, L even, d ≥ 3, and u ∈ [−1, 0] we have the bounds

lim inf
L→∞

1
Ld

∑
x∈ΛL

(−1)‖x‖〈n0S 3
0nxS 3

x〉β ≥ lim inf
L→∞



S (S + 1)〈n0〉β

3
−

S
(2π)d

∫
[−π,π]d

dk

√
d
ε(k)

+ o
(

1
β

)

〈n0S 3
0ne1 S 3

e1
〉β −

S
√

d
(2π)d

∫
[π,π]d

dk

√
1
ε(k)

1
d

d∑
i=1

cos ki


+

+ o
(

1
β

)
(7.3.1)

For µ large enough the first bound will be positive for large enough S or d. For example if

d = 3 the first bound is positive for S ≥ 3
2 .

7.3.1 Proof of Néel order

To begin let v = (vx)x∈ΛL with vx ∈ R be a real valued field on ΛL. We define a new

Hamiltonian and partition function using this field,

H(v) =HL −
∑
x∈ΛL

(∆v)xnxS 3
x. (7.3.2)

Z(v) =
∑

n
Tr e−βH(v). (7.3.3)

A calculation shows that

H(v) =
∑
{x,y}∈EL

(
(nxS 1

x − nyS 1
y)2 + (

√
u nxS 2

x −
√

u nyS 2
y)2 + (nxS 3

x +
nxvx

2
− nyS 3

y −
nxvx

2
)2
)

−
1
4

∑
{x,y}∈EL

(nxvx − nyvy)2 − 2d
∑
x∈ΛL

nx
(
(S 1

x)2 + u(S 2
x)2 + (S 3

x)2
)
− µ

∑
x∈ΛL

nx︸                                                       ︷︷                                                       ︸
CΛL

.

(7.3.4)
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We then define

H′(v) =H(v) +
1
4

∑
{x,y}∈EL

(nxvx − nyvy)2 + CΛL , (7.3.5)

Z′(v) =
∑

n
Tr e−βH′(v). (7.3.6)

Let R be a reflection through edges in EL, then R uniquely determines Λ1,Λ2 ⊂ ΛL such

that Λ1 ∪Λ2 = ΛL, Λ1 ∩Λ2 = ∅ with RΛ1 = Λ2. We can write a field on ΛL as v = (v1, v2)

where vi = v|Λi . Given a reflection R we define h = AΛ1 � AΛ2 , then H′(v) is an operator

on h ⊗ h. Reflection positivity for Z′(v) is as follows.

Lemma 7.3.2. Let u ≤ 0. For any reflection, R, across edges we have

Z′(v1, v2)2 ≤ Z′(v1,Rv1)Z′(v2,Rv2). (7.3.7)

Proof. Let R be a reflection across edges. To begin write

f (nx, ny,Sx,Sy) =

(
(nxS 1

x − nyS 1
y)2 + (

√
u nxS 2

x −
√

u nyS 2
y)2 + (nxS 3

x +
nxvx

2
− nyS 3

y −
nxvx

2
)2
)
.

(7.3.8)
Denote by Ei the set of edges with both end points in Λi, denote by {xi, yi}, i = 1, ..., k the
edges crossing the reflection plane. Then using Trotter’s formula we have∣∣∣∣∣∣∣∣

∑
n

Tr exp

−β
 ∑
{x,y}∈E1∪E2

f (nx, ny,Sx,Sy) +

k∑
i=1

f (nxi , nyi ,Sxi ,Syi )



∣∣∣∣∣∣∣∣
2

= lim
m→∞

∣∣∣∣∣∣∣∣
∑

n

Tr

exp

− βm ∑
{x,y}∈E1∪E2

f (nx, ny,Sx,Sy)

 exp

− βm
k∑

i=1

f (nxi , nyi ,Sxi ,Syi )




m∣∣∣∣∣∣∣∣
2 (7.3.9)

Now we use the identity

e−M2
=

∫ ∞

−∞

ds
2
√
π

e−
s4
4 eisM (7.3.10)
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to obtain

lim
m→∞

∣∣∣∣∣∑
n

∫
dν(sn

1)...dν(sn
3km)Trh⊗h

m∏
j=1

exp
{
−
β

m

∑
{x,y}∈E1∪E2

f (nx, ny,Sx,Sy)
}

k∏
l=1

(
exp

{
isn

3l j

√
β

m

(
nxl S

1
xl
− nyl S

1
yl

) }
exp

{
isn

3(l+1) j

√
β

m

(√
u nxl S

2
xl
−
√

u nyl S
2
yl

) }
exp

{
isn

3(l+2) j

√
β

m

(
nxl S

3
xl

+
nxl vxl

2
− nyl S

3
yl
−

nyl vxl

2

) })∣∣∣∣∣2
= lim

m→∞

∣∣∣∣∣∣
[∑

n

∫
dν(sn

1)...dν(sn
3km)Trh

m∏
j=1

exp
{
−
β

m

∑
{x,y}∈E1

f (nx, ny,Sx,Sy)
}

k∏
l=1

exp
{
isn

3l j

√
β

m
nxl S

1
xl

}
exp

{
isn

3(l+1) j

√
β

m
√

u nxl S
2
xl

}
exp

{
isn

3(l+2) j

√
β

m

(
nxl S

3
xl

+
nxl vxl

2

) }]
[∑

n

∫
dν(sn

1)...dν(sn
3km)Trh

m∏
j=1

exp
{
−
β

m

∑
{x,y}∈E2

f (nx, ny,Sx,Sy)
}

k∏
l=1

exp
{
− isn

3l j

√
β

m
nyl S

1
yl

}
exp

{
− isn

3(l+1) j

√
β

m
√

u nyl S
2
yl

}
exp

{
− isn

3(l+2) j

√
β

m

(
nyl S

3
yl

+
nxl vyl

2

) }]∣∣∣∣∣∣2.
(7.3.11)

Where we have used that E1 and E2 are disjoint and that Tr A ⊗ B = Tr ATrB. Using

the Cauchy-Schwarz inequality and tracing the previous steps backwards for each product

coming from Cauchy-Schwarz we obtain the result. �

The property of Gaussian domination is then

Z′(v) ≤ Z′(0) ⇐⇒ Z(v) ≤
∑

n
Tr e−βH′(0)e−

β
4 (nv,n∆v). (7.3.12)

We used nv as shorthand for the field given by (nv)x = nxvx. This inequality can easily be

proved, starting from a field maximising field v, apply reflections continually until the field

is constant. From reflection positivity this field is also a maximiser, as Z′(v) has the same

value for any constant field we may take the constant zero. Note that we used that we sum

over all possible configurations of n in the definition of Z′(v).

We use Gaussian domination to prove an infrared bound. We first make a preliminary

definition. We define a Duhamel correlation function, (·, ·)n
Duh for this system as

(A, B)n
Duh =

1
ZL(β)

∑
n

1
β

∫ β

0
dsTr Ae−sHL B∗e−(β−s)HL . (7.3.13)

We have the following lemma.
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Lemma 7.3.3. For k ∈ Λ∗L

F
(
(n0S 3

0, nxS 3
x)n

Duh

)
(k) ≤

1
2βε(k)

. (7.3.14)

Proof. We choose vx = cos(k · x) for k ∈ Λ∗L. For this choice of field we have that ∆v =

−ε(k)v for ε(k) = 2
∑d

i=1(1 − cos ki). Let η > 0 be a (small) parameter. From a Taylor

expansion we have

Z(ηv) = Z(0) +
1
2

(
∆v,

∂2Z(v)
∂(∆v)x∂(∆v)y

∣∣∣∣∣∣
∆v=0

(∆v)
)

+ O(η4). (7.3.15)

We can calculate the derivative

∂2Z(v)
∂(∆v)x(∆v)y

∣∣∣∣∣
∆v=0

= β
∂

∂(∆v)x

∑
n

Tr nxS 3
xe−βH(v)

∣∣∣∣∣
∆v=0

= β2(nxS 3
x, nyS 3

y)n
DuhZ(0). (7.3.16)

The second inequality relies on the Duhamel formula. Using this we have

Z(ηn) =Z(0) +
1
2
ηε(k)2β2

∑
x,y∈ΛL

cos(k · x) cos(k · y)(nxS 3
x, nyS 3

y)n
DuhZ(0) + O(η4)

Z(0)

1 +
1
2
η2ε(k)2β2F

(
(n0S 3

0, nxS 3
x)n

Duh

)
(k)

∑
x∈ΛL

cos2(k · x)

 + O(η4).
(7.3.17)

Here we have used the translation invariance of (nxS 3
x, nyS 3

y)n
Duh. Also we have

e−
1
4β(nv,n∆v) = e

1
4βε(k)

∑
x nx cos2(k·x). (7.3.18)

From Gaussian domination we can consider the η2 terms and see that for η small enough

1
2
η2ε(k)2β2F

(
(n0S 3

0, nxS 3
x)n

Duh

)
(k)

∑
x∈ΛL

cos2(k · x) ≤
1
4
η2βε(k)

∑
x∈ΛL

cos2(k · x). (7.3.19)

The result follows. �

We now use the Falk-Bruch inequality to transfer this infrared bound to the correlation

〈n0S 3
0nxS 3

x〉β.

1
2
〈A∗A + AA∗〉β ≤

1
2

√
(A, A)n

Duh

√
〈[A∗, [H, A]]〉β + (A, A)n

Duh. (7.3.20)
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We take A = F
(
nxS 3

x

)
(k) and H = βHL. A simple calculation shows

[A∗, [H, A]] = 4β
∑
{x,y}∈E

(
(1 − u cos(k · (x − y)))nxS 1

xnyS 1
y + (u − cos(k · (x − y)))nxS 2

xnyS 2
y

)
.

(7.3.21)

From this we have

〈[A∗, [H, A]]〉β = 4β|ΛL|εu(k) (7.3.22)

where

εu(k) =

d∑
i=1

(
(1 − u cos ki)〈n0S 1

0neiS
1
ei
〉β + (u − cos ki)〈n0S 2

0neiS
2
ei
〉β

)
. (7.3.23)

It is easy to show that εu(k) ≤ 4S 2d. We now have from Falk-Bruch

F
(
〈n0S 3

0nxS 3
x〉β

)
(k) ≤

√
εu(k)
2ε(k)

+
1

2βε(k)
(7.3.24)

From this we obtain two bounds by expanding the Fourier transform around the points 0
and e1 respectively. These bounds are

1
|ΛL|

∑
x∈ΛL

〈n0S 3
0nxS 3

x〉β ≥



1
3

S (S + 1)〈n0〉β −
S
√

2d
|ΛL|

∑
k∈Λ∗L\{0}


√

1
2ε(k)

+
1

2βε(k)


〈n0S 3

0ne1 S 3
e1
〉β −

S
√

2d
|ΛL|

∑
k∈Λ∗L\{0}


√

1
2ε(k)

+
1

2βε(k)


1

d

d∑
i=1

cos ki


+

(7.3.25)

where (·)+ denotes the positive part. Taking limits L→ ∞ and then β→ ∞ gives

lim
β→∞

lim
L→∞

1
|ΛL|

∑
x∈ΛL

〈n0S 3
0nxS 3

x〉β ≥



1
3

S (S + 1)〈n0〉β −
S
√

d
(2π)d

∫
[−π,π]d

√
1
ε(k)

〈n0S 3
0ne1S 3

e1
〉β −

S
√

d
(2π)d

∫
[π,π]d

√
1
ε(k)

1
d

d∑
i=1

cos ki


+

(7.3.26)

this completes the proof.
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7.4 Staggered long-range order for diluted quantum spin
models

7.4.1 Introduction

In this section we study annealed site diluted quantum lattice spin systems, including the

XY model with spin 1
2 and the Heisenberg antiferromagnet with spin S ≥ 1

2 . We find

regions of the parameter space where, in spite of being a priori favourable for a densely

occupied state, phases with staggered occupancy occur at low temperatures.

Two quantum spin models (the XY model with spin 1
2 and the Heisenberg antiferromagnet)

on the hypercubic lattice Zd (d ≥ 2) with the annealed site dilution are considered. The

models are formulated in terms of the Hamiltonian

H = −
1

S 2

∑
〈x,y〉

nxny
(
S 1

xS 1
y + uS 2

xS 2
y + S 3

xS 3
y − S (S + 1)

)
− µ

∑
x

nx − κ
∑
〈x,y〉

nxny. (7.4.1)

Here S i
x’s are the standard spin-S operators acting on the site x and nx is the occupancy

number indicating presence or absence (nx = 1 or nx = 0) of a particle at the site x. The

parameters µ and κ are the chemical potential and the interaction parameter for the particle

occupancy. The XY model with spin- 1
2 is obtained by the choosing (S , u) = ( 1

2 , 0) while

S ≥ 1
2 and u = −1 yields the Heisenberg antiferromagnet.

The main claim concerns the existence of a staggered long range order characterised by the

presence of two distinct states (in the thermodynamic limit) with preferential occupation of

either the even or the odd sublattice. Indeed, it will be proven that such states occur in a

region of parameters µ and κ, at intermediate inverse temperatures, β.

The existence of such states can be viewed as a demonstration of an “effective entropic

repulsion” caused by the interaction of quantum spins leading to an impactful restriction

of the “available phase space volume”. As a result, occupation of adjacent sites might

turn out to be unfavourable—it results in an effective repulsion between particles in nearest

neighbour sites and as a result eventually leads to a staggered order. It is easy to understand

that this is the case for the annealed site diluted Potts model with large number of spin

states q [23] where this effect is indeed caused by a pure entropic repulsion: two nearest

neighbour occupied sites contribute the Boltzmann factor q + q(q − 1)e−β which is at low

temperatures much smaller than the factor q2 obtained from two next nearest neighbour

spins that are free to take all possible spin values entirely independently. Actually, the same

is true—even though less obvious—in the case of diluted models with classical continuous
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spins [24]. Our results constitute an extension of similar claims to a quantum situation.

To get a control on effective repulsion, we rely on a standard tool—the chessboard estimates

which follow from reflection positivity. The classical references on this topic are [35, 39,

41, 42, 43] with a recent review [13]. For our case the treatment in [16] is especially useful.

In particular, we use the setting from [16, Section 3.3] for an efficient formulation of the

long range order in terms of coexistence of the corresponding infinite-volume KMS states.

While we are restricting ourselves only to the case u = 0,−1, the models with −1 < u < 0

are also covered by reflection positivity, hence results might be extended to this region.

However, one would require bounds on the expectation of certain occupancy configurations

(see Lemmas 7.4.5-7.4.8), that seem harder to achieve than in the cases u = 0,−1.

We introduce the models and state the main result in Section 7.4.2. The proof is deferred to

Section 7.4.3.

7.4.2 Setting and Main Results

For a fixed even L ∈ N, we consider the torus TL = Zd/LZd consisting of Ld sites that

can be identified with the set {−L/2 + 1,−L/2 + 2, . . . , L/2 − 1, L/2}d. On the torus TL

we take the algebra AL of observables of all functions A : {0, 1}TL → ML whereML is s

the C∗-algebra of linear operators acting on the space ⊗x∈TLC
2S +1 with S ∈ 1

2N (complex

(2S + 1)|TL |-dimensional matrices).

A particular example of an observable is the Hamiltonian HL ∈ AL of the form (7.4.1) with

the periodic boundary conditions (on the torus TL),

HL(n) = −
1

S 2

∑
〈x,y〉∈EL

nxny
(
S 1

xS 1
y + uS 2

xS 2
y + S 3

xS 3
y − S (S + 1)

)
− µ

∑
x∈TL

nx − κ
∑
〈x,y〉∈EL

nxny. (7.4.2)

Here, EL is the set of all edges connecting nearest neighbour sites in the torus TL and

(S 1, S 2, S 3) are the spin-S matrices. The Gibbs state on the torus is given by

〈·〉L, β =
1

ZL(β)

∑
n

Tr · e−βHL (7.4.3)

with ZL(β) =
∑

n tr e−βHL . Infinite volume states of a quantum spin system are formulated

in terms of KMS states, an analog of DLR states for classical systems. Let us briefly recall

this notion in the form to be used in our situation. Here we follow closely the treatment
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from [16] which can be consulted for a more detailed discussion of KMS states in a setting

similar to ours. Let A denote the C∗ algebra of quasilocal observables,

A = A0, where A0 =
⋃

Λ finite

AΛ, (7.4.4)

where the overline denotes the norm-closure. We define the time evolution operators α(L)
t

acting on A ∈ AL and for any t ∈ R as

α(L)
t (A) = eitHL Ae−itHL . (7.4.5)

It is well known that for a local operator A ∈ A0 we can expand α(L)
t (A) as a series of

commutators,

α(L)
t (A) =

∑
m≥0

(it)m

m!
[HL, [HL, ..., [HL, A]...]]. (7.4.6)

The map t → α(L)
t extends to all t ∈ C [56, Theorem III.3.6] and for A ∈ A0, as L → ∞,

α(L)
t (A) converges in norm to a one-parameter family of operators αt(A) on A uniformly on

compact subsets of C (one can consult the proof, for example, in [93] and see that the same

proof structure works in this case). A state 〈·〉β on A (a positive linear functional (〈A〉β ≥ 0

if A ≥ 0) such that 〈1〉β = 1) is called a KMS state (or is said to satisfy the KMS condition)

with a Hamiltonian H at an inverse temperature β, if we have

〈AB〉β = 〈α−iβ(B)A〉β (7.4.7)

for the above defined family of operators αt at imaginary values t = −iβ. One can see

that the Gibbs state (7.4.3) satisfies the KMS condition for the finite volume time evolution

operator.

A special class of observables are classical events 1F I obtained as a product of the identity

I ∈ ML with the indicator 1F of an occupation event F ⊂ {0, 1}TL . Often we will consider

(classical) block events depending only on the occupation configuration on the block-cube

of 2d sites, C = {0, 1}d ⊂ TL. Namely, the events of the form E × {0, 1}TL\C where E ⊂

{0, 1}C . We will refer to these events directly as block events E and use a streamlined

notation 〈E〉L, β (resp. 〈E〉β) instead of 〈1E×{0,1}TL\C I〉L, β (resp. 〈1E×{0,1}TL\C I〉β).

In particular, to characterise the long-range order states mentioned above, we introduce the

block events Ge = {ne} and Go = {no} where ne and no are the even and the odd staggered

configurations on C: ne
x = 1 iff x is an even site in C and ne

x = 1 iff x is an odd site in C.

Notice that the sets Ge and Go are disjoint. The main result for the quantum system with

Hamiltonian (7.4.2) can now be stated as follows.
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Theorem 7.4.1. Let u = −1 and S ≥ 1
2 or u = 0 and S = 1

2 . For each case there exists

µ0 > 0 and a function κ0 (both depending on u, S , and d) that is positive on (0, µ0) and such

that for any µ > 0, κ < max(κ0(µ), 0), and any 0 < ε < 1
2 , there exists β0 = β0(µ, κ, ε) such

that for any β > β0 there exist two distinct KMS states, 〈·〉eβ and 〈·〉oβ, that are staggered,

〈Ge〉eβ ≥ 1 − ε and 〈Go〉oβ ≥ 1 − ε. (7.4.8)

The proof of this theorem is the content of Section 7.4.3. For the technical estimates, we

will restrict ourselves to the two-dimensional case d = 2. The proof in higher dimensions

employing the same methods is straightforward but rather cumbersome. For d = 2 we

construct the function κ0 explicitly.

Notice that the claim is true for any negative κ. This is not so surprising, negative κ triggers

antiferromagnetic staggered order at low temperatures. More interesting is the case, estab-

lished by the theorem, when this happens for positive κ where it is a demonstration of an

effective entropic repulsion stemming from the quantum spin.

7.4.3 Proof of Theorem 7.4.1

Reflection Positivity for the Annealed Quantum Model

Consider now a splitting of the torus TL into 2 disjoint halves, TL = T+
L ∪T

−
L , separated by a

pair of planes; say, P1 = {(−1/2, x2, . . . , xd) and P2 = {(L/2 − 1/2, x2, . . . , xd), x2, . . . , xd ∈

R. We introduce a reflection θ : TL → TL defined by θ(x) = (−(x1 + 1), x2, . . . , xd).1 Any

such reflection (parallel P1 and P2 of distance L/2 in arbitrary half-integer position and

orthogonal to any coordinate axis) will be called reflections through planes between the

sites or simply reflections (we will not use the other reflections through planes on the sites

that are useful for classical models).

Further, consider two subalgebras A+
L ,A

−
L ⊂ AL living on the sets T+

L ,T
−
L , respectively.

Namely, we define A+
L as a set of all operator-valued functions A : {0, 1}T

+
L → M+

L , where

M+
L is the set of all operators of the form A+ ⊗ I acting on the subspace ⊗x∈T+

L
C2S +1 and I

is the identity on the complementary space ⊗x∈T−LC
2S +1. Similarly for A−L .

The reflection θ can be naturally elevated to an involution θ : A+
L → A

−
L acting onM+

L in a

1Notice that on the torus, the reflection with respect to P1 is identical with that with respect to P2 (just
notice that |x1 − (−1/2)| = |y1 − (−1/2)| with x1 , y1 implies y1 = −(x1 + 1), while |x1 − (L/2 − 1/2)| =

|y1 − (L/2 − 1/2)| with x1 , y1 implies y1 = −(x1 + L + 1) and −(x1 + 1) = −(x1 + L + 1) mod (L).
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properly parametrized basis as θ(A+ ⊗ I) = I ⊗ A+ and reflecting the configuration n,

(θA)(θn) = θ(A(n)). (7.4.9)

Finally, we say that a state 〈·〉 on AL is reflection positive with respect to θ if for any A, B ∈

A+
L we have 〈

AθB
〉

=
〈
BθA

〉
(7.4.10)

and 〈
AθA

〉
≥ 0. (7.4.11)

Here, A denotes the complex conjugation of the matrix A. The standard consequence of the

reflection positivity is the Cauchy-Schwartz inequality

〈AθB〉2 ≤ 〈AθA〉〈BθB〉 (7.4.12)

for any A, B ∈ A+
L .

In our situation of an annealed diluted quantum model, we are dealing with the state

〈A〉L, β =

∑
n∈{0,1}TL Tr A(n)e−βHL(n)∑

n∈{0,1}TL Tr e−βHL(n) (7.4.13)

for any A ∈ AL and with the Hamiltonian HL ∈ AL of the form (7.4.2). The standard proof

of reflection positivity may be extended to this case.

Lemma 7.4.2. The state 〈·〉L, β is reflection positive for any θ through planes between the

sites and any µ, κ ∈ R, β ≥ 0, and any u ≤ 0.

Proof. The equality (7.4.10) is immediate. For (7.4.11) we first write the Hamiltonian HL

in the form HL(n, θm) = J(n) + θJ(m) −
∑
α Dα(n)θDα(m) for any n,m ∈ {0, 1}T+

L where

J ∈ A+
L consists of all terms of the Hamiltonian with (both) sites in T+

L and DαθDα, with

Dα ∈ A
+
L indexed by α, are representing the terms containing the sites adjacent to both sides

to the reflection plane.

Notice that to have a correct negative sign with the terms DαθDα, we need the condition

u ≤ 0. Indeed, if {x, y} is an edge crossing the reflection plane the corresponding Dα’s are
1

S 2 nxS 1
x, 1

S 2 i
√
−u nxS 2

x, 1
S 2 nxS 3

x. Recalling that in the standard basis iS 2 = iS 2, we need

u ≤ 0. Note that the term
∑
〈x,y〉 nxny(κ−S (S +1)/S 2) is simply a constant times the identity

for each n and can be bounded by ±d|TL| |κ − S (S + 1)/S 2|, hence we can pull it out of the

trace and the sum as a constant and ignore it, as we do for the remainder of the proof. For
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the claim (7.4.11) we need to show that∑
n,m∈{0,1}T

+
L

Tr A(n)θA(m)e−βHL(n,θm) ≥ 0 (7.4.14)

for any A ∈ A+
L . Adapting the standard proof, see e.g. [39, Theorem 2.1], by Trotter formula

we get

e−βHL(n,θm) = lim
k→∞

(
e−

β
k J(n)e−

β
k θJ(m)[1 +

β
k

∑
α

Dα(n)θDα(m)
])k

=: lim
k→∞

Fk(n,m). (7.4.15)

The needed claim will be verified once show that∑
n,m∈{0,1}T

+
L

Tr
(
A(n)θA(m) Fk(n,m)

)
≥ 0 (7.4.16)

for all k. Indeed, proceeding exactly in the same way as in the proof of Theorem 2.1 in [39],

we can conclude that for each n,m ∈ {0, 1}T+
L the operator Fk(n,m) can be written as a sum

of terms of the form F(`)
k (n)θF(`)

k (m), where F(`)
k ∈ A

+
L . Each such term yields

∑
n,m∈{0,1}T

+
L

Tr (A(n)θA(m)F(`)
k (n)θF(`)

k (m)) =

=
∑

n,m∈{0,1}T
+
L

Tr (A(n)F(`)
k (n)θ(AF(`)

k )(m)) =

∣∣∣∣∣∣ ∑
n∈{0,1}T

+
L

Tr
(
A(n)F(`)

k (n)
)∣∣∣∣∣∣2 ≥ 0 (7.4.17)

completing thus the proof. �

Chessboard estimates

Consider TL partitioned into (L/2)d disjoint 2×2×· · ·×2 blocks C t ⊂ TL labeled by vectors

t ∈ TL/2 with 2t denoting the position of their lower left corner. Clearly, C t = C + 2t with

C0 = C.

If t ∈ TL/2 with |t| = 1, we let θt be the reflection with respect to the plane between C and

C t corresponding to t. Further, if E is a block event, E ⊂ {0, 1}C , we let ϑt(E) ⊂ {0, 1}C t be

the correspondingly reflected event, n ∈ E iff θn ∈ ϑt(E). For other t’s in TL/2 we define

ϑt(E) by a sequence of reflections (note that the result does not depend on the choice of

sequence leading from C to C t .). If all coordinates of t are even this simply results in the

translation by 2t.

Chessboard estimates are formulated in terms of a mean value of a homogenised pattern
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based on a block event E disseminated throughout the lattice,

qL, β(E) :=
(〈 ∏

t∈TL/2

ϑt(E)
〉

L, β

)(2/L)d

. (7.4.18)

If u ≤ 0, E1, ...,Em are block events, and t1, ..., tm ∈ TL/2 are distinct, we get, by a standard

repeated use of reflection positivity, the chessboard estimates

〈 m∏
j=1

ϑt(E j)
〉

L, β
≤

m∏
j=1

(〈 ∏
t∈TL/2

ϑt(E j)
〉

L, β

)(2/L)d

=

m∏
j=1

qL, β(E j). (7.4.19)

Note that we have chosen to split TL into 2 × 2 × · · · × 2 blocks with the bottom left corner

of the basic block C at the origin (0, 0, . . . , 0). If we had instead replaced the basic block C

by its shift C + e by the unit vector e = (1, 0, . . . , 0), the same estimate would hold with the

new partition with all blocks shifted by e. We will use this fact in the sequel.

The proof of the useful property of subadditivity of the function qL, β for classical systems

[13, Lemma 5.9] can be also directly extended to our case.

Lemma 7.4.3. If E,E1,E2, ... are events on B such that E ⊂ ∪kEk, then

qL, β(E) ≤
∑

k

qL, β(Ek). (7.4.20)

Proof. Using subadditivity of 〈·〉L, β, we get

qL, β(E)(L/2)d
=

〈 ∏
t∈TL/2

ϑt(E)
〉

L, β
≤

∑
(kt )

〈 ∏
t∈TL/2

ϑt(Ekt )
〉

L, β
(7.4.21)

Using now the chessboard estimate〈 ∏
t∈TL/2

ϑt(Ekt )
〉

L, β
≤

∏
t∈TL/2

qL, β(Ekt ), (7.4.22)

we get

qL, β(E)(L/2)d
≤

∑
(kt )

∏
t∈TL/2

qL, β(Ekt ) =
∏

t∈TL/2

(∑
k

qL, β(Ek)
)

=

(∑
k

qL, β(Ek)
)(L/2)d

. (7.4.23)

�

Let us introduce the set B of bad configurations, B = {0, 1}C \ (Ge ∪ Go), and use τr to

denote the shift by r ∈ TL. The proof of the existence of two distinct KMS states is based
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on the following lemma.

Lemma 7.4.4. There exists a function κ0 as stated in Theorem 7.4.1 such that for any ε > 0,

µ > 0 and κ < κ0(µ) there exists β0 such that for any β > β0, any L sufficiently large, and

any distinct t1, t2 ∈ TL,

〈B〉L, β < ε, (7.4.24)

〈τ2t1(Ge) ∩ τ2t2(Go)〉L, β < ε. (7.4.25)

Deferring its proof to the next section, we show here how it implies Theorem 7.4.1.

Proof of Theorem 7.4.1 given Lemma 7.4.4. We closely follow the proof of Lemma 4.5 and

Proposition 3.9 in [16]. Define

Tfront
L = {x ∈ TL : −bL/4 − 1/2c ≤ x1 ≤ dL/4 − 1/2e}. (7.4.26)

We denote by Afront
L the algebra of observables localised in Tfront

L .

Let ∆M ⊂ TL/2 be a M × M block of sites on the “back” of TL/2 (dist(0,∆M) ≥ L/4 − M).

Then for a block event E depending only on the occupancy in C define

ρL,M(E) =
1
|∆M |

∑
t∈∆M

τ2t(E). (7.4.27)

If 〈E〉L, β ≥ c for all L � 1 for a constant c > 0 then we can define a new state on Afront
L , by

〈·〉L,M;β =
〈ρL,M(E) · 〉L, β
〈ρL,M(E)〉L, β

. (7.4.28)

We claim that if 〈 〉β is a weak limit of 〈 〉L,M;β as L → ∞ and then M → ∞ then 〈 〉β is a

KMS state at inverse temperature β invariant under translations by 2t for t ∈ TL.

Indeed translation invariance comes from the spatial averaging in ρL,M(E). As in [16] we

need to show that 〈 〉β satisfies the KMS condition (7.4.7). For an observable A on the

‘front’ of the torus, Tfront
L , we have

[α(L)
t (A), ρL,M(E)]→ 0 as L→ ∞ (7.4.29)

in norm topology uniformly for t in compact subsets of C. Using this and (7.4.7) for the

finite volume Gibbs states we have that for A, B bounded operators on the “front” of the

torus

〈ρL,M(E)AB〉L, β = 〈ρL,M(E)α(L)
−iβ(A)B〉L, β + o(1) as L→ ∞. (7.4.30)
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Because α(L)
−iβ(B) → α−iβ(B) as L → ∞ in norm we have that 〈 〉L,M;β converges as L → ∞

and then M → ∞ to a KMS state at inverse temperature β.

The proof of Theorem 7.4.1 follows by taking E = Ge or E = Go as we know both staggered

occupations have the same expectation we can define a state 〈 〉eL,M;β, using Lemma 7.4.4

we conclude that 〈ρL,M(Ge)〉L, β is uniformly positive and hence

〈τ2t(Ge)〉eL,M;β ≥ 1 − ε, (7.4.31)

for any t ∈ Tfront
L (if M � L/2) and similarly for 〈 〉oL,M;β. If ε is small enough then the

right-hand side of this inequality will be greater than 1/2, hence in the thermodynamic limit

Ge will dominate. �

To prove Lemma 7.4.4 we use a version of Peierls’ argument hinging on chessboard esti-

mates.

Peierls argument

For a given occupation configuration, consider the event τ2t1(Ge)∩ τ2t2(Go) that the blocks

C t1 and C t2 have different staggered configurations described by Ge and Go respectively.

The idea is to show the existence of a contour separating the points t1 and t2 and to use

chessboard estimates to show that occurrence of such a contour is unprobable.

Consider the set of all blocks (labeled by) t ∈ TL/2 such that a translation of the even

staggered configuration τ2t(Ge) is occurring on it. Let ∆ ⊂ TL/2 be its connected component

containing t1. Consider the component ∆ ⊂ TL/2 of ∆c containing t2. The set of edges γ

of the graph TL/2 between vertices of ∆ and its complement ∆
c

is a minimal cutset of ∆.

Informally, γ is a contour between ∆ with all its holes except the one containing t2 filled

up and the remaining component containing t2— a contour separating t1 and t2. The

standard fact is that the number of contours with a fixed number of edges |γ| = n separating

two vertices t1 and t2 is bounded by cn with a suitable constant c.

Given a contour γ of length |γ| = n, there exists a coordinate direction such that there

are at least n/d edges in γ aligned along this direction. Precisely half of them have their

outer endpoint (the vertex in ∆) “on the left” of its inner endpoint, choosing (arbitrarily) the

direction of the chosen coordinate axis (without loss of generality we can take for this the

first coordinate axis) as e1, there are at least n/(2d) edges {t, t + e1} such that t ∈ ∆ and

t + e1 ∈ ∆.

Now, the crucial claim is that with each contour we can associate at least 1/2 of the n/(2d)
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bad blocks (with a configuration from ϑ2t(B)), all belonging to a given fixed partition: ei-

ther to our original partition of TL labelled by TL/2 or to a new partition of TL with the basic

block C shifted by a unit vector from TL in direction e1. Indeed, any block corresponding

to an outer vertex t above is either bad or, if not, it has to be a translation τ2t(Go) of the odd

staggered configuration (being the even staggered configuration would be in contradiction

with the assumption that ∆ is a component of the set of blocks with even staggered config-

uration). However, then the block shifted by a unit vector in TL in direction e1 features an

odd staggered configuration on its left-hand half and an even staggered configurations on

its right-hand half, i.e., a configuration that belongs to the properly shifted set B (here it is

helpful that the set B is invariant with respect to the reflection through the middle plane of

the block).

We use S (γ) to denote this collection of at least |γ|/(4d) bad blocks associated with contour

γ. Given that, according to the construction above, all blocks from S (γ) belong to the same

partition (either the original one or a shifted one), we can use the chessboard estimate based

on the the corresponding partition to bound the probability that all blocks of a given set

S (γ) are bad by 〈 ∏
t∈S (γ)

ϑt(B)
〉

L, β
≤ qL, β(B)|S (γ)|. (7.4.32)

As a result, assuming that qL, β(B) ≤ 1 (we will later show it can be made arbitrarily small),

the expectation of the event τ2t1(Ge) ∩ τ2t2(Go) is bounded by〈
τ2t1(Ge) ∩ τ2t2(Go)

〉
L, β
≤

∑
γ separating t1 and t2

qL, β(B)|γ|/(4d)2|γ|/(2d)+1. (7.4.33)

Here, 2|γ|/(2d)+1 is the bound on the number of sets S (γ) associated with the contour γ once

the direction e1 is chosen.

This leads to the final bound〈
τ2t1(Ge) ∩ τ2t2(Go)

〉
L, β
≤

∞∑
n=4

2
(
4qL, β(B)n/(4d))cn. (7.4.34)

We now see that Lemma 7.4.4 will hold if qL, β(B) can be made arbitrarily small by tuning

the parameters of the model correctly. Hence we turn our attention to this.

For the remaining technical part of this section we restrict ourselves to the two-dimensional

case.

For d = 2, the set B consists of 14 configurations that can be classified into five events
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according to the number of sites in C that are occupied, B = B(0) ∪ B(1) ∪ B(2) ∪ B(3) ∪

B(4). Here, B(0) and B(4) consist of a single configuration (empty and full, respectively)

and B(1),B(2),B(3) consist each of 4 configurations related by symmetries. Notice that

the event B(2) has precisely two occupied sites at neighbouring positions (excluding the

configurations ne and no).

By subadditivity we can bound qL, β(B) by the sum of expectations of homogenised pat-

terns based on the fourteen configurations from B disseminated throughout the lattice by

reflections. Of course, in view of the symmetries, we can consider only 5 configurations

n(k), k = 0, 1, . . . , 4, one from each event B(k), k = 0, 1, . . . , 4.

We use Z(k)
L (β) to denote the corresponding quantities

Z(k)
L (β) = qL, β({n(k)})(L/2)2

ZL(β), (7.4.35)

for k ∈ {0, 1, . . . , 4}. For notational consistency we also denote the contribution of staggered

configurations on TL as Ze
L(β) and Zo

L(β).

Lemma 7.4.5. For any u, µ, κ ∈ R with |u| ≤ 1 we have

Z(0)
L (β) = (2S + 1)L2

, (7.4.36)

Ze
L(β) = Zo

L(β) = e
1
2βµL2

(2S + 1)L2
. (7.4.37)

Proof. It follows immediately from the observation that in these cases there are no interac-

tions between spins at neighbouring sites. �

Obtaining bounds for the remaining disseminated configurations is more difficult and will

be done separately for the two considered types of quantum spin models. First we prove

estimates for the antiferromagnetic case.

Lemma 7.4.6. For u = −1 (the antiferromagnet) and any µ, κ ∈ R we have

Z(1)
L (β) ≤ (2S + 1)L2

exp
{
βL2(µ

4 + κ
4 −

1
8S

)}
, (7.4.38)

Z(2)
L (β) ≤ (2S + 1)L2

exp
{
βL2(µ

2 + 3κ
4 −

1
2S

)}
, (7.4.39)

Z(3)
L (β) ≤ (2S + 1)L2

exp
{
βL2( 3µ

4 + 5κ
4 −

7
8S

)}
, (7.4.40)

Z(4)
L (β) ≤ (2S + 1)L2

exp
{
βL2(µ + 2κ − 3

2S
)}
. (7.4.41)

Proof. We present the proof for Z(4)
L (β) and Z(3)

L (β), the other two inequalities follow by a

simpler application of the same method. First, using the unitary operator U =
∏

x∈Te
L

eiπS 2
x ,
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we get

Z(4)
L (β) = exp

{
βL2(µ + 2κ − 2S (S +1)

S 2

)}
Tr exp

{
−

β

S 2

∑
〈x,y〉

Sx · Sy
}
. (7.4.42)

For a site x0 consider its four nearest neighbours x1, x2, x3, x4. The operator −
∑
〈x,y〉 Sx ·Sy

can be written as as a sum of L2/2 operators of the form of B(4)
x0 := −Sx0 ·

(∑4
k=1 Sxk

)
summing

over x0 on the even sublattice. According to [35, Theorem C.2], the largest eigenvalue of

each operator B(4)
x0 is S (4S + 1). As a result, we get the bound

Tr exp
{
−

β

S 2

∑
〈x,y〉

Sx · Sy
}
≤ (2S + 1)L2

exp
{
βL2 4S +1

2S

}
. (7.4.43)

Combining with the prefactor, the inequality follows.

For Z(3)
L (β) we follow the same procedure combining, however, operators B(`)

x0 := −Sx0 ·(∑`
k=1 Sxk

)
, with ` = 1, 2, 3, 4 neighbours of x0. Note that a dissemination of a block of

three occupied and one unoccupied site throughout the lattice via reflections yields a pattern

where 1/4 of the 2 × 2 blocks are empty and the remaining blocks are full, with the empty

blocks evenly spaced throughout the lattice. Thus there are 5L2/4 edges with both end

sites occupied and we can tile these edges by L2/8 copies of each of the operators B(`)
x0 ,

` = 1, 2, 3, 4. Observe that (4 + 3 + 2 + 1)L2/8 = 5L2/4 yields the correct number of

edges. Nevertheless a tiling yielding the claimed bound uses L2/8 operators B(4)
x0 and L2/4

operators B(3)
x0 arranged in each 16 × 16 cell as shown below.

• • • •

• • • •

• • • •

• • • •

The inequality follows by using the claim [35, Theorem C.2] that the largest eigenvalue of

the operator B(`)
x0 is S (`S + 1). Collecting the terms we get the claimed bound.

The pattern of Z(2)
L (β) consists of alternating double lines of occupied and unoccupied sites

resulting in tiling with L2/4 operators of the form B(3)
x0 whose largest eigenvalue is S (3S +1).

The bound for Z(1)
L (β) is also straightforward with L2/4 edges and L2/8 of operators B(2)

x0

whose largest eigenvalue is S (2S + 1). Notice that tiling with L2/4 of operators B(1)
x0 would

be also possible, but would lead to a bigger bound. �
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The corresponding inequalities for the spin- 1
2 XY model are as follows.

Lemma 7.4.7. For the quantum XY model (u = 0) with S = 1
2 and any µ, κ ∈ R,

Z(1)
L (β) ≤ 2L2

exp
{
βL2(µ

4 + κ
4 +

√
2

4 − 3
)}
, (7.4.44)

Z(2)
L (β) ≤ 2L2

exp
{
βL2(µ

2 + 3κ
4 −

5
4
)}
, (7.4.45)

Z(3)
L (β) ≤ 2L2

exp
{
βL2(3µ

4 + 5κ
4 +

√
6 −11
4

)}
, (7.4.46)

Z(4)
L (β) ≤ 2L2

exp
{
βL2(µ + 2κ +

√
6 − 6

)}
. (7.4.47)

Proof. The calculation is straightforward using the same method as in Lemma 7.4.6 with

operators A(`)
x0 := S 1

x0

(∑`
k=1 S 1

xk

)
+ S 2

x0

(∑`
k=1 S 2

xk

)
. Their largest eigenvalue according to [35,

Theorem C.1] is 1
2
√

m(m + 1) if ` = 2m and 1
2 m if ` = 2m − 1, i.e., 1/2,

√
2 /2, 1, and

√
6 /2 for the operators A(1)

x0 , A
(2)
x0 , A

(3)
x0 , and A(4)

x0 , respectively. �

As a result, we are getting the following bounds on the expectations of the disseminated

bad configurations qL, β({n(k)}) for k = 0, 1, . . . , 4.

Lemma 7.4.8. Let u, µ, κ ∈ R. We have

qL, β({n(0)}) ≤ e−2βµ. (7.4.48)

Further we have for u = −1 (the antiferromagnet),

qL, β({n(1)}) ≤ exp
{
β
(
−µ + κ − 1

2S
)}
, (7.4.49)

qL, β({n(2)}) ≤ exp
{
β
(
3κ − 2

S
)}
, (7.4.50)

qL, β({n(3)}) ≤ exp
{
β
(
µ + 5κ − 7

2S
)}
, (7.4.51)

qL, β({n(4)}) ≤ exp
{
β
(
2µ + 8κ − 6

S
)}
, (7.4.52)

and for u = 0 and S = 1
2 (the XY model),

qL, β({n(1)}) ≤ exp
{
β
(
−µ + κ +

√
2 − 12

)}
, (7.4.53)

qL, β({n(2)}) ≤ exp
{
β
(
3κ − 5

)}
, (7.4.54)

qL, β({n(3)}) ≤ exp
{
β
(
µ + 5κ +

√
6 − 11

)}
, (7.4.55)

qL, β({n(4)}) ≤ exp
{
β
(
2µ + 8κ − 4(6 −

√
6 )

)}
. (7.4.56)
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Proof. All the estimates follow from the previous lemmas using

qL, β({n(k)}) =

Z(k)
L (β)

ZL(β)

(2/L)2

≤

Z(k)
L (β)

2Ze
L(β)

(2/L)2

. (7.4.57)

�

Further, using subadditivity (Lemma 7.4.3) we have

qL, β(B) ≤ qL, β({n(0)}) + 4
3∑

k=1

qL, β({n(k)}) + qL, β({n(4)}). (7.4.58)

From Lemma 7.4.8 we can see that if we choose µ > 0 and κ sufficiently small, the up-

per bounds on the disseminated events can simultaneously be made arbitrarily small by

choosing β sufficiently large.

More precisely, we see that there exists µ0 > 0 and a function κ0 that is positive on (0, µ0)

such that if µ > 0, κ < max(κ0(µ), 0), and ε > 0, there exists β0(µ, κ, ε) such that the claims

of the Lemma 7.4.4 and thus also Theorem 7.4.1 are valid for any β ≥ β0.

Explicit expressions for the function κ0 are

κ0(µ) = min
( 2

3S ,
1

2S + µ, 7
10S −

µ
5 ,

3
4S −

µ
4
)

(7.4.59)

for the case of an antiferromagnet (u = −1) with spin S and

κ0(µ) = min
(5

3 ,
6−
√

6
2 −

µ
4
)

(7.4.60)

for the case of XY model with spin 1/2.

7.5 The spin-1 Bose-Hubbard model

In this section we look at a model of itinerant particles on a lattice that possess a spin.

More specifically we look at Bosons with a spin-1 degree of freedom. We will introduce

a probabilistic representation of the spin-1 Bose-Hubbard model that should be familiar

from Chapter 6. This allows us to present off-diagonal and spin correlations in terms of

probabilities in this representation. Note that because particles are free to move on the

lattice the site spin correlation will have a dependency on the presence of a particle at each

site.
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7.5.1 Setting

We work on lattice, Λ ⊂ Zd, with a set of edges, E. We consider a collection of N itinerant

spin-1 particles on the lattice. We denote by xi the position of the ith particle and by ∆i its

Laplacian. The spin-S operators on C2S +1 are denoted by S 1, S 2, S 3 with S k
i denoting the

spin operator S k acting on the ith particle and S = (S 1, S 2, S 3).

The state space is given by H = Psym ⊗
N
i=1 (l2(Λ) ⊗ C3) where Psym is the projection onto

the symmetric subspace. The Hamiltonian is given by

H(J1, J2,V) = −

N∑
i=1

∆i−
1
2

∑
i, j

δxi,x j(J1Si ·S j + J2(Si ·S j)2−2J2)+V
∑

i, j,k
k,i

δxi,x jδx j,xk . (7.5.1)

Note that the structure of the spin operators in H(J1, J2,V) means that we need only sym-

metrise in space variables and not in spin variables. Later we will take the limit V → ∞ to

impose the constraint of having at most two particles per site. The partition function and

Gibbs states for inverse temperature β > 0 are given by

Zβ(J1, J2,V) = TrHPsyme−βH(J1,J2,V), (7.5.2)

〈·〉
J1,J2,V
β =

1
Zβ(J1, J2,V)

TrHPsym · e−βH(J1,J2,V). (7.5.3)

We will derive a probabilistic representation of this system that will allow us to recast off-

diagonal and spin correlations in terms of probabilities.

7.5.2 A probabilistic representation

To begin we note that

Zβ(J1, J2,V) =
1

N!

∑
π

∑
x1,...,xN

〈xπ(1)...xπ(N)|Tr C3N e−βH(J1,J2,V)|x1...xN〉. (7.5.4)
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Where π is a permutation on N letter and xi is a possible position for the ith particle. Now
denote a configuration of positions (x j

1, ..., x
j
N) = ω j then using Trotter’s formula we have

Zβ(J1, J2,V)

= lim
M→∞

1
N!

Tr C3N

∑
π

∑
x1,...,xN

〈
xπ(1)...xπ(N)

∣∣∣∣∣∣
 N∏

i=1

e
β
M ∆i e

β
2M

∑
i, j(J1Si·S j+J2(Si·S j)2−2J2)

M ∣∣∣∣∣∣x1...xN

〉

= lim
M→∞

1
N!

Tr C3N

∑
π

∑
ω1,...,ωM

M∏
j=1

〈
π(ω j)

∣∣∣∣∣∣ N∏
i=1

(
1 +

β

M
∆i

)
e

β
2M

∑
i, j(J1Si·S j+J2(Si·S j)2−2J2)

∣∣∣∣∣∣ω j+1
〉
.

=
1

N!

∑
π

∑
x1,...,xN

∫ ∗

dω1...dωN

Tr C3N exp


1
2

∑
x∈Λ

∫ β

0
dt

∑
i:ωi(t)=x

∑
j,i

ω j(t)=x

(J1Si · S j + J2(Si · S j)2 − 2J2) − V
∑

i, j,k
k,i

δωi(t),ω j(t)δω j(t),ωk(t)

 .
(7.5.5)

with the understanding that ωM+1 ≡ ω1. Here
∫ ∗

denotes the integral over random walks

ωi, i = 1, ...,N such that {ωi(0)}Ni=1 = {ωi(β)}Ni=1 = {x1, ..., xN}. Taking the limit V → ∞ will

introduce the constraint that at most two walks can occupy a site at the same time. Denote

by χE the indicator that there are at most two walks at any (x, t) ∈ Λ × [0, β]. We then have

lim
V→∞

Zβ(J1, J2,V)

=
1

N!

∑
π

∑
x1,...,xN

∫ ∗

dω1...dωNχE

Tr C3N exp


1
2

∑
x∈Λ

∫ β

0
dt

∑
i:ωi(t)=x

∑
j,i

ω j(t)=x

(J1Si · S j + J2(Si · S j)2 − 2J2)

 .
(7.5.6)

Denote limV→∞ Zβ(J1, J2,V) = Zβ(J1, J2).

7.5.3 Off diagonal correlations

Off diagonal correlations involve walks that start at x and end at y, with the understanding
that we use periodic boundary conditions on [0, β]. We denote by σ(x) the off diagonal
correlation between sites 0 and x and by Zβ(J1, J2;ω0,x) the partition function Zβ(J1, J2)
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conditioned to include a walk joining sites 0 and x. We can write this as

Zβ(J1, J2;ω0,x)

=
1

N!

∑
π

∑
x1 ,...,xN

∫ ∗

0←→x
dω1...dωNχETr C3N exp


1
2

∑
x∈Λ

∫ β

0
dt

∑
i:ωi(t)=x

∑
j,i

ω j(t)=x

(J1Si · S j + J2(Si · S j)2 − 2J2)


(7.5.7)

then

σ(x) =
Zβ(J1, J2;ω0,x)

Zβ(J1, J2)
. (7.5.8)

We can also think of σ(x) as the probability of a walk joining 0 and x in the system weighted

by the spin interactions in H(J1, J2), i.e. write σ(x) = P̃(0←→ x).

7.5.4 Spin correlations

We now expand the trace over C3N as in [111] to obtain a different probabilistic represen-

tation suitable for representing spin correlations as probabilities of events. We first define

two operators. Let |a〉 denote the eigenvector of S 3 with eigenvalue a, S 3|a〉 = a|a〉. Further

we denote |a, b〉 = |a〉 ⊗ |b〉, then we define Ti j, Pi j, operators on C3 ⊗ C3 as

Ti j|a, b〉 = |b, a〉 Pi j =

S∑
a,b=−S

(−1)a−b|a,−a〉〈b,−b|. (7.5.9)

Pi j has matrix elements 〈a, b|Pi j|c, d〉 = (−1)a−cδa,−bδc,−d, also 1
3 Pi j is the projector onto

the spin singlet. We can show the following relations

J1Si · S j + J2(Si · S j)2 = J2 + J1Ti j + (−J1 + J2)Pi j. (7.5.10)
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Then we have

Zβ(J1, J2)

=
1

N!

∑
π

∑
x1 ,...,xN

∫ ∗

dω1...dωNχETr C3N exp


1
2

∑
x∈Λ

∫ β

0
dt

∑
i:ωi(t)=x

∑
j,i

ω j(t)=x

(J1Ti j + (−J1 + J2)Pi j − J2)


=

1
N!

∑
π

∑
x1 ,...,xN

∫ ∗

dω1...dωNχE lim
M→∞

Tr C3N

(∏
x∈Λ

exp
{

1
2M

∫ β

0
dt

∑
i:ωi(t)=x

∑
j,i

ω j(t)=x

(J1Ti j + (−J1 + J2)Pi j − J2)
})M

= lim
M→∞

1
N!

∑
π

∑
x1 ,...,xN

∫ ∗

dω1...dωNχE

Tr C3N

(∏
x∈Λ

[
1 +

∫ β

0
dt

∑
i:ωi(t)=x

∑
j,i

ω j(t)=x

(
1

2M
(J1Ti j + (−J1 + J2)Pi j) −

J2

M

) ])M

(7.5.11)
where we have used Trotter’s formula. We now expand the trace

Zβ(J1, J2)

= lim
M→∞

1
N!

∑
π

∑
x1 ,...,xN

∫ ∗

dω1...dωNχE

∑
σ1 ,...σM

M∏
j=1

〈
σ j

∣∣∣∣∣∣∏
x∈Λ

[
1 +

∫ β

0
dt

∑
i:ωi(t)=x

∑
j,i

ω j(t)=x

(
1

2M
(J1Ti j + (−J1 + J2)Pi j) −

J2

M

) ]∣∣∣∣∣∣σ j+1
〉
.

(7.5.12)

As before we have the understanding that σM+1 ≡ σ1. As in [111] the sum over σi’s gives

an integral over a Poisson point process on intervals {x} × [t1, t2] ⊂ Λ × [0, β] that have two

walks present. Events are crosses and double bars of intensity J1 and J2 − J1 respectively.

Zβ(J1, J2) =
1

N!

∑
π

∑
x1,...,xN

∫ ∗

dω1...dωNdρ(ω)χE

∑
σ1,...,σm

〈σ1|Ri1 j1 |σ
2〉...〈σm|Rim jm |σ

1〉,

(7.5.13)

where ρ is the measure associated to the Poisson point process described above and the

Ri j = Ri j(ω) are either Ti j “crosses” or Pi j “double bars” ordered by time of occurrence

over all intervals where two walks overlap, each realisation has m = m(ω) events.

From this we can define a set of loops, L(ω), from a realisation, ω, of N random walks

on Λ together with the Poisson point process of crosses and double bars on overlapping

walks. The loops can be rigorously defined in analogy to [2, 70, 81, 107, 111], they are best

understood pictorially.

We now want to introduce space-time spin configurations. For realisation ω of N random

walks and the Poisson point process a space-time spin configuration compatible with ω is a
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piecewise constant function σ : supp(ω) → {−1, 0, 1} that is constant on vertical segments

of each loop and flips sign on crossing a bar, where supp(ω) is the support of the random

walks ω1, ..., ωN . We see that for the product in (7.5.13) to differ from zero σ1, ..., σm must

follow the same rules. This means that if we denote by Σ(ω) the set of all compatible spin

configurations for ω we have ∑
Σ(ω)

1 = 3|L(ω)|. (7.5.14)

This gives us

Zβ(J1, J2) =
1

N!

∑
π

∑
x1,...,xN

∫ ∗

dω1...dωNdρ(ω)χE3|L(ω)|, (7.5.15)

using this we can use the same expansion to obtain spin correlations between particles. We

begin by defining the total spin operator at site x ∈ Λ by

S 3
x =

N∑
i=1

S 3
i δxi,x. (7.5.16)

Let x, y ∈ Λ with x , y, using the same expansion as previously we can obtain

〈S 3
xS 3

y〉
J1,J2
β =

N∑
i, j=1

1
N!

∑
π

∑
x1,...,xN

∫ ∗

i←→ j
dω1...dωNdρ(ω)χE

∑
σ∈Σ(ω)

σiσ jδxi,xδx j,y.

=

N∑
i, j=1

2
3

(P[E+
xy] − P[E−xy])

=
N(N − 1)

3
(P[E+

xy] − P[E−xy])

(7.5.17)

where E+
xy is the event that sites x and y both contain a particle at time t = 0 and are joined

by a loop with the same vertical direction at both sites. E−xy is the same event except that the

vertical directions are opposite. Similarly we have

〈(S 3
x)2(S 3

y)2〉
J1,J2
β − 〈(S 3

x)2〉
J1,J2
β 〈(S 3

y)2〉
J1,J2
β =

N(N − 1)
9

P[Exy], (7.5.18)

where Exy = E+
xy = E−xy is the event that sites x and y both contain a particle at time t = 0

and are joined by a loop.
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[21] Brzezicki, W. and Oleś, A. Compass model on a ladder and square clusters. In J.

Phys.: Conf. Ser., volume 200, page 012017. IOP Publishing, 2010.

[22] Campbell, M. and Chayes, L. Intermediate phases in mixed nematic/Heisenberg spin

models. J. Phys. A: Math. and Gen., 32(50):8881, 1999.
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[42] Fröhlich, J., Israel, R., Lieb, E. and Simon, B. Phase transitions and reflection posi-

tivity. II. Lattice systems with short-range and Coulomb interactions. J. Stat. Phys.,

22(3), 1980.
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